JP5335339B2 - A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material. - Google Patents
A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material. Download PDFInfo
- Publication number
- JP5335339B2 JP5335339B2 JP2008233604A JP2008233604A JP5335339B2 JP 5335339 B2 JP5335339 B2 JP 5335339B2 JP 2008233604 A JP2008233604 A JP 2008233604A JP 2008233604 A JP2008233604 A JP 2008233604A JP 5335339 B2 JP5335339 B2 JP 5335339B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- heat sink
- aluminum
- metal composite
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
- H01L21/4882—Assembly of heatsink parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
本発明は、高温になると短寿命になったり、故障したりするLEDパッケージ、高負荷半導体、高負荷コンデンサーや、それらの組み合わせからなる集積回路基板に好適な黒鉛一金属複合体とアルミニウム押出材の組み合わせからなる放熱体に関する。 The present invention relates to a graphite monometallic composite and an aluminum extruded material suitable for an integrated circuit board composed of an LED package, a high load semiconductor, a high load capacitor, or a combination thereof, which has a short life or fails at high temperatures. It is related with the heat radiator which consists of a combination.
黒鉛材料を含む黒鉛一金属複合体には金属マトリックスと黒鉛粒子又は黒鉛繊維を材料として分散させた金属基複合材料や、押出成形体、冷間等方圧力成形体、金型にて一方向圧力による成形体より焼成してなる黒鉛成形体に金属を分散する黒鉛基金属複合材料が知られている。(特願平11−321828、特願2001−135551) The graphite-metal composite comprising a graphite material metal matrix composite material or obtained by dispersing metal matrix and graphite particles or graphite fibers as a material, extrudates, cold isostatic pressure moldings, one-way pressure at the mold There is known a graphite-based metal composite material in which a metal is dispersed in a graphite molded body fired from a molded body obtained by the above method. (Japanese Patent Application No. 11-321828, Japanese Patent Application No. 2001-135551)
一方で黒鉛を含む複合体は、熱拡散率が1.5〜3cm2/secと大きく、アルミニウムや銅、窒化アルミニウムなどといった伝熱媒体として通常多用されている材料の熱拡散率が0.7〜1.0cm2/secと比較すると、その熱拡散性能が卓越していることが知られている。 On the other hand, the composite containing graphite has a large thermal diffusivity of 1.5 to 3 cm 2 / sec, and the thermal diffusivity of a material normally used as a heat transfer medium such as aluminum, copper, and aluminum nitride is 0.7. Compared to ˜1.0 cm 2 / sec, it is known that its thermal diffusion performance is superior.
他方で、黒鉛を含む複合体は、例えば、押出材の黒鉛を使用したアルミニウムとの複合体の曲げ強度は30〜40Mpa、その弾性率は12Gpaと低く、アルミニウム、マグネシウム、チタン、銅、鉄などの常用金属に比較して、1/10以下の機械的強度となっている。又、アルミニウム押出材などのヒートシンクに供されるものは、大量に生産されるので安価であるが、黒鉛一金属複合体は、それに比較すると、高価になっている。 On the other hand, the composite containing graphite, for example, the bending strength of the composite with aluminum using the extruded graphite is 30 to 40 Mpa, its elastic modulus is as low as 12 Gpa, aluminum, magnesium, titanium, copper, iron, etc. Compared to conventional metals, the mechanical strength is 1/10 or less. Moreover, what is used for heat sinks, such as an aluminum extrusion material, is inexpensive because it is produced in large quantities, but the graphite-metal composite is more expensive than that.
本発明の目的は上記問題に鑑み、黒鉛金属複合体の熱拡散率の良好な特性を維持しながら、その弱点である低い機械的特性を補強し、尚かつ、より安価な放熱体を提供することにある。 In view of the above problems, an object of the present invention is to reinforce low mechanical properties, which are weak points of the graphite metal composite while maintaining good properties of thermal diffusivity, and to provide a more inexpensive heat radiator. There is.
本発明者は、用いる材料の組み合わせを考案することにより、上記の目的を良好に達成しうる以下の要旨を有する本発明に到達した。 The present inventor has arrived at the present invention having the following gist that can satisfactorily achieve the above object by devising a combination of materials to be used.
