JP5310711B2 - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP5310711B2 JP5310711B2 JP2010290535A JP2010290535A JP5310711B2 JP 5310711 B2 JP5310711 B2 JP 5310711B2 JP 2010290535 A JP2010290535 A JP 2010290535A JP 2010290535 A JP2010290535 A JP 2010290535A JP 5310711 B2 JP5310711 B2 JP 5310711B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- positive electrode
- electrolyte secondary
- nonaqueous electrolyte
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 43
- 239000007774 positive electrode material Substances 0.000 claims abstract description 33
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 25
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 24
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 15
- -1 cyclic sulfonate ester Chemical class 0.000 claims description 39
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical group O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 25
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical group O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 15
- 229910052596 spinel Inorganic materials 0.000 claims description 14
- 239000011029 spinel Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910013716 LiNi Inorganic materials 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 125000004434 sulfur atom Chemical group 0.000 claims description 3
- 229910018584 Mn 2-x O 4 Inorganic materials 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 abstract 1
- 239000008151 electrolyte solution Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 12
- 239000011572 manganese Substances 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000007773 negative electrode material Substances 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002905 metal composite material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000003464 sulfur compounds Chemical class 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VFRGATWKSPNXLT-UHFFFAOYSA-N 1,2-dimethoxybutane Chemical compound CCC(OC)COC VFRGATWKSPNXLT-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- VWEYDBUEGDKEHC-UHFFFAOYSA-N 3-methyloxathiolane 2,2-dioxide Chemical compound CC1CCOS1(=O)=O VWEYDBUEGDKEHC-UHFFFAOYSA-N 0.000 description 1
- RAEHYISCRHEVNT-UHFFFAOYSA-N 5-methyloxathiolane 2,2-dioxide Chemical compound CC1CCS(=O)(=O)O1 RAEHYISCRHEVNT-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical group [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910011676 LiCu0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910011986 LiFe0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910012945 LiNi0.5Mn1.37Ti0.13O4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 229910052731 fluorine Chemical group 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000457 gamma-lactone group Chemical group 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JWZCKIBZGMIRSW-UHFFFAOYSA-N lead lithium Chemical compound [Li].[Pb] JWZCKIBZGMIRSW-UHFFFAOYSA-N 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解質二次電池に関するものであり、特に5V級の電位を示す活物質を正極に含み、環状スルホン酸エステルを含有する非水電解質を用いた非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing an active material having a potential of 5 V class in a positive electrode and containing a cyclic sulfonate ester. It is.
非水電解質二次電池であるリチウムイオン二次電池は、携帯型電子機器やパソコン等の用途に広く利用されている。また、今後は自動車用途への適応も期待されている。これらの用途においては、従来から電池の小型化、軽量化が求められているが、その一方で、電池のエネルギー密度を高めることが重要な技術的課題となっている。 Lithium ion secondary batteries, which are nonaqueous electrolyte secondary batteries, are widely used in applications such as portable electronic devices and personal computers. In the future, adaptation to automobile applications is also expected. In these applications, it has been conventionally required to reduce the size and weight of the battery. On the other hand, increasing the energy density of the battery is an important technical issue.
リチウムイオン二次電池のエネルギー密度を高める方法としては幾つか考えられるが、その中でも電池の動作電位を上昇させることが有効な手段である。従来のコバルト酸リチウムやマンガン酸リチウムを正極活物質として用いたリチウムイオン二次電池では、動作電位は何れも4V級(平均動作電位=3.6〜3.8V:対リチウム電位)となる。これは、CoイオンもしくはMnイオンの酸化還元反応(Co3+←→Co4+もしくはMn3+←→Mn4+)によって発現電位が規定されるためである。これに対し、たとえばマンガン酸リチウムのMnをNi等により置換したスピネル化合物を活物質として用いることにより、5V級の動作電位を実現できることが知られている。具体的には、LiNi0.5Mn1.5O4等のスピネル化合物を用いることにより、4.5V以上の領域に電位プラトーを示すことが知られている。こうしたスピネル化合物においては、Mnは4価の状態で存在し、Mn3+←→Mn4+の酸化還元に代わってNi2+←→Ni4+の酸化還元によって動作電位が規定されることとなる。 Several methods for increasing the energy density of a lithium ion secondary battery are conceivable. Among them, increasing the operating potential of the battery is an effective means. In a lithium ion secondary battery using a conventional lithium cobaltate or lithium manganate as a positive electrode active material, the operating potential is 4 V class (average operating potential = 3.6 to 3.8 V: lithium potential). This is because the expression potential is defined by the redox reaction of Co ions or Mn ions (Co 3+ ← → Co 4+ or Mn 3+ ← → Mn 4+ ). On the other hand, for example, it is known that an operating potential of 5 V class can be realized by using, as an active material, a spinel compound in which Mn of lithium manganate is substituted with Ni or the like. Specifically, it is known that a potential plateau is exhibited in a region of 4.5 V or more by using a spinel compound such as LiNi 0.5 Mn 1.5 O 4 . In such a spinel compound, Mn exists in a tetravalent state, and the operating potential is regulated by oxidation / reduction of Ni 2+ ← → Ni 4+ instead of oxidation / reduction of Mn 3+ ← → Mn 4+. Become.
LiNi0.5Mn1.5O4は、その容量が130mAh/g以上であり、平均動作電圧はLi金属に対して4.6V以上である。容量としてはLiCoO2より小さいが、電池のエネルギー密度は、LiCoO2よりも高い。このような理由から、LiNi0.5Mn1.5O4は、将来の正極材料として有望である。 LiNi 0.5 Mn 1.5 O 4 has a capacity of 130 mAh / g or more, and an average operating voltage of 4.6 V or more with respect to Li metal. Although the capacity is smaller than LiCoO 2 , the energy density of the battery is higher than LiCoO 2 . For these reasons, LiNi 0.5 Mn 1.5 O 4 is promising as a future positive electrode material.
ところが、LiNi0.5Mn1.5O4等の高電位を示す正極材料を活物質として用いた電池は正極がコバルト酸リチウム、マンガン酸リチウムなどを用いた場合よりも高電位であるため、正極と電解液との接触部分で分解反応が発生し、充放電サイクル特性の低下や、充電状態で放置した場合に容量の低下が著しいことが分かってきた。特に電解液の劣化は温度上昇とともに顕著になる傾向があるため、50℃のような高温での動作や保存などではこれらの問題は深刻である。 However, since a battery using a positive electrode material exhibiting a high potential such as LiNi 0.5 Mn 1.5 O 4 as an active material has a higher potential than the case where the positive electrode uses lithium cobaltate, lithium manganate, or the like, the positive electrode and the electrolyte solution It has been found that the decomposition reaction occurs at the contact portion with the battery, and the charge / discharge cycle characteristics are deteriorated and the capacity is significantly reduced when left in a charged state. In particular, the deterioration of the electrolytic solution tends to become conspicuous as the temperature rises, so these problems are serious in operation and storage at a high temperature such as 50 ° C.
従来、電池のサイクル特性や保存特性を改善する方法として、電解液に添加剤として硫黄元素含有化合物を加えることが提案されている。 Conventionally, as a method for improving the cycle characteristics and storage characteristics of a battery, it has been proposed to add a sulfur element-containing compound as an additive to an electrolytic solution.
特許文献1(特開2000−235866号公報)には、下記化学式(A) Patent Document 1 (Japanese Patent Laid-Open No. 2000-235866) discloses the following chemical formula (A)
(式中、R1,R2,R3,R4,R5およびR6はそれぞれ独立に水素原子、炭素数1〜6のアルキル基、または炭素数1〜6のフッ素原子置換アルキル基を表す)
で示される、γ−スルトンを非水系電解質中に含有させた二次電池が開示されている。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a fluorine atom-substituted alkyl group having 1 to 6 carbon atoms. Represent)
And a secondary battery containing γ-sultone in a non-aqueous electrolyte.
しかしながら、当該公報の技術は、γ−スルトンを電解液に含有させることにより、負極表面に安定な被膜を形成し、負極と溶媒分子の接触が断たれ負極上の溶媒の分解反応を抑制するものであり、正極上での溶媒の分解反応を抑制する技術ではなかった。また、正極にLiCoO2を適用した例は示されているが、リチウムに対して4.5V以上でリチウムの放出吸蔵を行う正極を用いた電池の例は示されていない。 However, the technique of the publication discloses that a stable film is formed on the surface of the negative electrode by containing γ-sultone in the electrolyte, and the contact between the negative electrode and the solvent molecules is cut off to suppress the decomposition reaction of the solvent on the negative electrode. Therefore, it was not a technique for suppressing the decomposition reaction of the solvent on the positive electrode. Although examples of applying the LiCoO 2 in the positive electrode is shown an example of a battery using a positive electrode for performing the release occlusion of lithium 4.5V or more to the lithium it is not shown.
特許文献2(特開2000−268857号公報)には、スピネル構造を有するリチウムマンガン酸化物を正極に用いた電池において、有機電解液中にブタンスルトンまたはブタジエンスルトンを含有することにより充放電特性を改良する技術が開示されている。 Patent Document 2 (Japanese Patent Laid-Open No. 2000-268857) discloses a battery using a spinel-structured lithium manganese oxide as a positive electrode, and has improved charge / discharge characteristics by containing butane sultone or butadiene sultone in the organic electrolyte. Techniques to do this are disclosed.
しかしながら正極にLiMn2O4を適用した例は示されているが、リチウムに対して4.5V以上でリチウムの放出吸蔵を行う正極を用いた電池の例は示されていない。またこの技術は、充電時にブタンスルトンまたはブタジエンスルトンが分解して負極表面に被膜を形成するものであることが記載されている。 However, although an example in which LiMn 2 O 4 is applied to the positive electrode is shown, an example of a battery using a positive electrode that releases and occludes lithium at 4.5 V or higher with respect to lithium is not shown. In addition, this technique describes that butane sultone or butadiene sultone decomposes during charging to form a film on the surface of the negative electrode.
特許文献3(特開2001−243982号公報)には、放電電位4.2V以上の正極と、化学式(B)または化学式(C) Patent Document 3 (Japanese Patent Application Laid-Open No. 2001-243982) discloses a positive electrode having a discharge potential of 4.2 V or higher and a chemical formula (B) or a chemical formula (C).
(但し、R1、R2は炭素数1〜10のアルキル基を示し、R1、R2は同じでもよい。) (However, R 1 and R 2 represent an alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 may be the same.)
(但し、R1、R2は炭素数1〜10のアルキル基を示し、R1、R2は同じでもよい。)
で表される硫黄化合物を含む電解液を用いることで、電解液分解反応を抑制し、サイクル特性を改善する技術が開示されている。
(However, R 1 and R 2 represent an alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 may be the same.)
The technique which suppresses electrolyte solution decomposition reaction and improves cycling characteristics is disclosed by using the electrolyte solution containing the sulfur compound represented by these.
この公報には、硫酸エステル又はスルホンを適用した系について示されているが、環状スルホン酸エステルを適用した例は示されていない。またこの公報には、これらの硫黄化合物が正極表面に吸着することにより電解液の分解が抑制されることが記載されているが、これらの硫黄化合物を用いても、後述に記載するように高温下での保存特性は十分改善されないことがわかった。 This publication shows a system to which sulfate ester or sulfone is applied, but does not show an example to apply cyclic sulfonate ester. In addition, this publication describes that these sulfur compounds are adsorbed on the surface of the positive electrode, so that decomposition of the electrolytic solution is suppressed. However, even if these sulfur compounds are used, as described later, the high temperature It has been found that the storage properties below are not improved sufficiently.
前記の通り、従来の技術では、リチウムに対して4.5V以上の高電位を示す正極材料を用いた非水電解質二次電池において、十分な充放電特性が得られていない。 As described above, in the conventional technology, sufficient charge / discharge characteristics are not obtained in the non-aqueous electrolyte secondary battery using the positive electrode material exhibiting a high potential of 4.5 V or higher with respect to lithium.
そこで本発明の目的は、充放電特性、特に保存特性が改善された、高い動作電圧を有する(リチウムに対して4.5V以上の高電位を示す正極材料を用いた)非水電解質二次電池を提供することにある。 Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high operating voltage (using a positive electrode material exhibiting a high potential of 4.5 V or more with respect to lithium) with improved charge / discharge characteristics, particularly storage characteristics. Is to provide.
本発明は、リチウムを吸蔵・放出することが可能な正極および負極と、リチウムイオンを含有する非水電解質とを有する非水電解質二次電池であって、前記正極は、リチウムに対して4.5V以上の放電電位を示す正極活物質を含有し、前記非水電解質は環状スルホン酸エステルを含有する非水電解質二次電池に関する。 The present invention is a non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing lithium ions, wherein the positive electrode is 4. The positive electrode active material which shows 5 V or more of discharge potential is contained, The said non-aqueous electrolyte is related with the non-aqueous electrolyte secondary battery containing cyclic sulfonate ester.
本発明によれば、充放電特性、特に保存特性が改善された、高い動作電圧を有する(リチウムに対して4.5V以上の高電位を示す正極材料を用いた)非水電解質二次電池を提供することができる。 According to the present invention, a non-aqueous electrolyte secondary battery having a high operating voltage (using a positive electrode material having a high potential of 4.5 V or higher with respect to lithium) having improved charge / discharge characteristics, particularly storage characteristics, is provided. Can be provided.
以下に本発明の非水電解質二次電池としてリチウムイオン二次電池の実施の形態について説明する。 Embodiments of a lithium ion secondary battery will be described below as the nonaqueous electrolyte secondary battery of the present invention.
本実施形態は、リチウムイオンを吸蔵・放出することが可能な正極および負極と、リチウムイオンを含む非水電解質とを有するリチウムイオン二次電池において、前記正極として、リチウムに対して4.5V以上でリチウムの吸蔵・放出を行う正極を用い、前記非水電解質として、環状スルホン酸エステルを溶解した電解液を用いたものである。 In the present embodiment, in a lithium ion secondary battery having a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte containing lithium ions, 4.5 V or more with respect to lithium as the positive electrode The positive electrode that occludes and releases lithium is used, and as the non-aqueous electrolyte, an electrolytic solution in which a cyclic sulfonic acid ester is dissolved is used.
環状スルホン酸エステルとしては、下記一般式(1) As cyclic sulfonate ester, the following general formula (1)
(式中、AおよびBはそれぞれ独立にアルキレン基またはフルオロアルキレン基、XはC−C単結合または−OSO2−基を示す。)
で表される化合物を用いることができる。
(In the formula, A and B each independently represent an alkylene group or a fluoroalkylene group, and X represents a C—C single bond or —OSO 2 — group.)
The compound represented by these can be used.
式中のAおよびBのアルキレン基およびフルオロアルキレン基は、それぞれ炭素数1〜8、好ましくは1〜6、より好ましくは1〜5のものを用いることができる。 As the alkylene group and fluoroalkylene group of A and B in the formula, those having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 5 carbon atoms can be used.
このような環状スルホン酸エステルとしては、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン、2,4−ブタンスルトン等のモノスルホン酸エステル(式中のXがC−C単結合の場合)、メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル等のジスルホン酸エステル(式中のXが−OSO2−基の場合)などが挙げられる。 Examples of such cyclic sulfonic acid esters include monosulfonic acid esters such as 1,3-propane sultone, 1,4-butane sultone, 1,3-butane sultone, 2,4-butane sultone (wherein X is a C—C simple substance). In the case of a bond), disulfonic acid esters such as methylenemethane disulfonic acid ester and ethylenemethane disulfonic acid ester (when X in the formula is an -OSO 2 -group), and the like.
電解質に環状スルホン酸エステルを含有させることにより、4.5V以上の充放電電位を有する電池において容量劣化を抑制することができる。検討の結果、LiMn2O4のような、Liに対して4.5V未満の放電電位を示す正極活物質を使用した場合において得られる改善効果に比べて、4.5V以上の放電電位を示す正極活物質を使用した場合では飛躍的に特性が改善された。この理由は、正極側の電位が4.5V以上と高いため、環状スルホン酸エステルが正極側で酸化分解され、正極表面に皮膜が形成されるためと考えられる。一方、4.5V未満で充放電する電池では、環状スルホン酸エステルは負極側で還元され、負極表面に皮膜を形成し、正極側では酸化分解は起こらず、正極上に皮膜は形成されていないものと考えられる。 By including a cyclic sulfonic acid ester in the electrolyte, capacity deterioration can be suppressed in a battery having a charge / discharge potential of 4.5 V or more. As a result of the examination, compared with the improvement effect obtained when using a positive electrode active material that exhibits a discharge potential of less than 4.5 V with respect to Li, such as LiMn 2 O 4 , a discharge potential of 4.5 V or more is exhibited. When the positive electrode active material was used, the characteristics were dramatically improved. This is probably because the potential on the positive electrode side is as high as 4.5 V or higher, so that the cyclic sulfonic acid ester is oxidized and decomposed on the positive electrode side, and a film is formed on the surface of the positive electrode. On the other hand, in a battery that charges and discharges at less than 4.5 V, the cyclic sulfonic acid ester is reduced on the negative electrode side to form a film on the negative electrode surface, no oxidative decomposition occurs on the positive electrode side, and no film is formed on the positive electrode. It is considered a thing.
したがって、本発明における環状スルホン酸エステルとしては、非水電解質に含有されることで、Liに対して4.5V以上の放電電位を示す正極活物質を含む正極の表面に保護膜を形成し得るものが好ましく、すなわち正極保護膜形成剤と機能し得るものが好ましい。また、正極表面に保護膜を形成し、負極表面にも保護膜を形成し得るものが好ましい。このような環状スルホン酸エステルとしては、所望の効果、入手容易性、コストの点から、1,3−プロパンスルトン、1,4−ブタンスルトンが好ましい。 Therefore, as the cyclic sulfonate ester in the present invention, a protective film can be formed on the surface of the positive electrode containing the positive electrode active material exhibiting a discharge potential of 4.5 V or more with respect to Li by being contained in the non-aqueous electrolyte. Those that can function with the positive electrode protective film forming agent are preferable. Moreover, what can form a protective film in the positive electrode surface and can form a protective film also in the negative electrode surface is preferable. As such a cyclic sulfonic acid ester, 1,3-propane sultone and 1,4-butane sultone are preferable from the viewpoint of desired effects, availability, and cost.
非水電解質中の環状スルホン酸エステルの含有量は、溶媒に対して0.01質量%以上10質量%以下であることが好ましい。正極表面に十分な被膜を形成して電解液の分解を抑制する点から0.01質量%以上が好ましく、0.1質量%以上がより好ましい。一方、電解液の粘度、導電性を適正な範囲内に調整し、比較的低温での良好なサイクル特性を確保する点から10質量%以下が好ましく、5質量%以下がより好ましい。高温下での特性改善効果は、ほぼ5〜10質量%で飽和する傾向があることからも、10質量%以下が好ましく、5質量%以下がより好ましい。 The content of the cyclic sulfonic acid ester in the nonaqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less with respect to the solvent. The amount is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more from the viewpoint that a sufficient film is formed on the surface of the positive electrode to suppress decomposition of the electrolytic solution. On the other hand, it is preferably 10% by mass or less, more preferably 5% by mass or less from the viewpoint of adjusting the viscosity and conductivity of the electrolytic solution within appropriate ranges and ensuring good cycle characteristics at a relatively low temperature. The property improvement effect at high temperature is preferably 10% by mass or less, more preferably 5% by mass or less, because there is a tendency to saturate at about 5 to 10% by mass.
非水電解質の溶媒としては、溶媒の誘電率を大きくするために、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネート化合物を使用することができる。また、粘度の低減などを目的として、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状モノカーボネートを用いることができる。これらの2種以上を併用してもよい。 As the non-aqueous electrolyte solvent, cyclic carbonate compounds such as propylene carbonate (PC) and ethylene carbonate (EC) can be used in order to increase the dielectric constant of the solvent. For the purpose of reducing the viscosity, a chain monocarbonate such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), or diethyl carbonate (DEC) can be used. Two or more of these may be used in combination.
本発明において、非水電解質中にビニレンカーボネートを含有させてもよい。これにより、環状スルホン酸エステルの分解によって形成する被膜由来の抵抗上昇を抑制することができ、サイクル特性、保存特性を改善することができる。また、ビニレンカーボネートを非水溶媒として用いると正極表面で分解されやすく、保存時に自己放電が起こりやすいが、環状スルホン酸エステルとの相互作用により自己放電が抑制される。 In the present invention, vinylene carbonate may be contained in the nonaqueous electrolyte. Thereby, the resistance rise derived from the film formed by decomposition | disassembly of cyclic sulfonate ester can be suppressed, and cycling characteristics and a storage characteristic can be improved. In addition, when vinylene carbonate is used as a non-aqueous solvent, it is easily decomposed on the surface of the positive electrode, and self-discharge tends to occur during storage, but self-discharge is suppressed by interaction with the cyclic sulfonate ester.
非水電解質の溶媒として、上記以外の従来の非水電解液用溶媒を用いることができる。例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1、2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、エチレンカーボネート誘導体、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、アニソール、N−メチルピロリドン、などが挙げられる。 As the solvent for the nonaqueous electrolyte, conventional nonaqueous electrolyte solvents other than those described above can be used. For example, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, and chain structures such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME) Ethers, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphate triester, tri Methoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, ethylene carbonate derivative, propylene carbonate derivative Body, tetrahydrofuran derivative, ethyl ether, anisole, N-methylpyrrolidone, and the like.
電解質に用いる非水溶媒に溶解させるリチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9CO3、LiC(CF3SO2)3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiB10Cl10、低級脂肪族カルボン酸カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiCl、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。電解質としては、これらのリチウム塩を上記の非水溶媒に溶解した電解液を好適に用いることができる。リチウム塩の濃度は、たとえば0.5mol/lから1.5mol/lとすることができる。この濃度が高すぎると密度と粘度が増加し、濃度が低すぎると電気伝導率が低下するためである。 Examples of the lithium salt dissolved in the nonaqueous solvent used for the electrolyte include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lithium of lower aliphatic carboxylate, lithium chloroborane, lithium tetraphenylborate, LiCl, LiBr , LiI, LiSCN, LiCl, imides and the like. As the electrolyte, an electrolytic solution obtained by dissolving these lithium salts in the above non-aqueous solvent can be preferably used. The concentration of the lithium salt can be, for example, 0.5 mol / l to 1.5 mol / l. This is because if the concentration is too high, the density and viscosity increase, and if the concentration is too low, the electrical conductivity decreases.
本実施形態のリチウムイオン二次電池は、リチウム含有金属複合酸化物を正極活物質として含む正極と、リチウムを吸蔵放出可能な負極活物質を含む負極と、正極と負極の間に狭持された絶縁体としてのセパレータと、正極と負極はリチウムイオン伝導性の電解液に浸った状態であり、これらが電池ケースの中に密閉された形態をとることができる。正極と負極に電圧を印加することにより、正極活物質がリチウムイオンを放出し負極活物質がリチウムイオンを吸蔵し、電池は充電状態となる。放電状態では充電状態と逆の状態となる。 The lithium ion secondary battery of this embodiment is sandwiched between a positive electrode including a lithium-containing metal composite oxide as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and the positive electrode and the negative electrode The separator as the insulator, the positive electrode, and the negative electrode are in a state of being immersed in a lithium ion conductive electrolyte, and these can be in a sealed state in a battery case. By applying a voltage to the positive electrode and the negative electrode, the positive electrode active material releases lithium ions, the negative electrode active material occludes lithium ions, and the battery is charged. In the discharged state, the state is opposite to the charged state.
本発明において、正極活物質としては、リチウムに対して4.5V以上の放電電位を示す物質を用いる。このような正極活物質としては、LiNi0.5Mn1.5O4、LiCoMnO4、LiCrMnO4、LiCu0.5Mn1.5O4、LiFe0.5Mn1.5O4、LiNiVO4、LiCoPO4等のリチウム複合酸化物を使用することができる。 In the present invention, a material that exhibits a discharge potential of 4.5 V or higher with respect to lithium is used as the positive electrode active material. As such a positive electrode active material, lithium composite oxides such as LiNi 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiCrMnO 4 , LiCu 0.5 Mn 1.5 O 4 , LiFe 0.5 Mn 1.5 O 4 , LiNiVO 4 , and LiCoPO 4 are used. be able to.
このような正極活物質の中でも、スピネル構造を有しニッケルを含有するスピネル型リチウムマンガン金属複合酸化物が好ましく、例えば下記一般式(2)
Lia(MxMn2-x-yAy)O4 (2)
(式中、0.4<x、0≦y、x+y<2、0<a<1.2である。Mは、Ni、Co、Fe、Cr、Cuから選ばれ、少なくともNiを含む一種以上の金属を示す。Aは、Si、Tiから選ばれる少なくとも一種の金属を示す。)
で表される化合物を用いることが好ましい。式中、0.4<x<0.6であることが好ましく、0.8<a<1.2であることが好ましく、Mに占めるNiの比率はM全量を1としたとき0.5以上が好ましく、0.8以上がより好ましい。なお、式中のaは(MxMn2-x-yAy)を2としたときのLiの比率である。
Among such positive electrode active materials, a spinel type lithium manganese metal composite oxide having a spinel structure and containing nickel is preferable. For example, the following general formula (2)
Li a (M x Mn 2-xy A y ) O 4 (2)
(In the formula, 0.4 <x, 0 ≦ y, x + y <2, 0 <a <1.2. M is selected from Ni, Co, Fe, Cr, and Cu, and at least one or more containing Ni. (A represents at least one metal selected from Si and Ti.)
It is preferable to use the compound represented by these. In the formula, 0.4 <x <0.6 is preferable, 0.8 <a <1.2 is preferable, and the ratio of Ni to M is 0.5 when the total amount of M is 1. The above is preferable, and 0.8 or more is more preferable. In the formula, a is the ratio of Li when (M x Mn 2 -xy A y ) is 2.
このような金属複合酸化物の中でも、下記一般式(3)
LiNixMn2-x-yAyO4 (3)
(式中、0.4<x<0.6、0≦y<0.3、Aは、Si、Tiから選ばれる少なくとも一種の金属を示す。)
で表されるスピネル型化合物が好ましい。式中、0≦y<0.2であることがより好ましい。
Among such metal complex oxides, the following general formula (3)
LiNi x Mn 2-xy A y O 4 (3)
(In the formula, 0.4 <x <0.6, 0 ≦ y <0.3, A represents at least one metal selected from Si and Ti.)
The spinel type compound represented by these is preferable. In the formula, it is more preferable that 0 ≦ y <0.2.
また、好ましい正極活物質として、130mAh/g以上の高容量が得られる下記一般式(4)
LiNixMn2-xO4 (4)
(式中、0.4<x<0.6)
で表されるスピネル型化合物を用いることができる。
Moreover, as a preferable positive electrode active material, a high capacity of 130 mAh / g or more can be obtained.
LiNi x Mn 2-x O 4 (4)
(Where 0.4 <x <0.6)
The spinel type compound represented by these can be used.
Ni組成比xが低すぎると、5V放電領域が減少するためエネルギー密度が低くなる。一方、Ni組成比xが高すぎると容量が低下する。Ni組成比xは0.5付近(0.4<x<0.6)であることが望ましい。Ni組成比xが0.5である化合物は、Liに対して、4.5V〜4.8Vの間にLiの吸蔵放出を行う充放電領域があり、また、4.5V以上の放電領域は110mAh/g以上と非常に高容量である。 If the Ni composition ratio x is too low, the 5V discharge region is reduced, and the energy density is lowered. On the other hand, if the Ni composition ratio x is too high, the capacity decreases. The Ni composition ratio x is desirably around 0.5 (0.4 <x <0.6). A compound having a Ni composition ratio x of 0.5 has a charge / discharge region in which Li is occluded / released between 4.5 V and 4.8 V with respect to Li, and a discharge region of 4.5 V or more is It has a very high capacity of 110 mAh / g or more.
スピネル型リチウムマンガン金属複合酸化物、特にニッケルを含有するスピネル型リチウムマンガン金属複合酸化物を正極活物質に用いることにより、充放電特性が改善される理由としては、元素置換により正極の活性な界面が減少して電解質溶媒の分解が抑制されるためと考えられる。その際、電解質に環状スルホン酸エステルを含有させていると、この特定の金属複合酸化物の効果と相俟って、充放電特性、特に保存特性が大きく改善されるものと考えられる。 The reason why charge / discharge characteristics are improved by using a spinel type lithium manganese metal composite oxide, particularly a spinel type lithium manganese metal composite oxide containing nickel, as the positive electrode active material is that the active interface of the positive electrode is obtained by element substitution. This is considered to be because the decomposition of the electrolyte solvent is suppressed. At that time, if the electrolyte contains a cyclic sulfonic acid ester, it is considered that charge / discharge characteristics, particularly storage characteristics, are greatly improved in combination with the effect of the specific metal composite oxide.
本発明における正極は、正極表面に硫黄原子または硫黄化合物を有することが好ましく、これらの成分からなる被膜を有することが好ましい。これにより、このような正極を有する二次電池は、サイクル特性、保存特性等の充放電特性が改善される。正極表面の硫黄原子または硫黄化合物は、環状スルホン酸エステル由来の化合物であり、正極の表面で電池の正常の反応を損なうこと無く、正極表面での溶媒の分解を抑制する不動体膜として存在すると考えられる。 The positive electrode in the present invention preferably has a sulfur atom or a sulfur compound on the surface of the positive electrode, and preferably has a coating composed of these components. Thereby, the secondary battery having such a positive electrode has improved charge / discharge characteristics such as cycle characteristics and storage characteristics. The sulfur atom or sulfur compound on the surface of the positive electrode is a compound derived from a cyclic sulfonate ester, and exists as an unsupported film that suppresses the decomposition of the solvent on the surface of the positive electrode without impairing the normal reaction of the battery on the surface of the positive electrode. Conceivable.
正極は、正極活物質と導電付与剤と結着剤を混合し集電体上に形成することができる。導電付与剤としては、炭素材料の他、Alなどの金属物質、導電性酸化物の粉末などを使用することができる。結着剤としてはポリフッ化ビニリデンなどの樹脂バインダーを用いることができる。集電体としてはAlなどを主体とする金属薄膜を用いることができる。 The positive electrode can be formed on a current collector by mixing a positive electrode active material, a conductivity-imparting agent, and a binder. As the conductivity-imparting agent, a carbon material, a metal substance such as Al, a conductive oxide powder, or the like can be used. As the binder, a resin binder such as polyvinylidene fluoride can be used. As the current collector, a metal thin film mainly composed of Al or the like can be used.
正極中の導電付与剤の含有量は、電極全体の1〜10質量%程度が好ましく、結着剤の含有量も電極電体の1〜10質量%程度が好ましい。このような範囲にあれば、電極中の活物質量の割合を十分に確保でき、単位質量あたりの十分な容量を得ることができる。導電付与剤と結着剤の割合が小さすぎると、導電性が保てなくなったり、電極剥離の問題が生じたりすることがある。 The content of the conductivity imparting agent in the positive electrode is preferably about 1 to 10% by mass of the whole electrode, and the content of the binder is also preferably about 1 to 10% by mass of the electrode body. If it exists in such a range, the ratio of the amount of active materials in an electrode can fully be ensured, and sufficient capacity | capacitance per unit mass can be obtained. If the ratio between the conductivity-imparting agent and the binder is too small, the conductivity may not be maintained, or a problem of electrode peeling may occur.
負極に用いる負極活物質としては、リチウムイオンを充電時に吸蔵、放電時に放出することができれば、特に限定されるものでなく、公知のものを用いることができる。具体例としては、黒鉛、コークス、ハードカーボン等の炭素材料、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金、リチウム金属、Si、SnO2、SnO、TiO2、Nb2O3SiO等の電位が正極活物質に比べて卑な金属酸化物が挙げられる。 The negative electrode active material used for the negative electrode is not particularly limited as long as lithium ions can be occluded during charging and released during discharging, and known materials can be used. Specific examples include graphite, coke, carbon materials such as hard carbon, a lithium - aluminum alloy, a lithium - lead alloy, lithium - lithium alloy such as a tin alloy, a lithium metal, Si, SnO 2, SnO, TiO 2, Nb 2 Examples of the metal oxide include a base metal having a potential such as O 3 SiO, which is lower than that of the positive electrode active material.
負極は、負極活物質と導電付与剤と結着剤を混合し集電体上に形成することができる。導電付与剤としては、炭素材料や、導電性酸化物の粉末などが挙げられる。結着剤としてはポリフッ化ビニリデンなどの樹脂バインダーを用いることができる。集電体としてはCuなどを主体とする金属薄膜を用いることができる。 The negative electrode can be formed on a current collector by mixing a negative electrode active material, a conductivity-imparting agent, and a binder. Examples of the conductivity-imparting agent include carbon materials and conductive oxide powders. As the binder, a resin binder such as polyvinylidene fluoride can be used. As the current collector, a metal thin film mainly composed of Cu or the like can be used.
セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系微多孔膜を用いることができる。 As the separator, for example, a polyolefin microporous film such as polyethylene or polypropylene can be used.
本発明に係るリチウム二次電池は、例えば、乾燥空気または不活性ガス雰囲気において、負極および正極をセパレータを介して積層し、あるいは積層したものを捲回した後に、缶ケース等の外装容器に収容し、電解液を注入し、合成樹脂と金属箔との積層体等からなる可とう性フィルム等によって封口することによって電池を製造することができる。 The lithium secondary battery according to the present invention is, for example, laminated in a dry air or inert gas atmosphere with a negative electrode and a positive electrode laminated via a separator, or wound in a laminated case and then accommodated in an outer container such as a can case. A battery can be manufactured by injecting an electrolytic solution and sealing with a flexible film made of a laminate of a synthetic resin and a metal foil.
電池の構成・形状は、特に制限がなく、セパレータを挟んで対向した正極、負極を捲回した捲回型、積層型などの形態をとることができ、また、コイン型、ラミネートパック、角型セル、円筒型セル等の形態をとることができる。図1に電池の一例としてコインタイプのセルを示す。図中の符号1は正極活物質層、符号2は負極活物質層、符号3は正極集電体、符号4は負極集電体、符号5はセパレータ、符号6は正極側外装缶、符号7は負極側外装缶、符号8は絶縁パッキング部を示す。 The configuration and shape of the battery are not particularly limited, and can take the form of a positive electrode facing the separator, a wound type wound with the negative electrode, a laminated type, and a coin type, laminate pack, square type, etc. It can take the form of a cell, a cylindrical cell or the like. FIG. 1 shows a coin-type cell as an example of a battery. In the figure, reference numeral 1 denotes a positive electrode active material layer, reference numeral 2 denotes a negative electrode active material layer, reference numeral 3 denotes a positive electrode current collector, reference numeral 4 denotes a negative electrode current collector, reference numeral 5 denotes a separator, reference numeral 6 denotes a positive electrode side outer can, reference numeral 7 Is a negative electrode side exterior can, and the code | symbol 8 shows an insulation packing part.
〔実施例1〕
正極活物質の原料として、MnO2、NiO、Li2CO3、Ti2O3の粉末を用い、目的の組成比なるように秤量し、粉砕混合した。その後、混合粉末を750℃で8時間焼成して、LiNi0.5Mn1.37Ti0.13O4を作製した。ほぼ単相のスピネル構造であることを確認した。
[Example 1]
MnO 2 , NiO, Li 2 CO 3 , and Ti 2 O 3 powders were used as raw materials for the positive electrode active material, and weighed to achieve the desired composition ratio and pulverized and mixed. Thereafter, the mixed powder was fired at 750 ° C. for 8 hours to produce LiNi 0.5 Mn 1.37 Ti 0.13 O 4 . It was confirmed that the spinel structure was almost single phase.
作製した正極活物質と導電付与剤である炭素を混合し、この混合物をN−メチルピロリドンに結着剤としてポリフッ化ビニリデン(PVDF)を溶かした溶液に分散させスラリー状とした。正極活物質、導電付与剤、結着剤の質量比は91/5/4とした。Al集電体上に前記スラリーを塗布した。その後、真空中で12時間乾燥させて、直径12mmの円に切り出した後、加圧成形し正極とした。 The produced positive electrode active material and carbon as a conductivity-imparting agent were mixed, and this mixture was dispersed in a solution in which polyvinylidene fluoride (PVDF) was dissolved in N-methylpyrrolidone as a binder to form a slurry. The mass ratio of the positive electrode active material, the conductivity-imparting agent, and the binder was 91/5/4. The slurry was applied on an Al current collector. Then, it was dried in vacuum for 12 hours, cut out into a circle having a diameter of 12 mm, and then pressure-molded to obtain a positive electrode.
負極活物質にハードカーボンを用い、これに導電付与剤である炭素を混合し、この混合物をN−メチルピロリドンに結着剤としてポリフッ化ビニリデン(PVDF)を溶かした溶液に分散させスラリー状とした。負極活物質、導電付与剤、結着剤の質量比は91/1/8とした。Cu集電体上に前記スラリーを塗布した。その後、真空中で12時間乾燥させて、直径13mmの円に切り出した後、加圧成形し負極とした。 Hard carbon is used as the negative electrode active material, and carbon as a conductivity-imparting agent is mixed therewith, and this mixture is dispersed in a solution of polyvinylidene fluoride (PVDF) dissolved in N-methylpyrrolidone as a binder to form a slurry. . The mass ratio of the negative electrode active material, the conductivity-imparting agent, and the binder was 91/1/8. The slurry was applied on a Cu current collector. Then, after drying in vacuum for 12 hours and cutting out into a circle having a diameter of 13 mm, it was pressure-molded to obtain a negative electrode.
セパレータにはポリプロピレン(PP)のフィルムを使用した。正極と負極を、セパレータを挟んで絶縁し、コインセル内に配置した後、電解液を満たして密閉した。 A polypropylene (PP) film was used as the separator. The positive electrode and the negative electrode were insulated with a separator in between and placed in a coin cell, and then filled with an electrolyte solution and sealed.
電解液は、溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とを50:50(vol.%)となるように混合し、この混合液に1,3−プロパンスルトン(PS)を1質量%となるように加えた。この混合溶媒にLiPF6を1Mの濃度となるように溶解して電解液を調製した。 The electrolytic solution was prepared by mixing ethylene carbonate (EC) and dimethyl carbonate (DMC) as a solvent so as to be 50:50 (vol.%), And adding 1 mass of 1,3-propane sultone (PS) to this mixed solution. % Was added. An electrolytic solution was prepared by dissolving LiPF 6 in this mixed solvent to a concentration of 1M.
〔実施例2〕
1,3−プロパンスルトン(PS)を2質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
[Example 2]
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was added to 2% by mass.
〔実施例3〕
1,3−プロパンスルトン(PS)を3質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
Example 3
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was added to 3% by mass.
〔実施例4〕
1,3−プロパンスルトン(PS)を5質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
Example 4
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was added to 5% by mass.
〔実施例5〕
1,3−プロパンスルトン(PS)を10質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
Example 5
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was added to 10% by mass.
〔実施例6〕
1,3−プロパンスルトン(PS)を15質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
Example 6
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was added to 15% by mass.
〔実施例7〕
1,3−プロパンスルトン(PS)を1質量%となるように加え、ビニレンカーボネート(VC)を1質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
Example 7
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was added to 1% by mass and vinylene carbonate (VC) was added to 1% by mass. .
〔実施例8〕
次のようにして作製した正極活物質を用いた点を除き実施例1と同様にして二次電池を作製した。正極活物質の原料として、MnO2、NiO、Li2CO3の粉末を用い、目的の金属組成比になるように秤量し、粉砕混合した。その後、混合粉末を750℃で8時間焼成して、LiNi0.5Mn1.5O4を作製した。ほぼ単相のスピネル構造であることを確認した。
Example 8
A secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material produced as follows was used. MnO 2 , NiO, and Li 2 CO 3 powders were used as raw materials for the positive electrode active material, and weighed to achieve the target metal composition ratio, and pulverized and mixed. Thereafter, the mixed powder was fired at 750 ° C. for 8 hours to produce LiNi 0.5 Mn 1.5 O 4 . It was confirmed that the spinel structure was almost single phase.
[実施例9]
次のようにして作製した電解液を用いた点を除き実施例1と同様にして二次電池を作製した。溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とを50:50(vol.%)となるように混合し、この混合液に1,4−ブタンスルトン(BS)を1質量%となるように加えた。この混合液にLiPF6を1Mの濃度となるように溶解して電解液を調製した。
[Example 9]
A secondary battery was produced in the same manner as in Example 1 except that the electrolytic solution produced as follows was used. Ethylene carbonate (EC) and dimethyl carbonate (DMC) as a solvent are mixed so as to be 50:50 (vol.%), And 1,4-butane sultone (BS) is added to this mixed solution so as to be 1% by mass. added. An electrolytic solution was prepared by dissolving LiPF 6 in this mixed solution to a concentration of 1M.
〔実施例10〕
1,4−ブタンスルトン(BS)を3質量%となるように加えた点を除き実施例9と同様にして二次電池を作製した。
Example 10
A secondary battery was fabricated in the same manner as in Example 9, except that 1,4-butane sultone (BS) was added to 3% by mass.
〔実施例11〕
1,4−ブタンスルトン(BS)を5質量%となるように加えた点を除き実施例9と同様にして二次電池を作製した。
Example 11
A secondary battery was fabricated in the same manner as in Example 9, except that 1,4-butane sultone (BS) was added to 5% by mass.
〔実施例12〕
1,4−ブタンスルトン(BS)を10質量%となるように加えた点を除き実施例9と同様にして二次電池を作製した。
Example 12
A secondary battery was fabricated in the same manner as in Example 9, except that 1,4-butane sultone (BS) was added to 10% by mass.
〔実施例13〕
1,4−ブタンスルトン(BS)を13質量%となるように加えた点を除き実施例9と同様にして二次電池を作製した。
Example 13
A secondary battery was fabricated in the same manner as in Example 9, except that 1,4-butane sultone (BS) was added to 13 mass%.
〔比較例1〕
1,3−プロパンスルトン(PS)を加えていない点を除き実施例1と同様にして二次電池を作製した。
[Comparative Example 1]
A secondary battery was fabricated in the same manner as in Example 1 except that 1,3-propane sultone (PS) was not added.
〔比較例2〕
1,3−プロパンスルトン(PS)の代わりにジメチルスルホンを1質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
[Comparative Example 2]
A secondary battery was fabricated in the same manner as in Example 1 except that dimethyl sulfone was added to 1% by mass instead of 1,3-propane sultone (PS).
〔比較例3〕
1,3−プロパンスルトン(PS)の代わりに硫酸ジメチルを1質量%となるように加えた点を除き実施例1と同様にして二次電池を作製した。
[Comparative Example 3]
A secondary battery was fabricated in the same manner as in Example 1 except that dimethyl sulfate was added to 1% by mass instead of 1,3-propane sultone (PS).
〔比較例4〕
1,3−プロパンスルトン(PS)を加えていない点を除き実施例8と同様にして二次電池を作製した。
[Comparative Example 4]
A secondary battery was fabricated in the same manner as in Example 8 except that 1,3-propane sultone (PS) was not added.
〔参考例1〕
次のようにして作製した正極活物質を用いた点を除き、実施例1と同様にして二次電池を作製した。MnO2、Li2CO3の粉末を原料とし、目的の金属組成比になるように秤量し、粉砕混合した。その後、混合粉末を750℃で8時間焼成して、LiMn2O4を作製した。ほぼ単相のスピネル構造であることを確認した。
[Reference Example 1]
A secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material produced as follows was used. MnO 2 and Li 2 CO 3 powders were used as raw materials, weighed so as to achieve the desired metal composition ratio, and pulverized and mixed. Thereafter, the mixed powder was fired at 750 ° C. for 8 hours to produce LiMn 2 O 4 . It was confirmed that the spinel structure was almost single phase.
〔参考例2〕
1,3−プロパンスルトン(PS)の代わりに1、4−ブタンスルトンを1質量%となるように加えた点を除き参考例1と同様にして二次電池を作製した。
[Reference Example 2]
A secondary battery was fabricated in the same manner as in Reference Example 1 except that 1,4-butane sultone was added to 1% by mass instead of 1,3-propane sultone (PS).
〔参考例3〕
1,3−プロパンスルトン(PS)を加えていない点を除き参考例1と同様にして二次電池を作製した。
[Reference Example 3]
A secondary battery was fabricated in the same manner as in Reference Example 1 except that 1,3-propane sultone (PS) was not added.
〔保存特性の評価試験〕
以上のようにして作製した電池について保存特性を評価した。評価の際、実施例1〜13および比較例1〜4の電池は4.75Vまで充電を行い、2.5Vまで放電を行った。参考例1〜3の電池は4.2Vまで充電を行い2.5Vまで放電を行った。
[Evaluation test for storage characteristics]
The storage characteristics of the battery produced as described above were evaluated. At the time of evaluation, the batteries of Examples 1 to 13 and Comparative Examples 1 to 4 were charged to 4.75V and discharged to 2.5V. The batteries of Reference Examples 1 to 3 were charged to 4.2V and discharged to 2.5V.
まず、室温において充電および放電を1回ずつ行った。この時の充電電流および放電電流は一定(2mA)(1C相当)であり、この際の放電容量を初期容量とした。その後、各電池を2mAの定電流定電圧で所定の電圧まで2.5時間の充電後、60℃の恒温槽中で1週間放置した。放置後に室温において再度定電流で放電操作を行い、続いて同じく定電流で充電、放電をもう一度繰り返し、この際の放電容量を回復容量とした。下記式
100×回復容量/初期容量=容量維持率(%)
に従って、各電池の容量維持率を求めた。この結果を表1に示す。
First, charging and discharging were performed once at room temperature. The charging current and discharging current at this time are constant (2 mA) (corresponding to 1C), and the discharging capacity at this time is defined as the initial capacity. Thereafter, each battery was charged at a constant current constant voltage of 2 mA to a predetermined voltage for 2.5 hours, and then left in a constant temperature bath at 60 ° C. for 1 week. After leaving, the discharge operation was performed again at a constant current at room temperature. Subsequently, the same charge and discharge were repeated again at a constant current, and the discharge capacity at this time was defined as a recovery capacity. The following formula 100 × recovery capacity / initial capacity = capacity maintenance ratio (%)
Thus, the capacity maintenance rate of each battery was determined. The results are shown in Table 1.
表1から明らかなように、4.5V以上でLiを吸蔵放出する正極活物質を使用し、電解液に環状スルホン酸エステルを含有することで、保存特性が改善することが確認された。 As is clear from Table 1, it was confirmed that the storage characteristics were improved by using a positive electrode active material that occludes and releases Li at 4.5 V or more and containing a cyclic sulfonic acid ester in the electrolytic solution.
1 正極活物質層
2 負極活物質層
3 正極集電体
4 負極集電体
5 セパレータ
6 正極外装缶
7 負極外装缶
8 絶縁パッキング部
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Positive electrode outer can 7 Negative electrode outer can 8 Insulation packing part
Claims (9)
前記正極は、リチウムに対して4.5V以上の放電電位を示す正極活物質を含有し、
前記非水電解質は、下記一般式(1)
で表される環状スルホン酸エステルを含有し、
前記正極活物質は、下記一般式(2)
Lia(MxMn2-x-yAy)O4 (2)
(式中、0.4<x、y=0、x+y<2、0<a<1.2である。Mは、Ni、Co、Fe、Cr、Cuから選ばれ、少なくともNiを含む一種以上の金属を示す。Aは、Si、Tiから選ばれる少なくとも一種の金属を示す。)
で表されるスピネル型化合物であり、
前記非水電解質中に前記環状スルホン酸エステルが溶媒に対して0.01〜15質量%含有されている非水電解質二次電池。 A non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing lithium ions,
The positive electrode contains a positive electrode active material that exhibits a discharge potential of 4.5 V or more with respect to lithium,
The non-aqueous electrolyte has the following general formula (1)
Containing a cyclic sulfonate ester represented by
The positive electrode active material has the following general formula (2)
Li a (M x Mn 2-xy A y ) O 4 (2)
(In the formula, 0.4 <x, y = 0, x + y <2, 0 <a <1.2. M is selected from Ni, Co, Fe, Cr, and Cu, and at least one or more containing Ni. (A represents at least one metal selected from Si and Ti.)
In Ri spinel compound der represented,
A nonaqueous electrolyte secondary battery in which the cyclic sulfonate ester is contained in the nonaqueous electrolyte in an amount of 0.01 to 15% by mass with respect to a solvent .
LiNixMn2-xO4
(式中、0.4<x<0.6)
で表されるスピネル型化合物である請求項1に記載の非水電解質二次電池。 The positive active material is represented by the following general formula LiNi x Mn 2-x O 4
(Where 0.4 <x <0.6)
The nonaqueous electrolyte secondary battery according to claim 1, which is a spinel type compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010290535A JP5310711B2 (en) | 2010-12-27 | 2010-12-27 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010290535A JP5310711B2 (en) | 2010-12-27 | 2010-12-27 | Nonaqueous electrolyte secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003381217A Division JP4697382B2 (en) | 2003-11-11 | 2003-11-11 | Nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011096672A JP2011096672A (en) | 2011-05-12 |
JP5310711B2 true JP5310711B2 (en) | 2013-10-09 |
Family
ID=44113320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010290535A Expired - Lifetime JP5310711B2 (en) | 2010-12-27 | 2010-12-27 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5310711B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140367610A1 (en) * | 2011-05-30 | 2014-12-18 | Takehiro Noguchi | Active material for secondary battery and secondary battery using the same |
JPWO2013018212A1 (en) * | 2011-08-03 | 2015-03-02 | 日立ビークルエナジー株式会社 | Electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same |
WO2013018212A1 (en) * | 2011-08-03 | 2013-02-07 | 日立ビークルエナジー株式会社 | Lithium-ion secondary battery electrolyte and lithium-ion secondary battery using same |
JP6031861B2 (en) * | 2012-07-18 | 2016-11-24 | 三菱化学株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
KR101487468B1 (en) * | 2012-08-24 | 2015-01-28 | 미쓰이금속광업주식회사 | Spinel type lithium-manganese-nickel-containing composite oxide |
JP6264291B2 (en) | 2012-10-03 | 2018-01-24 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery |
JP2014112524A (en) | 2012-11-12 | 2014-06-19 | Ricoh Co Ltd | Nonaqueous electrolyte electricity storage element |
JP2014130717A (en) | 2012-12-28 | 2014-07-10 | Ricoh Co Ltd | Nonaqueous electrolyte storage element |
JP6738865B2 (en) * | 2018-06-27 | 2020-08-12 | 株式会社エンビジョンAescジャパン | Lithium ion secondary battery |
CN116259835A (en) * | 2019-12-13 | 2023-06-13 | 张家港市国泰华荣化工新材料有限公司 | Lithium ion battery electrolyte and lithium battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4314503B2 (en) * | 1999-08-04 | 2009-08-19 | 株式会社豊田中央研究所 | Lithium secondary battery |
JP2001297790A (en) * | 2000-04-11 | 2001-10-26 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary cell |
JP4325167B2 (en) * | 2001-10-18 | 2009-09-02 | 日本電気株式会社 | Non-aqueous electrolyte secondary battery electrode material |
-
2010
- 2010-12-27 JP JP2010290535A patent/JP5310711B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2011096672A (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4697382B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5310711B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5910627B2 (en) | Secondary battery | |
JP5169850B2 (en) | Non-aqueous electrolyte secondary battery | |
WO2011162169A1 (en) | Lithium ion secondary battery | |
JP2004241339A (en) | Electrolyte liquid for secondary battery, and secondary battery of nonaqueous electrolyte liquid | |
JPWO2005057713A1 (en) | Secondary battery | |
JP5999090B2 (en) | Active material for secondary battery | |
JP5709231B1 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JPWO2013137351A1 (en) | Secondary battery electrolyte and secondary battery using the same | |
JP2004022336A (en) | Electrolyte for secondary battery and secondary battery using it | |
JP4288402B2 (en) | Secondary battery electrolyte, secondary battery, and method of using secondary battery | |
JP4192477B2 (en) | Positive electrode active material for secondary battery, and positive electrode for secondary battery and secondary battery using the same | |
JP4352719B2 (en) | ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME | |
JP4433163B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
JP4968614B2 (en) | Secondary battery electrolyte and secondary battery using the same | |
JP4544408B2 (en) | Secondary battery electrolyte and secondary battery using the same | |
JP4304570B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP2006172950A (en) | Electrolyte for secondary battery, and the secondary battery | |
CN103138006A (en) | Secondary battery | |
JP6072689B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2012243461A (en) | Secondary battery | |
JP4618404B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5447615B2 (en) | Electrolyte and non-aqueous electrolyte secondary battery | |
JP2004079335A (en) | Electrolytic solution for secondary battery and secondary battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130617 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5310711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |