JP5327587B2 - Manufacturing method of ceramics - Google Patents
Manufacturing method of ceramics Download PDFInfo
- Publication number
- JP5327587B2 JP5327587B2 JP2008222842A JP2008222842A JP5327587B2 JP 5327587 B2 JP5327587 B2 JP 5327587B2 JP 2008222842 A JP2008222842 A JP 2008222842A JP 2008222842 A JP2008222842 A JP 2008222842A JP 5327587 B2 JP5327587 B2 JP 5327587B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- clay
- molding
- measured
- regression line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Filtering Materials (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Description
本発明は排気ガス浄化用のセラミックハニカムフィルタ等に使用されるセラミックスの製造方法に関する。 The present invention relates to a method for producing ceramics used for a ceramic honeycomb filter or the like for exhaust gas purification.
環境保全面から、ディーゼルエンジンなどの排気系部品には、排気ガス中に大量に含まれる微粒子状物質を捕集するためにセラミックハニカムフィルタが使用されている。このフィルタは例えば図1に示すように、セラミックハニカム構造体11の流路11cを交互に封止部1a、1bで目封止することで、排気ガスは流入側2aで封止されていない流路11cより流入し、隔壁11bを通過して、流出側2bで封止されていない流路11cより排出される。そして排気ガスが隔壁11bを通過する際に、排気ガス中の微粒子状物質が隔壁表面および細孔中に捕集される。
From the viewpoint of environmental conservation, ceramic honeycomb filters are used for exhaust system parts such as diesel engines in order to collect particulate matter contained in large amounts in exhaust gas. In this filter, for example, as shown in FIG. 1, the
上記フィルタとして用いられるセラミックハニカム構造体11は、次のような工程で製造されてきている。セラミック原料、例えば、コージェライト生成原料粉末と、成形助剤、造孔剤と水を、混合、混練してセラミック坏土とし、このセラミック坏土を金型を通じて押出成形して、外周壁11aと隔壁11bとが一体に形成されたハニカム構造を有するセラミックハニカム成形体とする。次に、この成形体を乾燥後、さらに焼成して、隔壁11bに微細な細孔を持つセラミックハニカム構造体11としている。そして、排気ガス中の微粒子状物質の捕集効率の向上と圧力損失低減のため、隔壁の細孔径と気孔率を制御するために、造孔材が用いられるが、気孔率が50%以上のような高気孔率で、外径が150mmを超えるような大型のセラミックハニカム構造体となるセラミックハニカム成形体を押出成形する場合、造孔材として発泡済みの発泡樹脂が使用されてきている。
The
ところで、セラミック坏土を押出成形してセラミックハニカム成形体とする場合、成形体の成形性は、セラミック坏土のレオロジー特性に影響されるため、セラミック坏土は、流動性を確保しつつ、成形体の保形性をも確保させる必要がある。
特許文献1には、アルミナ成分を含むコーディエライト原料、発泡済みの発泡樹脂、水及び可塑剤を混合して得られる可塑性のセラミック坏土から成形体を得るセラミックス構造体の製造方法において、アルミナ成分の一部に水硬性アルミナを用いることにより、混練時の発泡樹脂の潰れや成形時の成形体の変形を防止する技術が開示されている。そして、前記セラミック坏土は、円錐状の先端と支持部がばね材で連結された硬度計で測定した硬度値が17〜30 mmであることが好ましいことが記載されている。
By the way, when a ceramic clay is extruded and formed into a ceramic honeycomb molded body, the moldability of the molded body is affected by the rheological properties of the ceramic clay, so the ceramic clay is molded while ensuring fluidity. It is necessary to ensure the shape retention of the body.
Patent Document 1 discloses a method for producing a ceramic structure in which a compact is obtained from a plastic ceramic clay obtained by mixing a cordierite raw material containing an alumina component, a foamed resin, water and a plasticizer. A technique for preventing the foamed resin from being crushed during kneading and the deformation of the molded body during molding by using hydraulic alumina as a part of the components is disclosed. It is described that the ceramic clay preferably has a hardness value of 17 to 30 mm as measured by a hardness meter in which a conical tip and a support portion are connected by a spring material.