黒鉛粉末を50〜92体積%含む黒鉛成形体にアルミニウム、銅或いはそれらの合金を溶湯鍛造法により加圧含浸させて得られた黒鉛一金属複合体を板状、或いは円柱状などに切り出して、アルミニウム、又はアルミニウム合金の押出材からなるヒートシンクの形状に合わせ、配列した放熱体。 A graphite monometallic composite obtained by pressure impregnating aluminum, copper or an alloy thereof into a graphite compact containing 50 to 92% by volume of graphite powder by a melt forging method is cut into a plate shape or a cylindrical shape, A radiator arranged in accordance with the shape of a heat sink made of extruded material of aluminum or aluminum alloy.
黒鉛繊維をチョップドした短繊維材と人造黒鉛と併せて、50〜92%含む成形体にアルミニウム、銅或いはそれらの合金を溶湯鍛造法により加圧含浸させて、得られた黒鉛一金属複合体をアルミニウム又はアルミニウム合金の押出材からなるヒートシンクの形状に適宣合致するように切り出して配列した放熱体。 Combined with short fiber material chopped with graphite fiber and artificial graphite, aluminum, copper or an alloy thereof is pressure impregnated by a molten metal forging method into a compact containing 50 to 92%, and the obtained graphite-metal composite is obtained. A radiator that is cut out and arranged so as to match the shape of a heat sink made of an extruded material of aluminum or aluminum alloy.
黒鉛粉末或いは黒鉛粉末を含むチョップド黒鉛繊維の成形体の成形方法が押出成形、冷間等方圧力成形金型にて一方向圧力による成形のいずれかによるものであること。 The method for forming graphite powder or a chopped graphite fiber molded body containing graphite powder is either extrusion molding or molding by unidirectional pressure in a cold isostatic pressing mold.
本発明によれば、黒鉛一金属複合体の良好な熱拡散率を利用でき、黒鉛一金属複合体の機械的強度の弱さを、アルミニウム又はアルミニウム合金金属押出材に接しさせることによって補強される。又、全体を黒鉛一金属複合体で作成するより安価になる。
これにより、LEDパッケージ、高負荷半導体、高負荷コンデンサー、或いは集積回路基板から発生する熱は、黒鉛一金属複合体によって、効率良く熱拡散し、その熱は、丈夫なアルミニウム合金のヒートシンクによって、大きな表面積を持つフィン部から放熱される経済性にも優れた放熱体が提供される。
According to the present invention, the good thermal diffusivity of the graphite / metal composite can be utilized, and the weak mechanical strength of the graphite / metal composite is reinforced by contacting the extruded aluminum or aluminum alloy metal. . Moreover, it becomes cheaper than making the whole with a graphite one metal composite.
As a result, the heat generated from the LED package, the high load semiconductor, the high load capacitor, or the integrated circuit board is efficiently diffused by the graphite / metal composite, and the heat is greatly increased by the strong aluminum alloy heat sink. There is provided a heat dissipator that is excellent in economy of heat dissipated from a fin portion having a surface area.
黒鉛一金属複合体の製造方法は、溶湯鍛造法によって加圧含浸することによって得られる。この時に使用される黒鉛は、人造黒鉛をタールやピッチ或いは有機樹脂などのバインダーで押出したもの、冷間等方圧力成形したもの、金型にて一方向圧力によって成形したものなどを用いることが可能でこれらは最終的に2500℃以上で処理されて、結果的に、ほぼ100%近くが黒鉛の組織になる。
又、この時、黒鉛繊維のチョップドしたものを含んでいても良い。
A method for producing a graphite-metal composite is obtained by pressure impregnation by a molten metal forging method. The graphite used at this time may be one obtained by extruding artificial graphite with a binder such as tar, pitch or organic resin, one formed by cold isostatic pressing, one formed by unidirectional pressure in a mold, etc. It is possible that these are finally treated at 2500 ° C. or higher, resulting in almost 100% of the graphite structure.
At this time, chopped graphite fibers may be included.
前記のようにして、得られた黒鉛一金属複合体は、機械加工性に優れ、板状、円柱状、角柱状などに容易に加工できる。 As described above, the obtained graphite-metal composite is excellent in machinability and can be easily processed into a plate shape, a columnar shape, a prismatic shape, or the like.
一方で、各種形状のアルミニウム押出材を用意しておく。これらはフィン部とそれを束ねる部位からなり、後出図1によって説明すると、第1図は1は発熱体、2は黒鉛一金属複合体、3はアルミニウム押出材のヒートシンクであり、2は平板で、3に接している。第2図は2の黒鉛一金属複合体は円柱状であり、その外周面が、3のアルミニウム押出材の内周に接している。第3図は2の黒鉛一金属複合体は角柱状であり、その四側面が、3のアルミニウム押出材の内側面に接している。 On the other hand, various shapes of extruded aluminum materials are prepared. These are composed of fin portions and portions where they are bundled. As will be described later with reference to FIG. 1, FIG. 1 shows a heating element, 2 is a graphite-metal composite, 3 is a heat sink of an aluminum extruded material, and 2 is a flat plate. In contact with 3. In FIG. 2, the graphite-metal composite of 2 has a cylindrical shape, and the outer peripheral surface thereof is in contact with the inner periphery of the aluminum extruded material. In FIG. 3, the graphite-metal composite of 2 has a prismatic shape, and its four side surfaces are in contact with the inner side surface of the aluminum extruded material.
黒鉛一金属複合体とヒートシンクの接合方法は、例えば第2図、第3図では、黒鉛一金属複合体の熱膨張率が7×10−61/Kであり、アルミニウムのそれは23×10−61/Kであるので焼きばめ法で行なって良い。第1図の様式では、黒鉛一金属複合体とヒートシンクの間にシリコングリスを介してネジ止めしても良いし、両方にメッキしてハンダ付けしても良い。 For example, in FIG. 2 and FIG. 3, the method of joining the graphite / metal composite to the heat sink is that the coefficient of thermal expansion of the graphite / metal composite is 7 × 10 −6 1 / K, and that of aluminum is 23 × 10 − Since it is 6 1 / K, the shrink fit method may be used. In the manner shown in FIG. 1, the graphite-metal composite and the heat sink may be screwed via silicon grease, or both may be plated and soldered.
本発明に使用されるアルミニウムのヒートシンクは、押出材に限定されるものではなく、ダイガスト材、鋳造材、鍛造材なども利用できる。そして、その材質もアルミニウム合金であれば良いが、好ましくは、JISA1000系、JISA6000系合金が、加工性も良く、熱伝導度も大きいのでより好適である。 The aluminum heat sink used in the present invention is not limited to an extruded material, and die cast material, cast material, forged material, and the like can also be used. The material may be an aluminum alloy, but preferably a JISA1000 series or JISA6000 series alloy is more suitable because it has good workability and high thermal conductivity.
本発明の使用される黒鉛の種類は、天然黒鉛、人造黒鉛であり、市販の黒鉛ブロックであっても良い。 The types of graphite used in the present invention are natural graphite and artificial graphite, and commercially available graphite blocks may be used.
黒鉛一金属複合体の黒鉛の体積割合は50%〜92%のものを用いる。50%以下だと熱拡散率が小さいので、本発明の放熱体には適さない。
より好ましくは65%〜92%である。
The volume ratio of the graphite of the graphite-metal complex is used as a 50% to 9 2%. If it is 50% or less, the thermal diffusivity is small, so it is not suitable for the radiator of the present invention.
More preferably from 65% to 9 2%.
黒鉛一金属複合体に用いられる金属は、アルミニウム、アルミニウム合金、銅或いは銅合金を用いる。アルミニウム合金はJIS展伸材系のもの、JIS鋳物材系のものなどを用いることができる。好ましくは、合金としての融点が低いものが良い。銅合金としてはJISC1000系〜7000系の伸銅材などを用いることができる。 Aluminum, aluminum alloy, copper, or copper alloy is used as the metal used for the graphite-metal composite. As the aluminum alloy, a JIS wrought material, a JIS casting material, or the like can be used. Preferably, the alloy has a low melting point. As the copper alloy, a JISC1000-7000 drawn copper material or the like can be used.
上記のようにして得られた放熱体は熱的には、発熱体に接する位置に、熱拡散に優れる黒鉛一金属複合体を用い、黒鉛一金属複合体に接する位置に放熱表面積の大きいアルミ製のヒートシンクを組み合わせることにより、より効率的な放熱体を得ることができる。 The heat radiator obtained as described above is thermally made of a graphite-metal composite with excellent thermal diffusion at a position in contact with the heating element, and is made of aluminum having a large heat radiation surface area at a position in contact with the graphite-metal composite. By combining these heat sinks, a more efficient heat radiating body can be obtained.
又、上記放熱体は、機械的には、黒鉛一金属複合体のぜい弱な強度をアルミ製のヒートシンクにて、補強されることにより、構造体としての機能も併せ持つことができる。 In addition, the heat radiator is mechanically reinforced by the weak strength of the graphite-metal composite with an aluminum heat sink, and can also function as a structure.
以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
電極用黒鉛ブロック(東海カーボン社製UHP)の大きさが150mm×200mm×250mmのものを、アルゴン雰囲気中で700℃に保持しておき、一方でJIS−AC3Aアルミニウム合金を700℃で溶解しておく。これらを溶湯鍛造用の金型内に導き、圧力60Mpaにて鋳造を完了した。 A graphite block for electrodes (UHP manufactured by Tokai Carbon Co., Ltd.) having a size of 150 mm × 200 mm × 250 mm is kept at 700 ° C. in an argon atmosphere, while JIS-AC3A aluminum alloy is dissolved at 700 ° C. deep. These were introduced into a mold for molten metal forging, and casting was completed at a pressure of 60 Mpa.
鋳造物から黒鉛一金属複合体を採り出して、厚さ2mmたて、横のサイズ20mmの板を切り出して、その上に、4WのLEDを装着後、フィン長さ10mm、フィン数10であるアルミニウム製(JISA6063の押出材)ヒートシンクの30mm×25mmの上に、接しさせて、12Vで333mAの通電して、1時間後に温度を測定した所、LED上部は38℃、ヒートシンクのフィン部は、26℃であった。尚、室温は22℃であった。 A graphite-one-metal composite is taken out from the casting, a 2 mm thick plate is cut out, a horizontal 20 mm plate is cut out, and a 4 W LED is mounted thereon, and then the fin length is 10 mm and the number of fins is 10. Made of aluminum (extruded material of JIS A6063) on a heat sink of 30 mm x 25 mm, contacted with 333 mA at 12 V and measured the temperature one hour later, the LED upper part was 38 ° C, the heat sink fin part was It was 26 ° C. The room temperature was 22 ° C.
前記実施例1の黒鉛一金属複合体の替りに同じサイズのJISA1050板を用いて、同様の試験を行った所、LED上部は105℃、ヒートシンクフィン部は70℃であった。 When a similar test was performed using a JIS A1050 plate of the same size instead of the graphite-metal composite of Example 1, the LED upper part was 105 ° C. and the heat sink fin part was 70 ° C.
前記実施例1の黒鉛一金属複合体の替りに同じサイズのJISA1050板を用い、ヒートシンクは、逆に黒鉛一金属複合体を加工して、実施例1のアルミニウム製ヒートシンクと同形状のものを作成して、同様の試験を行った所、LED上部は98℃ヒートシンクフィン部は54℃であった。 The same size JISA1050 plate was used instead of the graphite-metal composite of Example 1, and the heat sink was processed into the same shape as the aluminum heat sink of Example 1 by processing the graphite-metal composite. And when the same test was done, the LED upper part was 98 degreeC heat sink fin part, and 54 degreeC.
実施例1の黒鉛一金属複合体から150mm×200mmで厚さ3mmの板を作成し、同じ大きさの150mm×200mmのアルミニウム製ヒートシンクのフィン高30mm、フィン数30、その平板部分の厚さ2mmの直上にネジ留めした。黒鉛一金属複合体の板上に放熱量120Wの集積回路基板を配置して、2時間後に温度測定した所、黒鉛一金属複合体板は45℃、アルミニウム製ヒートシンクのフィン部は35℃であった。 A plate of 150 mm × 200 mm and a thickness of 3 mm was prepared from the graphite-metal composite of Example 1, and a 150 mm × 200 mm aluminum heat sink of the same size had a fin height of 30 mm, the number of fins, and a thickness of the flat plate portion of 2 mm. Screwed directly on top of An integrated circuit board having a heat dissipation amount of 120 W was placed on the graphite-metal composite plate, and the temperature was measured after 2 hours. The graphite-metal composite plate was 45 ° C., and the fin portion of the aluminum heat sink was 35 ° C. It was.
実施例2のアルミニウム製ヒートシンクの平板部分の厚さを5mmにした以外は同条件で温度測定した所、平板部の温度は97℃フィン部は70℃であった。 When the temperature was measured under the same conditions except that the thickness of the flat plate portion of the aluminum heat sink of Example 2 was 5 mm, the temperature of the flat plate portion was 97 ° C. and the fin portion was 70 ° C.
本発明の黒鉛一金属複合体と、アルミニウム押出材などの組合せからなる放熱体は、優れた熱拡散性を有するものと安価なアルミニウム製ヒートシンクの大きな放熱面積を有するものとの組合せから、LEDパッケージ、高負荷半導体、高負荷コンデンサーやそれらの組合せからなる集積回路基板などの放熱に有効であり、産業上の広範な分野で有用である。 The heat dissipating body comprising a combination of the graphite-metal composite of the present invention and an aluminum extruded material is a combination of a heat sink having excellent thermal diffusivity and a heat sink made of an inexpensive aluminum heat sink. It is effective for heat dissipation of integrated circuit boards made of high load semiconductors, high load capacitors and combinations thereof, and is useful in a wide range of industrial fields.
1.
発熱体
2.
黒鉛金属複合体
3.
アルミニウム製ヒートシンク
1.
1. Heating element
2. Graphite metal composite
Aluminum heat sink
Claims (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008233604A JP5335339B2 (en) | 2008-09-11 | 2008-09-11 | A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material. |
KR1020117008073A KR20110085978A (en) | 2008-09-11 | 2008-12-29 | Radiator consisting of a combination of graphite metal composite and aluminum extrusion |
US13/063,568 US20110259570A1 (en) | 2008-09-11 | 2008-12-29 | Heat radiator composed of a combination of a graphite-metal complex and an aluminum extruded material |
PCT/US2008/088461 WO2010030307A1 (en) | 2008-09-11 | 2008-12-29 | A heat radiator composed of a combination of a graphite-metal complex and an aluminum extruded material |
EP08876944A EP2324074A4 (en) | 2008-09-11 | 2008-12-29 | A heat radiator composed of a combination of a graphite-metal complex and an aluminum extruded material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008233604A JP5335339B2 (en) | 2008-09-11 | 2008-09-11 | A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010067842A JP2010067842A (en) | 2010-03-25 |
JP5335339B2 true JP5335339B2 (en) | 2013-11-06 |
Family
ID=42005380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008233604A Expired - Fee Related JP5335339B2 (en) | 2008-09-11 | 2008-09-11 | A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material. |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110259570A1 (en) |
EP (1) | EP2324074A4 (en) |
JP (1) | JP5335339B2 (en) |
KR (1) | KR20110085978A (en) |
WO (1) | WO2010030307A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7156586B1 (en) | 2022-03-17 | 2022-10-19 | 三菱電機株式会社 | Semiconductor device manufacturing method |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110027603A1 (en) * | 2008-12-03 | 2011-02-03 | Applied Nanotech, Inc. | Enhancing Thermal Properties of Carbon Aluminum Composites |
US20100310447A1 (en) * | 2009-06-05 | 2010-12-09 | Applied Nanotech, Inc. | Carbon-containing matrix with functionalized pores |
US20110147647A1 (en) * | 2009-06-05 | 2011-06-23 | Applied Nanotech, Inc. | Carbon-containing matrix with additive that is not a metal |
JP5622465B2 (en) * | 2010-07-22 | 2014-11-12 | ローム株式会社 | LED bulb and manufacturing method of LED bulb |
CN102114495A (en) * | 2010-11-25 | 2011-07-06 | 深圳市天电光电科技有限公司 | Method for manufacturing LED radiator |
KR200483474Y1 (en) * | 2011-01-19 | 2017-05-18 | 그라프텍 인터내셔널 홀딩스 인코포레이티드 | Thermal solution for led bulbs |
DE102011081687A1 (en) * | 2011-08-26 | 2013-02-28 | Robert Bosch Gmbh | Semiconductor device with a heat sink |
JP2014047127A (en) | 2012-09-04 | 2014-03-17 | Toyo Tanso Kk | Metal-carbon composite material, manufacturing method of metal-carbon composite material, and sliding member |
JP6164632B2 (en) * | 2013-01-11 | 2017-07-19 | 株式会社アカネ | Method for producing carbon-based metal composite material |
US10914539B2 (en) | 2013-05-15 | 2021-02-09 | Osram Sylvania Inc. | Two piece aluminum heat sink |
KR101301624B1 (en) * | 2013-07-05 | 2013-08-29 | (주) 동양에이.케이코리아 | Manufacturing method of including carbon aluminium or aluminium alloy extrusion and using included carbon aluminium or aluminium alloy extrusion |
CN105916348A (en) * | 2016-03-25 | 2016-08-31 | 华为技术有限公司 | Electronic device middle frame fitting and manufacturing method thereof |
CN106531874B (en) * | 2016-11-30 | 2018-10-12 | 南京劲峰洋光电科技有限公司 | A kind of heat sinking insulating composite material and preparation method thereof |
CN107022690B (en) * | 2017-05-03 | 2019-03-08 | 合肥工业大学 | A method of aluminium/C-base composte material is prepared by Pressure Infiltration aluminium alloy |
US20230031882A1 (en) * | 2019-12-17 | 2023-02-02 | Ube Corporation | Graphite-Copper Composite Material, Heat Sink Member Using the Same, and Method for Producing Graphite-Copper Composite Material |
KR102298678B1 (en) * | 2020-04-22 | 2021-09-07 | 부경대학교 산학협력단 | Method for manufacturing cooling pipe for electric vehicle powertrain and cooling pipe manufactured thereby |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146981A (en) * | 1991-11-14 | 1992-09-15 | Digital Equipment Corporation | Substrate to heatsink interface apparatus and method |
US5520976A (en) * | 1993-06-30 | 1996-05-28 | Simmonds Precision Products Inc. | Composite enclosure for electronic hardware |
US6009938A (en) * | 1997-12-11 | 2000-01-04 | Eastman Kodak Company | Extruded, tiered high fin density heat sinks and method of manufacture |
US6680015B2 (en) * | 2000-02-01 | 2004-01-20 | Cool Options, Inc. | Method of manufacturing a heat sink assembly with overmolded carbon matrix |
EP1187199A2 (en) * | 2000-08-28 | 2002-03-13 | Alcan Technology & Management AG | Heatsink for Semiconductor Device, Method of Mannufacturing the same, as well as Molding Die therefore |
JP2002184922A (en) * | 2000-12-12 | 2002-06-28 | Ntt Advanced Technology Corp | Composite heat dissipation member |
US20030024611A1 (en) * | 2001-05-15 | 2003-02-06 | Cornie James A. | Discontinuous carbon fiber reinforced metal matrix composite |
US6691768B2 (en) * | 2001-06-25 | 2004-02-17 | Sun Microsystems, Inc. | Heatsink design for uniform heat dissipation |
US6758263B2 (en) * | 2001-12-13 | 2004-07-06 | Advanced Energy Technology Inc. | Heat dissipating component using high conducting inserts |
WO2003051552A1 (en) * | 2001-12-19 | 2003-06-26 | Showa Denko K.K. | Extrusion tool, method for manufacturing shaped article with fins, and heat sink |
US20030131970A1 (en) * | 2002-01-17 | 2003-07-17 | Carter Daniel P. | Heat sinks and method of formation |
JP2006511098A (en) * | 2002-10-11 | 2006-03-30 | チエン−ミン・ソン | Carbonaceous heat spreader and related methods |
US20050189647A1 (en) * | 2002-10-11 | 2005-09-01 | Chien-Min Sung | Carbonaceous composite heat spreader and associated methods |
US20040190245A1 (en) * | 2003-03-31 | 2004-09-30 | Murli Tirumala | Radial heat sink with skived-shaped fin and methods of making same |
US6779593B1 (en) * | 2003-04-30 | 2004-08-24 | Hewlett-Packard Development Company, L.P. | High performance cooling device with heat spreader |
EP2179976A1 (en) * | 2003-05-16 | 2010-04-28 | Hitachi Metals, Ltd. | Composite material having high thermal conductivity and low thermal expansion coefficient |
JP4344934B2 (en) * | 2003-05-16 | 2009-10-14 | 日立金属株式会社 | High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof |
US20050238835A1 (en) * | 2004-04-24 | 2005-10-27 | Chien-Min Sung | Graphite composite thermal sealants and associated methods |
JP4015146B2 (en) * | 2004-10-12 | 2007-11-28 | 古河電気工業株式会社 | Heat sink with fins and method for manufacturing the same |
JP4940883B2 (en) * | 2005-10-31 | 2012-05-30 | 豊田合成株式会社 | Light emitting device |
US20080073070A1 (en) * | 2006-09-26 | 2008-03-27 | Chin-Hu Kuo | Highly efficient heat dissipating composite material and a heat dissipating device made of such material |
US20080085403A1 (en) * | 2006-10-08 | 2008-04-10 | General Electric Company | Heat transfer composite, associated device and method |
US20080128067A1 (en) * | 2006-10-08 | 2008-06-05 | Momentive Performance Materials Inc. | Heat transfer composite, associated device and method |
-
2008
- 2008-09-11 JP JP2008233604A patent/JP5335339B2/en not_active Expired - Fee Related
- 2008-12-29 WO PCT/US2008/088461 patent/WO2010030307A1/en active Application Filing
- 2008-12-29 EP EP08876944A patent/EP2324074A4/en not_active Withdrawn
- 2008-12-29 US US13/063,568 patent/US20110259570A1/en not_active Abandoned
- 2008-12-29 KR KR1020117008073A patent/KR20110085978A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7156586B1 (en) | 2022-03-17 | 2022-10-19 | 三菱電機株式会社 | Semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP2324074A4 (en) | 2012-06-13 |
EP2324074A1 (en) | 2011-05-25 |
JP2010067842A (en) | 2010-03-25 |
KR20110085978A (en) | 2011-07-27 |
US20110259570A1 (en) | 2011-10-27 |
WO2010030307A1 (en) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5335339B2 (en) | A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material. | |
JP4348565B2 (en) | High thermal conductivity / low thermal expansion composite material and heat dissipation board | |
JP4344934B2 (en) | High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof | |
US20070053166A1 (en) | Heat dissipation device and composite material with high thermal conductivity | |
CN1228842C (en) | Fin type heat radiator | |
JP6846879B2 (en) | How to make a heat sink | |
US7447032B2 (en) | Heat spreader module and method of manufacturing same | |
US6698500B2 (en) | Heat sink with fins | |
WO2004003974A3 (en) | Composite heat sink with metal base and graphite fins | |
US20070102147A1 (en) | Heat dissipation apparatus and method for manufacturing the same | |
JP5387342B2 (en) | heatsink | |
JP2002066724A (en) | Composite material and method for producing the same | |
JP2005077052A (en) | Flat heat pipe | |
JPWO2015115649A1 (en) | Silicon carbide based composite, method for producing the same, and heat dissipation component using the same | |
JPS63140753A (en) | Production of porous heat radiator | |
JP2005005528A (en) | Module for mounting semiconductor element | |
JP2012151425A (en) | Stacked heat sink | |
JP2002235126A (en) | Method for producing composite material | |
JP2005136369A (en) | Substrate | |
JPH10116942A (en) | Heat sink | |
CN106972096A (en) | A kind of heat-dissipating structure body and application | |
JP2004055577A (en) | Aluminum-silicon carbide plate composite | |
JP3914905B2 (en) | heatsink | |
CN111386601A (en) | Insulating substrate and heat dissipation device | |
EP3624182B1 (en) | Power semiconductor module arrangement, substrate arrangement, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110906 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130731 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R314533 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |