[go: up one dir, main page]

JP5317816B2 - Gas shut-off device - Google Patents

Gas shut-off device Download PDF

Info

Publication number
JP5317816B2
JP5317816B2 JP2009110902A JP2009110902A JP5317816B2 JP 5317816 B2 JP5317816 B2 JP 5317816B2 JP 2009110902 A JP2009110902 A JP 2009110902A JP 2009110902 A JP2009110902 A JP 2009110902A JP 5317816 B2 JP5317816 B2 JP 5317816B2
Authority
JP
Japan
Prior art keywords
flow rate
gas
value
abnormality
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009110902A
Other languages
Japanese (ja)
Other versions
JP2010261746A (en
Inventor
浩一 植木
卓久 大谷
裕治 中林
一高 浅野
賢知 小林
晃 渡辺
祥子 甲野
健一郎 湯浅
望 長井
哲夫 石川
圭史 川口
泰宏 藤井
宏 石田
貴裕 坂野
路明 山浦
公克 磯部
富士雄 堀
浩史 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Panasonic Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Panasonic Holdings Corp
Original Assignee
Yazaki Energy System Corp
Panasonic Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp, Panasonic Corp, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Yazaki Energy System Corp
Priority to JP2009110902A priority Critical patent/JP5317816B2/en
Publication of JP2010261746A publication Critical patent/JP2010261746A/en
Application granted granted Critical
Publication of JP5317816B2 publication Critical patent/JP5317816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、ガス遮断装置内部に何らかの原因により雨水等が浸水したり、或いはガス遮断装置内部の内蔵されている流路内が浸水した場合、電子部品等の誤動作に起因するによる誤計測や誤遮断を防止するガス遮断装置に関するものである。   The present invention relates to an erroneous measurement or error caused by malfunction of electronic components or the like when rainwater or the like is submerged in the gas shutoff device for some reason, or the flow path inside the gas shutoff device is submerged. The present invention relates to a gas shut-off device that prevents shut-off.

従来、この種のガス遮断装置としては、図5、図6、或いは図7に示すようなものがあった(例えば、特許文献1、2参照)。   Conventionally, as this type of gas shut-off device, there has been one as shown in FIG. 5, FIG. 6, or FIG. 7 (see, for example, Patent Documents 1 and 2).

この特許文献1のガス遮断装置について図5を用いて構成を説明する。図5はガスを家庭に供給するためのガス導管の経路とガス遮断装置とを示す。   The configuration of the gas cutoff device of Patent Document 1 will be described with reference to FIG. FIG. 5 shows the gas conduit path and gas shut-off device for supplying gas to the home.

ガス導管の経路は、ガス本管100、分岐管102、分岐管102をガス本管100と連通状態で接続するバルブチー103、及び管継手104、並びにガス供給開閉バルブ105付近で分岐管102と接続されたガス遮断装置106を含んでいる。ガス導管においては、分岐管102は一般に薄肉の材料からなるため、水道管から漏れた流水などが砂を含んだ状態で衝突すると、この分岐管102の管壁はこの砂を含んだ流水の浸食作用(サンドブラスト現象)によって穿孔される場合がある。   The gas conduit is connected to the gas main pipe 100, the branch pipe 102, the valve tee 103 that connects the branch pipe 102 in communication with the gas main pipe 100, the pipe joint 104, and the branch pipe 102 near the gas supply opening / closing valve 105. The gas shut-off device 106 is included. In the gas conduit, the branch pipe 102 is generally made of a thin material. Therefore, when the flowing water leaked from the water pipe collides in a state containing sand, the pipe wall of the branch pipe 102 erodes the flowing water containing the sand. It may be perforated by the action (sandblast phenomenon).

管継手104は、分岐管102とバルブチー103の枝管部とを外嵌する形で接続されている。従って、管継手104はその内面部に拡径部を形成している。この管継手104の拡径部内には、水膨潤材107が配設されている。水膨潤材107はポリウレタン部と高給水性樹脂としての粉末状のポリアクリル酸塩系高吸水製ボリマーと硬化剤としてのMOCA(メチレン−ビスーオルトクロルアニリン)の水溶液とを混連し球状に整形したものである。   The pipe joint 104 is connected so as to externally fit the branch pipe 102 and the branch pipe portion of the valve tee 103. Therefore, the pipe joint 104 forms an enlarged diameter portion on its inner surface. A water-swelling material 107 is disposed in the enlarged diameter portion of the pipe joint 104. The water-swelling material 107 is formed into a spherical shape by mixing a polyurethane part, a polyacrylate high water-absorbing polymer as a highly water-repellent resin, and an aqueous solution of MOCA (methylene-bis-orthochloraniline) as a curing agent. It is a thing.

図5で、まだ吸水していない状態の水膨潤材107が実線の円で示されており、吸水して体積膨張を起し、管継手104の拡径部内に密接した状態の水膨潤材107を破線の円で示している。破線の状態はガス本管1内に水が浸入した場合、水膨潤材107によってガスと浸入水の流路が遮断されている。水膨潤材107には分岐管102の屈曲部を通過できる程度の可塑性を備えた金属製の線材107aのカギ状に折り曲げられた一端が挿入され、他端107bがガス開閉バルブ5近傍に連結されている。   In FIG. 5, the water-swelling material 107 that has not yet absorbed water is indicated by a solid-line circle. The water-swelling material 107 that has absorbed water and caused volume expansion and is in close contact with the expanded portion of the pipe joint 104. Is indicated by a broken-line circle. In the state of the broken line, when water enters the gas main pipe 1, the flow path of the gas and the intruding water is blocked by the water swelling material 107. One end of a metal wire 107a that is plastic enough to pass through the bent portion of the branch pipe 102 is inserted into the water swelling material 107, and the other end 107b is connected to the vicinity of the gas opening / closing valve 5. ing.

一方、前述の例はガス遮断装置とつながるガス導管内が浸水した場合であるが、ガス遮断装置内部、即ちガス遮断装置の内側で内蔵している流量計測部の外側が雨水等で浸水した場合について図6、図7を用いて説明する。   On the other hand, the above example is a case where the inside of the gas conduit connected to the gas shut-off device is submerged, but the inside of the gas shut-off device, that is, the outside of the flow rate measuring unit built inside the gas shut-off device is submerged with rainwater, etc. Will be described with reference to FIGS.

図6はガス遮断装置108とアダプタ109との正面図を示し、図6はその側面から見た断面図である。アダプタ109はガス遮断装置108に制御回路110を搭載しかつガス遮断装置108に着脱可能になっている。   6 shows a front view of the gas shut-off device 108 and the adapter 109, and FIG. 6 is a cross-sectional view seen from the side thereof. The adapter 109 has a control circuit 110 mounted on the gas cutoff device 108 and is detachable from the gas cutoff device 108.

ガス遮断装置108は、ガス流入口108aとガスを使用する器具にガスを供給する供給口108bを備えている。ガス遮断装置108内部にはガス流量を計測する計測手段を備えており、流入口108aから流入し供給口108bから供給されるガス流量を計測する。ガス遮断装置108の正面に表示手段108cが設けられ、ガス使用量の積算値等が表示される。又異常検出時ガスの供給を遮断するための遮断弁が設けられ、異常検出しガス供給を停止する遮断状態から復帰するための復帰操作部108dが設けられている。端子蓋108eを取り外すと通信装置を接続可能な通信端子等を有する接続端子108jが現れる。ガス遮断装置108に所定の機能を追加可能な制御回路110を接続すると、種々の機能、例えば通信装置で無線通信を行う機能であったり、所定日時より一定時間毎のガス使用量を記憶する機能等がある。   The gas shut-off device 108 includes a gas inlet 108a and a supply port 108b that supplies gas to an instrument that uses the gas. Measuring means for measuring the gas flow rate is provided inside the gas shut-off device 108, and the gas flow rate that flows in from the inlet 108a and is supplied from the supply port 108b is measured. Display means 108c is provided in front of the gas shut-off device 108, and an integrated value of the gas usage is displayed. In addition, a shut-off valve for shutting off the gas supply at the time of detecting an abnormality is provided, and a return operation unit 108d for returning from the shut-off state in which an abnormality is detected and the gas supply is stopped is provided. When the terminal cover 108e is removed, a connection terminal 108j having a communication terminal to which a communication device can be connected appears. When a control circuit 110 capable of adding a predetermined function is connected to the gas shut-off device 108, various functions, for example, a function of performing wireless communication with a communication device, or a function of storing a gas usage amount at a predetermined time from a predetermined date and time Etc.

アダプタ109は図7に示すように、ケース部は箱状の形状を有しており、ケース本体部109bと外蓋部109cと中蓋部109dとで構成されている。このケース内に制御回路110を収納され、アダプタ部109を構成する。   As shown in FIG. 7, the adapter 109 has a box-like shape, and is composed of a case body 109b, an outer lid 109c, and an inner lid 109d. The control circuit 110 is housed in this case, and the adapter unit 109 is configured.

ケース本体部109bは側面の一部を開口部としており、ここより制御回路110を収納する。中蓋部109dはケース本体部109bの開口部を覆い、脱着可能である。外蓋部109cは中蓋部109dを更に覆い、脱着が可能である。図6に示すように、ケース本体部109bの下部に凹部109eを設け、中蓋部109dの下部に対応した凸部109fを設け、はめ込んでいる。そして固定部材(ネジ等)109aで、固定する。ケース本体部109bと中蓋部109dとの間には密閉部材(Oリング等)109gを用いて密閉し、雨水がケース本体109b内部に浸入するのを抑制する。   The case main body 109b has a part of the side surface as an opening, from which the control circuit 110 is accommodated. The inner lid portion 109d covers the opening of the case main body portion 109b and is detachable. The outer lid portion 109c further covers the inner lid portion 109d and can be removed. As shown in FIG. 6, a concave portion 109e is provided at the lower portion of the case main body portion 109b, and a convex portion 109f corresponding to the lower portion of the inner lid portion 109d is provided and fitted. And it fixes with the fixing member (screw etc.) 109a. A sealing member (O-ring or the like) 109g is sealed between the case main body 109b and the inner lid 109d to prevent rainwater from entering the case main body 109b.

中蓋部109dには制御回路110の配線108hを引き出す配線孔109h設けられ、配線108hは制御回路110から中蓋部109dの配線孔109hを通り、更にアダプタ上部の配線シール部材109j付の配線孔109kを通ってガス遮断装置108の下部に設けられた配線孔108kを通り、更にガス遮断装置用制御回路108gに設けられた接続端子108jに接続される。制御回路110と接続端子108jとを接続する配線108hは、アダプタ109の上部より引き出されており、端子蓋108eをガス遮断装置108に固定部材108fで取り付けることにより、ガス遮断装置108内に収納されて、外部に露出しない構造としている。   A wiring hole 109h through which the wiring 108h of the control circuit 110 is drawn out is provided in the inner lid portion 109d. The wiring 108h passes from the control circuit 110 through the wiring hole 109h of the inner lid portion 109d, and further has a wiring hole with a wiring seal member 109j on the upper part of the adapter. It passes through the wiring hole 108k provided in the lower part of the gas cutoff device 108 through 109k, and is further connected to the connection terminal 108j provided in the control circuit 108g for gas cutoff device. The wiring 108h that connects the control circuit 110 and the connection terminal 108j is drawn from the upper part of the adapter 109. By attaching the terminal lid 108e to the gas cutoff device 108 with the fixing member 108f, the wiring 108h is accommodated in the gas cutoff device 108. The structure is not exposed to the outside.

特開平9−166263号公報JP-A-9-166263

特開2005−61864号公報JP 2005-61864 A

しかしながら、上記従来の構成では、ガス本管と水道配管とが並行して設置された時、水道配管に何らかの原因でピンホール上の穴ができ、高圧の水が噴出し周辺の土砂と共にガス導管に当たり、ガス導管内にサンドブラスト現象などにより穴が開き水が浸入する場合があるが、分岐管から浸入した場合にはガス遮断装置側に水が簡単に浸入したり、或いは水膨潤材で浸入阻止しようとしても圧力で隙間より浸入してきたりするが、結果ガス遮断装置内迄に水が浸入してきた場合、計測流路内に水がたまったりする場合がある。又、設置する際工事担当者が誤って通信装置や警報器或いは制御装置からの配線を接続する為前面の端子蓋を開け接続した後に、端子蓋を固定部材でとめる際、2箇所を固定すべきところを1箇所のみ固定し、端子蓋とガス遮断装置との間に隙間が生じ、雨水等が浸入し、ガス遮断装置本体内に水がたまり、更に配線孔を通りアダプタ内部に雨水が入り、制御装置が浸水状態になることがある。ガス遮断装置内部、及び内蔵された流路内部が浸水すると誤って流量を計測したり、或いは誤って保安判定しガス通路が遮断されたり等の不具合が発生することがあり、ガス需要家にとって使い勝手が悪く不便であり、万が一の場合に保安確保ができないという安全性の面で課題を有している。   However, in the above conventional configuration, when the gas main pipe and the water pipe are installed in parallel, a hole on the pinhole is formed in the water pipe for some reason, and the high pressure water is ejected together with the earth and sand around the gas conduit. In this case, there is a case where water enters the gas conduit due to sandblasting phenomenon, etc., but when it enters from the branch pipe, water can easily enter the gas shut-off device side, or water infiltration can be prevented with a water swelling material. Attempts to intrude through the gap due to pressure may result, but if water enters the gas shut-off device as a result, water may accumulate in the measurement channel. In addition, when installing, the construction staff inadvertently connects the wiring from the communication device, alarm device or control device. After opening the terminal cover on the front and connecting it, when fixing the terminal cover with the fixing member, fix the two places. Only one place should be fixed, a gap is created between the terminal cover and the gas shut-off device, rainwater enters, water accumulates in the gas shut-off device body, and rainwater enters the adapter through the wiring hole. The control device may become flooded. If the inside of the gas shut-off device and the inside of the built-in flow path is submerged, the flow rate may be mistakenly measured, or a safety judgment may be made and the gas passage may be shut off. However, there is a problem in terms of safety that security cannot be ensured in case of emergency.

本発明は、上記課題を解決するもので、何らかのトラブルによりガス遮断装置内部、更にガス遮断装置に内蔵されている流路内が浸水状態となった場合、早期に検出しガス事業者のセンターに通報したり、ガス供給を停止し保安を確保する安全性の高いガス遮断装置を提供するものである。   The present invention solves the above-mentioned problem, and if there is a flood in the gas shut-off device and the flow path built in the gas shut-off device due to some trouble, it is detected at an early stage and sent to the gas company's center. It is intended to provide a highly safe gas shut-off device for reporting or stopping gas supply to ensure safety.

上記従来の課題を解決するために、本発明のガス遮断装置は、流路と、前記流路を流れるガスを遮断する遮断手段と、前記流路に沿って配置した振動子対と、前記振動子対間の超音波の伝搬時間をもとにガスの流量を演算すると共に異常時に前記遮断手段でガスを遮断する制御手段とからなり、前記制御手段は、流量を検出する流量検出手段と、前記流量検出手段の検出値より瞬時流量値を換算する流量演算手段と、前記流量検出手段で調整した信号増幅度を判定する増幅度判定手段と、前記流量検出手段で調整した増幅度の上限判定値及び下限判定値を設定する増幅度設定手段と、前記流量検出手段で検出した伝搬時間を判定する伝搬時間判定手段と、前記流量演算手段で求めた流量が変動しているのを検出すると安定した流量値を求める計測条件に設定変更する計測条件設定手段と、前記増幅度判定手段で下限判定値以下の増幅度で前記伝搬時間判定手段で異常に短い伝搬時間と判定された場合流路内浸水と推定する流路内異常判定手段と、前記増幅度判定手段で上限判定値以上と判定した時に起動する計時手段と、前記計時手段で計時中に流量変動を安定化させる最大の計測条件に設定された計測条件比率を求める計測比率演算手段と、前記増幅度判定手段で上限判定値以上で前記計測比率が所定値以上の場合前記流量検出手段の端子間インピーダンスが異常と推定するインピーダンス推定手段と、前記流量演算手段で求めた瞬時流量より平均流量を求める平均流量演算手段と、求めた平均流量から異常の有無を判定する異常判定手段とを備え、前記流路内異常判定手段或いは前記インピーダンス推定手段或いは前記異常判定手段で異常判定成立時、前記遮断手段によりガスの供給を遮断する構成としたものである。   In order to solve the above-described conventional problems, the gas cutoff device of the present invention includes a flow path, a blocking means for blocking the gas flowing through the flow path, a vibrator pair disposed along the flow path, and the vibration. Comprising a control means for calculating the flow rate of the gas based on the propagation time of the ultrasonic wave between the child pairs and shutting off the gas by the shut-off means at the time of abnormality, the control means includes a flow rate detection means for detecting the flow rate, A flow rate calculation means for converting an instantaneous flow rate value from a detection value of the flow rate detection means, an amplification degree determination means for determining a signal amplification level adjusted by the flow rate detection means, and an upper limit determination of the amplification level adjusted by the flow rate detection means Stable when it is detected that the flow rate obtained by the flow rate calculation means and the amplification time setting means for setting the value and the lower limit judgment value, the propagation time judgment means for judging the propagation time detected by the flow rate detection means, and the flow rate calculation means are changed. Flow rate value obtained A measurement condition setting means for changing the setting to the measurement condition, and a flow that is estimated to be inundated in the flow path when the propagation time determination means determines that the propagation time determination means has an amplification degree that is equal to or lower than the lower limit determination value by the amplification degree determination means. In-road abnormality determination means, time measuring means that is activated when it is determined that the amplification degree determination means is equal to or greater than the upper limit determination value, and a measurement condition that is set to a maximum measurement condition that stabilizes flow rate fluctuations during time measurement by the time measurement means A measurement ratio calculating means for obtaining a ratio; an impedance estimating means for estimating that the impedance between terminals of the flow rate detecting means is abnormal when the amplification ratio determining means is equal to or higher than an upper limit determination value and the measurement ratio is equal to or greater than a predetermined value; Means for calculating an average flow rate from the instantaneous flow rate determined by the means, and an abnormality determination unit for determining presence / absence of abnormality from the obtained average flow rate. Abnormality determination established by the impedance estimating means or the abnormality determining means, in which a structure for interrupting the supply of gas by the blocking means.

上記発明によれば、ガス遮断装置内部、或いはガス遮断装置内蔵の流路内がなんらかの原因で浸水した場合、まず流路内部が浸水すると流量検出時の超音波信号の伝搬時間が短くなり、又浸水中の流路を信号計測する為増幅度判定手段で判定する増幅度が小さいのを検出すると流路内異常と判定し遮断信号を出力するが、一方ガス遮断装置内部で流路外部が雨水等で浸水状態になった場合流量検出信号の振幅が小さいため増幅度が高くなり、更に流量検出手段が検出した流量値が変動していると流量を安定的に計測するために変動対応の計測条件に変更するが、この所定増幅度以上で変動対応の計測条件への設定比率が所定以上と判定すると何らかの原因で流量検出手段の端子間インピーダンスが低下異常と推定し遮断信号を出力するが、ガス遮断装置の内部、及び内臓の流量計測手段内部が浸水状態と判定でき、異常な流量計測状態が継続するのを防止でき、かつ安全性が高い。   According to the above-described invention, when the inside of the gas shut-off device or the inside of the flow passage built in the gas shut-off device is submerged for some reason, first, if the inside of the flow passage is submerged, the propagation time of the ultrasonic signal at the time of detecting the flow rate is shortened. In order to measure the signal of the submerged flow path, if the degree of amplification judged by the amplification degree judging means is detected to be small, it is judged as abnormal in the flow path and a shut-off signal is output. In case of inundation due to, for example, the amplitude of the flow rate detection signal is small, the degree of amplification is high, and if the flow rate value detected by the flow rate detection means is fluctuating, measurement to cope with fluctuations is required to stably measure the flow rate. Although it is changed to the condition, if it is determined that the setting ratio to the measurement condition corresponding to the fluctuation is equal to or greater than the predetermined amplification degree, it is estimated that the impedance between the terminals of the flow rate detecting means is abnormally lowered for some reason, and a cutoff signal is output Ga Internal blocking device, and internal organs can determine the internal flow measurement means and flooded condition, abnormal flow rate measurement state can be prevented that continues, and safety is high.

本発明のガス遮断装置は、何らかの原因で内蔵の流量計測部内に水等が入り浸水状態になった場合、或いはガス遮断装置内に雨水等が浸水した場合、その異常状態を正しく検出し、器具へのガス供給を停止するので、ガス需要家が器具使用する際にガス遮断装置が安全かつ正常な状態で監視できなくなったのに監視され続けるのを防止することができる。   The gas shut-off device of the present invention correctly detects the abnormal state when water or the like enters the built-in flow rate measuring unit for any reason, or when rain water or the like enters the gas shut-off device. Since the gas supply to is stopped, it is possible to prevent the gas shut-off device from being continuously monitored even if the gas shut-off device cannot be monitored in a safe and normal state when the gas consumer uses the appliance.

本発明の実施の形態1におけるガス遮断装置の概略構造図1 is a schematic structural diagram of a gas cutoff device in Embodiment 1 of the present invention. 同ガス遮断装置の制御ブロック図Control block diagram of the gas shutoff device 同ガス遮断装置での実験データ1を示すグラフThe graph which shows the experimental data 1 in the same gas shut-off device 同ガス遮断装置での実験データ2を示すグラフGraph showing experimental data 2 in the gas shutoff device 従来の第1のガス遮断装置の断面図Sectional drawing of the conventional first gas cutoff device 従来の第2のガス遮断装置の正面図Front view of a conventional second gas shut-off device 従来の同ガス遮断装置の断面図Sectional view of the conventional gas shut-off device

本発明は、流路と、前記流路を流れるガスを遮断する遮断手段と、前記流路に沿って配置した振動子対と、前記振動子対間の超音波の伝搬時間をもとにガスの流量を演算すると共に異常時に前記遮断手段でガスを遮断する制御手段とからなり、前記演算部は、流量を検出する流量検出手段と、前記流量検出手段の検出値より瞬時流量値を換算する流量演算手段と、前記流量検出手段で調整した信号増幅度を判定する増幅度判定手段と、前記流量検出手段で調整した増幅度の上限判定値及び下限判定値を設定する増幅度設定手段と、前記流量検出手段で検出した伝搬時間を判定する伝搬時間判定手段と、前記流量演算手段で求めた流量が変動しているのを検出すると安定した流量値を求める計測条件に設定変更する計測条件設定手段と、前記増幅度判定手段で下限判定値以下の増幅度で前記伝搬時間判定手段で異常に短い伝搬時間と判定された場合流路内浸水と推定する流路内異常判定手段と、前記増幅度判定手段で上限判定値以上と判定した時に起動する計時手段と、前記計時手段で計時中に流量変動を安定化させる最大の計測条件に設定された計測条件比率を求める計測比率演算手段と、前記増幅度判定手段で上限判定値以上で前記計測比率が所定値以上の場合前記流量検出手段の端子間インピーダンスが異常と推定するインピーダンス推定手段と、前記流量演算手段で求めた瞬時流量より平均流量を求める平均流量演算手段と、求めた平均流量から異常の有無を判定する異常判定手段とを備え、前記流路内異常判定手段或いは前記インピーダンス推定手段或いは前記異常判定手段で異常判定成立時、前記遮断手段によりガスの供給を遮断する構成としたものである。   The present invention relates to a gas flow based on a flow path, a blocking means for blocking gas flowing in the flow path, a transducer pair disposed along the flow path, and an ultrasonic wave propagation time between the transducer pair. And a control means for shutting off the gas by the shut-off means in the event of an abnormality, and the computing unit converts the instantaneous flow rate value from the detected value of the flow rate detecting means and the flow rate detecting means. Flow rate calculation means, amplification degree determination means for determining the signal amplification degree adjusted by the flow rate detection means, amplification degree setting means for setting the upper limit determination value and the lower limit determination value of the amplification degree adjusted by the flow rate detection means, A measurement condition setting for changing the setting to a measurement condition for obtaining a stable flow rate value when a change in the flow rate obtained by the flow rate calculation means is detected and a propagation time determination means for determining the propagation time detected by the flow rate detection means Means and said increase When the degree of amplification is less than the lower limit judgment value by the degree determination means and when the propagation time judgment means determines that the propagation time is abnormally short, the abnormality determination means in the flow path that estimates that the inflow in the flow path is inundated, and the upper limit by the amplification degree determination means Time measuring means that is activated when it is determined that the determination value is equal to or greater than a determination value, a measurement ratio calculating means that obtains a measurement condition ratio that is set to a maximum measurement condition that stabilizes flow rate fluctuation during time measurement by the time measuring means, and the amplification degree determining means When the measurement ratio is equal to or greater than the upper limit determination value, the impedance estimation means for estimating that the impedance between the terminals of the flow rate detection means is abnormal, and the average flow rate calculation for obtaining the average flow rate from the instantaneous flow rate obtained by the flow rate calculation unit Means and an abnormality determining means for determining the presence or absence of abnormality from the obtained average flow rate, the abnormality determining means in the flow path or the impedance estimating means or the abnormality determining means Time in the abnormality determination establishment, in which a structure for interrupting the supply of gas by the blocking means.

そして、流量検出手段で流量信号を検出する場合信号が小さいと増幅すると共に、流量値が変動すると安定計測する為に変動対応の計測条件に変更するが、このような状態を検出すると流量検出手段の端子間インピーダンスが何らかの原因で低下したと推定し、流量検出手段外部が雨水等の浸入で浸水状態となったと判定するが、一方ガス配管内流路内に浸入した水が流量計測する流量検出手段のある流路に浸入し始めると、流量検出手段の信号が更に不安定となり増幅度が高くなり、又浸水量が増大すると逆に小さくなり、更に流量計測信号である伝搬時間が通常の気体中と異なり短くなり流量検出手段で異常な流量変動を検出し始めるが、このような変化を流路内異常判定手段で検出すると流路内異常と判定し、ガス器具へのガス供給を停止するので、異常な流量計測状態が継続するのを停止することで不安全になるのを防止でき、かつ信頼性が高い。   When the flow rate signal is detected by the flow rate detection means, it is amplified if the signal is small, and when the flow rate value fluctuates, it is changed to a measurement condition corresponding to fluctuation in order to perform stable measurement. It is estimated that the impedance between the terminals of the terminal has decreased for some reason, and it is determined that the outside of the flow rate detection means has become inundated due to the intrusion of rainwater, etc. If it begins to enter the flow channel with the means, the signal of the flow rate detection means becomes more unstable and the amplification degree becomes higher, and when the amount of inundation increases, it becomes smaller, and the propagation time that is the flow rate measurement signal is normal gas. Unlike the inside, the flow rate detection means starts to detect abnormal flow fluctuations, but if such a change is detected by the flow path abnormality determination means, it is determined that there is an abnormality in the flow path and the gas supply to the gas appliance is stopped. Since stop, it can be prevented from becoming unsafe by stopping an abnormal flow rate measurement state to continue, and reliable.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1におけるガス遮断装置の概略構造図を示す図、図2は同ガス遮断装置に搭載される制御装置の制御ブロック図、図3及び図4は実験結果である。
(Embodiment 1)
1 is a diagram showing a schematic structural diagram of a gas shut-off device according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram of a control device mounted on the gas shut-off device, and FIGS. 3 and 4 are experimental results. .

図1で、ガス遮断装置1は各家庭等に設置され、このガス遮断装置1を経由した後各家庭で使用する種々のガス器具が設置された場所まで配管され、ガスが供給される。そのガス遮断装置1の内部構成は流路4と制御装置5とがある。流路4はガス遮断装置1の流入口1aより入口側流路4aを介し、底部の流路4bを経て、出口側流路4cを介し、供給口1bにつながっている。流路4には超音波信号を送受信する上流側振動子6と下流側振動子7とが流れ方向に対抗して取り付けられている。各々の上流側振動子6、下流側振動子7は制御装置5と接続する端子6a、7aがある。   In FIG. 1, the gas shut-off device 1 is installed in each home and the like, and after passing through the gas shut-off device 1, is piped to a place where various gas appliances used in each home are installed, and gas is supplied. The internal structure of the gas cutoff device 1 includes a flow path 4 and a control device 5. The flow path 4 is connected to the supply port 1b via the inlet side flow path 4a from the inlet 1a of the gas shut-off device 1, the flow path 4b at the bottom, and the outlet side flow path 4c. An upstream vibrator 6 and a downstream vibrator 7 for transmitting and receiving ultrasonic signals are attached to the flow path 4 so as to oppose the flow direction. Each of the upstream vibrator 6 and the downstream vibrator 7 has terminals 6 a and 7 a connected to the control device 5.

図2は制御装置の制御ブロック図である。流量検出手段8は上流側振動子6、下流側振動子7、切替手段9、送信手段10、受信手段11、伝搬時間計測手段12、振幅判定手段13、及び増幅度調整手段14とからなる。超音波を送信または受信する上流側振動子6と受信または送信する下流側振動子7が切替手段9によって送受信の切り換えが可能になっている。この上流側振動子6或いは下流側振動子7に超音波信号を出力する送信手段10が接続され、切替手段9によって上流側振動子6或いは下流側振動子7を介して超音波信号を受信手段11で受信する。まず上流から下流に超音波を送信する。送信手段10で超音波信号を送信し、下流側振動子7で受信し、受信手段11からの受信信号を伝搬時間計測手段12で伝搬時間を計測する。   FIG. 2 is a control block diagram of the control device. The flow rate detecting means 8 comprises an upstream vibrator 6, a downstream vibrator 7, a switching means 9, a transmitting means 10, a receiving means 11, a propagation time measuring means 12, an amplitude determining means 13, and an amplification degree adjusting means 14. The switching means 9 can switch the transmission / reception of the upstream vibrator 6 for transmitting or receiving ultrasonic waves and the downstream vibrator 7 for receiving or transmitting ultrasonic waves. Transmitting means 10 for outputting an ultrasonic signal is connected to the upstream vibrator 6 or the downstream vibrator 7, and the ultrasonic signal is received by the switching means 9 via the upstream vibrator 6 or the downstream vibrator 7. 11 to receive. First, ultrasonic waves are transmitted from upstream to downstream. An ultrasonic signal is transmitted by the transmitting means 10 and received by the downstream vibrator 7, and a propagation time is measured by the propagation time measuring means 12 for the received signal from the receiving means 11.

次に、切換手段9で下流から上流に向かって超音波信号を送信し、伝搬時間を計測する。そして、上流側振動子6と下流側振動子7との超音波の伝搬時間差は予め定めた周期毎(例えば2秒)に求められる。受信手段11で受信した超音波信号は振幅判定手段13で適正な大きさの振幅レベルかを判定するが、適正な範囲を逸脱した場合適正な大きさの範囲になるように増幅度調整手段14で調整する。調整された増幅度で次回計測時送信手段10より超音波信号を送信する。増幅度調整手段14は例えば受信波のピーク電圧が例えば500mV程度になるように利得値1から100の範囲で増幅度の制御が可能である。   Next, an ultrasonic signal is transmitted from the downstream to the upstream by the switching means 9, and the propagation time is measured. Then, the ultrasonic wave propagation time difference between the upstream vibrator 6 and the downstream vibrator 7 is obtained every predetermined period (for example, 2 seconds). The ultrasonic signal received by the receiving unit 11 is determined by the amplitude determining unit 13 as to whether the amplitude level is an appropriate magnitude. When the ultrasonic signal deviates from the appropriate range, the amplification degree adjusting means 14 is set so as to be in an appropriate size range. Adjust with. An ultrasonic signal is transmitted from the transmission means 10 at the time of next measurement with the adjusted amplification degree. The amplification degree adjusting means 14 can control the amplification degree within a gain value range of 1 to 100 so that the peak voltage of the received wave becomes, for example, about 500 mV.

そして、所定周期毎計測し求めた伝搬時間は流量演算手段15で瞬時流量値に換算される。計測条件設定手段16は求めた瞬時流量の変動状態より流路4内の流れ状態を判定し、計測回数や計測周期等の計測条件を変えて常に安定した流量を計測できるように流量検出手段8を制御する。例えば圧力変動等により流路を流れるガス気体の流速が変化し流量値が変化するが、流量変化周期全般を流量計測できるような計測条件を複数有し、圧力変動レベルに応じた流量変化を安定的に計測できるように計測条件を段階的に変更可能である。又瞬時流量値は平均流量演算手段17に入力され、所定個数の瞬時流量値を集合して平均流量値として算出される。   Then, the propagation time obtained by measuring every predetermined cycle is converted into an instantaneous flow rate value by the flow rate calculation means 15. The measurement condition setting means 16 determines the flow state in the flow path 4 from the obtained fluctuation state of the instantaneous flow rate, and changes the measurement conditions such as the number of times of measurement and the measurement cycle so as to always measure a stable flow rate. To control. For example, the flow rate of gas gas flowing through the flow path changes due to pressure fluctuations, etc., but the flow rate value changes, but there are multiple measurement conditions that can measure the flow rate throughout the flow rate change period, and the flow rate change according to the pressure fluctuation level is stable. The measurement conditions can be changed step by step so that the measurement can be performed in an automated manner. The instantaneous flow rate value is input to the average flow rate calculation means 17, and a predetermined number of instantaneous flow rate values are collected and calculated as an average flow rate value.

流量検出手段8の受信手段11で検出した超音波信号の振幅レベルは増幅度調整手段14で調節され、調節された増幅度は増幅度判定手段18で監視される。増幅度判定手段18は、増幅度設定手段19で設定された増幅度の上限判定値と下限判定値とを元に判定される。例えば流量が大きくなると超音波信号受信感度が低下し振幅レベルが小さくなるので増幅度を大きく制御する傾向がある。流量が低い状態では、増幅度は大流量に比較し小さくてすむが、低流量で増幅度判定手段18の増幅度が所定値以上の場合、流量検出手段8の異常監視を行う。   The amplitude level of the ultrasonic signal detected by the receiving means 11 of the flow rate detecting means 8 is adjusted by the amplification degree adjusting means 14, and the adjusted amplification degree is monitored by the amplification degree judging means 18. The amplification degree determination means 18 is determined based on the upper limit determination value and the lower limit determination value of the amplification degree set by the amplification degree setting means 19. For example, when the flow rate is increased, the ultrasonic signal reception sensitivity is decreased and the amplitude level is decreased, so that the amplification degree tends to be largely controlled. In a state where the flow rate is low, the amplification degree may be smaller than that of the large flow rate. However, when the amplification degree of the amplification degree determination means 18 is a predetermined value or more at a low flow rate, the abnormality detection of the flow rate detection means 8 is performed.

流量検出手段8の伝搬時間計測手段12で計測された伝搬時間は伝搬時間判定手段20で判定される。予め伝搬時間監視値設定手段21には使用する流体中での伝搬速度から求めた伝搬時間の上限値或いは下限値設定されており、伝搬時間計測手段12で計測した伝搬時間値が使用される流体中の計測値か否かを判定する。更に増幅度判定手段18の増幅度や伝搬時間判定手段20の伝搬時間値は流路内異常判定手段22で判定される。   The propagation time measured by the propagation time measuring means 12 of the flow rate detecting means 8 is determined by the propagation time determining means 20. The upper limit value or lower limit value of the propagation time obtained from the propagation velocity in the fluid to be used is set in advance in the propagation time monitoring value setting means 21, and the propagation time value measured by the propagation time measuring means 12 is used. It is determined whether or not the measured value is medium. Further, the amplification degree of the amplification degree determination means 18 and the propagation time value of the propagation time determination means 20 are determined by the in-flow path abnormality determination means 22.

ガス遮断装置1の配管流路(図示せず)に何らかの原因、例えばガス配管のそばに水道配管等が併設され、継ぎ手等の漏水がガス配管にあたり、いわゆるサンドブラスト現象がおきガス配管内に浸入する場合がある。その浸入水がガス遮断装置1の流量検出手段8の上流側振動子6や下流側振動子7が対向して設置されている流路に浸入してきた場合、超音波信号が水面等に反射したり、乱反射をおこしたりするので受信感度が変化し、流量検出手段8の検出信号レベルは変動する。   For some reason, for example, a water pipe or the like is provided near the gas pipe in the pipe flow path (not shown) of the gas shut-off device 1, and water leakage such as a joint hits the gas pipe, so-called sandblast phenomenon occurs and enters the gas pipe. There is a case. When the intrusion water enters the flow path in which the upstream vibrator 6 and the downstream vibrator 7 of the flow rate detecting means 8 of the gas cutoff device 1 are installed facing each other, the ultrasonic signal is reflected on the water surface or the like. Reception sensitivity changes, and the detection signal level of the flow rate detection means 8 fluctuates.

例えば、流路が次第に浸水してくると、水中を通るルートや気体中を通るルートができ、超音波信号の伝搬速度が異なり受信側の上流側振動子6或いは下流側振動子7への到達時間がばらばらとなり、受信信号レベルが小さくなり、結果増幅度調整手段14は信号レベルを大きくしようとして増幅度が高くなる。又流路が大分浸水すると水中伝搬による受信信号レベルで検出できるようになり、流量検出手段8の上流側振動子6或いは下流側振動子7が水中下にあると受信感度が逆に高くなり、信号振幅レベルが大きくなり、増幅度調整手段14は逆に増幅度を小さく制御し、結果増幅度判定手段18が増幅度下限判定値より小さい状態と判定するので、流路内異常判定手段22では流路内浸水と推定し遮断信号を出力する。   For example, when the flow path is gradually submerged, a route through the water and a route through the gas is created, and the propagation speed of the ultrasonic signal is different, and reaches the upstream transducer 6 or the downstream transducer 7 on the receiving side. The time varies and the received signal level decreases, and as a result, the amplification level adjusting means 14 increases the amplification level in an attempt to increase the signal level. Also, if the flow path is largely submerged, it can be detected at the received signal level due to underwater propagation, and if the upstream vibrator 6 or the downstream vibrator 7 of the flow rate detecting means 8 is under water, the reception sensitivity is increased. The signal amplitude level is increased, and the amplification degree adjusting means 14 controls the amplification degree to be smaller. As a result, it is determined that the amplification degree determining means 18 is smaller than the amplification lower limit determination value. Estimate that the channel is flooded and output a shutoff signal.

次に、ガス遮断装置1内部の制御装置5や流量検出手段8の上流側振動子6や下流側振動子7の設置されている流路4、特に底部の流路4bの外側が浸水すると、上流側振動子6及び下流側振動子が水没するため端子間インピーダンスが低下し受信手段11の受信検出信号レベルが小さくなり、増幅度調整手段14により増幅度を大きく制御される。増幅度判定手段18が増幅度設定手段19で設定された増幅度上限判定値を超えると計時手段23が起動開始する。上流側振動子6や下流側振動子7の端子間インピーダンスが低下するとノイズの影響を受けやすく受信信号レベルが変動し、結果瞬時流量が変動する。計測条件設定手段16は流量変動レベルに応じて、複数の計測条件を設定変更する。計測回数や計測周期等の計測条件を変えて流速信号の変動周期全体を計測し、常に安定して流速で流量計測できるように、いわゆる圧力変動を引き起こすGHP(ガスヒートポンプ式冷暖房機)等を使用した場合と同じ状態となり、計測条件が変化する。計時手段23で所定時間を計時する間、計測比率演算手段24は、計測条件設定手段16が最大の設定値で計測する回数とそれ以外の設定値で計測する回数を計数し、最大の設定値での計測回数の比率を演算する。インピーダンス推定手段25は、この比率が所定値以上であることを検出すると流路4が何らかの原因で水没し、異常状態(インピーダンスが異常である)と判定し、遮断信号を出力する。   Next, when the flow path 4 in which the upstream side vibrator 6 or the downstream side vibrator 7 of the control device 5 or the flow rate detecting means 8 inside the gas shut-off device 1 is installed, particularly the outside of the flow path 4b at the bottom, is submerged, Since the upstream vibrator 6 and the downstream vibrator are submerged, the impedance between the terminals is lowered, the reception detection signal level of the receiving means 11 is reduced, and the amplification degree is largely controlled by the amplification degree adjusting means 14. When the amplification degree determination means 18 exceeds the amplification degree upper limit determination value set by the amplification degree setting means 19, the timing means 23 starts to start. When the impedance between the terminals of the upstream vibrator 6 and the downstream vibrator 7 is lowered, the received signal level is likely to be affected by noise, and as a result, the instantaneous flow rate is fluctuated. The measurement condition setting means 16 changes the setting of a plurality of measurement conditions according to the flow rate fluctuation level. GHP (gas heat pump type air conditioner) that causes so-called pressure fluctuation is used to measure the entire fluctuation cycle of the flow velocity signal by changing the measurement conditions such as the number of measurements and the measurement cycle, and so that the flow rate can always be measured stably at the flow velocity. As a result, the measurement conditions change. While measuring the predetermined time by the time measuring means 23, the measurement ratio calculating means 24 counts the number of times the measurement condition setting means 16 measures with the maximum set value and the number of times with the other set values, and sets the maximum set value. Calculate the ratio of the number of measurements at. When the impedance estimation means 25 detects that this ratio is greater than or equal to a predetermined value, the flow path 4 is submerged for some reason, determines that it is in an abnormal state (impedance is abnormal), and outputs a cutoff signal.

更に異常判定手段26は、求められた平均流量で使用器具の監視を行う。異常判定手段26には、流量域毎に対応した使用時間の制限時間値、あるいは使用最大流量の監視判定値等が記憶されている。例えばストーブ等へガスを供給するホースが何らかの原因で外れた時、異常な大流量が発生するが、そのような状態を監視するための合計流量遮断値や、器具の通常使用する最大使用時間よりはるかに長く使用された場合に対応して使用時間の制限時間を規定した安全継続時間遮断の制限時間等が記憶されている。この設定値と平均流量値とを異常判定手段26で比較判定することで、流量値が使用最大流量値を超えていないか、或いは器具の使用時間が登録流量に対応した連続使用の制限時間を超えていないか等監視する。   Furthermore, the abnormality determination means 26 monitors the equipment used at the obtained average flow rate. The abnormality determination means 26 stores a time limit value for use time corresponding to each flow rate region, a monitor determination value for the maximum use flow rate, or the like. For example, when the hose that supplies gas to a stove or the like is disconnected for some reason, an abnormally large flow rate is generated, but the total flow cutoff value for monitoring such a condition and the maximum use time of the appliance normally Stored is a time limit for safety duration cut-off that defines a time limit for use time corresponding to the case of using for a much longer time. By comparing and determining the set value and the average flow rate value by the abnormality determining means 26, the flow rate value does not exceed the maximum use flow rate value, or the use time of the appliance is set to the continuous use time limit corresponding to the registered flow rate. Monitor whether it has exceeded.

この異常判定手段26で異常成立と判定した時、或いは流路内異常判定手段22が異常と判定時、或いはインピーダンス推定手段25で流量検出手段8が何らかの原因で浸水等の異常と判定時、遮断手段27に遮断信号を送ってガス供給を停止する。また、報知手段28は、遮断状態や遮断内容を液晶表示素子等に表示すると共にガスの安全監視を行っているガス事業者のセンターに電話回線等の通信により通報する。   When the abnormality determining means 26 determines that an abnormality is established, or when the abnormality determining means 22 in the flow path is determined to be abnormal, or when the impedance estimating means 25 determines that the flow rate detecting means 8 is abnormal due to water for some reason, shut off. A cutoff signal is sent to the means 27 to stop the gas supply. Further, the notification means 28 displays the shut-off state and shut-off content on a liquid crystal display element or the like, and notifies the center of the gas company that is monitoring the safety of the gas by communication such as a telephone line.

次に、以上のガス遮断装置1の構成の動作を説明する。ガス需要家宅にガス事業者がガス遮断装置1を設置し、端子蓋1eを開けて、通信装置や警報器(図示せず)等を接続した後、端子蓋1eを固定部材1f(ビス等)で固定される。又ガス遮断装置1へのガス配管(図示せず)が、水道配管等のそばに併設されることがある。何らかの原因で継ぎ手等から高圧の漏水が地中内でガス配管に長期間周辺の土砂と共にあたり、いわゆるサンドブラスト現象がおき、ガス配管に穴が生じガス配管内に水が浸入する場合がある。その浸入水がガス遮断装置1の流量検出手段8の上流側振動子6や下流側振動子7が対向して設置されている流路に浸入してきた場合、浸水状態で流量を流量検出手段8により検出する。   Next, operation | movement of the structure of the above gas cutoff apparatus 1 is demonstrated. The gas company installs the gas shut-off device 1 at the gas customer's home, opens the terminal lid 1e, connects the communication device, alarm device (not shown), etc., and then attaches the terminal lid 1e to the fixing member 1f (screw etc.) It is fixed with. In addition, a gas pipe (not shown) to the gas shut-off device 1 may be provided near the water pipe or the like. For some reason, a high-pressure water leak from a joint or the like hits the gas pipe in the ground together with the surrounding earth and sand for a long period of time, so-called sand blasting phenomenon may occur, causing a hole in the gas pipe and water intrusion into the gas pipe. When the intruded water enters the flow path where the upstream vibrator 6 and the downstream vibrator 7 of the flow rate detecting means 8 of the gas shut-off device 1 are opposed to each other, the flow rate is detected in the flooded state. To detect.

或いは警報器の配線や通信線を接続した後、端子蓋1eの固定があまく隙間が発生した状態となり、その後隙間より雨水がガス遮断装置内部に浸入し、流路4特に底部の流路4bが水没してしまう場合がある。   Alternatively, after connecting the wiring or communication line of the alarm device, the terminal lid 1e is fixed and a gap is generated. After that, rainwater enters the gas shut-off device from the gap, and the flow path 4, particularly the flow path 4b at the bottom is formed. May be submerged.

サンドブラスト現象等により配管内の水が蒸発結露の繰返し等によりガス遮断装置1迄到達し底部の流路4内部にたまり浸水状態となった場合、上流側振動子6や下流側振動子7間の流路内がある程度水没した状態の場合、流量計測時超音波信号が水中を通るルートや気体中を通るルートができる。水が少ない場合、超音波が伝搬する際反射等により信号レベルが乱れ、受信手段11で検出した信号レベルが小さくなり、その信号レベルを振幅判定手段13で判定し、振幅レベルを最適レベルにする為に増幅度調整手段14は信号レベルを大きくする方向に増幅度を高くする。増幅度設定手段19の上限値を超える状態が継続すると流路内異常判定手段22で異常判定し、遮断手段27に遮断信号を出力し、報知手段28で異常表示する。しかし上限値を超える状態が継続しなかったり、上限値未満の増幅度で継続しその間に次第に浸水量が増えると、流路4内の水中伝搬による超音波信号で流量検出するようになる。流量検出手段8で計測した超音波信号の伝搬時間は通るルートにより検出値が異なる。超音波信号の伝搬速度はガス中に比較し水中では約1500m/sと速いため気体中伝搬に比べ早期に受信し伝搬時間が短くなる。流路4の水中ルートで超音波を受信するようになると、受信側の上流側振動子6あるいは下流側振動子7の受信感度が上がり信号振幅が大きくなる為、増幅度調整手段14は逆に増幅度を小さくなる方向に制御する。かつ伝搬時間計測手段12で計測した伝搬時間は水中を通る為、伝搬時間監視値設定手段21の下限値を下回り、即ち短くなるので、流路内異常判定手段22では増幅度が小さくかつ伝搬時間が短いため流路内が何等かの原因で浸水状態になったと判定し遮断信号を遮断手段26に出力する。流路に水を注入して流量計測の実験を行い、その時の伝搬時間の変化データが図3で、増幅度(ゲイン)の変化データが図4であり、浸水と伝搬時間及び増幅度(ゲイン)との関係がわかる。   When water in the pipe reaches the gas shut-off device 1 due to repeated evaporation and condensation due to sandblasting or the like, and accumulates in the flow path 4 at the bottom and enters a water-impregnated state, it is between the upstream vibrator 6 and the downstream vibrator 7. When the flow path is submerged to some extent, there can be a route through which the ultrasonic signal during flow measurement passes through water or a gas. When the amount of water is small, the signal level is disturbed due to reflection or the like when the ultrasonic wave propagates, the signal level detected by the receiving unit 11 is reduced, the signal level is determined by the amplitude determining unit 13, and the amplitude level is set to the optimum level. Therefore, the amplification degree adjusting means 14 increases the amplification degree in the direction of increasing the signal level. If the state exceeding the upper limit value of the amplification degree setting means 19 continues, the abnormality determination means 22 in the flow path determines an abnormality, outputs a blocking signal to the blocking means 27, and displays an abnormality in the notification means 28. However, if the state exceeding the upper limit value does not continue or continues with an amplification degree less than the upper limit value, and the amount of inundation gradually increases during that time, the flow rate is detected with an ultrasonic signal due to underwater propagation in the flow path 4. The detection value of the propagation time of the ultrasonic signal measured by the flow rate detection means 8 differs depending on the route taken. The propagation speed of the ultrasonic signal is about 1500 m / s faster in water than in gas, so it is received earlier and the propagation time is shorter than in gas propagation. When the ultrasonic wave is received through the underwater route of the flow path 4, the reception sensitivity of the upstream transducer 6 or the downstream transducer 7 on the reception side is increased and the signal amplitude is increased. The degree of amplification is controlled to decrease. Further, since the propagation time measured by the propagation time measuring means 12 passes underwater, it is lower than the lower limit value of the propagation time monitoring value setting means 21, that is, becomes shorter. Therefore, it is determined that the flow path has become flooded for some reason, and a blocking signal is output to the blocking means 26. The flow rate measurement experiment was performed by injecting water into the flow path. The change data of the propagation time at that time is shown in FIG. 3, and the change data of the amplification degree (gain) is shown in FIG. ).

次に施工時に端子蓋1eの固定があまかった為に、隙間が生じ雨水がガス遮断装置1内部に浸入し、流路4特に底部の流路4bが水没してしまった場合、即ち流量検出手段8の上流側振動子6や下流側振動子7の端子が水没した場合、端子間のインピーダンスが低下する。結果超音波の受信信号レベルが小さくなり、増幅度調整手段14は信号レベルを大きくするために増幅度を高くする。増幅度判定手段18は増幅度が大きくなり、上限値以上になったのを検出すると、計時手段23は計時開始する。浸水により流量検出手段8の上流側振動子6や下流側振動子7の端子間インピーダンスが低下すると、ノイズ等の影響を受けやすく受信信号レベルが変動し、結果流量演算手段15で求めた瞬時流量が変動することになり、計測条件設定手段16は流量変動に対応し安定した流量値になるように計測条件を変更する。計測条件設定手段16は瞬時流量の変化に応じて、計測回数や計測周期等の計測条件を変えて、即ち流速変化周期全般にわたって細かく広域にわたって計測できるように計測条件(計測間隔等)を変更する。そして常に流速変化があろうとも安定した流量値になるように、計測条件を変化させる。例えば流量検出手段8は通常2秒毎定期的に計測開始するが、更にその間短時間(数ms)で超音波を送信し伝搬時間計測し流速変動の大きい部分、小さい部分、中間部分等全てタイミングを網羅するように多くのポイントで計測するように計測回数を増加させる条件に変更し、流速変動があっても一定の流量値になるようにして計測する。又一定時間安定流量状態が継続すれば、計測条件設定値をもとの条件に変更する。   Next, since the terminal lid 1e is not sufficiently fixed at the time of construction, a gap is generated and rainwater enters the inside of the gas shut-off device 1, and the flow path 4, in particular, the bottom flow path 4b is submerged. When the terminals of the upstream vibrator 6 and the downstream vibrator 7 are submerged, the impedance between the terminals decreases. As a result, the received signal level of the ultrasonic wave is reduced, and the amplification level adjusting means 14 increases the amplification level to increase the signal level. When the amplification degree determining means 18 detects that the amplification degree has increased and has reached the upper limit value, the time measuring means 23 starts to time. When the impedance between the terminals of the upstream vibrator 6 and the downstream vibrator 7 of the flow rate detection means 8 decreases due to water immersion, the received signal level is likely to be affected by noise and the like, and the instantaneous flow rate obtained by the flow rate calculation means 15 is obtained. Therefore, the measurement condition setting means 16 changes the measurement condition so as to obtain a stable flow rate value corresponding to the flow rate fluctuation. The measurement condition setting means 16 changes the measurement conditions (measurement interval, etc.) so that the measurement conditions such as the number of times of measurement and the measurement cycle are changed according to the change in the instantaneous flow rate, that is, the flow rate change period can be measured finely over a wide area. . Then, the measurement conditions are changed so that the flow rate is always stable regardless of changes in flow velocity. For example, the flow rate detection means 8 normally starts measurement every 2 seconds, but further transmits ultrasonic waves in a short time (several ms) during that time and measures the propagation time to measure all the parts such as large part, small part, middle part where the flow rate fluctuation is large. So that the number of times of measurement is increased so as to measure at many points so as to cover, and even if there is a fluctuation in flow velocity, the flow rate is measured to be a constant flow value. If the stable flow rate state continues for a certain period of time, the measurement condition set value is changed to the original condition.

しかしガス遮断装置1内部で流路4の外側に雨水等が浸入すると常時流量変動が発生し続け、計時手段23が計時している期間の流量計測の計測条件設定手段16で設定された計測条件は、最大の流速変化に対応した計測条件で計測されており、この最大の計測条件の設定比率を、計時手段23が計時終了時計測比率演算手段24で求める。計時手段23が計時終了時、求めた計測比率をインピーダンス推定手段25で判定するが、増幅度判定手段18が所定増幅度以上で計測比率演算手段24で求めた計測比率が所定比率以上かを判定し所定比率以上と判定すると、流路4の流量検出手段8が水没等による端子間インピーダンスが低下状態と推定し遮断手段27に遮断信号を出力する共に、報知手段28で異常表示し、ガス事業者のセンターに異常状態の発呼通信を行う。   However, when rainwater or the like enters the outside of the flow path 4 inside the gas shut-off device 1, the flow rate always continues to fluctuate, and the measurement conditions set by the measurement condition setting means 16 for the flow rate measurement during the period that the time measuring means 23 keeps timing. Is measured under the measurement condition corresponding to the maximum change in flow velocity, and the time measuring means 23 obtains the set ratio of the maximum measurement condition by the measurement end time measurement ratio calculating means 24. When the timing means 23 finishes timing, the obtained measurement ratio is determined by the impedance estimation means 25, but the amplification degree determination means 18 determines whether the measurement ratio calculated by the measurement ratio calculation means 24 is equal to or greater than a predetermined ratio. If it is determined that the ratio is equal to or greater than the predetermined ratio, the flow rate detection means 8 of the flow path 4 estimates that the impedance between the terminals due to submergence or the like is in a lowered state and outputs a cutoff signal to the cutoff means 27. Call communication in the abnormal state to the center of the person.

更に並行して、平均流量検出手段17で求めた平均流量を異常判定手段26で監視し、長時間使用していないか、求めた流量が器具流量以上の異常な流量に達していないか等の監視を常時行い異常の有無判定を行う。異常判定手段26には、流量域毎に対応した使用時間の制限時間値、あるいは使用最大流量の監視判定値等が記憶されている。例えばストーブ等へガスを供給するホースが何らかの原因で外れた時、異常な大流量が発生するが、そのような状態を監視するための合計流量遮断値や、器具の通常使用する最大使用時間よりはるかに長く使用された場合に対応して安全継続使用時間の制限時間を規定した安全継続時間遮断の制限時間等が記憶されている。この設定値と平均流量値とを異常判定手段26で比較判定することで、流量値が使用最大流量値を超えていないか、或いは器具の使用時間が登録流量に対応した連続使用の制限時間を超えていないか等監視し、超えた場合遮断信号を出力する。また、報知手段28は、遮断状態や遮断内容を液晶表示素子等に表示すると共にガスの安全監視を行っているガス事業者のセンターに電話回線等の通信により通報する。ガス事業者は直ちにガス遮断装置1を交換する等の対応措置を実施でき、速やかに異常状態を回避することが可能である。   Further, in parallel, the average flow rate obtained by the average flow rate detection means 17 is monitored by the abnormality determination means 26, whether the flow rate has been used for a long time, or whether the obtained flow rate has reached an abnormal flow rate higher than the appliance flow rate, etc. Always monitor to determine whether there is an abnormality. The abnormality determination means 26 stores a time limit value for use time corresponding to each flow rate region, a monitor determination value for the maximum use flow rate, or the like. For example, when the hose that supplies gas to a stove or the like is disconnected for some reason, an abnormally large flow rate is generated, but the total flow cutoff value for monitoring such a condition and the maximum use time of the appliance normally Stored is a time limit for safety duration cut-off that defines a time limit for safe continuous use time corresponding to the case of use for a much longer time. By comparing and determining the set value and the average flow rate value by the abnormality determining means 26, the flow rate value does not exceed the maximum use flow rate value, or the use time of the appliance is set to the continuous use time limit corresponding to the registered flow rate. Monitors whether it exceeds the limit, and outputs a cut-off signal if exceeded. Further, the notification means 28 displays the shut-off state and shut-off content on a liquid crystal display element or the like, and notifies the center of the gas company that is monitoring the safety of the gas by communication such as a telephone line. The gas company can immediately take countermeasures such as exchanging the gas shut-off device 1, and can quickly avoid an abnormal state.

なお、本実施の形態に使用した構成は一例であり、又使用形態も本実施の形態に限定されるものではない。   Note that the configuration used in the present embodiment is an example, and the usage pattern is not limited to the present embodiment.

以上のように、何らかの原因でガス配管内に浸入した水が、ガス遮断装置1の下部に位置する流路4内にはいり浸水状態になった時、即ち流量検出手段8の上流側振動子6や下流側振動子7が設置された流路内部迄浸入してきた場合、或いはガス遮断装置1の筺体と筺体底部の流路4の外側との間が浸水した時、流量検出手段8からの検出した流量値の変化や信号レベルを制御する増幅度調整手段14の増幅度や検出した伝搬時間値を監視して流量検出手段8に異常の有無がないかを監視し、流量検出手段での信号増幅度が高くなり、瞬時流量の変動が生じ安定化するための計測条件に変化した状態を検出することにより、ガス遮断装置1内部で浸水等の異常を早期に検出できるので、浸水することにより器具を全く使用していないのに流量有と誤検出し、誤計測することにより異常なガス使用量を積算したり、異常な流量が検出されたとして保安遮断の機能が誤作動するという異常動作を起すのを防止し、ガス器具を使用するガス需要家を安全に監視するためのガス遮断装置が異常であることを早期に判定し通報するので、安全性や信頼性が極めて高く、かつ使い勝手が高い効果がある。   As described above, when water that has entered the gas pipe for some reason enters the flow path 4 located at the lower part of the gas shut-off device 1 and becomes inundated, that is, the upstream vibrator 6 of the flow rate detection means 8. Or when the downstream side vibrator 7 has entered the inside of the flow path, or when the space between the housing of the gas shut-off device 1 and the outside of the flow path 4 at the bottom of the housing has been submerged, the detection from the flow rate detection means 8 A change in the flow rate value and the amplification level of the amplification level adjusting means 14 for controlling the signal level and the detected propagation time value are monitored to check whether the flow rate detection means 8 is abnormal or not. Abnormalities such as flooding can be detected at an early stage in the gas shut-off device 1 by detecting a state in which the amplification degree is increased, and the measurement condition is changed to stabilize by causing fluctuations in instantaneous flow rate. The flow rate is not used at all By using a gas appliance, it is possible to prevent abnormal operations such as integrating abnormal gas usage by erroneous detection and erroneous measurement, or malfunctioning of the safety shut-off function when abnormal flow rate is detected. Since it is determined and notified at an early stage that the gas shutoff device for safely monitoring the gas consumer is abnormal, there is an effect that the safety and reliability are extremely high and the usability is high.

なお、本発明は上記の実施形態において示されたものに限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   It should be noted that the present invention is not limited to those shown in the above-described embodiments, and those skilled in the art can also make changes and applications based on the description in the specification and well-known techniques. Yes, included in the scope of protection.

以上のように、本発明に係るガス遮断装置は、何らかの原因により流路内部及び外部が浸水された時異常状態を検出し保安監視や流量計測継続が困難と判定する高信頼性を確保することができるものであり、誤って生じた気体混合の水道メータ等の計測監視装置全般に適用できるものである。   As described above, the gas shutoff device according to the present invention secures high reliability by detecting an abnormal state when the inside and outside of the flow channel are submerged for some reason, and determining that it is difficult to continue monitoring and flow measurement. It can be applied to all measurement and monitoring devices such as a water meter of a gas mixture produced by mistake.

4 流路
5 制御装置(制御手段)
8 流量検出手段
15 流量演算手段
16 計測条件設定手段
17 平均流量演算手段
18 増幅度判定手段
19 増幅度設定手段
20 伝搬時間判定手段
22 流路内異常判定手段
23 計時手段
24 計測比率演算手段
25 インピーダンス推定手段
26 異常判定手段
27 遮断手段
4 flow path 5 control device (control means)
DESCRIPTION OF SYMBOLS 8 Flow rate detection means 15 Flow rate calculation means 16 Measurement condition setting means 17 Average flow rate calculation means 18 Amplification degree determination means 19 Amplification degree setting means 20 Propagation time determination means 22 In-channel abnormality determination means 23 Timing means 24 Measurement ratio calculation means 25 Impedance Estimating means 26 Abnormality determining means 27 Blocking means

Claims (1)

流路と、前記流路を流れるガスを遮断する遮断手段と、前記流路に沿って配置した振動子対と、前記振動子対間の超音波の伝搬時間をもとにガスの流量を演算すると共に異常時に前記遮断手段でガスを遮断する制御手段とからなり、
前記制御手段は、流量を検出する流量検出手段と、前記流量検出手段の検出値より瞬時流量値を換算する流量演算手段と、前記流量検出手段で調整した信号増幅度を判定する増幅度判定手段と、前記流量検出手段で調整した増幅度の上限判定値及び下限判定値を設定する増幅度設定手段と、前記流量検出手段で検出した伝搬時間を判定する伝搬時間判定手段と、前記流量演算手段で求めた流量が変動しているのを検出すると安定した流量値を求める計測条件に設定変更する計測条件設定手段と、前記増幅度判定手段で下限判定値以下の増幅度で前記伝搬時間判定手段で異常に短い伝搬時間と判定された場合流路内浸水と推定する流路内異常判定手段と、前記増幅度判定手段で上限判定値以上と判定した時に起動する計時手段と、前記計時手段で計時中に流量変動を安定化させる最大の計測条件に設定された計測条件比率を求める計測比率演算手段と、前記増幅度判定手段で上限判定値以上で前記計測比率が所定値以上の場合前記流量検出手段の端子間インピーダンスが異常と推定するインピーダンス推定手段と、前記流量演算手段で求めた瞬時流量より平均流量を求める平均流量演算手段と、求めた平均流量から異常の有無を判定する異常判定手段とを備え、前記流路内異常判定手段或いは前記インピーダンス推定手段或いは前記異常判定手段で異常判定成立時、前記遮断手段によりガスの供給を遮断する構成としたガス遮断装置。
The flow rate of the gas is calculated based on the flow path, the blocking means for blocking the gas flowing in the flow path, the vibrator pair arranged along the flow path, and the ultrasonic wave propagation time between the vibrator pair. And control means for shutting off the gas by the shut-off means at the time of abnormality,
The control means includes a flow rate detection means for detecting a flow rate, a flow rate calculation means for converting an instantaneous flow rate value from a detection value of the flow rate detection means, and an amplification degree determination means for determining a signal amplification degree adjusted by the flow rate detection means. Amplification level setting means for setting an upper limit determination value and a lower limit determination value of the amplification level adjusted by the flow rate detection means, a propagation time determination means for determining the propagation time detected by the flow rate detection means, and the flow rate calculation means A measurement condition setting means for changing the setting to a measurement condition for obtaining a stable flow value when it detects that the flow rate determined in step fluctuates, and the propagation time determination means with an amplification degree equal to or lower than a lower limit judgment value in the amplification degree judgment means If it is determined that the propagation time is abnormally short, the in-channel abnormality determining means for estimating the inundation in the flow path, the time measuring means that is activated when the amplification degree determining means determines that the upper limit determination value is exceeded, and the time measuring means A measurement ratio calculation means for obtaining a measurement condition ratio set to a maximum measurement condition that stabilizes the flow rate fluctuation during timing, and the flow rate when the amplification ratio determination means is equal to or greater than an upper limit determination value and the measurement ratio is equal to or greater than a predetermined value. Impedance estimating means for estimating that the impedance between the terminals of the detecting means is abnormal, an average flow calculating means for obtaining an average flow rate from the instantaneous flow obtained by the flow rate calculating means, and an abnormality determining means for determining the presence or absence of abnormality from the obtained average flow rate And a gas shut-off device configured to shut off the gas supply by the shut-off means when an abnormality judgment is established by the in-flow path abnormality judging means, the impedance estimating means or the abnormality judging means.
JP2009110902A 2009-04-30 2009-04-30 Gas shut-off device Active JP5317816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110902A JP5317816B2 (en) 2009-04-30 2009-04-30 Gas shut-off device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110902A JP5317816B2 (en) 2009-04-30 2009-04-30 Gas shut-off device

Publications (2)

Publication Number Publication Date
JP2010261746A JP2010261746A (en) 2010-11-18
JP5317816B2 true JP5317816B2 (en) 2013-10-16

Family

ID=43359954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110902A Active JP5317816B2 (en) 2009-04-30 2009-04-30 Gas shut-off device

Country Status (1)

Country Link
JP (1) JP5317816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025409A (en) * 2016-08-08 2018-02-15 パナソニック株式会社 Gas shut-off device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247604B2 (en) * 2009-06-19 2013-07-24 矢崎エナジーシステム株式会社 Ultrasonic gas meter and detection method for entering water
JP5531993B2 (en) * 2011-03-15 2014-06-25 パナソニック株式会社 Flow measuring device
JP5857179B2 (en) * 2011-05-20 2016-02-10 パナソニックIpマネジメント株式会社 Gas shut-off device
JP2012242257A (en) * 2011-05-20 2012-12-10 Panasonic Corp Gas shut-off device
JP7137493B2 (en) * 2019-02-22 2022-09-14 パナソニックホールディングス株式会社 Gas shutoff device and control method for gas shutoff device
WO2022195856A1 (en) * 2021-03-19 2022-09-22 日本電気株式会社 Flooding detection device, flooding detection system, and flooding detection method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104308U (en) * 1980-12-19 1982-06-26
JPH06341875A (en) * 1993-06-03 1994-12-13 Fuji Electric Co Ltd Electromagnetic flowmeter
JP3473458B2 (en) * 1998-11-19 2003-12-02 松下電器産業株式会社 Gas security equipment
JP4673950B2 (en) * 1999-12-09 2011-04-20 矢崎総業株式会社 Abnormality diagnosis device for ultrasonic gas flow rate measuring unit and ultrasonic gas meter equipped with the abnormality diagnosis device
JP2005214702A (en) * 2004-01-28 2005-08-11 Tokyo Gas Co Ltd Gas meter
JP4184989B2 (en) * 2004-01-30 2008-11-19 矢崎総業株式会社 Fluid measuring device and gas meter
JP2005315717A (en) * 2004-04-28 2005-11-10 Toyo Gas Meter Kk Gas meter
JP5114693B2 (en) * 2005-03-01 2013-01-09 矢崎エナジーシステム株式会社 Electronic gas meter
JP2006242658A (en) * 2005-03-01 2006-09-14 Yazaki Corp Electronic gas meter
JP4595656B2 (en) * 2005-04-28 2010-12-08 パナソニック株式会社 Fluid flow measuring device
JP5277749B2 (en) * 2008-06-24 2013-08-28 パナソニック株式会社 Gas shut-off device
JP5222648B2 (en) * 2008-07-23 2013-06-26 矢崎エナジーシステム株式会社 Electronic gas meter
JP5148405B2 (en) * 2008-08-11 2013-02-20 東洋ガスメーター株式会社 Gas meter
JP5201024B2 (en) * 2009-03-12 2013-06-05 パナソニック株式会社 Ultrasonic flow meter for gas
JP5297864B2 (en) * 2009-04-09 2013-09-25 矢崎エナジーシステム株式会社 Ultrasonic gas meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025409A (en) * 2016-08-08 2018-02-15 パナソニック株式会社 Gas shut-off device

Also Published As

Publication number Publication date
JP2010261746A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5317816B2 (en) Gas shut-off device
US20080266125A1 (en) Method for Actively Monitoring Pipelines
JP5277749B2 (en) Gas shut-off device
WO2006043630A1 (en) Gas block device and gas block method
JP4163168B2 (en) Gas shut-off device
JP3721733B2 (en) Flow measuring device
JP5516182B2 (en) Gas shut-off device
JP2012002708A (en) Ultrasonic gas meter
JP4860250B2 (en) Gas shut-off device
JP3117841B2 (en) Gas leak detection method
JP4862227B2 (en) Water meter
JP4199905B2 (en) Gas shut-off device
JP4294834B2 (en) Gas shut-off device
JP5691014B2 (en) Gas shut-off device
JP4089035B2 (en) Gas shut-off device
JP3117844B2 (en) Gas leak detection method
JP5158945B2 (en) Gas shut-off device
JP4958815B2 (en) Gas shut-off device
JP4552952B2 (en) Gas shut-off device
JPH11281451A (en) Electronic gas meter
JP2006118763A (en) Gas shut-off device
JP2008020187A (en) Fluid controller, and flow measuring instrument equipped with fluid controller
JPH11132819A (en) Gas meter
JPH11230793A (en) Flow monitoring device
JP5013519B2 (en) Gas shut-off device and gas supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250