[go: up one dir, main page]

JP5314203B1 - Structure connection structure - Google Patents

Structure connection structure Download PDF

Info

Publication number
JP5314203B1
JP5314203B1 JP2013042084A JP2013042084A JP5314203B1 JP 5314203 B1 JP5314203 B1 JP 5314203B1 JP 2013042084 A JP2013042084 A JP 2013042084A JP 2013042084 A JP2013042084 A JP 2013042084A JP 5314203 B1 JP5314203 B1 JP 5314203B1
Authority
JP
Japan
Prior art keywords
base plate
axial
axial force
shaft portion
force member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013042084A
Other languages
Japanese (ja)
Other versions
JP2014169579A (en
Inventor
等 塩原
芳生 井上
健治 横田
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kse Network
Original Assignee
Kse Network
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kse Network filed Critical Kse Network
Priority to JP2013042084A priority Critical patent/JP5314203B1/en
Application granted granted Critical
Publication of JP5314203B1 publication Critical patent/JP5314203B1/en
Publication of JP2014169579A publication Critical patent/JP2014169579A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】距離を置いて対向する、例えば既存の構造体間に、両構造体間に対向する方向の相対変位が生じたときの振動を低減するダンパー付きの軸力部材を架設する際に、軸力部材の端部を構造体に接合するベースプレートを構造体に固定する複数本のアンカーの負担を均等にし、アンカーに与えるべき寸法を最小に抑える。
【解決手段】対向する構造体1、2間に、両構造体1、2が互いに対向する方向に相対変位したときに軸方向力を負担しながら、軸方向に伸縮し、伸縮時に減衰力を発生する軸力部材3を、構造体1、2が対向する方向に軸方向を向けて架設し、軸力部材3の両端を各構造体1、2の表面に固定されたベースプレート4に、少なくとも軸力部材3の軸方向に直交する面内の水平軸回りに回転自在に接合し、軸力部材3の軸方向に平行な方向を向く複数本のアンカー5をベースプレート4を貫通させて構造体1、2に定着させ、ベースプレート4に接合する。
【選択図】図1
An object of the present invention is to construct an axial force member with a damper for reducing vibration when a relative displacement in a direction opposite to each other occurs between, for example, existing structures facing each other at a distance. The load of the plurality of anchors that fix the base plate that joins the end portion of the axial force member to the structure is equalized, and the size to be given to the anchor is minimized.
SOLUTION: When both structures 1 and 2 are displaced relative to each other in a direction opposite to each other, an axial force is applied while the structures 1 and 2 are displaced relative to each other, and a damping force is applied during the expansion and contraction. The generated axial force member 3 is erected in the direction in which the structures 1 and 2 face each other in the axial direction, and at least both ends of the axial force member 3 are fixed to the base plate 4 fixed to the surface of each structure 1 and 2. A structure in which a plurality of anchors 5 that are rotatably joined around a horizontal axis in a plane orthogonal to the axial direction of the axial force member 3 and that are parallel to the axial direction of the axial force member 3 are passed through the base plate 4. Fix to 1 and 2 and join to the base plate 4.
[Selection] Figure 1

Description

本発明は距離を置いて対向する、例えば既存の構造体間に、両構造体間に対向する方向の相対変位が生じたときに構造体の振動を低減する軸力部材を架設し、両構造体を接続した構造体の接続構造に関するものである。   In the present invention, an axial force member that reduces vibrations of a structure when a relative displacement in the opposite direction between the two structures is generated, for example, between the structures facing each other at a distance is provided. It is related with the connection structure of the structure which connected the body.

例えば集合住宅その他の建築物等のように既存の構造体が互いに距離を置いて対向(隣接)している場合、あるいは新設の二つの構造体が互いに距離を置いて構築されるような場合に、両構造体が地震や風等により異なる振動数で振動する可能性がある場合には、両構造体間にダンパーを架設することにより両構造体の振動数の差を利用して両構造体の振動を低減することができる(特許文献1〜5参照)。距離を置いた構造体間に架設されるダンパーには主にダンパーを構成する構成材の軸方向の相対移動、または相対速度を利用した形式のオイルダンパー等の使用が適する。   For example, when existing structures are facing each other (adjacent), such as apartment buildings or other buildings, or when two new structures are built at a distance from each other If there is a possibility that both structures vibrate at different frequencies due to earthquakes, winds, etc., use a difference in the frequency of both structures by installing a damper between the two structures. Can be reduced (see Patent Documents 1 to 5). For the damper laid between the structures at a distance, it is suitable to use an oil damper or the like of the type that mainly uses the relative movement in the axial direction of the components constituting the damper or the relative speed.

対向する構造体間にダンパーを架設する場合、構造体の変形時、例えば曲げ変形時に対向する構造体間に生ずる相対変位量が大きくなる区間にダンパーを架設することが有効であるため、ダンパーは軸方向を鉛直方向に、または水平方向に対して傾斜した方向に向けて架設されることが多い(特許文献1、3)。   When installing a damper between opposing structures, it is effective to install a damper in a section where the relative displacement generated between the opposing structures during deformation of the structure, for example, during bending deformation, is large. In many cases, the axial direction is set in the vertical direction or in a direction inclined with respect to the horizontal direction (Patent Documents 1 and 3).

距離を置いた構造体間にダンパーを架設する場合、各構造体の変形時、ダンパーの両端部は各構造体に対し、相対的に少なくとも水平軸回りに回転変形しようとするため、ダンパーの両端部に曲げモーメントを作用させないよう、ダンパーの両端部は各構造体に回転自在にピン接合される必要がある。具体的には構造体の表面に密着するベースプレートの表面側に突設されたガセットプレートにダンパーの端部がピン接合されるが、ベースプレートの構造体への固定にアンカーが使用される場合、アンカーは軸方向が構造体の表面に直交する方向を向いて構造体中に挿入され、定着されることになる(特許文献6参照)。   When installing dampers between structures that are spaced apart from each other, both ends of the damper will rotate at least around the horizontal axis relative to each structure when the structures are deformed. In order to prevent a bending moment from acting on the portion, both end portions of the damper need to be pin-coupled to each structure so as to be rotatable. Specifically, the end of the damper is pin-bonded to a gusset plate protruding on the surface side of the base plate that is in close contact with the surface of the structure, but when the anchor is used to fix the base plate to the structure, the anchor Is inserted and fixed in the structure with the axial direction facing the direction perpendicular to the surface of the structure (see Patent Document 6).

特開平2−232478号公報(公報第2頁上右欄第20行〜下左欄第5行、第1図)JP-A-2-232478 (the second page, upper right column, line 20 to lower left column, line 5, FIG. 1) 特開平9−235890号公報(請求項2、段落0015、図1−(b)、(c))JP-A-9-235890 (Claim 2, paragraph 0015, FIGS. 1- (b), (c)) 特開平10−18636号公報(請求項1、段落0008〜0014、図1〜図4)Japanese Patent Laid-Open No. 10-18636 (Claim 1, paragraphs 0008 to 0014, FIGS. 1 to 4) 特開2001−3982号公報(段落0032、図2)JP 2001-3982 (paragraph 0032, FIG. 2) 特開2001−123696号公報(段落0034、図1)JP 2001-123696 A (paragraph 0034, FIG. 1) 特開2005−126894号公報(段落0056〜0064、図3〜図6)Japanese Patent Laying-Open No. 2005-126894 (paragraphs 0056 to 0064, FIGS. 3 to 6)

特許文献6のようにブレースがダンパー内蔵型の場合、あるいはダンパーがブレースを兼ねる場合には、ダンパーの軸方向とアンカーの軸方向とに角度が付くため、ダンパーが軸方向の力(圧縮力と引張力)を負担したときに、アンカーの軸部に曲げモーメントを作用させることになる。   When the brace is a damper built-in type as in Patent Document 6, or when the damper also serves as the brace, an angle is formed between the axial direction of the damper and the axial direction of the anchor. When a tensile force is applied, a bending moment is applied to the shaft portion of the anchor.

また特許文献6のように1枚のベースプレートの固定に複数本のアンカーが使用される場合、ブレースが引張力を負担したときに複数本のアンカーが負担する引張力が均等にならないため、いずれか特定のアンカーが構造体から抜け出し易くなることが想定される。複数本のアンカーの負担が均等にならない状況はブレースからベースプレートにアンカーの軸方向に直交する方向のせん断力が伝達される場合にも言える。せん断力はブレースからの鉛直荷重がベースプレートに作用する場合にアンカーに作用する。この他、ブレースが引張力を負担したときのベースプレートの表面に平行な分力がせん断力としてアンカーに作用する。   In addition, when a plurality of anchors are used for fixing one base plate as in Patent Document 6, when the brace bears a tensile force, the tensile force borne by the plurality of anchors is not uniform. It is assumed that a specific anchor can easily escape from the structure. The situation where the load of the plurality of anchors is not uniform can also be said when a shear force in a direction perpendicular to the axial direction of the anchor is transmitted from the brace to the base plate. The shear force acts on the anchor when a vertical load from the brace acts on the base plate. In addition, a component force parallel to the surface of the base plate when the brace bears a tensile force acts on the anchor as a shearing force.

例えば既存の構造体にベースプレートを後付けする場合には、アンカーの定着による躯体の損傷を最小に抑える都合から、躯体中に挿入可能なアンカーの本数、及び軸部の長さと径(太さ)が制約を受けるため、使用すべきアンカーの本数は少ない方がよい。しかしながら、ベースプレートを構造体に固定している複数本のアンカーが負担する引張力(引き抜き力)とせん断力がアンカー毎に相違するとすれば、全アンカーが同等の抵抗力を発揮することにならないため、必要とされるアンカーの本数が多くなる。また安全性の面から、最も大きい引き抜き力を受けるアンカーの寸法に他のアンカーの寸法を揃えなければならないため、全アンカーの寸法が必要以上に大きくなり、それだけ躯体に与える損傷が増大する。   For example, when retrofitting a base plate to an existing structure, the number of anchors that can be inserted into the housing, and the length and diameter (thickness) of the shaft portion are determined in order to minimize damage to the housing due to anchor anchoring. Due to restrictions, it is better to use fewer anchors. However, if the tensile force (pull-out force) and the shearing force borne by multiple anchors fixing the base plate to the structure are different for each anchor, not all anchors will exhibit the same resistance. The number of anchors required is increased. Also, from the viewpoint of safety, the dimensions of the other anchors must be aligned with the dimensions of the anchor that receives the largest pulling force, so that the dimensions of all the anchors become larger than necessary, and the damage to the housing increases accordingly.

本発明は上記背景より、対向(隣接)する構造体間にダンパー付きの軸力部材を架設し、両端を各構造体に接合する場合にも、構造体にベースプレートを固定する複数本のアンカーの負担を均等にし、アンカーに与えるべき寸法を最小に抑えることを可能にする構造体の接続構造を提案するものである。   In the present invention, even when an axial force member with a damper is installed between opposing (adjacent) structures and both ends are joined to each structure, the present invention provides a plurality of anchors for fixing the base plate to the structure. The present invention proposes a connection structure for a structure that makes it possible to equalize the burden and to minimize the dimensions to be given to the anchor.

請求項1に記載の発明の構造体の接続構造は、距離を置いて対向するコンクリート造の構造体間に、前記両構造体が互いに対向する方向に相対変位したときに軸方向力を負担しながら、軸方向に伸縮し、伸縮時に減衰力を発生するダンパー内蔵型の軸力部材が、前記構造体が対向する方向に軸方向を向けて架設され、前記軸力部材の両端が前記各構造体の表面に固定されたベースプレートに、少なくとも前記軸力部材の軸方向に直交する面内の水平軸回りに回転自在に接合され、
前記軸力部材の軸方向に平行な方向を向く複数本のアンカーが前記ベースプレートを貫通して前記構造体に定着され、前記ベースプレートに接合され、
前記アンカーの、前記構造体中に埋設される軸部は先端部側に、前記軸部の軸に垂直な断面積より大きい断面積の定着部を備え、
前記軸部の前記軸力部材側には前記軸部から分離した頭部が前記軸部に螺合し、前記構造体の表面に密着した状態にあり、
前記頭部と前記定着部は前記軸部が埋設される前記構造体の、充填材からなる硬化体、もしくはコンクリートを挟んで対になり、前記頭部の前記軸部への螺入に伴い、前記硬化体、もしくはコンクリートに軸方向圧縮力を加える状態にあることを構成要件とする。
The structure connecting structure according to the first aspect of the present invention bears an axial force when the two structures are relatively displaced in a direction facing each other between the concrete structures facing each other at a distance. However, a damper built-in type axial force member that expands and contracts in the axial direction and generates a damping force at the time of expansion and contraction is installed with the axial direction facing the structure, and both ends of the axial force member are connected to the respective structures. A base plate fixed to the surface of the body is joined to at least a horizontal axis in a plane perpendicular to the axial direction of the axial force member,
A plurality of anchors facing in a direction parallel to the axial direction of the axial force member are fixed to the structure through the base plate, and are joined to the base plate,
A shaft portion embedded in the structure of the anchor includes a fixing portion on a distal end portion side having a cross-sectional area larger than a cross-sectional area perpendicular to the shaft portion,
The head portion separated from the shaft portion is screwed into the shaft portion on the shaft force member side of the shaft portion, and is in a state of being in close contact with the surface of the structure.
The head part and the fixing part are paired with a hardened body made of a filler or concrete sandwiched between the structure in which the shaft part is embedded, and with the screwing of the head part into the shaft part, The hardened body or concrete is in a state where an axial compressive force is applied thereto.

「構造体が対向する方向」は隣接する構造体が対向する方向の水平方向を言う。対向する構造体は既存の場合と新設の場合があり、一方の構造体が既存で、他方の構造体が新設の場合もある。構造体の構造種別は問われず、鉄筋コンクリート造鉄骨鉄筋コンクリート造等がある。構造体は橋脚の場合もある。対向する両構造体が地震や風荷重等の水平力の作用時に対向する方向に独立して曲げ変形、またはせん断変形し、対向する面(壁面)間距離が変化したときに、両構造体間に架設されている軸力部材の両端間距離が変化し、軸力部材が軸方向に伸縮し、伸縮に伴って減衰力を発生するため、各構造体の固有振動数が異なるか否かも問われない。 The “direction in which the structures oppose” refers to the horizontal direction in which the adjacent structures oppose each other. The opposing structures may be existing or newly established, and one structure may be existing and the other structure may be newly provided. Regardless of the structural type of the structure , there are reinforced concrete structures , steel reinforced concrete structures, and the like. The structure may be a pier. When both opposing structures are bent or sheared independently in the opposing direction when a horizontal force such as an earthquake or wind load is applied, the distance between the opposing surfaces (wall surfaces) changes. Since the distance between both ends of the axial force member installed on the shaft changes, the axial force member expands and contracts in the axial direction, and a damping force is generated along with the expansion and contraction, whether or not the natural frequency of each structure differs I will not.

各構造体が水平力の作用時に互いに独立して変形することには、例えば両構造体の曲げ剛性に差があり、曲げ剛性の差による固有振動数の差に起因し、独立して挙動(振動)することにより曲げ変形する場合と、曲げ剛性に差がなく、一様に曲げ変形しながらも、各構造体と軸力部材との接合部に相対的な回転変形が生じながら、軸力部材の両端間距離が変化するような場合がある。いずれの場合も各構造体と軸力部材との間の相対的な回転変形は少なくともいずれか一方の構造体が曲げ変形、またはせん断変形を起こすことにより発生する。   When each structure deforms independently of each other when a horizontal force is applied, for example, there is a difference in the bending stiffness between the two structures, and due to the difference in natural frequency due to the difference in bending stiffness, There is no difference in bending rigidity from the case of bending deformation due to vibration), and even though the bending deformation is uniform, relative rotational deformation occurs at the joint between each structural body and the axial force member. The distance between both ends of the member may change. In either case, the relative rotational deformation between each structure and the axial force member occurs when at least one of the structures undergoes bending deformation or shear deformation.

ダンパー内蔵型の軸力部材は軸方向力を負担する、互いに分離した本体部と、例えば一方の本体部に内蔵され、他方の本体部が軸方向に相対移動自在に接続されるダンパー部からなり、両本体部が軸方向力としての引張力と圧縮力を負担するときに軸力部材全体として軸方向に伸縮し、両本体部が伸縮するときの相対移動量、または相対速度に応じた減衰力をダンパー部が発生する。   The built-in damper type axial force member bears axial force and consists of a separate main body part and a damper part, for example, built in one main body part and the other main body part being connected to be relatively movable in the axial direction. Attenuation according to the amount of relative movement or relative speed when both body parts expand and contract in the axial direction when both body parts bear tensile and compressive forces as axial forces and both body parts expand and contract The damper part generates force.

ダンパー部を構成し、軸方向の相対移動を利用したダンパーには粘性ダンパー、粘弾性ダンパー、摩擦ダンパーの他、弾塑性ダンパー等が使用可能である。オイルダンパーの場合で言えば、ダンパー部は例えば一方の本体部に一体化し、作動油が充填されたシリンダと、シリンダ内に軸方向に相対移動自在に配置され、他方の本体部に一体化するピストンから構成され、シリンダ内のピストンの移動に伴い、ピストンに形成されたオリフィス、またはシリンダに並列する流路を作動油が通過することにより減衰力を発生する。   In addition to viscous dampers, viscoelastic dampers, friction dampers, elasto-plastic dampers, and the like can be used as dampers that constitute the damper portion and utilize the relative movement in the axial direction. In the case of an oil damper, the damper part is integrated with, for example, one main body part, and is disposed so as to be relatively movable in the axial direction in a cylinder filled with hydraulic oil, and integrated with the other main body part. As the piston moves in the cylinder, the hydraulic oil passes through an orifice formed in the piston or a flow path parallel to the cylinder to generate a damping force.

軸力部材は対向する構造体が対向する方向に変形するときの両端間距離の変化等に応じて減衰力を発生するため、各構造体には主に軸力部材の軸方向に直交する面内の水平軸回りに回転自在に接合される。但し、両構造体の対向する方向の変形には対向する方向に直交する方向の相対変位を伴うこともあり得るため、軸力部材の軸方向に直交する面内の任意の軸回りに回転自在に接合されることが適切である。軸力部材の軸方向に直交する面内の任意の軸回りに回転自在に接合される状態は、例えば図6に示すように軸力部材の軸方向に直交する面内の水平軸回りと鉛直軸回りに回転自在に、軸力部材が構造体(ベースプレート)に接合(連結)されることで得られる。   Since the axial force member generates a damping force according to a change in the distance between both ends when the opposing structural body is deformed in the opposing direction, a surface orthogonal to the axial direction of the axial force member is mainly formed on each structural body. It is joined so as to be rotatable around the horizontal axis. However, since the deformation in the opposing direction of both structures may involve relative displacement in the direction orthogonal to the opposing direction, the structure can rotate around any axis in the plane orthogonal to the axial direction of the axial force member. It is appropriate to be joined to For example, as shown in FIG. 6, the state of being rotatably joined around an arbitrary axis in a plane orthogonal to the axial direction of the axial force member is perpendicular to the horizontal axis in the plane orthogonal to the axial direction of the axial force member. It can be obtained by joining (connecting) the axial force member to the structure (base plate) so as to be rotatable around the axis.

軸力部材の端部は構造体の表面に固定されるベースプレートに水平軸回りに、または任意の軸回りに回転自在に接合(連結)され、ベースプレートは複数本のアンカーがベースプレートを貫通して構造体に定着され、ベースプレートに接合されることにより構造体に接合(固定)される。複数本の全アンカーの軸方向は軸力部材の軸方向を向くことで、軸力部材からベースプレートに軸方向力としての圧縮力と引張力が作用したときにアンカーに曲げモーメントが作用することはなく、軸力部材が引張力を負担するときに引張力が作用する。   The end of the axial force member is joined (coupled) to a base plate fixed to the surface of the structure so as to be rotatable about a horizontal axis or about an arbitrary axis, and the base plate has a structure in which a plurality of anchors penetrate the base plate. It is fixed to the structure by being fixed to the body and bonded to the base plate by being bonded to the base plate. The axial direction of the plurality of all anchors is directed to the axial direction of the axial force member, so that a bending moment acts on the anchor when compressive force and tensile force as axial direction force are applied from the axial force member to the base plate. The tensile force acts when the axial force member bears the tensile force.

軸力部材が圧縮力を負担するときの圧縮力はベースプレートの背面(構造体側の面)から支圧力として構造体に伝達されるため、アンカーには原則として軸力部材からの圧縮力は作用しない。軸力部材からの引張力はベースプレートから全アンカーに引き抜き力として作用するが、ベースプレートが変形(曲げ変形)しない限り、特に塑性変形しない限り、引張力はベースプレートの全面に分散して全アンカーに伝達されるため、全アンカーに均等に作用することになる。   Since the compressive force when the axial force member bears the compressive force is transmitted to the structure as a support pressure from the back surface (surface on the structure side) of the base plate, in principle, the compressive force from the axial force member does not act on the anchor. . The tensile force from the axial force member acts as a pulling force from the base plate to all anchors. However, unless the base plate is deformed (bending deformation), especially unless it is plastically deformed, the tensile force is distributed over the entire surface of the base plate and transmitted to all anchors. Therefore, it acts equally on all anchors.

軸力部材からの軸方向力を全アンカーに均等に伝達する上では、軸力部材の軸方向力がベースプレートの縦断面上、及び水平断面上の中心に作用し、ベースプレートの中心に関して全アンカーが鉛直方向と水平方向に均等に配列していることが適切であるから、ベースプレートの中心を通る水平線上に軸力部材の断面上の中心が位置するように軸力部材がベースプレートに接合される。ベースプレートの中心とは、ベースプレートを正面から(厚さ方向に)、すなわち図1−(a)のx−x線方向に見たときの(平面形状の)中心を言う。   In order to evenly transmit the axial force from the axial force member to all the anchors, the axial force of the axial force member acts on the center of the base plate in the vertical and horizontal cross sections, and all the anchors are in relation to the center of the base plate. Since it is appropriate that they are equally arranged in the vertical direction and the horizontal direction, the axial force member is joined to the base plate so that the center of the axial force member in the cross section is positioned on a horizontal line passing through the center of the base plate. The center of the base plate refers to the center (planar shape) when the base plate is viewed from the front (in the thickness direction), that is, in the xx line direction of FIG.

複数本のアンカー5が図1−(a)に示すように鉛直方向に複数段、配列する場合は、鉛直断面で見たときに鉛直方向に配列する複数本のアンカー5全体の鉛直方向の中心を通る水平線に軸力部材3の中心線が一致するように軸力部材3がベースプレート4に連結される。同様に図1−(b)に示すように複数本のアンカー5が水平方向(ベースプレート4の幅方向)に複数列、配列する場合は、水平断面で見たときに水平方向に配列する複数本のアンカー5全体の水平方向の中心を通る水平線に軸力部材3の中心線が一致するように軸力部材3がベースプレート4に連結される。例えば複数本のアンカー5が鉛直方向に奇数段、配列する場合は、鉛直方向の中心に位置するアンカー5の中心線に軸力部材3の中心線が一致し、偶数段、配列する場合は、鉛直方向の中心寄りに位置する2本のアンカー5、5の中心を通る線に軸力部材3の中心線が一致する。   When a plurality of anchors 5 are arranged in a plurality of stages in the vertical direction as shown in FIG. 1- (a), the vertical center of the plurality of anchors 5 arranged in the vertical direction when viewed in a vertical section. The axial force member 3 is connected to the base plate 4 so that the center line of the axial force member 3 coincides with a horizontal line passing through the base plate 4. Similarly, as shown in FIG. 1- (b), when a plurality of anchors 5 are arranged in a plurality of rows in the horizontal direction (width direction of the base plate 4), a plurality of anchors arranged in the horizontal direction when viewed in a horizontal section. The axial force member 3 is connected to the base plate 4 such that the center line of the axial force member 3 coincides with a horizontal line passing through the horizontal center of the entire anchor 5. For example, when a plurality of anchors 5 are arranged in an odd number of steps in the vertical direction, the center line of the axial force member 3 is aligned with the center line of the anchor 5 located in the center in the vertical direction, The center line of the axial force member 3 coincides with a line passing through the centers of the two anchors 5 and 5 positioned closer to the center in the vertical direction.

軸力部材3からの引張力を全アンカー5に均等に作用させることは、ベースプレート4が面外方向(板厚方向)に変形しないことが前提になるため、引張力がベースプレート4から全アンカー5に伝達される際に、ベースプレート4の曲げ変形が想定される場合には、図5に示すようにベースプレート4に曲げ剛性を付与するためのリブプレート43がベースプレート4の表面に接合される。またはベースプレート4自身に曲げ変形が生じない程度の厚さが与えられる。但し、後述のように軸力部材3からの引張力を全アンカー5が均等に負担することで、アンカー5の太さ(径)を抑制することができる結果、複数本のアンカー5が挿通するベースプレート4の面積を抑制することができるため、ベースプレート4自体を曲げ変形しにくい寸法に設定することができる。   Applying the tensile force from the axial force member 3 equally to all the anchors 5 is based on the premise that the base plate 4 is not deformed in the out-of-plane direction (plate thickness direction). When the base plate 4 is assumed to be bent and deformed, the rib plate 43 for imparting bending rigidity to the base plate 4 is joined to the surface of the base plate 4 as shown in FIG. Alternatively, the base plate 4 itself is given a thickness that does not cause bending deformation. However, as will be described later, when all the anchors 5 uniformly bear the tensile force from the axial force member 3, the thickness (diameter) of the anchors 5 can be suppressed, and as a result, a plurality of anchors 5 are inserted. Since the area of the base plate 4 can be suppressed, the base plate 4 itself can be set to a dimension that is difficult to bend and deform.

軸力部材3からの引張力が全アンカー5に均等に作用することで、全アンカー5が負担すべき引張力が等しくなり、特定のアンカー5の負担が増大することがなくなるため、全アンカー5の寸法を統一することができる。また特定のアンカー5の負担が大きくならないことで、いずれかのアンカー5の負担が大きい場合より各アンカー5の軸部5bの長さ(定着長さ)と軸部5bの太さ(径)を抑えることが可能になる。   Since the tensile force from the axial force member 3 acts evenly on all the anchors 5, the tensile force to be borne by all the anchors 5 becomes equal, and the burden on the specific anchor 5 does not increase. The dimensions can be unified. In addition, since the burden on the specific anchor 5 does not increase, the length (fixing length) of the shaft portion 5b and the thickness (diameter) of the shaft portion 5b of each anchor 5 can be reduced as compared with the case where the load on any anchor 5 is large. It becomes possible to suppress.

只、構造体1(2)が既存のコンクリート造の場合、構造体1(2)にはアンカー5定着のための削孔1aが形成されるが、隣接する削孔1a、1a間の距離が接近すれば、残されたコンクリートが脆くなる可能性があるため、複数本のアンカー5を狭い領域内に密集させることができないこともある。この観点からは、アンカー5の軸部5bの太さを小さくすることが合理的であると言える。軸部5bの太さを抑えることで、削孔1aの径を小さくすることができ、隣接する削孔1a、1a間に一定の距離を確保することができることによる。   When the structure 1 (2) is an existing concrete structure, the structure 1 (2) is formed with a drilling hole 1a for anchoring the anchor 5, but the distance between the adjacent drilling holes 1a and 1a is If approached, the remaining concrete may become brittle, and therefore, the plurality of anchors 5 may not be concentrated in a narrow area. From this viewpoint, it can be said that it is reasonable to reduce the thickness of the shaft portion 5b of the anchor 5. By suppressing the thickness of the shaft portion 5b, the diameter of the hole 1a can be reduced, and a certain distance can be secured between the adjacent holes 1a and 1a.

請求項1ではアンカー5の軸部5bの長さと太さを縮小できる結果、全アンカー5が構造体1(2)中に占める領域を最小に抑えることが可能になり、構造体1(2)が既存である場合に躯体に与える損傷も最小に留めることが可能になる。具体的には既存のコンクリート造の構造体1(2)に対し、アンカー5(軸部5b)を埋設するための削孔1aの深さと径を抑制することができるため、複数本のアンカー5群からなる定着体の規模を最小化することが可能になる。   According to the first aspect, the length and thickness of the shaft portion 5b of the anchor 5 can be reduced. As a result, the area occupied by all the anchors 5 in the structure 1 (2) can be minimized, and the structure 1 (2). It is possible to minimize the damage to the enclosure when existing. Specifically, since the depth and diameter of the hole 1a for embedding the anchor 5 (shaft portion 5b) can be suppressed with respect to the existing concrete structure 1 (2), a plurality of anchors 5 are provided. It becomes possible to minimize the scale of the fixing member composed of a group.

軸力部材3からベースプレート4に伝達される引張力は、図1、図2に示すようにアンカー5の頭部5a、もしくは軸部5b、あるいは頭部5aに螺合するナット6がベースプレート4に、その面外方向の構造体1(2)側へ向かう力を伝達可能な状態に接続されていることでアンカー5に伝達され、アンカー5の軸部5bから付着力、もしくは支圧力を通じて構造体1(2)に伝達される。アンカー5の頭部5aや軸部5b等がベースプレート4に構造体1(2)側へ力を伝達可能な状態は、ベースプレート4がアンカー5の頭部5aや軸部5b等に直接、もしくは間接的に軸力部材3側へ向かう力を伝達可能な状態にあることと同じである。   As shown in FIGS. 1 and 2, the tensile force transmitted from the axial force member 3 to the base plate 4 is applied to the base plate 4 by the head 5 a of the anchor 5, the shaft 5 b, or the nut 6 screwed into the head 5 a. The structure is transmitted to the anchor 5 by being connected in a state in which a force directed to the structure 1 (2) side in the out-of-plane direction can be transmitted, and from the shaft portion 5b of the anchor 5 through the adhesion force or the supporting pressure. 1 (2). The state in which the head 5a, the shaft 5b, etc. of the anchor 5 can transmit a force to the base plate 4 to the structure 1 (2) side is directly or indirectly the base plate 4 to the head 5a, the shaft 5b, etc. of the anchor 5. In other words, it is the same as being in a state in which a force directed toward the axial force member 3 can be transmitted.

具体的にはアンカー5の頭部5aや軸部5bのベースプレート4側の端面が直接、もしくは間接的にベースプレート4にアンカー5の先端部側(構造体1側)へ係合(係止)することにより、または頭部5aや軸部5bに螺合するナット6がベースプレート4に構造体1側へ係合(係止)することにより、あるいは頭部5aや軸部5bが溶接等によってベースプレート4に直接、接合されることにより、軸力部材3の引張力がアンカー5に伝達可能な状態に、アンカー5がベースプレート4に接続される。   Specifically, the end surface on the base plate 4 side of the head portion 5a or the shaft portion 5b of the anchor 5 is directly or indirectly engaged (locked) with the base plate 4 on the distal end side (structure 1 side) of the anchor 5. The nut 6 that is screwed into the head portion 5a or the shaft portion 5b is engaged (locked) with the base plate 4 toward the structure 1 or the head portion 5a or the shaft portion 5b is welded or the like. The anchor 5 is connected to the base plate 4 so that the tensile force of the axial force member 3 can be transmitted to the anchor 5 by being directly joined to the base plate 4.

アンカー5にナット6が螺合する場合のナット6は頭部5aを兼ねることもある。溶接等によって頭部5aや軸部5bがベースプレート4に接合される場合、頭部5aはベースプレート4への接合の結果として、ベースプレート4にアンカー5の先端部側へ係合(係止)していることと同等の状態になる。アンカー5は頭部5aや軸部5bにおいてベースプレート4の挿通孔4aを挿通するが、溶接等による場合、頭部5aや軸部5bは挿通孔4a内で溶接される。   When the nut 6 is screwed into the anchor 5, the nut 6 may also serve as the head 5a. When the head portion 5a and the shaft portion 5b are joined to the base plate 4 by welding or the like, the head portion 5a is engaged (locked) to the distal end side of the anchor 5 with the base plate 4 as a result of joining to the base plate 4. It becomes a state equivalent to being. The anchor 5 is inserted through the insertion hole 4a of the base plate 4 at the head part 5a and the shaft part 5b. When welding is performed, the head part 5a and the shaft part 5b are welded within the insertion hole 4a.

ベースプレート4からの引張力がアンカー5に伝達されるとき、構造体1(2)がコンクリート造の場合、軸部5b(後述の定着部5cを含む)からその周囲の付着力を通じて構造体1(2)に引張力が伝達される。図2に示すように軸部5bの周囲に削孔1aが形成され、削孔1a内にモルタル等の充填材7が充填される場合に、図5−(a)、図7に示すように軸部5bの先端に定着部5cが形成されていることで、ベースプレート4からの引張力は、充填材7の硬化により削孔1a内に形成される硬化体8に圧縮力として伝達される。図5−(a)、図7の場合、軸部5bが引張力を負担するときに、定着部5cの頭部5a側に支圧力が生ずることで、充填材7(硬化体8)に圧縮力が伝達される。圧縮力は定着部5cとベースプレート4との間、または定着部5cと頭部5aとの間に生ずる。 When the tensile force from the base plate 4 is transmitted to the anchor 5, when the structure 1 (2) is made of concrete, the structure 1 A tensile force is transmitted to 2). Drilling 1a around the shaft portion 5b as shown in FIG. 2 is formed, if the filler 7 of the mortar or the like is filled in the drilling 1a, Fig. 5-(a), as shown in FIG. 7 by fixing portion 5c is formed at the distal end of the shaft portion 5b in the tensile force from the base plate 4 is transmitted as a compressive force to the cured body 8 formed in the drilling 1a by curing of the filling material 7 . In the case of FIGS. 5A and 7, when the shaft portion 5 b bears a tensile force, a support pressure is generated on the head portion 5 a side of the fixing portion 5 c, thereby compressing the filler 7 (cured body 8). Power is transmitted. The compressive force is generated between the fixing unit 5c and the base plate 4 or between the fixing unit 5c and the head 5a.

アンカー5の頭部5a軸部5bから分離、図7に示すようにベースプレート4の挿通孔4a内に位置するアンカー5自体は主に鋼材で製作される。アンカー5の軸部5bが定着部5cと頭部5aの双方から分離している場合には、引張力を負担する軸部5bにはボルト(アンカーボルト)、鉄筋、棒鋼等、棒状の鋼材が使用されるが、繊維強化プラスチック等も使用される。 Head 5a of the anchor 5 are separated from the shaft portion 5b, located inside the insertion hole 4a of the base plate 4 as shown in FIG. The anchor 5 itself is mainly made of steel. When the shaft portion 5b of the anchor 5 is separated from both the fixing portion 5c and the head portion 5a, a rod-shaped steel material such as a bolt (anchor bolt), a reinforcing bar, or a steel bar is placed on the shaft portion 5b that bears the tensile force. Although fiber reinforced plastics are also used.

軸部5bは少なくとも構造体1(2)中(削孔1a内)に位置する区間であり構造体1(2)がコンクリート造の場合には、軸部5bの構造体1(2)側の先端部にコンクリート(硬化体8)中に定着される定着部5cを備えThe shaft portion 5b is a section located at least in the structure 1 (2) (in the drilling hole 1a). When the structure 1 (2) is made of concrete, the shaft portion 5b is on the structure 1 (2) side. Ru and a fixing portion 5c to the leading end portion is fixed in the concrete (cured product 8).

定着部5cは軸に垂直な断面積が軸部5bの軸に垂直な断面積より大きく形成される等、軸部5bに軸方向引張力が作用したときに定着部5cの軸部5b側の表面に反力としての支圧力が作用するような、コンクリート(硬化体8)中での定着に適した形態に形成される。定着部5cは軸部5bに一体化している場合と、図7−(b)に示すように軸部5bから分離しながら、螺合等により連結(接続)される場合がある。軸部5bに定着部5cが形成される場合には、定着部5cの軸部5b側の面に生ずる支圧力が、軸部5bに伝達されたベースプレート4からの引張力を構造体1(2)に伝達する力としての軸部5b表面の付着力に加算されるため、引張力のアンカー5を通じた構造体1(2)への伝達効率が向上する。   The fixing unit 5c has a cross-sectional area perpendicular to the axis that is larger than a cross-sectional area perpendicular to the axis of the shaft part 5b. For example, when an axial tensile force acts on the shaft part 5b, It is formed in a form suitable for fixing in concrete (hardened body 8) such that a supporting pressure as a reaction force acts on the surface. The fixing portion 5c may be integrated (integrated) with the shaft portion 5b or may be connected (connected) by screwing or the like while being separated from the shaft portion 5b as shown in FIG. 7- (b). When the fixing portion 5c is formed on the shaft portion 5b, the support pressure generated on the surface of the fixing portion 5c on the shaft portion 5b side generates the tensile force from the base plate 4 transmitted to the shaft portion 5b. ) Is added to the adhesion force on the surface of the shaft portion 5b as a force to be transmitted to the structure 1 (2), the transmission efficiency of the tensile force to the structure 1 (2) through the anchor 5 is improved.

図1に示すようにアンカー5の軸部5b(定着部5cを含む)の全長がコンクリート中に定着される場合、軸部5b表面の付着力が軸部5bに生ずる軸方向引張力に対する抵抗力となり、軸部5bは主に付着力によって定着状態を維持するため、軸部5bの表面には付着力を確保するための凹凸が形成されることもある。凹凸は例えば軸方向に間隔を置いて形成される節状の形状、あるいは軸方向に連続的に、もしくは断続的に形成される溝状等の形状を言う。この他、軸部5b(定着部5cを含む)が付着力のみによって定着状態を維持する場合には、付着力を稼ぐために軸部5bの径は軸方向長さとの比率では大きめに形成されることもある。   As shown in FIG. 1, when the entire length of the shaft portion 5b (including the fixing portion 5c) of the anchor 5 is fixed in the concrete, the adhesion force of the surface of the shaft portion 5b to the axial tensile force generated in the shaft portion 5b. Thus, since the shaft portion 5b maintains the fixing state mainly by the adhesive force, the surface of the shaft portion 5b may be provided with irregularities for ensuring the adhesive force. The unevenness refers to, for example, a node-like shape formed at intervals in the axial direction, or a groove-like shape formed continuously or intermittently in the axial direction. In addition, when the shaft portion 5b (including the fixing portion 5c) is maintained in a fixed state only by the adhesion force, the diameter of the shaft portion 5b is formed to be larger in proportion to the axial length in order to increase the adhesion force. Sometimes.

「軸部5b(定着部5cを含む)が構造体1中に定着される」とは、構造体1(2)が既存のコンクリート造の場合には、コンクリート中に穿設された削孔1aに軸部5bが差し込まれた状態で、削孔1a内にコンクリート、モルタル、接着剤等の充填材7が充填されることにより軸部5bが充填材7(硬化体8)中に埋設されることを言う。構造体1(2)が新設のコンクリート造の場合には、軸部5b(定着部5cを含む)がコンクリート中に埋設されることを言う。既存のコンクリート中に穿設された削孔1aに充填される充填材7は主に硬化することにより圧縮強度を発現するセメント系の材料を指すが、有機系の接着剤も含まれる。   “The shaft portion 5b (including the fixing portion 5c) is fixed in the structure 1” means that, when the structure 1 (2) is an existing concrete structure, the hole 1a drilled in the concrete. The shaft portion 5b is embedded in the filler 7 (cured body 8) by filling the hole 1a with a filler 7 such as concrete, mortar, adhesive, etc. with the shaft portion 5b inserted into the hole 5a. Say that. When the structure 1 (2) is a newly constructed concrete structure, it means that the shaft portion 5b (including the fixing portion 5c) is embedded in the concrete. The filler 7 filled in the drilling holes 1a drilled in the existing concrete refers to a cement-based material that develops compressive strength by being mainly cured, but also includes an organic adhesive.

ベースプレート4にはまた、軸力部材3から軸力部材3の自重が作用し、全アンカー5には軸力部材3の自重に加え、ベースプレート4の自重がせん断力として作用するが、複数本の全アンカー5がベースプレート4に形成された挿通孔4a内を同等の条件で挿通していれば(請求項)、ベースプレート4からのせん断力も全アンカー5に分散して作用するため、全アンカー5に均等に負担されることになる。 Also, the weight of the axial force member 3 from the axial force member 3 acts on the base plate 4, and the weight of the base plate 4 acts as a shearing force on all anchors 5 in addition to the weight of the axial force member 3. If all the anchors 5 are inserted through the insertion holes 4a formed in the base plate 4 under the same conditions (Claim 2 ), the shearing force from the base plate 4 acts on all the anchors 5 in a distributed manner. Will be equally charged.

ベースプレート4からの、アンカー5の軸に直交する方向のせん断力はアンカー5の、挿通孔4a内に位置する区間である頭部5a、もしくは軸部5bに伝達され、主に軸部5bから構造体1(2)に伝達される。構造体1(2)がコンクリート造の場合は、軸部5bのせん断力作用方向の投影面積分の支圧力と軸部5b周面の付着力を通じてコンクリートに伝達される。軸力部材3等の自重はアンカー5には鉛直方向のせん断力として作用するが、前記したように対向する構造体1、2が対向する方向に直交する方向に相対変位する場合には、アンカー5には水平方向のせん断力も作用するため、軸部5bは円形断面形状等、鉛直方向と水平方向に同等の投影面積を持つことが適切である。   The shearing force in the direction perpendicular to the axis of the anchor 5 from the base plate 4 is transmitted to the head 5a or the shaft 5b which is a section located in the insertion hole 4a of the anchor 5, and the structure is mainly formed from the shaft 5b. It is transmitted to the body 1 (2). When the structure 1 (2) is made of concrete, the structure 1 (2) is transmitted to the concrete through the support pressure corresponding to the projected area in the shearing force acting direction of the shaft portion 5b and the adhesion force of the peripheral surface of the shaft portion 5b. The weight of the axial force member 3 or the like acts as a vertical shearing force on the anchor 5, but when the opposing structures 1 and 2 are relatively displaced in the direction orthogonal to the opposing direction, as described above, the anchor Since a shearing force in the horizontal direction also acts on the shaft 5, it is appropriate that the shaft portion 5b has a projected area equivalent to the vertical direction and the horizontal direction, such as a circular cross-sectional shape.

「全アンカー5がベースプレート4の挿通孔4a内を同等の条件で挿通すること」とは、例えば図2−(a)に示すようにアンカー5の頭部5aや軸部5bの周面が全周に亘って挿通孔4aに内接していること、または(b)に示すように挿通孔4a内周面と頭部5aや軸部5bとの間のクリアランスが等しい状態にあること等を言う。「内接」は軸部5b等の全周面が実質的に挿通孔4aの内周面に接触していることであり、微小なクリアランスが形成される場合を含む。   “All anchors 5 are inserted through the insertion holes 4a of the base plate 4 under the same conditions” means that the peripheral surfaces of the head 5a and the shaft 5b of the anchor 5 are all as shown in FIG. It is inscribed in the insertion hole 4a over the circumference, or the clearance between the inner peripheral surface of the insertion hole 4a and the head part 5a or the shaft part 5b is equal as shown in FIG. . “Inscribed” means that the entire peripheral surface of the shaft portion 5b or the like is substantially in contact with the inner peripheral surface of the insertion hole 4a, and includes a case where a minute clearance is formed.

ベースプレート4から主に鉛直方向のせん断力が全アンカー5に均等に作用すればよい場合には、挿通孔4a内周面の下向き面が頭部5aや軸部5bに鉛直方向下向きに係合しているか、または挿通孔4a内周面の下向き面と頭部5aや軸部5bとの間のクリアランスが等しい状態にあればよい。いずれの例においても、ベースプレート4の面内方向に作用する力がベースプレート4からアンカー5の頭部5a、もしくは軸部5bに伝達される状態にあることになる。   When the vertical shearing force mainly from the base plate 4 should be applied equally to all the anchors 5, the downward surface of the inner peripheral surface of the insertion hole 4a engages the head portion 5a and the shaft portion 5b vertically downward. Or the clearance between the downward surface of the inner peripheral surface of the insertion hole 4a and the head portion 5a or the shaft portion 5b may be equal. In any example, the force acting in the in-plane direction of the base plate 4 is in a state of being transmitted from the base plate 4 to the head portion 5a of the anchor 5 or the shaft portion 5b.

図2−(b)に示すように挿通孔4aの内周面とアンカー5の頭部5a、もしくは軸部5bとの間にクリアランスが確保される場合には、クリアランスには削孔1a内に充填される充填材7が回り込むこともある。挿通孔4aとアンカー5との間に充填材7が介在する場合、ベースプレート4からのせん断力は充填材7を介して間接的にアンカー5に伝達される。ベースプレート4は構造体1(2)の表面に直接、密着した状態で接合される場合と、図1、図2に示すようにベースプレート4と構造体1(2)の表面との間での摩擦力と付着力によるせん断力の伝達効果を増す目的で、構造体1(2)の表面との間に空隙が確保され、空隙に充填材7が入り込む場合がある。充填材7は削孔1a内に予め充填されている場合と、ベースプレート4と構造体1(2)の表面との間の空隙を通じて、またはベースプレート4に穿設された充填材7充填用の孔を通じて充填される場合がある。   When a clearance is secured between the inner peripheral surface of the insertion hole 4a and the head 5a or the shaft portion 5b of the anchor 5 as shown in FIG. 2- (b), the clearance is within the hole 1a. The filler 7 to be filled may wrap around. When the filler 7 is interposed between the insertion hole 4 a and the anchor 5, the shearing force from the base plate 4 is indirectly transmitted to the anchor 5 through the filler 7. When the base plate 4 is directly bonded to the surface of the structure 1 (2), the friction between the base plate 4 and the surface of the structure 1 (2) as shown in FIGS. In order to increase the transmission effect of the shearing force due to the force and the adhesion force, a gap is secured between the surface of the structure 1 (2) and the filler 7 may enter the gap. The filler 7 is filled in the drilling hole 1a in advance and through a gap between the base plate 4 and the surface of the structure 1 (2) or a hole for filling the filler 7 formed in the base plate 4. May be filled through.

結局、構造体1(2)のベースプレート4側の表面から削孔1aが形成される場合に、ベースプレート4と構造体1(2)の表面との間に空隙が確保される場合には、削孔1a内に充填される充填材7がベースプレート4と構造体1(2)との間の空隙を埋める。ベースプレート4の挿通孔4aとアンカー5の頭部5aや軸部5bとの間にクリアランスが確保される場合には、充填材7が更に挿通孔4a内のクリアランスを埋めることもある。ベースプレート4と構造体1(2)の表面との間に充填材7が介在する場合には、硬化した充填材7の摩擦力と付着力を通じてベースプレート4からのせん断力が構造体1(2)に伝達されるため、せん断力が主にベースプレート4からアンカー5を通じて構造体1(2)に伝達される場合よりせん断力の伝達効果が向上する。   After all, when the hole 1a is formed from the surface of the structure 1 (2) on the base plate 4 side, if a gap is secured between the base plate 4 and the surface of the structure 1 (2), the cutting is performed. The filler 7 filled in the hole 1a fills the gap between the base plate 4 and the structure 1 (2). When a clearance is secured between the insertion hole 4a of the base plate 4 and the head part 5a or the shaft part 5b of the anchor 5, the filler 7 may further fill the clearance in the insertion hole 4a. When the filler 7 is interposed between the base plate 4 and the surface of the structure 1 (2), the shearing force from the base plate 4 is applied through the frictional force and the adhesion force of the cured filler 7 to the structure 1 (2). Therefore, the shear force transmission effect is improved as compared with the case where the shear force is mainly transmitted from the base plate 4 to the structure 1 (2) through the anchor 5.

軸力部材3からのせん断力が全アンカー5に均等に伝達されない場合には、特定のアンカー5の周辺のコンクリート等に応力が集中することで、コンクリート等が損傷する可能性があり、せん断力が構造体1(2)に十分に伝達されない可能性がある。これに対し、請求項では全アンカー5に均等に軸力部材3からのせん断力が伝達されることで、一部のコンクリート等への応力の集中が解消されるため、コンクリート等の損傷に対する安全性が向上し、軸力部材3からのせん断力の構造体1(2)への伝達能力も向上する。 If the shearing force from the axial force member 3 is not uniformly transmitted to all the anchors 5, the stress may concentrate on the concrete around the specific anchor 5, which may damage the concrete and the like. May not be sufficiently transmitted to the structure 1 (2). On the other hand, in claim 2 , since the shear force from the axial force member 3 is evenly transmitted to all the anchors 5, the concentration of stress on a part of the concrete is eliminated. Safety is improved and the ability to transmit the shearing force from the axial force member 3 to the structure 1 (2) is also improved.

ベースプレート4からアンカー5に伝達されたせん断力は主に長さの大きい軸部5bから構造体1(2)のコンクリートと硬化体8に伝達されるが、頭部5aからもせん断力の伝達が可能になれば、伝達能力は向上する。アンカー5の頭部5aから構造体1(2)にせん断力を伝達させることは、図7に示すように軸部5bから分離し、軸部5bのベースプレート4側に配置された頭部5aの構造体1(2)側に、構造体1(2)の内部に挿入され、頭部5aの周方向に連続する形状の挿入部5dが形成されていることで可能になる(請求項)。頭部5aの周方向に連続する形状は筒状、環状、柱状等である。 The shear force transmitted from the base plate 4 to the anchor 5 is mainly transmitted from the shaft portion 5b having a large length to the concrete and the hardened body 8 of the structure 1 (2), but the shear force is also transmitted from the head 5a. If possible, transmission skills will improve. The transmission of the shearing force from the head portion 5a of the anchor 5 to the structure 1 (2) is separated from the shaft portion 5b as shown in FIG. 7 and the head portion 5a disposed on the base plate 4 side of the shaft portion 5b. the structure 1 (2) side, is inserted into the structure 1 (2), made possible by insertion portion 5d of the shape continuously in the circumferential direction of the head portion 5a is formed (claim 3) . The shape that continues in the circumferential direction of the head 5a is cylindrical, annular, columnar, or the like.

この場合、挿入部5dが軸部5b周囲のコンクリート、もしくは充填材7(硬化体8)に軸部5bの放射方向(軸に垂直な方向)に係合した状態になるため、アンカー5の頭部5a、もしくは軸部5bが受けたベースプレート4からのせん断力を頭部5aと軸部5bを通じ、軸方向に分散させて構造体1(2)に伝達することができるため、せん断力の伝達効率が向上する。   In this case, since the insertion portion 5d is engaged with the concrete around the shaft portion 5b or the filler 7 (cured body 8) in the radial direction of the shaft portion 5b (direction perpendicular to the shaft), the head of the anchor 5 is Since the shear force from the base plate 4 received by the part 5a or the shaft part 5b can be dispersed in the axial direction through the head part 5a and the shaft part 5b and transmitted to the structure 1 (2), transmission of the shear force Efficiency is improved.

特に挿入部5dは頭部5aの周方向に連続する形状をし、構造体1(2)の内部(コンクリート等中)に直接、入り込んだ(挿入された)状態でコンクリート等に係止することで、挿入部5dの外周面からは挿入部5dの外周側に存在するコンクリートに直接、軸部5bに直交する方向のせん断力が伝達される。また挿入部5dの内周面からは挿入部5dの内周側に存在するコンクリート、もしくは充填材7(硬化体8)に直接、軸部5bに直交する方向のせん断力が伝達される状態にあり、挿入部5dの外周面と内周面の双方からの伝達が可能になる。   In particular, the insertion portion 5d has a shape that is continuous in the circumferential direction of the head portion 5a, and is locked to concrete or the like in a state of being directly inserted (inserted) into the structure 1 (2) (in the concrete or the like). Thus, the shear force in the direction perpendicular to the shaft portion 5b is transmitted directly from the outer peripheral surface of the insertion portion 5d to the concrete existing on the outer peripheral side of the insertion portion 5d. In addition, a shear force in a direction perpendicular to the shaft portion 5b is directly transmitted from the inner peripheral surface of the insertion portion 5d to the concrete existing on the inner peripheral side of the insertion portion 5d or the filler 7 (cured body 8). Yes, transmission from both the outer peripheral surface and the inner peripheral surface of the insertion portion 5d becomes possible.

挿入部5dは構造体1(2)が既存の場合に図7に示すようにコンクリート中に形成される削孔1a(充填材7)内に位置する場合と、削孔1a(充填材7)の外周側に位置する場合があり、削孔1a内に位置する場合には挿入部5dの外周面は構造体1(2)のコンクリートに接触する場合と、充填材7(硬化体8)に接触する場合がある。挿入部5dが削孔1a外に位置する場合には挿入部5dの外周面は構造体1(2)のコンクリートに接触し、内周面はコンクリート、もしくは充填材7に接触することになる。   When the structure 1 (2) is existing, the insertion portion 5d is positioned in the drilling hole 1a (filler 7) formed in the concrete as shown in FIG. 7, and the drilling hole 1a (filler 7). If the outer peripheral surface of the insertion portion 5d is in contact with the concrete of the structure 1 (2) and the filler 7 (hardened body 8), May come into contact. When the insertion portion 5d is positioned outside the drilling hole 1a, the outer peripheral surface of the insertion portion 5d is in contact with the concrete of the structure 1 (2), and the inner peripheral surface is in contact with the concrete or the filler 7.

「軸部5bの周辺に充填される充填材7(硬化体8)」は構造体1(2)が既存構造物である場合には、コンクリート中に形成された削孔1a内に充填され、周囲から構造体1(2)のコンクリートに拘束された状態にあるため、充填材7が挿入部5dから受けた支圧力によってコンクリートとの一体性が損なわれることはなく、充填材7が挿入部5dから受けた支圧力のコンクリートへの伝達効果の低下は生じにくい。   When the structure 1 (2) is an existing structure, the “filler 7 (cured body 8) filled around the shaft portion 5b” is filled in the drilling hole 1a formed in the concrete, Since the structure 1 (2) is constrained by the concrete from the surroundings, the support material received by the filler 7 from the insertion portion 5d does not impair the integrity with the concrete, and the filler 7 is inserted into the insertion portion. The effect of transmitting the support pressure received from 5d to the concrete is less likely to occur.

また挿入部5dのコンクリート、もしくは充填材7(硬化体8)への係止(係合)の方向と、挿入部5dからのコンクリートへのせん断力伝達方向が一致する上、その方向は充填材7とその周囲のコンクリートとの境界面に直交する方向であるため、挿入部5dからのせん断力伝達時に充填材7とコンクリートとの境界面が剥離するような事態の発生も回避される。なお、構造体1(2)が新設構造物である場合には、軸部5b(アンカー5)はコンクリート中に直接、埋設され、削孔1aの形成と充填材7の充填はないため、充填材7とコンクリートとの分離(剥離)が問題になることはない。   In addition, the direction of locking (engagement) of the insertion portion 5d with the concrete or the filler 7 (hardened body 8) coincides with the direction of transmission of the shearing force from the insertion portion 5d to the concrete, and the direction is the filler. Since the direction is perpendicular to the boundary surface between 7 and the surrounding concrete, the occurrence of a situation where the boundary surface between the filler 7 and the concrete peels off when shearing force is transmitted from the insertion portion 5d is also avoided. In addition, when the structure 1 (2) is a new structure, the shaft portion 5b (anchor 5) is directly embedded in the concrete, and there is no formation of the hole 1a and no filling of the filler 7. Separation (peeling) between the material 7 and the concrete does not become a problem.

挿入部5dを有する頭部5aはまた、図7に示すように軸部5bに対して螺合する場合には、軸部5bへの螺入に伴い、軸部5bに矢印で示す軸方向引張力を与え、頭部5aの構造体1(2)側の面の、構造体1(2)表面への接触圧力を増加させるため、頭部5aと構造体1(2)表面との間の摩擦力を増大させ、頭部5aを通じたせん断力の伝達効果を高める働きをする。この場合の頭部5aは軸部5bへの軸方向引張力の付与時に、定着部5cと対になることで削孔1a内の充填材7(硬化体8)を軸方向に拘束し、充填材7に軸方向圧縮力を与えるため、硬化体8のせん断耐力を高める働きもする。   When the head portion 5a having the insertion portion 5d is screwed into the shaft portion 5b as shown in FIG. 7, along with the screwing into the shaft portion 5b, the shaft portion 5b is pulled in the axial direction indicated by an arrow. Between the head 5a and the surface of the structure 1 (2) in order to increase the contact pressure of the surface of the head 5a on the structure 1 (2) side to the surface of the structure 1 (2). It works to increase the frictional force and enhance the transmission effect of shearing force through the head 5a. In this case, the head 5a is paired with the fixing portion 5c when the axial tensile force is applied to the shaft portion 5b, thereby restraining the filler 7 (cured body 8) in the drilling hole 1a in the axial direction and filling In order to give the material 7 an axial compressive force, it also serves to increase the shear strength of the cured body 8.

距離を置いて対向する構造体間に架設される軸力部材の両端が接合されるベースプレートを構造体に固定するためのアンカーを、軸力部材の軸方向を向けて構造体に定着するため、軸力部材からの引張力をベースプレートの全面に分散させてアンカーに伝達することができ、軸力部材からの引張力を全アンカーに均等に作用させることができる。この結果、特定のアンカーの負担が増大することがなくなり、全アンカーの寸法を統一することができるため、全アンカーが構造体中に占める領域を最小に抑えることが可能になり、構造体が既存のコンクリート造である場合に躯体(コンクリート)に与える損傷も最小に留めることが可能になる。
In order to fix the anchor for fixing the base plate to which the both ends of the axial force member, which is installed between the structures facing each other at a distance, are bonded to the structure, to be fixed to the structure with the axial direction of the axial force member directed, The tensile force from the axial force member can be distributed over the entire surface of the base plate and transmitted to the anchor, and the tensile force from the axial force member can be applied equally to all the anchors. As a result, the burden on a specific anchor does not increase, and the dimensions of all anchors can be unified, so that the area occupied by all anchors in the structure can be minimized, and the structure is already existing. In the case of a concrete structure, it is possible to minimize the damage to the frame (concrete).

(a)は対向する構造体間に架設される軸力部材の端部が接合されるベースプレートを複数本のアンカーを用いて一方の構造体に固定した様子を示した図4の一部の縦断面図、(b)は(a)の水平断面図、(c)は(a)のx−x線の矢視図である。FIG. 4A is a partial longitudinal cross-sectional view of FIG. 4 showing a state in which a base plate to which end portions of axial force members installed between opposing structures are joined is fixed to one structure using a plurality of anchors. (B) is a horizontal sectional view of (a), and (c) is an arrow view of the xx line of (a). 図1−(a)に示すベースプレートとアンカーとの取り合い例の詳細を示した縦断面図であり、(a)はアンカーの軸部がベースプレートの挿通孔に内接している場合、(b)は軸部と挿通孔との間にクリアランスがある場合である。It is the longitudinal cross-sectional view which showed the detail of the example of a connection with the baseplate shown in FIG. 1- (a), (a) is the case where the axial part of an anchor is inscribed in the penetration hole of a baseplate, (b) This is a case where there is a clearance between the shaft portion and the insertion hole. 構面に制震補強架構が付加された、対向する構造体間に軸力部材を架設した様子を示した透視図である。It is the perspective view which showed a mode that the axial force member was erected between the opposing structures which added the damping control frame to the surface. 図3の一部を拡大して示した斜視図である。It is the perspective view which expanded and showed a part of FIG. (a)は図4における軸力部材とベースプレートとの接合部の他の詳細例を示した一部断面斜視図、(b)は(a)を軸力部材の軸方向に近い角度から見た様子を示した斜視図である。(A) is the partial cross section perspective view which showed the other detailed example of the junction part of the axial force member and base plate in FIG. 4, (b) looked at (a) from the angle close | similar to the axial direction of an axial force member. It is the perspective view which showed the mode. 軸力部材の端部をベースプレートに任意の軸の回りに回転自在に接合する場合の連結例を示した斜視図である。It is the perspective view which showed the example of a connection in the case of joining the edge part of an axial force member to a base plate so that rotation around arbitrary axes is possible. (a)はアンカーの頭部が軸部から分離し、ベースプレートの挿通孔内に位置する場合の例を示した縦断面図、(b)は(a)の具体例を示した縦断面図である。(A) is the longitudinal cross-sectional view which showed the example in case the head of an anchor isolate | separates from a shaft part, and is located in the penetration hole of a baseplate, (b) is the longitudinal cross-sectional view which showed the specific example of (a) is there.

図1は図3、図4に示すように距離を置いて対向する構造体1、2間にダンパー内蔵型の軸力部材3が架設され、軸力部材3の両端が各構造体1、2の表面に固定されたベースプレート4、4に接合された、構造体の接続構造の具体例を示す。軸力部材3は構造体1、2が対向する水平方向に軸方向を向けて構造体1、2間に架設され、ベースプレート4には少なくとも水平軸回りに回転自在に接合される。軸力部材3は両構造体1、2が互いに対向する方向に相対変位したときに軸方向力を負担しながら、軸方向に伸縮可能で、伸縮時に減衰力を発生する。各ベースプレート4は複数本のアンカー5により構造体1、2に定着される。   In FIG. 1, as shown in FIGS. 3 and 4, a built-in damper type axial force member 3 is installed between structures 1 and 2 facing each other at a distance, and both ends of the axial force member 3 are connected to the structures 1 and 2. The specific example of the connection structure of the structure joined to the baseplates 4 and 4 fixed to the surface of is shown. The axial force member 3 is laid between the structures 1 and 2 with the axial direction in the horizontal direction where the structures 1 and 2 face each other, and is joined to the base plate 4 so as to be rotatable at least about the horizontal axis. The axial force member 3 can expand and contract in the axial direction while bearing an axial force when the two structural bodies 1 and 2 are displaced relative to each other, and generates a damping force during expansion and contraction. Each base plate 4 is fixed to the structures 1 and 2 by a plurality of anchors 5.

ベースプレート4は構造体1(2)の表面に、表面が軸力部材3の軸方向に垂直な面をなした状態で固定される。ベースプレート4を構造体1(2)に固定する複数本のアンカー5は、軸方向が軸力部材3の軸方向に平行な方向を向き、ベースプレート4を貫通して構造体1、2に定着され、ベースプレート4に接合される。構造体1、2は鉄筋コンクリート造、鉄骨鉄筋コンクリート造の場合がある。定着は構造体1、2がコンクリート造の場合はコンクリート中に埋設されることを言The base plate 4 is fixed to the surface of the structure 1 (2) in a state where the surface forms a surface perpendicular to the axial direction of the axial force member 3. The plurality of anchors 5 that fix the base plate 4 to the structure 1 (2) are fixed to the structures 1 and 2 through the base plate 4 with the axial direction thereof being parallel to the axial direction of the axial force member 3. The base plate 4 is joined. The structures 1 and 2 may be reinforced concrete, steel reinforced concrete, or the like. Fixing the case structure 1 and 2 of Concrete intends saying that it is embedded in the concrete.

軸力部材3は軸方向に互いに分離し、軸方向に相対移動な本体部31、31と、一方の本体部31に内蔵されるか、両本体部31、31に跨って双方に連結されるダンパー部32からなり、ダンパー部32は軸力部材3が軸方向力を負担し、本体部31、31が軸方向に相対移動するときに減衰力を発生する。   The axial force members 3 are separated from each other in the axial direction, and are embedded in the main body portions 31 and 31 that are relatively movable in the axial direction, or are connected to both the main body portions 31 and 31. The damper part 32 is composed of a damper part 32. The damper part 32 generates a damping force when the axial force member 3 bears an axial force and the main body parts 31 and 31 move relative to each other in the axial direction.

ダンパー部32を構成するダンパーの形式は問われず、摩擦ダンパー、粘弾性ダンパー等の場合もあるが、オイルダンパーの場合、ダンパー部32は例えば圧油が充填されたシリンダとシリンダ内を油圧室に区切るピストンを持ち、ピストンに一方の本体部31が一体化し、シリンダに他方の本体部31が一体化することにより両本体部31、31が軸方向に相対移動自在になる。ダンパー部32は両本体部31、31が相対移動し、ピストンがシリンダ内を移動したときに、圧油がピストンに形成された、またはシリンダに並列に配置された流路を通過することにより減衰力を発生する。   The type of the damper constituting the damper part 32 is not limited and may be a friction damper, a viscoelastic damper, or the like. In the case of an oil damper, the damper part 32 is, for example, a cylinder filled with pressure oil and the inside of the cylinder as a hydraulic chamber. Having a separating piston, one main body 31 is integrated with the piston, and the other main body 31 is integrated with the cylinder, so that the two main bodies 31, 31 are relatively movable in the axial direction. The damper part 32 is attenuated by the passage of the pressure oil formed in the piston or arranged in parallel to the cylinder when both the body parts 31 and 31 move relative to each other and the piston moves in the cylinder. Generate power.

各本体部31の、構造体1(2)側の端部にはブラケット33が接合され、ブラケット33がベースプレート4の表面側(軸力部材3側)に突設されたガセットプレート41に少なくとも水平軸回りに回転自在に連結される。図6に示すようにブラケット33とガセットプレート41との間に、ブラケット33とガセットプレート41のそれぞれに異なる軸の回りに回転自在に連結される連結材34が介在する場合には、ブラケット33はガセットプレート41に、軸力部材3の材軸に直交する面内の任意の軸の回りに回転自在に連結されることになる。   A bracket 33 is joined to the end of each main body 31 on the structure 1 (2) side, and the bracket 33 is at least horizontal to the gusset plate 41 projecting from the surface side of the base plate 4 (axial force member 3 side). It is connected so as to be rotatable around its axis. As shown in FIG. 6, when a connecting member 34 is connected between the bracket 33 and the gusset plate 41 so as to be rotatable around different axes in the bracket 33 and the gusset plate 41, the bracket 33 is The gusset plate 41 is rotatably connected around an arbitrary axis in a plane orthogonal to the material axis of the axial force member 3.

図6に示す連結材34はブラケット33に鉛直軸回り等、いずれかの方向の軸回りに回転自在に連結される連結部34aと、ガセットプレート41に水平軸回り等、連結部34aの挿通孔(軸)に交差する方向の軸回りに回転自在に連結される連結部34bを持つ。連結材34は両連結部34a、34bがブラケット33とガセットプレート41に、それぞれの挿通孔33a、41aを貫通するボルトやピン等により連結されることによりベースプレート4に対し、軸力部材3の材軸に直交する面内の任意の軸の回りに回転自在に軸力部材3を連結(接合)する。   The connecting member 34 shown in FIG. 6 includes a connecting portion 34a that is rotatably connected to the bracket 33 around an axis in any direction, such as a vertical axis, and an insertion hole of the connecting portion 34a, such as around the horizontal axis, to the gusset plate 41. It has the connection part 34b connected rotatably about the axis | shaft of the direction which cross | intersects (axis). The connecting member 34 has both connecting portions 34a and 34b connected to the bracket 33 and the gusset plate 41 by bolts, pins or the like penetrating the respective insertion holes 33a and 41a, so that the member of the axial force member 3 is connected to the base plate 4. The axial force member 3 is connected (joined) so as to be rotatable around an arbitrary axis in a plane orthogonal to the axis.

ブラケット33をガセットプレート41に任意の軸回りに回転自在に連結する上では、連結部34aと連結部34bの各挿通孔(軸)の向きは互いに相違していればよく、互いに直交している必要はない。各連結部34a、34bの挿通孔(軸)の方向が鉛直方向か水平方向である必要もない。図6では軸力部材3のブラケット33とベースプレート4のガセットプレート41が1枚のプレートからなる関係で、連結部34a、34bを2枚のプレートから構成している。   In connecting the bracket 33 to the gusset plate 41 so as to be rotatable about an arbitrary axis, the direction of each insertion hole (shaft) of the connecting portion 34a and the connecting portion 34b may be different from each other, and is orthogonal to each other. There is no need. It is not necessary that the direction of the insertion hole (axis) of each connecting portion 34a, 34b is the vertical direction or the horizontal direction. In FIG. 6, the brackets 33 of the axial force member 3 and the gusset plate 41 of the base plate 4 are formed of a single plate, and the connecting portions 34a and 34b are formed of two plates.

ベースプレート4はベースプレート4に形成された複数個の挿通孔4aを貫通する複数本のアンカー5の軸部5bが構造体1(2)に定着され、頭部5a、もしくは軸部5bがベースプレート4に接合されることにより構造体1(2)に固定される。全アンカー5の軸方向(挿通孔4aの軸方向)は軸力部材3の軸方向を向き、全アンカー5は軸力部材3から伝達される軸方向引張力を引張力として負担し、軸力部材3から伝達される軸部5bに直交する方向のせん断力をせん断力として負担する状態にある。   In the base plate 4, shaft portions 5 b of a plurality of anchors 5 that penetrate a plurality of insertion holes 4 a formed in the base plate 4 are fixed to the structure 1 (2), and the head portion 5 a or the shaft portion 5 b is attached to the base plate 4. By being joined, it is fixed to the structure 1 (2). The axial direction of all the anchors 5 (the axial direction of the insertion hole 4a) faces the axial direction of the axial force member 3, and all the anchors 5 bear the axial tensile force transmitted from the axial force member 3 as a tensile force. The shear force in the direction orthogonal to the shaft portion 5b transmitted from the member 3 is borne as the shear force.

アンカー5の形態と構造体1(2)への定着方法は、軸力部材3からの引張力がベースプレート4から頭部5a、もしくはナット6に伝達され、軸力部材3からのせん断力がベースプレート4から軸部5bに伝達される状態にあれば、一切問われず、頭部5aと軸5bの太さ(径)が相違するか否かも問われない。 In the anchor 5 and the fixing method to the structure 1 (2), the tensile force from the axial force member 3 is transmitted from the base plate 4 to the head 5a or the nut 6 , and the shear force from the axial force member 3 is transmitted to the base plate. If it is in the state transmitted from 4 to the shaft part 5b, it does not matter at all, and it does not matter whether the thickness (diameter) of the head part 5a and the shaft 5b is different.

構造体1、2が鉄筋コンクリート造、また鉄骨鉄筋コンクリート造の場合、アンカー5の軸部5bはコンクリート中に埋設されるが、埋設方法は構造体1、2が既存であるか、新設であるかにより相違する。既存の場合はコンクリート中に形成される削孔1a内に軸部5bが挿入され、新設の場合は構造体1、2の構築時に軸部5bがコンクリート中に埋設される構造体1、2が既存のコンクリート造の場合、削孔1a内に軸部5bを挿入した後、軸部5bの回りの空隙はモルタル、コンクリート、接着剤等の充填材7で埋められる。充填材7は硬化により硬化体8となり、周辺のコンクリートに一体化する。 When the structures 1 and 2 are reinforced concrete structures or steel reinforced concrete structures, the shaft portion 5b of the anchor 5 is embedded in the concrete, but the embedding method depends on whether the structures 1 and 2 are existing or newly installed. Is different. In the existing case, the shaft portion 5b is inserted into the drilling hole 1a formed in the concrete, and in the case of a new construction, the shaft portion 5b is embedded in the concrete when the structures 1 and 2 are constructed . When the structures 1 and 2 are made of existing concrete, after the shaft portion 5b is inserted into the drilling hole 1a, the gap around the shaft portion 5b is filled with a filler 7 such as mortar, concrete, and adhesive. The filler 7 becomes a hardened body 8 by curing and is integrated with the surrounding concrete.

図1、図3〜図5は隣接する既存の構造体(建物(棟))1、2の対向する各構面に平行に、構面に平行に配列する複数本の支柱91と、隣接する支柱91、91間に架設される、ダンパー内蔵のブレース92からなる制震補強架構9を架設し、この制震補強架構9、9が対向する方向に軸力部材3を水平に架設し、各構造体1、2の構面に接合した場合の例を示している。制震補強架構9は構造体1、2の構面内の水平方向(桁行方向)に互いに間隔を隔てて立設される支柱91、91と、構面内水平方向に隣接する支柱91、91間に架設され、支柱91、91を互いにつなぐつなぎ梁93と、同じく隣接する支柱91、91間に架設される、ブレース本体にダンパーを組み込んだ、軸力部材3と同じ形式のブレース92から構成される。制震補強架構9はつなぎ梁93において構造体1、2のスラブ等に接合され、構造体1、2からの水平力を受ける。   1, FIG. 3 to FIG. 5 are adjacent to a plurality of support columns 91 arranged in parallel to each of the opposing existing structural bodies (buildings) 1 and 2 in parallel with each other. A vibration control reinforcement frame 9 comprising a brace 92 with a built-in damper is installed between the columns 91 and 91, and the axial force member 3 is installed horizontally in a direction in which the vibration suppression reinforcement structures 9 and 9 face each other. The example at the time of joining to the composition surface of the structures 1 and 2 is shown. The vibration control reinforcement frame 9 is composed of support columns 91 and 91 that are erected at intervals in the horizontal direction (girder direction) in the plane of the structures 1 and 2 and columns 91 and 91 that are adjacent to each other in the horizontal direction in the frame. Consists of a bridging beam 93 that spans between the struts 91 and 91 and a brace 92 of the same type as the axial force member 3 that is also spanned between the adjacent struts 91 and 91 and that incorporates a damper in the brace body. Is done. The seismic reinforcing frame 9 is joined to the slabs of the structures 1 and 2 at the connecting beam 93 and receives a horizontal force from the structures 1 and 2.

制震補強架構9を構成する支柱91は鉛直方向に複数本の支柱材91a、91b、91cに分割されており、隣接する支柱91、91の内、一方の支柱91の下層側の支柱材91a(91b)と、他方の支柱91の上層側の支柱材91b(91c)との間にブレース92が架設される。上下に分離した支柱材91a、91b間、及び支柱材91b、91c間には両者間の相対水平移動を許容する、積層ゴム支承、滑り支承、弾性滑り支承、転がり支承等の絶縁装置94が介在する。   The support column 91 constituting the seismic retrofitting frame 9 is divided into a plurality of support members 91 a, 91 b, 91 c in the vertical direction. Of the adjacent support columns 91, 91, the support material 91 a on the lower layer side of one support column 91. A brace 92 is constructed between (91b) and the upper strut material 91b (91c) of the other strut 91. Between the support members 91a and 91b separated vertically and between the support members 91b and 91c, an insulating device 94 such as a laminated rubber bearing, a sliding support, an elastic sliding support, a rolling support, etc. is interposed. To do.

構造体1、2に、制震補強架構9の構面内水平方向に層間変形が生じたときには、スラブ等を通じて制震補強架構9のつなぎ梁93とそのつなぎ梁93に接合されている支柱材91a、91b、91cが構造体1、2の変形に追従して相対移動し、構面内水平方向に隣接する支柱材間に架設されているブレース92のダンパーが伸縮することにより減衰力を発生し、構造体1、2に入力する振動エネルギを吸収する。   When interlaminar deformation occurs in the structural bodies 1 and 2 in the horizontal direction in the structural surface of the seismic reinforcing frame 9, the connecting beam 93 of the seismic reinforcing frame 9 and the column material joined to the connecting beam 93 through a slab or the like. 91a, 91b, 91c follow the deformation of structures 1 and 2 and move relative to each other, and a damping force is generated by the expansion and contraction of the damper of brace 92 installed between adjacent strut members in the horizontal direction in the construction surface. Then, the vibration energy input to the structures 1 and 2 is absorbed.

図1、図3〜図5の例では対向する制震補強架構9、9の支柱91(支柱材91a〜91c)を貫通する形で軸力部材3を架設しているが、制震補強架構9は本発明の要件ではないため、軸力部材3が支柱91を貫通することも要件ではない。図面では軸力部材3が支柱材91a〜91cを貫通していることから、支柱材91a〜91cの一部(ウェブ等)には軸力部材3が挿通し、構造体1、2が変形したときの、軸力部材3の接触を回避するための開口が形成されている。   In the example of FIGS. 1 and 3 to 5, the axial force member 3 is erected in such a way as to pass through the columns 91 (column members 91 a to 91 c) of the opposing vibration suppression reinforcement frames 9 and 9. Since 9 is not a requirement of the present invention, it is not a requirement that the axial force member 3 penetrates the support column 91. In the drawing, since the axial force member 3 penetrates the support members 91a to 91c, the axial force member 3 is inserted into a part (web or the like) of the support members 91a to 91c, and the structures 1 and 2 are deformed. The opening for avoiding the contact of the axial force member 3 is formed.

図1、図4はベースプレート4の表面側(軸力部材3側)に2枚のガセットプレート41、41を水平方向に並列させ、面を鉛直方向に向けて溶接等により突設し、2枚のガセットプレート41、41に軸力部材3のブラケット33を連結しているが、ガセットプレート41は図5に示すように1枚の場合もある。   1 and 4 show two gusset plates 41, 41 arranged in parallel in the horizontal direction on the surface side (axial force member 3 side) of the base plate 4 and projecting by welding or the like with the surface directed in the vertical direction. The bracket 33 of the axial force member 3 is connected to the gusset plates 41, 41, but there may be one gusset plate 41 as shown in FIG.

2枚のガセットプレート41、41をベースプレート4に突設する場合には、図1−(b)に示すようにベースプレート4の幅方向(水平方向)の中心線(軸力部材3の中心線)上を外した位置にガセットプレート41、41を配置できることで、アンカー5をベースプレート4の幅方向の中心線上にも配置でき、ベースプレート4の幅方向のアンカー5の配列数を稼げる利点がある。図1では1枚のベースプレート4に付き、鉛直方向に3段、水平方向に3列の、計9本のアンカー5を使用している。   When the two gusset plates 41 and 41 are projected from the base plate 4, as shown in FIG. 1- (b), the center line in the width direction (horizontal direction) of the base plate 4 (the center line of the axial force member 3). Since the gusset plates 41 and 41 can be arranged at positions where the top is removed, there is an advantage that the anchor 5 can be arranged on the center line in the width direction of the base plate 4 and the number of the anchors 5 arranged in the width direction of the base plate 4 can be increased. In FIG. 1, a total of nine anchors 5 are attached to a single base plate 4 in three stages in the vertical direction and three rows in the horizontal direction.

ベースプレート4は構造体1(2)の表面に直接、もしくは間接的に重なって構造体1(2)に接合される。「間接的に重なる」とは、図示するように構造体1(2)の表面とベースプレート4との間に接着剤、モルタル、コンクリート等の充填材7が介在することの意味である。充填材7は構造体1(2)に削孔1aが形成される場合に、削孔1a内に充填される充填材7とは独立して充填される場合と、削孔1aから溢れてベースプレート4と構造体1(2)間に充填される場合がある。   The base plate 4 is directly or indirectly overlapped with the surface of the structure 1 (2) and joined to the structure 1 (2). “Indirectly overlap” means that a filler 7 such as an adhesive, mortar, or concrete is interposed between the surface of the structure 1 (2) and the base plate 4 as illustrated. When the hole 1a is formed in the structure 1 (2), the filler 7 is filled independently from the filler 7 filled in the hole 1a, and the base plate overflows from the hole 1a. 4 and the structure 1 (2) may be filled.

図2−(a)はアンカー5が軸方向に連続した頭部5aと軸部5bからなり、ベースプレート4の表面から軸力部材3側へ突出する頭部5aにナット6が螺合する場合に、軸部5b、もしくは頭部5aがベースプレート4に形成された、アンカー5が挿通するための挿通孔4aに内接している場合の参考例を示している。この例ではベースプレート4からの任意の方向のせん断力が全アンカー5に同時に作用するため、せん断力が全アンカー5に均等に負担される。 FIG. 2- (a) shows a case where the anchor 5 is composed of a head portion 5a and a shaft portion 5b which are continuous in the axial direction, and the nut 6 is screwed into the head portion 5a protruding from the surface of the base plate 4 to the axial force member 3 side. The reference example in the case where the shaft portion 5b or the head portion 5a is formed in the base plate 4 and is inscribed in the insertion hole 4a through which the anchor 5 is inserted is shown. In this example, since the shearing force in an arbitrary direction from the base plate 4 acts on all the anchors 5 at the same time, the shearing force is equally applied to all the anchors 5.

図2−(b)は挿通孔4aの内周面と軸部5b、もしくは頭部5aの表面との間にクリアランスが存在しながら、全アンカー5の回りのクリアランスが等しい場合の参考例を示す。この例において挿通孔4a内のクリアランスに、削孔1aに充填された充填材7が入り込まない場合には、クリアランスを超える、ベースプレート4とアンカー5との間の相対移動が生じたときにベースプレート4からのせん断力がアンカー5に伝達されるが、クリアランスの大きさが等しいことで、全アンカー5には同時にせん断力が作用することになる。クリアランスに削孔1a内に充填される充填材7が入り込んでいる場合には、図2−(a)の場合と同様にベースプレート4からのせん断力は直ちにアンカー5に作用することになる。 FIG. 2- (b) shows a reference example in the case where there is a clearance between the inner peripheral surface of the insertion hole 4a and the surface of the shaft portion 5b or the head portion 5a, but the clearances around all the anchors 5 are equal. . In this example, when the filler 7 filled in the drilling hole 1a does not enter the clearance in the insertion hole 4a, the base plate 4 is moved when the relative movement between the base plate 4 and the anchor 5 exceeds the clearance. Is transmitted to the anchor 5, but since the clearances are equal in size, the shear force acts on all the anchors 5 at the same time. When the filler 7 filled in the hole 1a enters the clearance, the shearing force from the base plate 4 immediately acts on the anchor 5 as in the case of FIG.

図2−(a)、(b)のいずれの場合も、ベースプレート4からの、軸力部材3の軸方向の引張力はベースプレート4の表面に密着している全ナット6に伝達されるため、全アンカー5に均等に作用する。ナット6に伝達された引張力はナット6から軸部5bに伝達され、構造体1(2)がコンクリート造の場合、軸部5bからその周面の付着力を通じて構造体1(2)に伝達される構造体1(2)がコンクリート造の場合に、軸部5bの先端部に図5、図7に示すように定着部5cが形成されるか、接続される場合には、定着部5cの頭部5a側の表面に生じる支圧力が軸部5bの付着力に加算されて引張力が構造体1(2)に伝達される。
2- (a) and (b), since the tensile force in the axial direction of the axial force member 3 from the base plate 4 is transmitted to all the nuts 6 that are in close contact with the surface of the base plate 4, Acts equally on all anchors 5. The tensile force transmitted to the nut 6 is transmitted from the nut 6 to the shaft portion 5b, and when the structure 1 (2) is made of concrete, it is transmitted from the shaft portion 5b to the structure 1 (2) through the adhesive force on the peripheral surface thereof. Is done . When the structure 1 (2) is made of concrete, the fixing portion 5c is formed or connected to the tip of the shaft portion 5b as shown in FIGS. 5 and 7, and the head of the fixing portion 5c is connected. The support pressure generated on the surface on the part 5a side is added to the adhesion force of the shaft part 5b, and the tensile force is transmitted to the structure 1 (2).

定着部5cの表面に生じる支圧力は削孔1a内に充填される充填材7(硬化体8)にアンカー5の軸方向の圧縮力として伝達されるため、定着部5cがない場合より引張力の構造体1(2)への伝達効果が増す利点がある。ベースプレート4からの、軸力部材3の軸方向の圧縮力はベースプレート4の背面(構造体1側の面)から直接、構造体1(2)に圧縮力として伝達される。   Since the supporting pressure generated on the surface of the fixing portion 5c is transmitted as the compressive force in the axial direction of the anchor 5 to the filler 7 (cured body 8) filled in the drilling hole 1a, the tensile force is higher than that without the fixing portion 5c. There is an advantage that the transmission effect to the structure 1 (2) is increased. The compressive force in the axial direction of the axial force member 3 from the base plate 4 is transmitted as a compressive force directly from the back surface (surface on the structure 1 side) of the base plate 4 to the structure 1 (2).

図5−(a)、(b)は図7−(b)に示す形態のアンカー5を用い、曲げ変形に対してリブプレート43で補剛されたベースプレート4を構造体1(2)に固定した図1の詳細例を示す。この例ではベースプレート4の幅方向にはリブプレート43を幅方向中心線上に1列、配置し、高さ方向(鉛直方向)には挿通孔4a(アンカー5)を外した位置の、4箇所にリブプレート43を突設している。この場合、リブプレート43はベースプレート4の幅方向両側に配置されることもある。   5- (a) and (b) use the anchor 5 of the form shown in FIG. 7- (b), and fix the base plate 4 stiffened by the rib plate 43 against the bending deformation to the structure 1 (2). The detailed example of FIG. In this example, the rib plate 43 is arranged in a row on the center line in the width direction in the width direction of the base plate 4, and in four positions at positions where the insertion holes 4 a (anchors 5) are removed in the height direction (vertical direction). A rib plate 43 is protruded. In this case, the rib plate 43 may be disposed on both sides of the base plate 4 in the width direction.

図5ではベースプレート4の幅方向の中心線上に鉛直方向を向くリブプレート43を配置していることから、アンカー5をベースプレート4の幅方向両側の2列に配列させているが、鉛直方向を向くリブプレート43が例えばベースプレート4の幅を3等分するように、幅方向に2列、配列する場合には、アンカー5は図1−(b)に示すようにベースプレート4の幅方向に3列、配列する。   In FIG. 5, the rib plates 43 facing the vertical direction are arranged on the center line in the width direction of the base plate 4, so the anchors 5 are arranged in two rows on both sides in the width direction of the base plate 4, but facing the vertical direction. When the rib plates 43 are arranged in two rows in the width direction so as to divide the width of the base plate 4 into three, for example, the anchors 5 are arranged in three rows in the width direction of the base plate 4 as shown in FIG. , Arrange.

図5の例ではアンカー5が鉛直方向を向くリブプレート43の厚さ方向両側に配置され、各列に付き、3段に配列していることに対応し、ベースプレート4の高さ方向(鉛直方向)両側位置と、上下に隣接するアンカー5、5の中間(中心)位置の2箇所に水平方向を向くリブプレート43を突設し、軸力部材3からの引張力が6本の全アンカー5に均等に作用するよう、ベースプレート4の高さ寸法に応じて全アンカー5の位置と水平方向を向くリブプレート43の位置を調整している。この場合、上下に隣接する、水平方向を向くリブプレート43、43間の中心(中央)にアンカー5の中心が位置する。   In the example of FIG. 5, the anchors 5 are arranged on both sides in the thickness direction of the rib plate 43 facing in the vertical direction, and are arranged in three rows per row, corresponding to the height direction of the base plate 4 (vertical direction). ) A rib plate 43 that projects in the horizontal direction is projected at two positions, ie, on both sides and between the middle (center) positions of the anchors 5 and 5 adjacent in the vertical direction, and all the anchors 5 having the tensile force from the axial force member 3 are six. The position of all the anchors 5 and the position of the rib plate 43 facing the horizontal direction are adjusted according to the height dimension of the base plate 4 so as to act evenly. In this case, the center of the anchor 5 is positioned at the center (center) between the rib plates 43 and 43 that are adjacent to each other in the horizontal direction and that face in the horizontal direction.

図5では水平方向を向く各リブプレート43が鉛直方向を向くリブプレート43から、鉛直方向に配列するアンカー5の中心を通る線上までの長さに留まっているが、ベースプレート4の幅方向の端部までの長さを持つこともある。水平方向を向く各リブプレート43が少なくとも鉛直方向を向くリブプレート43から、鉛直方向に配列するアンカー5の中心を通る線上までの長さを持てば、軸力部材3からの引張力に起因してベースプレート4に曲げ変形が生ずることがあっても、ベースプレート4の幅方向の中心から少なくとも鉛直方向に配列するアンカー5の中心を通る線上までの区間での曲げ変形は水平方向を向くリブプレート43によって拘束(防止)されるため、ベースプレート4に曲げ変形が生ずる状況に至るまでは全アンカー5に均等に軸力部材3からの引張力を作用させることが可能である。   In FIG. 5, each rib plate 43 facing in the horizontal direction remains in a length from the rib plate 43 facing in the vertical direction to a line passing through the centers of the anchors 5 arranged in the vertical direction. May have a length up to the department. If each rib plate 43 facing in the horizontal direction has a length from at least the rib plate 43 facing in the vertical direction to a line passing through the centers of the anchors 5 arranged in the vertical direction, it is caused by the tensile force from the axial force member 3. Even if bending deformation occurs in the base plate 4, the bending deformation in the section from the center in the width direction of the base plate 4 to a line passing through the center of the anchor 5 arranged at least in the vertical direction is directed to the horizontal direction. Therefore, it is possible to apply the tensile force from the axial force member 3 to all the anchors 5 evenly until the base plate 4 is bent and deformed.

図7−(a)、(b)は軸部5bから分離した頭部5aが軸部5bに螺合した状態でベースプレート4の挿通孔4a内に位置し、頭部5aから軸力部材3側へ突出した軸部5bの軸力部材3側に頭部5aとは別のナット6が螺合する場合の例を示す。図7−(a)、(b)はまた、軸部5bの構造体1(2)側の先端部に定着部5cが一体化しているか、螺合して接続されている場合の例も示している。定着部5cが軸部5bに螺合する図7−(b)の例では軸部5bの、少なくとも頭部5aと定着部5cの接続区間に雄ねじが形成される一方、頭部5aと定着部5cの、軸部5bが挿通する挿通孔の全長に軸部5bの雄ねじが螺合する雌ねじが形成されている。定着部5cは構造体1(2)が主にコンクリート造の場合に軸部5bに形成されるか、接続されるが、その場合の構造体1(2)は既存であるか、新設であるかは問われない。   7 (a) and 7 (b) show that the head 5a separated from the shaft portion 5b is screwed into the shaft portion 5b and is located in the insertion hole 4a of the base plate 4, and the axial force member 3 side from the head 5a. An example in which a nut 6 different from the head portion 5a is screwed to the axial force member 3 side of the shaft portion 5b that protrudes to the right side. FIGS. 7A and 7B also show an example in which the fixing portion 5c is integrated with or screwed to the tip of the shaft portion 5b on the structure 1 (2) side. ing. In the example of FIG. 7- (b) in which the fixing portion 5c is screwed to the shaft portion 5b, a male screw is formed at least in a connecting section of the shaft portion 5b between the head portion 5a and the fixing portion 5c, while the head portion 5a and the fixing portion. A female screw into which the male screw of the shaft portion 5b is screwed is formed in the entire length of the insertion hole through which the shaft portion 5b is inserted. The fixing portion 5c is formed or connected to the shaft portion 5b when the structure 1 (2) is mainly made of concrete, but the structure 1 (2) in that case is either existing or newly provided. It doesn't matter.

図7の例では、頭部5aが軸部5bに螺合することで、頭部5aの軸回りの回転によって矢印で示すように軸部5bに軸方向引張力を与え、頭部5aの構造体1(2)側の背面を構造体1(2)の表面に密着させることが可能である。この場合、頭部5aが納まるベースプレート4の挿通孔4aは頭部5aを回転させるための空間分、頭部5aの断面積より大きめに形成されるが、頭部5aの回転が終了した後(頭部5aの軸部5bへの緊結後)には挿通孔4a内の余分な空間は充填材7、または溶接金属によって埋められ、頭部5aはベースプレート4にその面内方向と面外方向に係止した状態、またはそれと同等の状態になる。   In the example of FIG. 7, when the head 5a is screwed into the shaft 5b, an axial tensile force is applied to the shaft 5b as shown by an arrow by rotation of the head 5a around the axis, and the structure of the head 5a The back surface on the body 1 (2) side can be brought into close contact with the surface of the structure 1 (2). In this case, the insertion hole 4a of the base plate 4 in which the head portion 5a is accommodated is formed larger than the cross-sectional area of the head portion 5a for the space for rotating the head portion 5a, but after the rotation of the head portion 5a is completed ( After the head portion 5a is fastened to the shaft portion 5b), the extra space in the insertion hole 4a is filled with the filler 7 or the weld metal, and the head portion 5a is placed on the base plate 4 in the in-plane direction and the out-of-plane direction. It will be in the locked state or the equivalent state.

図7−(a)、(b)はまた、軸部5bから分離した頭部5aの軸方向の構造体1(2)側に、削孔1a内、あるいは削孔1aの外周側のコンクリート中に入り込む筒状等の挿入部5dを形成することで、ベースプレート4からアンカー5に伝達されたせん断力が軸部5bからに加え、頭部5aからも構造体1(2)のコンクリート等と削孔1a内の充填材7(硬化体8)に伝達されるようにした場合の頭部5aの形成例を示す。挿入部5dは例えば図示するように構造体1(2)に表面側からコア抜きによって形成された削孔1aの内周面に内接、あるいは外接するように形成され、削孔1a(充填材7)内に位置する場合と、削孔1a(充填材7)の外周側に位置する場合がある。   7- (a) and (b) are also shown in the concrete in the drilling hole 1a or on the outer peripheral side of the drilling hole 1a on the axial structure 1 (2) side of the head 5a separated from the shaft part 5b. By forming the cylindrical insertion portion 5d to enter, the shearing force transmitted from the base plate 4 to the anchor 5 is applied from the shaft portion 5b, and also from the head portion 5a with the concrete or the like of the structure 1 (2). An example of forming the head portion 5a when transmitted to the filler 7 (cured body 8) in the hole 1a is shown. The insertion portion 5d is formed so as to be inscribed or circumscribed on the inner peripheral surface of the drilling hole 1a formed by core removal from the surface side of the structure 1 (2) as shown in the figure. 7) In some cases, it may be located in the outer peripheral side of the hole 1a (filler 7).

頭部5aが挿入部5dを有する場合、挿入部5dが軸部5b周囲のコンクリート等に軸部5bの放射方向(半径方向)に係合した状態になるため、矢印で示すように構造体1(2)とアンカー5の頭部5aとの間で軸部5bの軸に直交する任意の方向のせん断力の伝達が可能になる。軸部5bの軸に直交する方向のせん断力の伝達能力はその方向への挿入部5dの投影面積が大きい程、大きいため、せん断力の伝達能力を高める上では、挿入部5dは頭部5aの軸に関して外周寄りに形成されることが合理的である。   When the head portion 5a has the insertion portion 5d, the insertion portion 5d is engaged with the concrete around the shaft portion 5b in the radial direction (radial direction) of the shaft portion 5b. It is possible to transmit a shearing force in an arbitrary direction orthogonal to the axis of the shaft portion 5b between (2) and the head portion 5a of the anchor 5. The shear force transmission capability in the direction orthogonal to the axis of the shaft portion 5b is larger as the projected area of the insertion portion 5d in that direction is larger. Therefore, in order to increase the shear force transmission capability, the insertion portion 5d is used as the head portion 5a. It is reasonable that it is formed closer to the outer periphery with respect to the axis.

図7−(a)、(b)ではまた、アンカー5の頭部5aと構造体1(2)の表面との間に生ずる摩擦力を稼ぐために、頭部5aを軸方向に、ベースプレート4と構造体1(2)表面との間に入り込む充填材7の厚さの範囲内に位置する断面積の大きい部分である支圧部51と、ベースプレート4の挿通孔4a内に納まる断面積の小さい部分の係止部52とに区分し、頭部5a自体を軸方向に段差のある形状に形成している。   7- (a) and 7 (b), in order to earn the frictional force generated between the head 5a of the anchor 5 and the surface of the structure 1 (2), the base 5 And a support section 51 having a large cross-sectional area located within the thickness range of the filler 7 entering between the surface of the structure 1 (2) and the cross-sectional area of the base plate 4 within the insertion hole 4a. The head portion 5a itself is formed in a shape having a step in the axial direction.

この場合、ベースプレート4と構造体1(2)との間に介在する支圧部51の形成により構造体1(2)との接触面積が増大することで、構造体1(2)との間の摩擦力の増加が期待される。この他、軸部5bが軸方向引張力を負担し、軸部5b周囲のコンクリート、もしくは充填材7(硬化体8)に定着部5cから軸方向圧縮力を加えるときに、定着部5cからの支圧力の反力を支圧部51が受けることができるため、定着部5cと頭部5a(支圧部51)が対になって硬化体8に軸方向圧縮力を加え、硬化体8のせん断耐力を高めることができる。   In this case, the contact area between the base plate 4 and the structure 1 (2) is increased by the formation of the pressure-bearing portion 51 interposed between the base plate 4 and the structure 1 (2). An increase in frictional force is expected. In addition, when the axial part 5b bears an axial tensile force and an axial compressive force is applied from the fixing part 5c to the concrete around the axial part 5b or the filler 7 (cured body 8), the fixing part 5c Since the supporting pressure part 51 can receive the reaction force of the supporting pressure, the fixing part 5c and the head part 5a (supporting pressure part 51) are paired to apply an axial compressive force to the cured body 8, and the cured body 8 Shear strength can be increased.

係止部52は挿通孔4aにベースプレート4の面内方向に係止するか、係止と同等の状態になることで、ベースプレート4からのせん断力を受けるため、支圧部51を通じてせん断力を構造体1(2)に伝達する働きをする。図7−(a)、(b)における係止部52と挿通孔4aとの間のクリアランスも頭部5aの軸部5bへの緊結後に充填材7や溶接金属で埋められる。   Since the locking portion 52 is locked in the in-plane direction of the base plate 4 in the insertion hole 4 a or is in a state equivalent to the locking, the locking portion 52 receives a shearing force from the base plate 4. It works to transmit to the structure 1 (2). The clearance between the engaging portion 52 and the insertion hole 4a in FIGS. 7A and 7B is also filled with the filler 7 and the weld metal after the head portion 5a is fastened to the shaft portion 5b.

図7−(b)、図5−(a)ではまた、定着部5cの軸部5b側の表面を双曲面状等、曲面状に形成することで、定着部5cからコンクリートや硬化体8に軸方向圧縮力を伝達するときに負担する応力による変形に対する安定性を高めている。   7B and 5A, the surface of the fixing portion 5c on the side of the shaft portion 5b is formed into a curved surface such as a hyperboloid, so that the fixing portion 5c can be changed to the concrete or the cured body 8. Stability against deformation caused by stress applied when transmitting axial compressive force is enhanced.

軸部5bの先端に定着部5cが形成、もしくは接続される場合、アンカー5の定着部5cから軸部5b周辺の硬化体8とコンクリートに軸部5bに生ずる軸方向引張力が圧縮力として伝達されるときに、定着部5cはコンクリート等からの反力を支圧力として全面に受けるため、定着部5cの全体が軸部5bの回りに曲げモーメントを負担する状態になる。定着部5cの形状は平板状であるか、曲面状であるかは問われないが、支圧力による曲げモーメントの負担によって定着部5cの変形が想定される場合には、図5−(a)、図7−(b)に示すように定着部5cの頭部5a側の面を曲面状に形成することで、曲げ変形に対する安定性と安全性を定着部5cに持たせることが可能である。   When the fixing portion 5c is formed or connected to the tip of the shaft portion 5b, the axial tensile force generated in the shaft portion 5b from the fixing portion 5c of the anchor 5 to the hardened body 8 and the concrete around the shaft portion 5b is transmitted as a compressive force. At this time, since the fixing portion 5c receives the reaction force from the concrete or the like as a supporting pressure, the entire fixing portion 5c bears a bending moment around the shaft portion 5b. It does not matter whether the shape of the fixing portion 5c is a flat plate or a curved surface. However, when the deformation of the fixing portion 5c is assumed due to the bending moment caused by the support pressure, FIG. As shown in FIG. 7- (b), by forming the surface of the fixing portion 5c on the head 5a side into a curved surface, the fixing portion 5c can be provided with stability and safety against bending deformation. .

定着部5cを曲面状に形成することは、定着部5cの頭部5a側の面を頭部5a側に凸の球面、楕円曲面、円錐曲面等の曲面状に形成することである。但し、定着部5cが平板状であっても、定着部5cの頭部5a側の面と反対側の面の少なくともいずれか一方に突起(リブ)等が形成されることによって支圧力による曲げモーメントに抵抗可能になるため、定着部5cは必ずしも曲面状である必要はなく、平板状の場合もある。   Forming the fixing unit 5c in a curved surface means that the surface on the head 5a side of the fixing unit 5c is formed in a curved surface such as a convex spherical surface, an elliptical curved surface, or a conical curved surface on the head 5a side. However, even if the fixing portion 5c is flat, a bending moment due to a bearing pressure is formed by forming a protrusion (rib) or the like on at least one of the surfaces opposite to the head 5a side of the fixing portion 5c. Therefore, the fixing portion 5c does not necessarily have a curved surface shape, and may have a flat plate shape.

1……構造体、1a……削孔、2……構造体、
3……軸力部材、31……本体部、32……ダンパー部、
33……ブラケット、34……連結材、34a……連結部、34b……連結部、
4……ベースプレート、4a……挿通孔、41……ガセットプレート、42……ピン、43……リブプレート、
5……アンカー、5a……頭部、51……支圧部、52……係止部、5b……軸部、5c……定着部、5d……挿入部、
6……ナット、
7……充填材、8……硬化体、
9……制震補強架構、91……支柱、91a、91b、91c……支柱材、92……ブレース、93……つなぎ梁、94……絶縁装置。
1. Structure, 1a ... Drilling hole, 2. Structure,
3 ... Axial force member, 31 ... Body part, 32 ... Damper part,
33 ... Bracket, 34 ... Connecting material, 34a ... Connecting portion, 34b ... Connecting portion,
4 ... Base plate, 4a ... Insertion hole, 41 ... Gusset plate, 42 ... Pin, 43 ... Rib plate,
5 ... Anchor, 5a ... Head, 51 ... Bearing part, 52 ... Locking part, 5b ... Shaft part, 5c ... Fixing part, 5d ... Insertion part,
6 …… Nut,
7 ... filler, 8 ... cured material,
9 ... Damping reinforcement frame, 91 ... Column, 91a, 91b, 91c ... Column material, 92 ... Brace, 93 ... Connecting beam, 94 ... Insulating device.

Claims (3)

距離を置いて対向するコンクリート造の構造体間に、前記両構造体が互いに対向する方向に相対変位したときに軸方向力を負担しながら、軸方向に伸縮し、伸縮時に減衰力を発生するダンパー内蔵型の軸力部材が、前記構造体が対向する方向に軸方向を向けて架設され、前記軸力部材の両端が前記各構造体の表面に固定されたベースプレートに、少なくとも前記軸力部材の軸方向に直交する面内の水平軸回りに回転自在に接合され、
前記軸力部材の軸方向に平行な方向を向く複数本のアンカーが前記ベースプレートを貫通して前記構造体に定着され、前記ベースプレートに接合され、
前記アンカーの、前記構造体中に埋設される軸部は先端部側に、前記軸部の軸に垂直な断面積より大きい断面積の定着部を備え、
前記軸部の前記軸力部材側には前記軸部から分離した頭部が前記軸部に螺合し、前記構造体の表面に密着した状態にあり、
前記頭部と前記定着部は前記軸部が埋設される前記構造体の、充填材からなる硬化体、もしくはコンクリートを挟んで対になり、前記頭部の前記軸部への螺入に伴い、前記硬化体、もしくはコンクリートに軸方向圧縮力を加える状態にあることを特徴とする構造体の接続構造。
Between the concrete structures facing each other at a distance, the two structures are expanded and contracted in the axial direction while bearing an axial force when they are relatively displaced in the opposite direction, and a damping force is generated during expansion and contraction. A damper built-in type axial force member is installed with the axial direction facing in a direction in which the structure is opposed, and at least the axial force member is mounted on a base plate in which both ends of the axial force member are fixed to the surface of each structure. Are joined around a horizontal axis in a plane perpendicular to the axial direction of
A plurality of anchors facing in a direction parallel to the axial direction of the axial force member are fixed to the structure through the base plate, and are joined to the base plate,
A shaft portion embedded in the structure of the anchor includes a fixing portion on a distal end portion side having a cross-sectional area larger than a cross-sectional area perpendicular to the shaft portion,
The head portion separated from the shaft portion is screwed into the shaft portion on the shaft force member side of the shaft portion, and is in a state of being in close contact with the surface of the structure.
The head part and the fixing part are paired with a hardened body made of a filler or concrete sandwiched between the structure in which the shaft part is embedded, and with the screwing of the head part into the shaft part, A structure connection structure , wherein the hardened body or concrete is in a state of applying an axial compressive force .
前記複数本のアンカーは前記ベースプレートに形成された挿通孔内を同等の条件で挿通していることを特徴とする請求項に記載の構造体の接続構造。 The structure connecting structure according to claim 1 , wherein the plurality of anchors are inserted through insertion holes formed in the base plate under the same conditions. 前記アンカー頭部の前記構造体側に、前記構造体の内部に挿入され、前記頭部の周方向に連続する形状の挿入部が形成されていることを特徴とする請求項1、もしくは請求項2に記載の構造体の接続構造。 The insertion part of the shape inserted in the inside of the said structure and continuing in the circumferential direction of the said head is formed in the said structure side of the head of the said anchor , or Claim 1 characterized by the above-mentioned. The connection structure of the structure according to 2 .
JP2013042084A 2013-03-04 2013-03-04 Structure connection structure Active JP5314203B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042084A JP5314203B1 (en) 2013-03-04 2013-03-04 Structure connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042084A JP5314203B1 (en) 2013-03-04 2013-03-04 Structure connection structure

Publications (2)

Publication Number Publication Date
JP5314203B1 true JP5314203B1 (en) 2013-10-16
JP2014169579A JP2014169579A (en) 2014-09-18

Family

ID=49595722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042084A Active JP5314203B1 (en) 2013-03-04 2013-03-04 Structure connection structure

Country Status (1)

Country Link
JP (1) JP5314203B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122028B1 (en) * 2019-08-20 2020-06-11 주식회사 유니크내진시스템 Column type vibration isolation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121279A (en) * 1985-11-20 1987-06-02 清水建設株式会社 Earthquake damping structure
JPH03199582A (en) * 1989-12-27 1991-08-30 Nippon Steel Corp Vibration suppression device for buildings
JPH11336332A (en) * 1998-05-29 1999-12-07 Kajima Corp Reinforcement structure of existing structure and reinforcement structure
JP2005126894A (en) * 2003-10-21 2005-05-19 Hitoshi Shiobara Earthquake resisting frame using damper-integrated brace, and oil damper for use therein
JP2008267136A (en) * 2008-05-12 2008-11-06 Hitoshi Shiobara Shearing resistance type anchoring disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121279A (en) * 1985-11-20 1987-06-02 清水建設株式会社 Earthquake damping structure
JPH03199582A (en) * 1989-12-27 1991-08-30 Nippon Steel Corp Vibration suppression device for buildings
JPH11336332A (en) * 1998-05-29 1999-12-07 Kajima Corp Reinforcement structure of existing structure and reinforcement structure
JP2005126894A (en) * 2003-10-21 2005-05-19 Hitoshi Shiobara Earthquake resisting frame using damper-integrated brace, and oil damper for use therein
JP2008267136A (en) * 2008-05-12 2008-11-06 Hitoshi Shiobara Shearing resistance type anchoring disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122028B1 (en) * 2019-08-20 2020-06-11 주식회사 유니크내진시스템 Column type vibration isolation apparatus

Also Published As

Publication number Publication date
JP2014169579A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5135034B2 (en) Exposed type column base structure
JP2005330802A (en) Frame with buckling-restrained brace
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP4628491B1 (en) Structure joining structure and fixing device for joining structures used therein
JP5314203B1 (en) Structure connection structure
JP2005213964A (en) Damping connection structure of column base and upper member
KR102122028B1 (en) Column type vibration isolation apparatus
JP2019100098A (en) Composite damper
JP3931944B2 (en) Damping damper and its installation structure
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP3856783B2 (en) Seismic frame using damper integrated brace and oil damper used for it
JP5331268B1 (en) Fixing device for shear force transmission with tensile resistance function
JP5318298B1 (en) Beam joint structure
JP2013189750A (en) Fixation component for transmitting shear force, with fixation maintaining function
JP5478131B2 (en) Brace structure and building having the brace structure
JP2013087484A (en) Seismic isolator rotation amount control mechanism
JP2007132108A (en) Seismic response control brace structure
JP2008308906A (en) Method of aseismic response control of wooden building
JP6479371B2 (en) Joint structure of seismic control frame
JP5192093B1 (en) Concrete beam shear reinforcement structure
JP6126789B2 (en) Tank support structure
JP5978363B1 (en) Connection structure of connecting slab
JP4188347B2 (en) Seismic isolation structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Ref document number: 5314203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250