また、特許文献2には、セラミックハニカム構造体の押出用原料として使用する坏土であって、成形する際の温度において一定応力値を与えた場合の歪の時間変化を測定した場合の、(1)その応力値を応力を加えると同時に発生する歪で割った値:弾性0(G0:Pa)、(2)その応力値を応力を加え続けた時に歪の時間変化(せん断速度)が概ね一定になった時の値で割った値:粘性0(η0:Pa・sec)、(3)その応力値をせん断速度が概ね一定になった時にその直線を時間軸0秒に外挿した時の歪から上記(1)で求めた歪を引いた値で割った値:弾性1(G1:Pa)、(4)その応力値を応力を4秒間加えた後の歪から上記(1)で求めた歪を引いた値の4秒間の平均せん断速度で割った値:粘性1(η1:Pa・sec)、の関係が、η0/G0≦105(sec)、η1/G1≦70(sec)、であるセラミック坏土で成形することで、流動性が良く押出成形後の保形性を保つことができるとしている。 Patent Document 2 discloses a clay used as a raw material for extruding a ceramic honeycomb structure, in which a change in strain with time when a constant stress value is applied at a molding temperature is measured ( 1) Value obtained by dividing the stress value by the strain generated at the same time as applying stress: Elasticity 0 (G 0 : Pa), (2) When the stress value is continuously applied, the strain change over time (shear rate) Value divided by the value when it becomes almost constant: Viscosity 0 (η 0 : Pa · sec), (3) When the shear rate becomes almost constant, the straight line is extrapolated to the time axis of 0 seconds The value obtained by subtracting the strain obtained in (1) above from the strain at the time of elasticity: elasticity 1 (G 1 : Pa), (4) the stress value after adding the stress for 4 seconds to the above ( The value obtained by subtracting the strain obtained in 1) and dividing by the average shear rate over 4 seconds: Viscosity 1 (η 1 : Pa · sec) is η 0 / G 0 ≦ 105 (sec), η 1 / G 1 ≦ 70 (sec) It is said that by molding with the back clay, the fluidity is good and the shape retention after extrusion molding can be maintained.
また、特許文献3には、ハニカム構造体の押出成形用原料として使用する坏土であって、坏土のレオロジー特性が、粘弾性特性試験における貯蔵弾性率1.5×106〜5.0×106(Pa)、複素粘度4.0×〜9.0×104(Pa・s)、かつ、細管レオメータ試験における降伏値5.0×104〜1.5×105(Pa)、塑性粘度10.0〜1000.0(Pa・s)であるセラミック坏土で押出し成形することが開示されている。そして、このセラミック坏土は、特に、壁厚100μm以下の薄壁ハニカム構造体の押出成形用原料として好適で、押出し性が良好で、成形体に表面切れ、ササクレを生じ難いとしている。 Patent Document 3 discloses a clay used as a raw material for extrusion molding of a honeycomb structure, and the rheological characteristics of the clay are storage elastic moduli of 1.5 × 10 6 to 5.0 × 10 6 ( Pa), complex viscosity 4.0 × to 9.0 × 10 4 (Pa · s), yield value 5.0 × 10 4 to 1.5 × 10 5 (Pa) in capillary rheometer test, plastic viscosity 10.0 to 1000.0 (Pa · s) It is disclosed to extrude with some ceramic clay. This ceramic clay is particularly suitable as a raw material for extrusion molding of a thin-walled honeycomb structure having a wall thickness of 100 μm or less, has good extrudability, and is difficult to cause surface breakage and sacrificial formation on the molded body.
しかしながら、特許文献1に記載されている方法で、坏土の特性を測定しても、特許文献1に記載されている方法は、坏土の硬度のみを評価したものであり、特に、気孔率が50%以上のような高気孔率で、外径が150mmを超えるような大型のセラミックスの形成に用いられるセラミック坏土の場合には、坏土に発泡済みの発泡樹脂である造孔材を多く含むことから、測定される特性がばらつきやすいことがあった。そのため、坏土の特性が、特許文献1で規定される範囲内であっても、坏土の最適な特性が得られていない場合があり、製品の品質が不安定になっていた。 However, even if the characteristics of the clay are measured by the method described in Patent Document 1, the method described in Patent Document 1 evaluates only the hardness of the clay, and in particular, the porosity. In the case of ceramic clay used for the formation of large ceramics with a high porosity such as 50% or more and an outer diameter exceeding 150 mm, a pore-forming material that is a foamed resin foamed on the clay is used. Since many are included, the characteristic to be measured sometimes tends to vary. Therefore, even if the characteristics of the clay are within the range specified in Patent Document 1, the optimal characteristics of the clay may not be obtained, and the quality of the product has become unstable.
また、特許文献2、特許文献3に記載の方法で、セラミック坏土の特性を測定して、気孔率が50%以上のような高気孔率で、外径が150mmを超えるような大型のセラミックスとなるセラミックス成形体を押出成形する場合、次のような問題を生じていた。特許文献2や特許文献3に記載されるような測定方法で測定し、規定された範囲内の特性を有するセラミック坏土で押出成形しても、押出成形時のセラミック坏土の流動性が確保されず、流路の潰れや隔壁切れ、流路のうねり等の不具合を生じる場合や、逆に、成形体の自重により変形し易いことから、押出成形後の保形性が確保されず自重により変形する場合が生じていた。本発明者らが検討したところ、特許文献1や特許文献2に記載されるような特性の測定方法は、気孔率の低いセラミック材料に好適な坏土の特性の測定方法であって、気孔率が50%以上のような高気孔率で、外径が150mmを超えるような大型のセラミックスの形成に用いられるセラミック坏土の場合には、特に、坏土に発泡済みの発泡樹脂である造孔材を多く含んでいるため、測定される特性がばらつきやすいことがあった。特許文献2や特許文献3に記載の方法で特性を測定し、坏土の特性が、特許文献2や特許文献3で規定される範囲内であっても、最適な特性が得られていない場合があり、製品の品質が不安定になっていた。 In addition, the characteristics of ceramic clay are measured by the methods described in Patent Document 2 and Patent Document 3, and the ceramics are large in size with a high porosity such as 50% or more and an outer diameter exceeding 150 mm. In the case of extruding the ceramic molded body, the following problems have occurred. Even if it is measured by the measurement method described in Patent Document 2 and Patent Document 3 and extrusion molding is performed with a ceramic clay having characteristics within the specified range, the fluidity of the ceramic clay during extrusion molding is ensured. In the case where problems such as crushing of the flow path, breakage of the partition wall, waviness of the flow path occur, or conversely, the molded body tends to be deformed by its own weight, so the shape retaining property after extrusion molding is not ensured and due to its own weight. There was a case of deformation. As a result of studies by the present inventors, the characteristic measurement method described in Patent Document 1 and Patent Document 2 is a method for measuring clay characteristics suitable for a ceramic material having a low porosity. In the case of ceramic clay used for the formation of large ceramics with a high porosity such as 50% or more and an outer diameter exceeding 150 mm, the pore making is a foamed resin that is already foamed in the clay. Since many materials are included, the measured characteristics are likely to vary. When the characteristics are measured by the method described in Patent Document 2 or Patent Document 3, and even if the characteristics of the clay are within the range specified by Patent Document 2 or Patent Document 3, the optimal characteristics are not obtained. And the product quality was unstable.
本発明は、上記問題を解決し、気孔率が50%以上のような高気孔率で、外径が150mmを超えるような大型のセラミックスの形成に用いられるセラミック坏土の特性を適正に評価するセラミックスの製造方法を提供することを目的とする。 The present invention solves the above problems, and appropriately evaluates the characteristics of the ceramic clay used for the formation of large ceramics with a high porosity such as 50% or more and an outer diameter exceeding 150 mm. It aims at providing the manufacturing method of ceramics.
すなわち、本発明のセラミックスの製造方法は、セラミックス材料と発泡樹脂とを含有する成形原料を混合、混練して坏土とした後、前記成形用杯土を成形機に充填して成形して成形体を得、前記成形体を焼成して気孔率が50%以上、外径が150mm以上、全長が150mm以上であるセラミックスを得るセラミックスの製造方法であって、前記杯土のせん断速度とせん断応力を測定し、前記せん断速度の平方根を横軸に、前記せん断応力の平方根を縦軸にしてプロットした測定値に対して最小二乗法で一次回帰直線を導出し、前記一次回帰直線の傾きaおよび前記一次回帰直線と縦軸の交点の値bを求め、a 2 が60Pa・s以下、及び、b 2 が50〜250kPaである杯土を用いて成形を行うことを特徴とする。
That is, in the method for producing a ceramic of the present invention, a molding raw material containing a ceramic material and a foamed resin is mixed and kneaded to form clay, and then the molding clay is filled into a molding machine and molded. A ceramic manufacturing method for obtaining a ceramic having a porosity of 50% or more, an outer diameter of 150 mm or more, and a total length of 150 mm or more by firing the molded body, wherein the shear rate and shear stress of the clay A linear regression line is derived by a least square method with respect to the measured values plotted with the square root of the shear rate as the horizontal axis and the square root of the shear stress as the vertical axis, and the slope a and the linear regression line A value b of an intersection of the linear regression line and the vertical axis is obtained , and molding is performed using a clay with a 2 of 60 Pa · s or less and b 2 of 50 to 250 kPa .
本発明において、前記セラミックスがハニカム構造体であることが好ましい。 In the present invention, the ceramic is preferably a honeycomb structure.
本発明において、前記セラミックスがハニカムフィルタであることが好ましい。 In the present invention, the ceramic is preferably a honeycomb filter.
次に、本発明の作用効果について説明する。
本発明のセラミックスの製造方法であって、セラミックス材料と発泡樹脂とを含有する成形原料を混合、混練して坏土とした後、前記成形用杯土を成形機に充填して成形して成形体を得、前記成形体を焼成して気孔率が50%以上、外径が150mm以上、全長が150mm以上であるセラミックスを得るセラミックスの製造方法であって、前記杯土のせん断速度とせん断応力を測定し、前記せん断速度の平方根を横軸に、前記せん断応力の平方根を縦軸にしてプロットした測定値に対して最小二乗法で一次回帰直線を導出し、前記一次回帰直線の傾きaおよび前記一次回帰直線と縦軸の交点の値bを求め、a 2 が60Pa・s以下、及び、b 2 が50〜250kPaである杯土を用いて成形を行うことで、次の作用効果を有する。すなわち、杯土のせん断速度とせん断応力を測定し、図3に示すように、前記せん断速度の平方根を横軸に、前記せん断応力の平方根を縦軸にしてプロットした測定値に対して最小二乗法で一次回帰直線を導出し、前記一次回帰直線の傾きaおよび前記一次回帰直線と縦軸の交点の値bを求めて、a 2 が60Pa・s以下、及び、b 2 が50〜250kPaである前記杯土を用いて成形を行うことで、従来技術の評価方法では評価結果に差が生じない坏土であっても、坏土の特性が適正に評価され、製品の品質を安定させることができるのである。
Next, the function and effect of the present invention will be described.
A method for producing a ceramic according to the present invention, wherein a molding raw material containing a ceramic material and a foamed resin is mixed and kneaded to form clay, and then the molding clay is filled into a molding machine and molded to form. A ceramic manufacturing method for obtaining a ceramic having a porosity of 50% or more, an outer diameter of 150 mm or more, and a total length of 150 mm or more by firing the molded body, wherein the shear rate and shear stress of the clay A linear regression line is derived by a least square method with respect to the measured values plotted with the square root of the shear rate as the horizontal axis and the square root of the shear stress as the vertical axis, and the slope a and the linear regression line By obtaining the value b of the intersection of the linear regression line and the vertical axis and performing molding using a clay with a 2 of 60 Pa · s or less and b 2 of 50 to 250 kPa , the following effects are obtained. . That is, the shear rate and shear stress of the clay are measured and, as shown in FIG. 3, the minimum two values are plotted against the measured values plotted with the square root of the shear rate on the horizontal axis and the square root of the shear stress on the vertical axis. deriving a primary regression line in multiplication, the seeking value b at the intersection of the primary slope of the regression line a and the linear regression line and the longitudinal axis, a 2 is 60 Pa · s or less, and, b 2 is in 50~250kPa By molding using the above-mentioned clay, the characteristics of the clay can be evaluated properly and the quality of the product can be stabilized even if the evaluation method of the prior art does not produce a difference in evaluation results. Can do it.
ここで、a2が60Pa・sを超えると坏土の流動性が著しく低下し、押出圧力を増加させた場合の押出速度の増加が非常に小さく、生産性を向上させることができない。また、坏土が金型内を通過する際、成形溝の溝幅中心部近傍のせん断速度が非常に大きい領域では、大きなせん断応力がかかり、成形溝の金型表面近傍のせん断速度が非常に小さい領域においては、小さなせん断応力がかかることとなる。即ち、ハニカム構造体の隔壁厚み方向にせん断応力のムラが生じ、均一な押出しができず、場合によっては隔壁のキレ、歪み等が生じることとなる。好ましくは、1〜40Pa・sである。 Here, when a 2 exceeds 60 Pa · s, the fluidity of the kneaded material is remarkably lowered, and the increase in the extrusion speed when the extrusion pressure is increased is very small, and the productivity cannot be improved. In addition, when the clay passes through the mold, in a region where the shear rate near the center of the groove width of the forming groove is very large, a large shear stress is applied, and the shear rate near the mold surface of the forming groove is very high. In a small region, a small shear stress is applied. That is, unevenness of the shear stress occurs in the partition wall thickness direction of the honeycomb structure, and uniform extrusion cannot be performed. In some cases, the partition walls are cracked or distorted. Preferably, it is 1 to 40 Pa · s.
また、b2が50kPa未満では、ハニカム構造体押出用金型から押出された成形体が自重で変形しやすくなり、外観不良が生じる。一方、250kPaを超えると、坏土を金型から押出すにあたって非常に高い押出圧力が必要となり、φ150mmを超えるような大型ハニカム構造体用の金型では反り、破損といった問題が生じることとなる。好ましくは、80〜230kPaである。 When b 2 is less than 50 kPa, the molded body extruded from the honeycomb structure extrusion mold is easily deformed by its own weight, resulting in poor appearance. On the other hand, if it exceeds 250 kPa, a very high extrusion pressure is required to extrude the clay from the mold, and the mold for large honeycomb structures exceeding φ150 mm causes problems such as warpage and breakage. Preferably, it is 80-230 kPa.
本発明において、前記成形原料に発泡樹脂を含有することで、気孔率が50%以上のような高気孔率のセラミックスを製造することができるのである。発泡樹脂は、発泡済みの発泡樹脂が好ましい。 In the present invention, a ceramic having a high porosity such as a porosity of 50% or more can be produced by including a foamed resin in the molding raw material. The foamed resin is preferably a foamed foamed resin.
本発明において、前記セラミックスがハニカム構造体であることで、排気ガス中に大量に含まれる微粒子状物質を捕集するためのセラミックハニカムフィルタに用いられるハニカム構造体として使用することができるのである。 In the present invention, since the ceramic is a honeycomb structure, the ceramic structure can be used as a honeycomb structure used in a ceramic honeycomb filter for collecting particulate matter contained in a large amount in exhaust gas.
本発明において、前記セラミックスがハニカムフィルタであることで、排気ガス中に大量に含まれる微粒子状物質を捕集するためのセラミックハニカムフィルタとして使用することができるのである。 In the present invention, since the ceramic is a honeycomb filter, it can be used as a ceramic honeycomb filter for collecting particulate matter contained in a large amount in exhaust gas.
また、本発明において、前記セラミックスの外径が150mm以上、全長が150mm以上であることで、排気ガス中の微粒子状物質の捕集性能と圧力損失特性を維持することができるのである。外径が150mm未満、全長が150mm未満の場合、排気ガス中の微粒子状物質の捕集性能が低下するので好ましくない。 In the present invention, when the ceramic has an outer diameter of 150 mm or more and a total length of 150 mm or more, it is possible to maintain the collection performance and pressure loss characteristics of the particulate matter in the exhaust gas. When the outer diameter is less than 150 mm and the total length is less than 150 mm, the collection performance of particulate matter in the exhaust gas is deteriorated, which is not preferable.
また、本発明のセラミックハニカム構造体の製造方法において、セラミックス材料と発泡樹脂とを含有する成形原料を混合、混練して坏土とし、前記成形用坏土を成形機に充填して成形して成形体を得、前記成形体を焼成して気孔率が50%以上、外径が150mm以上、全長が150mm以上であるセラミックスを得るセラミックスの製造方法であって、前記杯土のせん断速度とせん断応力を測定し、前記せん断速度の平方根を横軸に、前記せん断応力の平方根を縦軸にしてプロットした測定値に対して最小二乗法で一次回帰直線を導出し、前記一次回帰直線の傾きaおよび前記一次回帰直線と縦軸の交点の値bを求め、a2が、60Pa・s以下の範囲外、もしくは、b2が50〜250kPaの範囲外である場合に、前記坏土の混合、混練条件を変更することができる。これにより、特性が適正に評価された坏土を得ることができ、製品の品質を安定させることができるのである。
In the method for manufacturing a ceramic honeycomb structure of the present invention, a forming raw material containing a ceramic material and a foamed resin is mixed and kneaded to form a clay, and the molding clay is filled into a molding machine and molded. A method for producing ceramics, wherein a green body is obtained, and the green body is fired to obtain ceramics having a porosity of 50% or more, an outer diameter of 150 mm or more, and a total length of 150 mm or more. A stress is measured, and a linear regression line is derived by a least square method with respect to the measured values plotted with the square root of the shear rate on the horizontal axis and the square root of the shear stress on the vertical axis, and the slope a of the primary regression line a and the primary regression line and the vertical axis determined Me value b at the intersection of, a 2 is out of the range of less than 60 Pa · s, or, when b 2 is outside the range of 50~250KPa, mixing of the clay The kneading conditions can be changed. As a result, it is possible to obtain a clay whose characteristics are appropriately evaluated, and to stabilize the quality of the product.
本発明によれば、気孔率が50%以上のような高気孔率で、外径が150mmを超えるような大型のセラミックスの成形に用いられるセラミック坏土の状態を適正に評価するセラミックスの製造方法を提供することができる。 According to the present invention, a ceramic manufacturing method for appropriately evaluating the state of a ceramic clay used for forming a large ceramic having a high porosity such as a porosity of 50% or more and an outer diameter exceeding 150 mm Can be provided.
以下に、本発明の実施の形態を詳細に説明する。
カオリン、タルク、シリカ、アルミナ、水酸化アルミニウムの各粉末を重量比で、SiO2:50%、Al2O3:35%、MgO:15%となるように調整したセラミック原料と、成形助剤としてメチルセルロース、ヒドロキシプロピルメチルセルロース、潤滑材、造孔材としてマイクロカプセル、及び水をニーダーに投入して混練し、水の添加量、混練時間を変更して、実施例1〜6のセラミック坏土を作製した。次に、これらのセラミック坏土をフローテスター(ダイスサイズφ1.0×L10.0mm、ストローク1.0〜2.0mm、荷重55、65、75kg)でせん断速度、せん断応力を測定する。測定は、各試料の坏土に対して、3種類の荷重(P1、P2、P3)でせん断速度、せん断応力を測定し、せん断速度、せん断応力の各値の平方根を算出し、横軸にせん断速度の平方根、縦軸にせん断応力の平方根をプロットした時の、最小二乗法で導出される一次回帰式の傾きa、切片bを算出し、傾きaの2乗a2、切片bの2乗b2を算出した。同時に、引用文献1に記載される方法で坏土の硬度を測定した。結果を表1に示す。そして得られた坏土を押出成形口金を使用し、ハニカム構造の成形体が得られるように押出成形した。そして、押出し成形後のハニカム成形体のキレ、セル変形の発生状況を評価した。評価は、成形したハニカム成形体の数に対し、キレ、セル変形が発生したハニカム成形体の発生率が、1%未満であったものを(◎)、1%以上3%未満であったものを(○)、3%以上5%未満であったものを(△)、5%以上であったものを(×)で示した。
Hereinafter, embodiments of the present invention will be described in detail.
Ceramic raw materials prepared by adjusting each powder of kaolin, talc, silica, alumina, and aluminum hydroxide to a weight ratio of SiO 2 : 50%, Al 2 O 3 : 35%, MgO: 15%, and molding aid As the methylcellulose, hydroxypropylmethylcellulose, lubricant, microcapsule as the pore former, and water kneaded into the kneader, the amount of water added, kneading time was changed, the ceramic clay of Examples 1-6 Produced. Next, the shear rate and shear stress of these ceramic clays are measured with a flow tester (die size φ1.0 × L10.0 mm, stroke 1.0 to 2.0 mm, load 55, 65, 75 kg). Measurements were taken on the clay of each sample with three types of loads (P1, P2, P3) to measure the shear rate and shear stress, and to calculate the square root of each value of the shear rate and shear stress. The slope a and intercept b of the linear regression equation derived by the least square method when the square root of the shear rate and the square root of the shear stress are plotted on the vertical axis are calculated, the square a 2 of the slope a and 2 of the intercept b. The power b 2 was calculated. At the same time, the hardness of the clay was measured by the method described in Citation 1. The results are shown in Table 1. Then, the obtained kneaded material was extruded using an extrusion die so that a formed body having a honeycomb structure was obtained. And the generation | occurrence | production state of the crack of a honeycomb molded object after extrusion molding and cell deformation | transformation was evaluated. The evaluation was that the rate of occurrence of the honeycomb molded body in which sharpness and cell deformation occurred was less than 1% with respect to the number of the formed honeycomb molded bodies (A), and 1% or more and less than 3% (◯), those that were 3% or more and less than 5% were indicated by (Δ), and those that were 5% or more were indicated by (×).
表1の結果から、従来技術である引用文献1に記載される方法で坏土の硬度を測定した場合、その値が同一(実施例2と3、実施例4と5)であっても、ハニカム成形体のキレやセル変形の発生率に大きく差が生じていることがわかる。一方、本願発明の方法で坏土の評価を行なうことで、従来技術である引用文献1に記載される方法で坏土の硬度を測定した値が同一(実施例2と3、実施例4と5)であっても、算出されたa2、b2の値を評価することで、ハニカム成形体のキレやセル変形の発生状況を評価でき、キレやセル変形の発生率が小さく、品質の安定したハニカム成形体を得ることが可能な製造方法であることがわかる。 From the results of Table 1, when the hardness of the clay is measured by the method described in the cited document 1 which is the prior art, even if the value is the same (Examples 2 and 3, Examples 4 and 5), It can be seen that there is a large difference in the rate of occurrence of cracks and cell deformation in the honeycomb molded body. On the other hand, by evaluating the clay with the method of the present invention, the values measured for the hardness of the clay with the method described in the cited document 1 as the prior art are the same (Examples 2 and 3, Example 4 and 5) Even if the calculated values of a 2 and b 2 are evaluated, the occurrence of cracks and cell deformation of the honeycomb formed body can be evaluated, the occurrence rate of cracks and cell deformation is small, and the quality It can be seen that this is a production method capable of obtaining a stable honeycomb formed body.
1a、1b:目封止材
2a、2b:排気ガスの流れ
11:セラミックハニカムフィルタ
11a:外周壁
11b:隔壁
11c:流路
12:収納容器
13a、13b、14:支持部材
1a, 1b: plugging
Claims (3)
Method of manufacturing a ceramic according to claim 1 or claim 2, wherein said ceramic is a honeycomb filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008222842A JP5327587B2 (en) | 2008-08-29 | 2008-08-29 | Manufacturing method of ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008222842A JP5327587B2 (en) | 2008-08-29 | 2008-08-29 | Manufacturing method of ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010052407A JP2010052407A (en) | 2010-03-11 |
JP5327587B2 true JP5327587B2 (en) | 2013-10-30 |
Family
ID=42068814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008222842A Expired - Fee Related JP5327587B2 (en) | 2008-08-29 | 2008-08-29 | Manufacturing method of ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5327587B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4218911B2 (en) * | 1998-11-18 | 2009-02-04 | 東京窯業株式会社 | Extrusion method |
JP4394329B2 (en) * | 2001-03-01 | 2010-01-06 | 日本碍子株式会社 | Manufacturing method of ceramic structure |
JP2007301931A (en) * | 2006-05-15 | 2007-11-22 | Denso Corp | Clay for honeycomb structure extrusion |
WO2008084844A1 (en) * | 2007-01-12 | 2008-07-17 | Ngk Insulators, Ltd. | Process for producing honeycomb structure |
-
2008
- 2008-08-29 JP JP2008222842A patent/JP5327587B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010052407A (en) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI430975B (en) | Composition for ceramic extrusion-molded body and method for manufacturing a ceramic extrusion-molded body | |
US11447422B2 (en) | Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom | |
EP2641644B1 (en) | Honeycomb structure and manufacturing method of honeycomb structure | |
JP2012509841A (en) | Cordierite-forming batch composition and cordierite body produced therefrom | |
US20160039718A1 (en) | Ceramic precursor batch composition and method of increasing ceramic precursor batch extrusion rate | |
JP5560081B2 (en) | Ceramic clay, ceramic molded body, ceramic structure and manufacturing method thereof | |
US8926875B2 (en) | Managed pore size distribution in honeycomb substrates | |
JP6087830B2 (en) | Composition for extruded bodies containing methylcellulose | |
JP5304246B2 (en) | Method for manufacturing ceramic honeycomb structure | |
JP4571990B2 (en) | Manufacturing method of honeycomb structure | |
JP2012106913A (en) | Sealing material and method for manufacturing ceramic honeycomb fired body | |
JP5327587B2 (en) | Manufacturing method of ceramics | |
US7993561B2 (en) | Method for producing ceramic honeycomb filter | |
JPWO2008126450A1 (en) | Method for manufacturing ceramic honeycomb structure | |
JP3561174B2 (en) | Method for manufacturing clay for honeycomb extrusion molding | |
JP2007301931A (en) | Clay for honeycomb structure extrusion | |
JP5476331B2 (en) | Manufacturing method of honeycomb structure | |
JP5790243B2 (en) | Method for manufacturing ceramic honeycomb structure | |
JP2008119664A (en) | Manufacturing method of exhaust gas purifying filter | |
CN105753488A (en) | Forming method of sleeve blanks for fiber-optic connectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130530 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5327587 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |