JP5335174B2 - 多孔質体、その製造方法、及び多孔質体を利用した複合材料 - Google Patents
多孔質体、その製造方法、及び多孔質体を利用した複合材料 Download PDFInfo
- Publication number
- JP5335174B2 JP5335174B2 JP2004088678A JP2004088678A JP5335174B2 JP 5335174 B2 JP5335174 B2 JP 5335174B2 JP 2004088678 A JP2004088678 A JP 2004088678A JP 2004088678 A JP2004088678 A JP 2004088678A JP 5335174 B2 JP5335174 B2 JP 5335174B2
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- carbon fiber
- grown carbon
- vapor grown
- body according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Filtering Materials (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
特開2002−348741号公報(特許文献3)には、活性な結晶の端部が繊維の外側へ向いている、いわゆるヘリンボン型結晶構造と呼ばれる気相法炭素繊維が開示されている。ヘリンボン型結晶構造を持つ気相法炭素繊維は樹脂等と親和性が高いこと、また樹脂との混練時においては繊維がS字状、Z字状、スパイラル状に変形しやすく、樹脂とのフィッティング性が高いことから少量の添加で効果が発現することが示されている。
更に本発明の目的は、少量の気相法炭素繊維の使用で添加効果が発現する樹脂等との複合材(多孔質体)を容易に製造する方法を提供することにある。
更に本発明の目的は、熱処理時の体積収縮率の小さい多孔質体の製造方法を提供することにある。
本発明者らは、分散性の良好な気相法炭素繊維の選定と、容易に多孔質体となる物質、または多孔質体を製造する方法との組合せについて鋭意検討した。その結果、炭素繊維として湾曲部分が少なく直線性が高い気相法炭素繊維を使用すれば、例えば超音波照射を行うことにより簡単に溶液中に分散できること、多孔質体となる材料として寒天等のような有機材料を使用することにより簡単に多孔質体を製造できること、また一般的によく知られているゾル・ゲル法によっても比較的容易にこのような多孔質体を製造することができることを見出し、本発明を完成した。
すなわち、本発明は、以下に示す多孔質体、その製造方法、及び多孔質体を利用した複合材料を提供するものである。
2.気相法炭素繊維を10〜95質量%含む請求項1に記載の多孔質体。
3.気相法炭素繊維が、繊維径1〜1000nm、アスペクト比5〜15000、比表面積2〜2000m2/g、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I1360/I1580)0.1〜2.0である請求項1または2に記載の多孔質体。
4.気相法炭素繊維の結晶内あるいは結晶表面にホウ素が0.001〜5質量%含有されている請求項1乃至3のいずれか1項に記載の多孔質体。
5.全体積(V0)に対する細孔が占める体積(V)の割合として表される多孔度(V/V0)が0.50〜0.99である請求項1乃至4のいずれか1項に記載の多孔質体。
6.比表面積が5〜1000m2/gである請求項1乃至5のいずれか1項に記載の多孔質体。
7.多孔質体のセル壁面がさらに多孔質構造となっている請求項1乃至6のいずれか1項に記載の多孔質体。
8.電気抵抗値が103Ω・cm未満である請求項1乃至7のいずれか1項に記載の多孔質体。
9.ゲル化物質の溶液中に気相法炭素繊維を分散させた後、ゲル化物質をゲル化させ、溶媒を除去することを特徴とする請求項1に記載の気相法炭素繊維を含む多孔質体の製造方法。
10.水溶性ポリマー及び/またはケイ酸アルカリ塩を溶解させ、及び/または固体微粒子を分散させて調製したゲル化物質の溶液中を使用する請求項9に記載の多孔質体の製造方法。
11.溶媒を除去した後、不活性雰囲気下100〜1000℃の温度で熱処理を行う請求項9または10に記載の多孔質体の製造方法。
12.溶媒の除去が、真空乾燥または凍結乾燥法により行われる請求項9または10に記載の多孔質体の製造方法。
13.溶媒の臨界温度及び臨界圧力を超えた温度及び圧力下におき、その後圧力を臨界圧力以下に下げることで溶媒の除去が行われる請求項9または10に記載の多孔質体の製造方法。
14.ゲル化物質が有機化合物である請求項9または10に記載の多孔質体の製造方法。
15.有機化合物が、寒天、アガロース、ゼラチン、アルギン酸塩のうち少なくとも一種類以上からなり、溶媒が水である請求項14に記載の多孔質体の製造方法。
16.溶媒が、界面活性剤を添加した水溶液である請求項15に記載の多孔質体の製造方法。
17.水溶性ポリマーが,フェノール樹脂、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸及びポリアクリル酸塩から選択される少なくとも一種類のものである請求項10に記載の多孔質体の製造方法。
18.ゲル化物質が、極性溶媒中に溶解した金属化合物を酸またはアルカリにより加水分解反応、縮合反応または重合反応により生成したゾル状物質である請求項9または10に記載の多孔質体の製造方法。
19.金属化合物が、金属アルコキシド、金属アセチルアセトネート、酢酸金属塩、カルボン酸金属塩、硝酸金属塩、金属塩化物、及び金属オキシ化合物から選択される少なくとも一種類であり、溶媒が水または水と極性有機溶媒との混合物である請求項18に記載の多孔質体の製造方法。
20.液状ポリマー中に気相法炭素繊維を分散させ、その後に液状ポリマーを発泡させることを特徴とする請求項1に記載の多孔質体の製造方法。
21.液状ポリマーがポリイソシアネート及びポリオールからなる請求項20に記載の多孔質体の製造方法。
22.請求項9乃至21のいずれか1項に記載の製造方法によって得られる多孔質体。
23.請求項1乃至8及び22のいずれか1項に記載の多孔質体にポリマーを含浸させてなることを特徴とする樹脂複合体。
24.ポリマーが、フェノール樹脂、エポキシ樹脂、ポリイミド、及びポリカーボネートから選択される少なくとも一種類からなるポリマーである請求項23に記載の樹脂複合体。
25.請求項1乃至8及び22のいずれか1項に記載の多孔質体にポリマーを含浸させることを特徴とする樹脂複合体の製造方法。
26.請求項1乃至8及び22のいずれか1項に記載の多孔質体に金属を含有させてなることを特徴とする金属複合体。
27.金属が、アルミニウム、マグネシウム、銅、及び銀から選択される少なくとも一種類の金属またはそれらの合金の溶融物である請求項26に記載の金属複合体。
28.請求項1乃至8及び22のいずれか1項に記載の多孔質体に金属を含有させることを特徴とする金属複合体の製造方法。
29.請求項1乃至8及び22のいずれか1項に記載の多孔質体を用いたガス吸収用フィルター。
30.請求項1乃至8及び22のいずれか1項に記載の多孔質体を用いた水ろ過用フィルター。
31.請求項1乃至8及び22のいずれか1項に記載の多孔質体を用いた触媒担体。
本発明で用いる気相法炭素繊維は、不活性ガス、かつ高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことにより製造することができる(特開平7−150419号公報等)。
気相法炭素繊維は、生成したままでも、例えば生成したものを800〜1500℃で熱処理したものでも、例えば生成したものを2000〜3000℃で黒鉛化処理したもののいずれもが使用可能である。
ホウ素化合物の添加量は、用いるホウ素化合物の化学的特性、物理的特性に依存するために限定されないが、例えば炭化ホウ素(B4C)を使用する場合には、気相法炭素繊維に対して0.01〜10質量%、好ましくは0.1〜5質量%の範囲である。ホウ素化合物を添加して熱処理することにより、気相法黒鉛化炭素繊維の炭素の結晶性が向上し、導電性が向上する。
また、ホウ素化合物の代わりにケイ素、アルミニウム、ベリリウム等の化合物を用いることでも、炭素繊維の黒鉛化を促進させることができる。
・繊維径:1〜1000nm、好ましくは1〜200nm。
・アスペクト比:5〜15000、好ましくは5〜5000。
・比表面積:2〜2000m2/g、好ましくは10〜1000m2/g。
・ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I1360/I1580):0.1〜2.0、好ましくは0.1〜1.5。
本発明の多孔質体は、ゲルとなる原料(ゲル化物質)の溶液中に気相法炭素繊維を分散させた後、ゲル化させて気相法炭素繊維が分散したゲル状物質(ゲル化物質の溶液をゲル化させて生成したもの)を得、次いで溶媒を除去・乾燥することにより製造することができる。
ゲル物質溶液中への気相法炭素繊維の分散は、マグネティックスターラー等の剪断力をかけない撹拌機、または超音波照射による撹拌により行うことができ、超音波照射による撹拌が好ましい。
また、ゲル化物質の溶液の代わりにゲル流体を用い、それに直接気相法炭素繊維を分散させることもできる。
超臨界抽出による溶媒の除去は、溶媒の臨界温度及び臨界圧力を超える温度及び圧力下においた後、圧力を臨界圧力以下に下げることで気液二相とし、溶媒と多孔質体とを分離することで行うことができる。この操作を数回繰り返すことで、完全に溶媒を除去することができる。
より緻密で、機械的強度等に優れた複合材を作製するには、なるべく多くの空隙が存在していることが不可欠である。そのため、多孔度は0.50〜0.99の範囲に属していることが望ましい。さらに好ましい多孔度は0.70〜0.99である。多孔度が0.50未満になると空隙の量が少ないことから、マトリックス材料を十分に含浸することができない。
また、各種フィルター及び触媒担体として使用する際にも、単位体積あたりにおける気体または液体との接触頻度を上げることが重要であり、その観点からも多孔度は前述の範囲に属していることが望ましい。
ここで、多孔度とは、全体積(見かけの体積:V0)に対する細孔が占める体積(V)の割合(V/V0)として表される。
セル壁面を多孔質構造とするには、気相法炭素繊維を分散した液中にフッ素樹脂微粉分散液を添加し、さらに60℃の寒天水溶液を加えて、撹拌、乾燥させることにより実現できる。
高温下で熱処理することにより、寒天及び添加物の炭素化を進めることができ、それに伴って表面物性、例えば親水性から疎水性へと変化させることができる。また、高温下で熱処理することにより、複合材とした後の水分の蒸発を原因とする複合材の劣化を抑制することができる。
電気抵抗値を下げることは(導電性を上げることは)、例えば気相法炭素繊維の配合量を増加させたり、溶媒除去後に熱処理を行ったり、気相法炭素繊維自体の導電性を向上させたりすること等により行うことができる。ただし、本発明の多孔質体は、炭素繊維同士の繋がりの度合いが高く、高レベルで三次元ネットワークが形成されているため、気相法炭素繊維の配合量を従来ほど高めなくても、電気抵抗値を所望の値まで下げることが可能である。
上記方法で得た多孔質体を使用して複合材料を製造するには、一般的なマトリックスとなる材料を含浸させる方法で行うことができる。すなわち、マトリックス材料としての溶融状態の樹脂または金属を多孔質体中に含浸または含有させることにより製造することができる。
マトリックスとなる樹脂としては、例えばフェノール樹脂、エポキシ樹脂、ポリイミド、ポリカーボネート等が挙げられる。マトリックスとなる金属としては、例えばアルミニウム、マグネシウム、銅、銀またはそれらの合金の溶融物が挙げられる。
本発明の多孔質体は三次元的にネットワークを形成した気相法炭素繊維を含む複合体を製造する用途に有用であるが、その他にも、ガス吸収用フィルター、水ろ過用フィルター、塩素化合物除去用フィルター等のフィルター材料としても使用することができる。さらに触媒、触媒担体、燃料電池のガス透過性多孔質材料としても使用することができる。
本発明の多孔質体の多孔度、気相法炭素繊維の含有量、比表面積の測定、抵抗値の測定は以下の方法により行った。
立方体または直方体の形で得られた多孔質体の各辺の長さを測定することにより全容量(V0)を算出し、また真密度測定器ウルトラピクノメータ1000(ユアサアイオニクス製)にて多孔質体の真密度を測定し、この数値を逆数にして質量を乗じた数値を全容積(V0)から差し引くことで細孔容積(V)を得、全容積中の細孔容積の割合(V/V0)を算出し、これを多孔度とした。
多孔質体となったときの質量に対する、使用した気相法炭素繊維の質量の割合を、気相法炭素繊維の含有量(%)とした。
多孔質体サンプルを約1〜2mm大に砕いて専用のガラスセルに充填し、比表面積測定装置NOVA−1200(ユアサアイオニクス製)を用いて、一般的な比表面積の測定方法であるBET法により測定した。
多孔質体サンプルを正確に5cm×5cm大に切り出し、マイクロメーター(日本測定工具製)を用いて厚さを正確に計測した。次いで抵抗測定器ロレスタHP(MCP−T410型;ダイヤインスツルメンツ製)を用いて四探針法により、体積固有抵抗値を測定した。
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g添加した。これに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)4.2gを添加し、30分間超音波照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態に置き、ついで、冷凍庫から取り出して凍結乾燥装置(FD−15LI:サンペック製)に入れて水分の乾燥を行い、多孔質体を得た。凍結乾燥法による乾燥は、まず装置内の圧力を減圧して450Pa以下となるように保持し、次いで氷が昇華するように0〜60℃で24時間加熱することにより行った。
得られた多孔質体の多孔度は0.95、気相法炭素繊維含有量は74質量%、比表面積は12m2/g、体積固有抵抗値は130Ω・cmであった。この多孔質体を走査型電子顕微鏡で観察したところ、孔の多いものであることが確認された(図1)。
実施例1で得られた多孔質体を、管状加熱炉にてアルゴンガス10L/min流通下において800℃で1時間熱処理した。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は93質量%、比表面積は520m2/g、熱処理時の体積収縮率は13体積%、体積固有抵抗値は40Ω・cmであった。
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g添加した。これに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)8.5gを添加し、30分間超音波照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態に置き、ついで、冷凍庫から取り出し、実施例1と同様の方法で凍結乾燥を行い、多孔質体を得た。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は85質量%、比表面積は13m2/g、体積固有抵抗値は10Ω・cmであった。
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、0.45質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g添加した後、水溶性フェノール樹脂(BRL120Z,昭和高分子製)3.9gを溶解させた。その溶液に気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)4.2gを添加し、30分間超音波照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。ついで、冷凍庫にて冷凍させ、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において800℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は93質量%、比表面積は72m2/g、熱処理時の体積収縮率は15体積%、体積固有抵抗値は40Ω・cmであった。
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g加えた後、珪酸ナトリウム(純正化学製)を40質量%の濃度に溶解させた水溶液6.5gを加えた。その溶液に気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)4.2gを添加、30分間超音間照射し、さらにマグネティックスターラーで1時間撹拌して分散させ、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。次いで、冷凍庫にて冷凍させ、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において800℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.98、気相法炭素繊維含有量は38質量%、比表面積は5m2/g、熱処理時の体積収縮率は5体積%、体積固有抵抗値は125Ω・cmであった。この多孔質体を走査型電子顕微鏡で観察したところ、孔の多いものであることが確認された(図2)。また多孔質体の孔壁表面も多孔質構造をなしていた(図3)。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を5g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃、1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.96、気相法炭素繊維含有量は47質量%、比表面積は7m2/g、体積収縮率は2体積%、体積固有抵抗値は50Ω・cmであった。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を10g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.95、気相法炭素繊維含有量は32質量%、比表面積は4m2/g、体積収縮率は19体積%、体積固有抵抗値は65Ω・cmであった。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を30g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.91、気相法炭素繊維含有量は14質量%、比表面積は3m2/g、体積収縮率は19体積%、体積固有抵抗値は110Ω・cmであった。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gに気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)3gを添加し、30分間超音間照射した。その溶液にフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)を50g加え、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃、1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.70、気相法炭素繊維含有量は10質量%、比表面積は2m2/g、体積収縮率は8体積%、体積固有抵抗値は400Ω・cmであった。
特表平9−505266号公報に記載の方法に従って、以下の操作を行った。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水45gにフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)5gを添加し、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.73、比表面積は1m2/g、体積収縮率は90体積%、体積固有抵抗値は1010Ω・cm以上であった。この多孔質体を走査型電子顕微鏡で観察したところ、実施例1乃至9と比較して、孔壁が明らかに厚かった(図4)。
特表平9−505266号公報に記載の方法に従って、以下の操作を行った。
精製水50gに寒天1.5gを加え95℃の加熱下で溶解させ、これをA液とした。一方、精製水40gにフッ素樹脂粒子分散液(MDF PTFE30−J(60質量%の分散質);三井・デュポンフルオロケミカル製)10gを添加し、これをB液とした。
A液を60℃まで冷却させた後に、B液を混合し撹拌した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態におき、実施例1と同様に凍結乾燥法により水を乾燥させた。
その後、管状加熱炉を用い、アルゴンガス10L/min流通下において400℃1時間の熱処理を行い、多孔質体を得た。得られた多孔質体の多孔度は0.75、比表面積は1m2/g、体積収縮率は85体積%、体積固有抵抗値は1010Ω・cm以上であった。
精製水50gに寒天1.5gを95℃の加熱下で溶解させ、これをA液とした。一方、精製水75gに、40質量%の濃度のドデシルベンゼンスルホン酸ナトリウム塩(アルドリッチ製)を0.45g溶解させた水溶液を調製し、これをB液とした。
A液を60℃まで冷却した後にB液を加えて混合した。その後、冷凍庫にて−15℃〜−20℃で冷凍状態に置き、実施例1と同様に凍結乾燥法により水を乾燥、多孔質体を得た。得られた多孔質体の多孔度は0.98、体積固有抵抗値は1010Ω・cm以上であった。
実施例1に記載の多孔質体100gを金属容器に入れて280℃で溶融させたポリカーボネートパンライト(帝人化成製)96gを流し込んだ。これを真空ガス置換炉KDF−V50R(デンケン製)で加熱しながら3時間真空引き(10-1Pa)を行うことで、多孔質体へポリカーボネートを含浸させた樹脂複合材を得た。得られた樹脂複合材について抵抗測定器ロレスタHP(MCP−T410型;ダイヤインスツルメンツ製)を用い、四探針法により体積固有抵抗値を測定し、560Ω・cmの値を得た。
実施例2に記載の多孔質体100gを用いた以外は実施例10と同様にして、樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、620Ω・cmの値を得た。
実施例4に記載の多孔質体100gを用いた以外は実施例10と同様にして、樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、500Ω・cmの値を得た。
混練・押出装置ラボプラストミル(東洋精機製)の装置内を280℃に加熱しながら、ポリカーボネートパンライト(帝人化成製)960gと気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)40gを混練、押出すことで樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、2.3×1014Ω・cmの値を得た。
混練・押出装置ラボプラストミル(東洋精機製)の装置内を280℃に加熱しながら、ポリカーボネートパンライト(帝人化成製)900gと気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)100gを混練、押出すことで樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、1.6×108Ω・cmの値を得た。
混練・押出装置ラボプラストミル(東洋精機製)の装置内を280℃に加熱しながら、ポリカーボネートパンライト(帝人化成製)700gと気相法炭素繊維VGCF(登録商標、昭和電工製;繊維径:150nm、アスペクト比:60、比表面積:13m2/g、ラマンスペクトル強度比:0.15)300gを混練、押出すことで樹脂複合材を得た。実施例10と同様の方法で体積固有抵抗値を測定し、7.3×104Ω・cmの値を得た。
Claims (8)
- 気相法炭素繊維を含むゲル状物質から生成される多孔質体であって、セル壁面がさらに多孔質構造となっている多孔質体。
- 気相法炭素繊維を10〜95質量%含む請求項1に記載の多孔質体。
- 気相法炭素繊維が、繊維径1〜1000nm、アスペクト比5〜15000、比表面積2〜2000m2/g、ラマン散乱スペクトルの1580cm-1及び1360cm-1のピーク強度比(I1360/I1580)0.1〜2.0である請求項1または2に記載の多孔質体。
- 気相法炭素繊維の結晶内あるいは結晶表面にホウ素が0.001〜5質量%含有されている請求項1乃至3のいずれか1項に記載の多孔質体。
- 全体積(V0)に対する細孔が占める体積(V)の割合として表される多孔度(V/V0)が0.50〜0.99である請求項1乃至4のいずれか1項に記載の多孔質体。
- 比表面積が5〜1000m2/gである請求項1乃至5のいずれか1項に記載の多孔質体。
- 電気抵抗値が103Ω・cm未満である請求項1乃至6のいずれか1項に記載の多孔質体。
- 請求項1乃至7のいずれか1項に記載の多孔質体を用いた触媒担体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004088678A JP5335174B2 (ja) | 2003-05-13 | 2004-03-25 | 多孔質体、その製造方法、及び多孔質体を利用した複合材料 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003134964 | 2003-05-13 | ||
JP2003134964 | 2003-05-13 | ||
JP2004088678A JP5335174B2 (ja) | 2003-05-13 | 2004-03-25 | 多孔質体、その製造方法、及び多孔質体を利用した複合材料 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010246883A Division JP4999128B2 (ja) | 2003-05-13 | 2010-11-02 | 多孔質体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004359936A JP2004359936A (ja) | 2004-12-24 |
JP5335174B2 true JP5335174B2 (ja) | 2013-11-06 |
Family
ID=34067186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004088678A Expired - Fee Related JP5335174B2 (ja) | 2003-05-13 | 2004-03-25 | 多孔質体、その製造方法、及び多孔質体を利用した複合材料 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5335174B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4994671B2 (ja) * | 2005-01-21 | 2012-08-08 | 昭和電工株式会社 | 導電性樹脂組成物、その製造方法及び用途 |
JP3720044B1 (ja) * | 2005-03-22 | 2005-11-24 | 株式会社物産ナノテク研究所 | 複合材料 |
WO2007018165A1 (ja) * | 2005-08-10 | 2007-02-15 | Toray Industries, Inc. | スポンジ状構造体および粉末、ならびにそれらの製造方法 |
JP2007119693A (ja) * | 2005-10-31 | 2007-05-17 | Bussan Nanotech Research Institute Inc | 着色高分子組成物 |
JP4815205B2 (ja) * | 2005-12-06 | 2011-11-16 | 国立大学法人群馬大学 | 電気二重層キャパシタ用炭素材料及び該材料を用いた電気二重層キャパシタ |
GB0622060D0 (en) | 2006-11-06 | 2006-12-13 | Hexcel Composites Ltd | Improved composite materials |
WO2010101215A1 (ja) * | 2009-03-05 | 2010-09-10 | 昭和電工株式会社 | 炭素繊維凝集体、及びその製造方法 |
CN102060288B (zh) * | 2010-11-29 | 2012-12-12 | 湖南大学 | 一种以二元酸为致孔链段共聚炭化制备多孔炭材料的方法 |
JP2015072899A (ja) * | 2013-09-06 | 2015-04-16 | 宇部興産株式会社 | 導電性ポリイミド多孔質膜及びその製造方法 |
JP7405524B2 (ja) * | 2019-07-01 | 2023-12-26 | イビデン株式会社 | 黒鉛材料及びその製造方法 |
KR102282019B1 (ko) * | 2019-10-23 | 2021-07-29 | 한국과학기술연구원 | 질화붕소나노물질을 포함하는 다공성 복합체 및 이의 제조방법 |
CN115323788B (zh) * | 2022-09-20 | 2023-11-03 | 四川大学 | 通过在碳纤维表面创建可控三维微结构实现碳纤维表面改性的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5790048A (en) * | 1980-11-25 | 1982-06-04 | Toray Ind Inc | Antistatic porous resin |
JPS6094344A (ja) * | 1983-10-30 | 1985-05-27 | 前田 眞 | 多孔質構造体 |
JPS63286443A (ja) * | 1987-05-19 | 1988-11-24 | Asahi Chem Ind Co Ltd | 炭素ウイスカ−を含む発泡体 |
JP2925639B2 (ja) * | 1990-03-22 | 1999-07-28 | 三菱化学株式会社 | 分析装置 |
JP2799187B2 (ja) * | 1989-06-01 | 1998-09-17 | 三菱化学株式会社 | 多孔性黒鉛質炭素粒状体及びそれを用いたクロマトグラフィー用支持材料 |
JPH09282938A (ja) * | 1996-04-17 | 1997-10-31 | Yazaki Corp | 導電性多孔質材料、及びその製造方法 |
JPH11279307A (ja) * | 1998-03-27 | 1999-10-12 | Sekisui Chem Co Ltd | 熱可塑性発泡体 |
US6489026B1 (en) * | 1999-03-25 | 2002-12-03 | Showa Denko K.K. | Carbon fiber, method for producing the same and electrode for cell |
JP4916632B2 (ja) * | 2001-09-10 | 2012-04-18 | 昭和電工株式会社 | 気相法炭素繊維およびその用途 |
JP3629540B2 (ja) * | 2002-03-11 | 2005-03-16 | 国立大学法人信州大学 | カーボンナノチューブ |
-
2004
- 2004-03-25 JP JP2004088678A patent/JP5335174B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004359936A (ja) | 2004-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999128B2 (ja) | 多孔質体の製造方法 | |
Jiang et al. | Lightweight spongy bone-like graphene@ SiC aerogel composites for high-performance microwave absorption | |
JP5335174B2 (ja) | 多孔質体、その製造方法、及び多孔質体を利用した複合材料 | |
Chithra et al. | Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust | |
Chung | A review of exfoliated graphite | |
Wu et al. | A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications | |
Allahbakhsh et al. | Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications | |
CN108778994A (zh) | 石墨烯增强的无机基质复合材料的无化学品式生产 | |
JP2014507365A (ja) | 多孔質グラフェン材料、その製造方法、及び電極材料としての応用 | |
KR102342310B1 (ko) | 흑연 시트의 제조방법 | |
Zhang et al. | Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique | |
CN107922666B (zh) | 包括石墨粒子的物品的制备 | |
Farhan et al. | Carbon foam decorated with silver particles and in situ grown nanowires for effective electromagnetic interference shielding | |
Yang et al. | Chemo-mechanically exfoliated boron nitride nanosheet/poly (vinyl alcohol) composites as efficient heat dissipation components | |
JP2021506730A (ja) | 無機粒子の第1及び第2の凝集体を含む粉末組成物、並びにポリマー及び粉末組成物を含むポリマー組成物 | |
Chen et al. | Recent progress in structural design of graphene/polymer porous composites toward electromagnetic interference shielding application | |
Zhou et al. | Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional‐freezing method | |
Wang et al. | Embedded 3D printing of RGO frameworks with mechanical strength, and electrical and electromagnetic interference shielding properties | |
WO2019194137A1 (ja) | SiC-Siコンポジット部材の製造方法およびSiC-Siコンポジット部材 | |
JP4523829B2 (ja) | カーボンナノファイバ・フェノール樹脂複合炭化材料、導電性樹脂組成物、二次電池用電極、電気二重層キャパシタ分極性電極用炭素材料、電気二重層キャパシタ分極性電極 | |
JP5494024B2 (ja) | 多孔体とその製造方法 | |
JP5071837B2 (ja) | 黒鉛質多孔体の製造方法 | |
Zhang et al. | High-k and ultra-low-loss BADCy/Ni 0.5 Ti 0.5 NbO 4 composites for PCB application fabricated by cold isostatic pressing and vacuum assisted infiltration processes | |
JP2005262391A (ja) | ナノカーボンと炭素系第二フィラーからなるコンポジット材およびその製造方法 | |
JP2024507083A (ja) | 放熱素材、これを含む組成物、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090319 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100903 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101102 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5335174 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |