[go: up one dir, main page]

JP5309624B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP5309624B2
JP5309624B2 JP2008060370A JP2008060370A JP5309624B2 JP 5309624 B2 JP5309624 B2 JP 5309624B2 JP 2008060370 A JP2008060370 A JP 2008060370A JP 2008060370 A JP2008060370 A JP 2008060370A JP 5309624 B2 JP5309624 B2 JP 5309624B2
Authority
JP
Japan
Prior art keywords
catalyst
temperature
battery
electrothermal catalyst
electrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008060370A
Other languages
Japanese (ja)
Other versions
JP2009214703A (en
Inventor
基治 赤羽
浩一 森
豊樹 井口
俊一 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008060370A priority Critical patent/JP5309624B2/en
Publication of JP2009214703A publication Critical patent/JP2009214703A/en
Application granted granted Critical
Publication of JP5309624B2 publication Critical patent/JP5309624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ハイブリッド車両の制御装置に関する。   The present invention relates to a control device for a hybrid vehicle.

特許文献1には、電力を供給することで発熱する電熱触媒が排気通路に設けられた排気浄化装置が開示されている。この特許文献1に開示されるような従来の電熱触媒は、温度が低下するとバッテリから電力が供給されて、活性化するようになっている。
特開平9−256840号公報
Patent Document 1 discloses an exhaust purification device in which an electrothermal catalyst that generates heat by supplying electric power is provided in an exhaust passage. The conventional electrothermal catalyst as disclosed in Patent Document 1 is activated by being supplied with electric power from a battery when the temperature is lowered.
JP-A-9-256840

しかしながら、このような従来の電熱触媒においては、電熱触媒の温度低下時には、バッテリの電力のみで電熱触媒を活性化させることになる。そのため、電熱触媒に供給した電力に応じてバッテリの電圧が低下することなり、オルタネータで発電してバッテリを充電しなければならい。   However, in such a conventional electrothermal catalyst, when the temperature of the electrothermal catalyst is lowered, the electrothermal catalyst is activated only by the electric power of the battery. Therefore, the voltage of the battery decreases according to the electric power supplied to the electrothermal catalyst, and the battery must be charged by generating power with the alternator.

つまり、バッテリの電力で電熱触媒を活性化させると、その分の電力をオルタネータで発電しなければならず、総じて燃費が悪化してしまうという問題がある。   In other words, when the electrothermal catalyst is activated by the battery power, the power generated by the alternator must be generated, and there is a problem that the fuel consumption is generally deteriorated.

そこで、本発明は、エンジンとモータからなる駆動源を備えたハイブリッド車両の制御装置において、車両減速時に排気通路に設けられた電熱触媒を暖機する際には、少なくとも前記モータの回生電力を前記電熱触媒に供給することを特徴としている。   Accordingly, the present invention provides a control device for a hybrid vehicle having a drive source including an engine and a motor, and when warming up the electrothermal catalyst provided in the exhaust passage during vehicle deceleration, at least the regenerative power of the motor is It is characterized by being supplied to an electrothermal catalyst.

そこで、本発明は、エンジンとモータからなる駆動源を備えたハイブリッド車両の制御装置において、車両減速時に排気通路に設けられた電熱触媒を暖機する際には、少なくとも前記モータの回生電力を前記電熱触媒に供給することを特徴としている。そして、バッテリの電力が前記電熱触媒に供給されるのは、車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率より大きく、前記バッテリの充電量が所定値よりも大きい場合のみであり、車両減速時に、前記電熱触媒の温度が前記所定温度より低く、前記電熱触媒の温度低下の変化率が前記所定変化率以下の場合には、前記バッテリの電力を前記電熱触媒に供給しない。 Accordingly, the present invention provides a control device for a hybrid vehicle having a drive source including an engine and a motor, and when warming up the electrothermal catalyst provided in the exhaust passage during vehicle deceleration, at least the regenerative power of the motor is It is characterized by being supplied to an electrothermal catalyst. The electric power of the battery is supplied to the electrothermal catalyst when the vehicle is decelerated, the temperature of the electrothermal catalyst is lower than a predetermined temperature, and the rate of change in the temperature of the electrothermal catalyst is greater than the predetermined rate of change. Ri der only when the amount of charge is larger than a predetermined value, when the vehicle decelerates, the temperature of the electric heating catalyst is lower than the predetermined temperature, when the change rate of the temperature drop of the electric heating catalyst is less than the predetermined rate of change, The electric power of the battery is not supplied to the electrothermal catalyst.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用されたハイブリッド車両の制御装置を模式的に示した説明図である。   FIG. 1 is an explanatory diagram schematically showing a control device for a hybrid vehicle to which the present invention is applied.

この第1実施形態における車両は、エンジン1と変速機2との間に、駆動力補助機能と発電機能を兼ねたモータ3が挟み込まれており、駆動輪4にエンジン1及びモータ3の駆動力を伝達可能な構成となっている。   In the vehicle according to the first embodiment, a motor 3 having both a driving force assist function and a power generation function is sandwiched between an engine 1 and a transmission 2, and the driving force of the engine 1 and the motor 3 is interposed between driving wheels 4. Can be transmitted.

エンジン1には、排気マニホールド5を介して、排気通路6が接続されている。この排気通路6には、排気浄化するための第1触媒7、第2触媒8及び電熱触媒(EHC)9が直列に介装されている。   An exhaust passage 6 is connected to the engine 1 via an exhaust manifold 5. In the exhaust passage 6, a first catalyst 7, a second catalyst 8, and an electrothermal catalyst (EHC) 9 for purifying exhaust are interposed in series.

ここで、エンジン1は、車両のフロントに搭載されるものであり、駆動輪4は車両の前輪である。また排気通路6は、全体としては車両のフロントからリアに向かって車両全長方向に沿って延びるものである。そして、第1触媒7は、エンジン1と同様に、車両のフロントのエンジンルーム内に位置している。つまり、第1触媒7は、排気系の比較的上流側に位置している。第1触媒7の排気下流側に位置する第2触媒8と、第2触媒8の排気下流側に位置する電熱触媒9と、はエンジン1よりも車両後方で車両の床下に位置している。つまり、第2触媒8と電熱触媒9とは、排気系の比較的下流側に位置しており、エンジン1の燃焼室から電熱触媒9までの管路長が長く、電熱触媒9を活性化状態に維持するのには、相応のエネルギーが必要な構成となっているため、モータ3の回生電力を利用して電熱触媒9の暖機をする際には、モータ3の回生電力をより有効に活用することができることになる。また、第2触媒8と電熱触媒9とは互いに近接している。   Here, the engine 1 is mounted on the front of the vehicle, and the drive wheels 4 are front wheels of the vehicle. The exhaust passage 6 extends along the entire length of the vehicle from the front to the rear of the vehicle as a whole. The first catalyst 7 is located in the engine room at the front of the vehicle, like the engine 1. That is, the first catalyst 7 is located relatively upstream of the exhaust system. The second catalyst 8 located on the exhaust downstream side of the first catalyst 7 and the electrothermal catalyst 9 located on the exhaust downstream side of the second catalyst 8 are located behind the engine 1 and below the floor of the vehicle. That is, the second catalyst 8 and the electrothermal catalyst 9 are located relatively downstream of the exhaust system, and the pipe length from the combustion chamber of the engine 1 to the electrothermal catalyst 9 is long, and the electrothermal catalyst 9 is activated. Therefore, when the electrothermal catalyst 9 is warmed up using the regenerative power of the motor 3, the regenerative power of the motor 3 is made more effective. It can be used. The second catalyst 8 and the electrothermal catalyst 9 are close to each other.

エンジン1を制御するコントロールユニット10には、車両の車速を検知する車速センサ11、アクセルペダルの踏み込み量からアクセル開度を検知するアクセル開度センサ12、電熱触媒9の温度を検知する温度センサ13、エンジン回転数を検出するエンジン回転数センサ14、排気空燃比を検知するA/Fセンサ15等からの出力信号が入力されている。   A control unit 10 that controls the engine 1 includes a vehicle speed sensor 11 that detects the vehicle speed of the vehicle, an accelerator opening sensor 12 that detects the accelerator opening from the depression amount of the accelerator pedal, and a temperature sensor 13 that detects the temperature of the electrothermal catalyst 9. Output signals from an engine speed sensor 14 that detects the engine speed, an A / F sensor 15 that detects the exhaust air-fuel ratio, and the like are input.

モータコントローラ16はコントロールユニット10と伴にモータ3の運転制御を行うものである。モータ3は、コントロールユニット10、モータコントローラ16及びバッテリコントローラ17により、起動及び停止並びに、力行運転、回生運転の切り換えが制御されている。また、モータ3は、回生電力を電熱触媒9に直接供給することが可能となるように、電気的に電熱触媒9と接続されている。また、力行運転の際の電力が供給されるように、バッテリ18と電気的に接続されている。尚、バッテリ18は、エンジン1を駆動源とするオルタネータ(図示せず)にも電気接続されており、このオルタネータ(図示せず)によって充電可能となっている。   The motor controller 16 controls the operation of the motor 3 together with the control unit 10. The motor 3 is controlled by the control unit 10, the motor controller 16, and the battery controller 17 to start and stop, and to switch between power running operation and regenerative operation. The motor 3 is electrically connected to the electrothermal catalyst 9 so that regenerative power can be directly supplied to the electrothermal catalyst 9. Moreover, it is electrically connected with the battery 18 so that the electric power at the time of power running operation is supplied. The battery 18 is also electrically connected to an alternator (not shown) that uses the engine 1 as a drive source, and can be charged by the alternator (not shown).

電熱触媒9には、モータ3の回生電力の他に、バッテリ18の電力が供給可能となっている。バッテリ18の充電・放電は、バッテリコントローラ17とコントロールユニット10とによって制御されている。   In addition to the regenerative electric power of the motor 3, the electric power of the battery 18 can be supplied to the electrothermal catalyst 9. Charging / discharging of the battery 18 is controlled by the battery controller 17 and the control unit 10.

そして、電熱触媒9には、通常(モータ3が回生運転していない場合)はバッテリ18のみから電力が供給可能となり、車両減速時は(モータ3が回生運転している場合)バッテリ18の電力とモータ3の回生電力とが電熱触媒9に供給可能になる。   The electric heat catalyst 9 can normally be supplied with electric power only from the battery 18 (when the motor 3 is not in regenerative operation), and can be supplied with electric power from the battery 18 during vehicle deceleration (when the motor 3 is in regenerative operation). And the regenerative power of the motor 3 can be supplied to the electrothermal catalyst 9.

ここで、モータ3、電熱触媒9及びバッテリ18で構成される電力供給回路、つまり電熱触媒9に電力を供給するための回路の切り替えについて詳述する。   Here, the switching of the power supply circuit composed of the motor 3, the electrothermal catalyst 9, and the battery 18, that is, the circuit for supplying power to the electrothermal catalyst 9, will be described in detail.

モータ3が回生運転をしていない場合、電熱触媒9の温度が所定の閾値A以上であれば、前記電力供給回路は、図2に示すように、バッテリ18の電力がモータ3にのみ供給可能となる回路aに切り替えられる。閾値Aは、電熱触媒9の活性化温度に応じて設定される値であり、例えば、電熱触媒9が活性化する温度に設定される。   When the motor 3 is not in regenerative operation and the temperature of the electrothermal catalyst 9 is equal to or higher than a predetermined threshold A, the power supply circuit can supply the power of the battery 18 only to the motor 3 as shown in FIG. Is switched to circuit a. The threshold A is a value set according to the activation temperature of the electrothermal catalyst 9, and is set to a temperature at which the electrothermal catalyst 9 is activated, for example.

モータ3が回生運転をしていない場合、電熱触媒9の温度が所定の閾値A(所定温度)よりも低ければ、前記電力供給回路は、図3に示すように、バッテリ18の電力がモータ3と電熱触媒9の双方に供給可能となる回路bに切り替えられる。   When the motor 3 is not in a regenerative operation and the temperature of the electrothermal catalyst 9 is lower than a predetermined threshold A (predetermined temperature), the power supply circuit causes the power of the battery 18 to be supplied to the motor 3 as shown in FIG. The circuit b can be supplied to both the electrothermal catalyst 9 and the electrothermal catalyst 9.

モータ3が回生運転している場合、電熱触媒9の温度が所定の閾値A以上であり、バッテリ18の充電量(SOC)が所定の閾値B(所定値)以下であれば、前記電力供給回路は、図4に示すように、モータ3の回生電力がバッテリ18にのみ供給可能となる回路cに切り替えられる。つまり、電熱触媒9は活性化しているが、バッテリ18の充電量(SOC)が低下しているので、モータ3の回生電力でバッテリ18を充電する。   When the motor 3 is in a regenerative operation, if the temperature of the electrothermal catalyst 9 is equal to or higher than a predetermined threshold A and the charge amount (SOC) of the battery 18 is equal to or lower than a predetermined threshold B (predetermined value), the power supply circuit As shown in FIG. 4, the circuit 3 is switched to a circuit c that can supply regenerative power of the motor 3 only to the battery 18. That is, although the electrothermal catalyst 9 is activated, the amount of charge (SOC) of the battery 18 is reduced, so the battery 18 is charged with the regenerative power of the motor 3.

モータ3が回生運転している場合、電熱触媒9の温度が所定の閾値A以上であり、バッテリ18の充電量(SOC)が所定の閾値Bより大きければ、前記電力供給回路は、図5に示すように、モータ3の回生電力が電熱触媒9にのみ供給可能となる回路dに切り替えられる。つまり、電熱触媒9は活性化している状態ではあるが、バッテリ18も十分に充電されているので、モータ3の回生電力を直接電熱触媒9に供給し、発生した回生電力を無駄なく利用することで、車両減速運転の終了後(アクセルペダルが踏み込まれたとき)の電熱触媒9での排気成分浄化効率を一層向上させることができる。   When the motor 3 is in a regenerative operation, if the temperature of the electrothermal catalyst 9 is equal to or higher than a predetermined threshold A and the amount of charge (SOC) of the battery 18 is larger than the predetermined threshold B, the power supply circuit is shown in FIG. As shown, the circuit 3 is switched to a circuit d in which the regenerative power of the motor 3 can be supplied only to the electrothermal catalyst 9. That is, although the electrothermal catalyst 9 is in an activated state, the battery 18 is also sufficiently charged, so the regenerative power of the motor 3 is supplied directly to the electrothermal catalyst 9 and the generated regenerative power is used without waste. Thus, the exhaust component purification efficiency in the electrothermal catalyst 9 after the vehicle deceleration operation ends (when the accelerator pedal is depressed) can be further improved.

モータ3が回生運転している場合、電熱触媒9の温度が所定の閾値Aより低く、電熱触媒9の温度低下の変化率が所定の閾値C(所定変化率)以下であれば、前記電力供給回路は、図6に示すように、モータ3の回生電力が電熱触媒9とバッテリ18の双方に供給可能となる回路eに切り替えられる。バッテリ18の充填量が低下している場合には、モータ3の回生電力はバッテリ18にも供給され、バッテリ18を充電する。つまり、電熱触媒9にバッテリ18の電力は供給されないので、モータ3の回生運転中におけるバッテリ18の電圧低下を防止することができ、オルタネータ(図示せず)によるバッテリ18の充電を抑制することができるので、総じて燃費を向上させることができる。尚、電熱触媒9の所定時間(ΔTime)あたりの温度低下量がΔTempであれば、このときの電熱触媒9の温度低下の変化率は、ΔTemp/ΔTimeで表される。また、モータ3の回生運転時の回生電圧はバッテリ18の電圧よりも十分に大きいものとする。   If the temperature of the electrothermal catalyst 9 is lower than the predetermined threshold A and the rate of change in the temperature of the electrothermal catalyst 9 is less than or equal to a predetermined threshold C (predetermined rate of change) when the motor 3 is in regenerative operation, the power supply As shown in FIG. 6, the circuit is switched to a circuit e that allows regenerative power of the motor 3 to be supplied to both the electrothermal catalyst 9 and the battery 18. When the charging amount of the battery 18 is reduced, the regenerative power of the motor 3 is also supplied to the battery 18 to charge the battery 18. That is, since the electric power of the battery 18 is not supplied to the electrothermal catalyst 9, the voltage drop of the battery 18 during the regenerative operation of the motor 3 can be prevented, and the charging of the battery 18 by an alternator (not shown) can be suppressed. As a result, the overall fuel efficiency can be improved. If the temperature decrease amount per predetermined time (ΔTime) of the electrothermal catalyst 9 is ΔTemp, the change rate of the temperature decrease of the electrothermal catalyst 9 at this time is represented by ΔTemp / ΔTime. The regenerative voltage during the regenerative operation of the motor 3 is assumed to be sufficiently larger than the voltage of the battery 18.

モータ3が回生運転している場合、電熱触媒9の温度が所定の閾値Aより低く、電熱触媒9の温度低下の変化率が所定の閾値Cよりも大きく、バッテリ18の充電量(SOC)が所定の閾値Bよりも大きければ、前記電力供給回路は、図7に示すように、モータ3とバッテリ18とが直列に接続され、モータ3の回生電力とバッテリ18の電力の双方が電熱触媒9に供給可能な回路fに切り替えられる。つまり、電熱触媒9の温度が閾値Aよりも低くなったときに、温度低下率が大きく、かつバッテリ18が充電量が十分にある場合には、モータ3の回生電力とバッテリ18の電力の双方を電熱触媒9に供給することで、電熱触媒9を可及的速やかに暖機することができる。   When the motor 3 is in a regenerative operation, the temperature of the electrothermal catalyst 9 is lower than a predetermined threshold A, the rate of change in temperature drop of the electrothermal catalyst 9 is higher than a predetermined threshold C, and the charge amount (SOC) of the battery 18 is If it is larger than the predetermined threshold B, the electric power supply circuit has the motor 3 and the battery 18 connected in series, as shown in FIG. 7, and both the regenerative electric power of the motor 3 and the electric power of the battery 18 are electrothermal catalyst 9. The circuit f can be switched to That is, when the temperature of the electrothermal catalyst 9 becomes lower than the threshold value A, if the rate of temperature decrease is large and the battery 18 has a sufficient amount of charge, both the regenerative power of the motor 3 and the power of the battery 18 Is supplied to the electrothermal catalyst 9, so that the electrothermal catalyst 9 can be warmed up as quickly as possible.

モータ3が回生運転している場合、電熱触媒9の温度が所定の閾値Aより低く、電熱触媒9の温度低下の変化率が所定の閾値Cよりも大きく、バッテリ18の充電量(SOC)が所定の閾値B以下であれば、前記電力供給回路は、図6に示すように、モータ3の回生電力が電熱触媒9とバッテリ18の双方に供給可能となる回路eに切り替えられる。つまり、電熱触媒9を活性化させるタイミングで、バッテリ18の充電量が低下している場合には、モータ3の回生電力を電熱触媒9及びバッテリ18の双方に供給する。つまり、電熱触媒9にバッテリ18の電力は供給されないので、モータ3の回生運転中におけるバッテリ18の電圧低下を防止することができ、オルタネータ(図示せず)によるバッテリ18の充電を抑制することができるので、総じて燃費を向上させることができる。   When the motor 3 is in a regenerative operation, the temperature of the electrothermal catalyst 9 is lower than a predetermined threshold A, the rate of change in temperature drop of the electrothermal catalyst 9 is higher than a predetermined threshold C, and the charge amount (SOC) of the battery 18 is If it is less than or equal to the predetermined threshold value B, the power supply circuit is switched to a circuit e that allows regenerative power of the motor 3 to be supplied to both the electrothermal catalyst 9 and the battery 18, as shown in FIG. That is, when the charge amount of the battery 18 is reduced at the timing when the electrothermal catalyst 9 is activated, the regenerative power of the motor 3 is supplied to both the electrothermal catalyst 9 and the battery 18. That is, since the electric power of the battery 18 is not supplied to the electrothermal catalyst 9, the voltage drop of the battery 18 during the regenerative operation of the motor 3 can be prevented, and the charging of the battery 18 by an alternator (not shown) can be suppressed. As a result, the overall fuel efficiency can be improved.

図8は、車両減速時における電力供給回路の切り替え制御の流れを示すフローチャートである。   FIG. 8 is a flowchart showing the flow of switching control of the power supply circuit during vehicle deceleration.

S1では、電熱触媒9の温度が閾値Aよりも低いか否かを判定し、電熱触媒9の温度が閾値Aより低い場合にはS2へ進み、電熱触媒9の温度が閾値A以上の場合にはS8へ進む。   In S1, it is determined whether or not the temperature of the electrothermal catalyst 9 is lower than the threshold A. If the temperature of the electrothermal catalyst 9 is lower than the threshold A, the process proceeds to S2, and if the temperature of the electrothermal catalyst 9 is equal to or higher than the threshold A. Advances to S8.

S2では、電熱触媒9の温度低下の変化率(ΔTemp/ΔTime)が、閾値Cよりも大きいか否かを判定し、変化率(ΔTemp/ΔTime)が閾値Cよりも大きければS3へ進み、変化率(ΔTemp/ΔTime)が閾値C以下であればS6へ進み。   In S2, it is determined whether or not the rate of change in temperature decrease (ΔTemp / ΔTime) of the electrothermal catalyst 9 is larger than the threshold value C. If the rate of change (ΔTemp / ΔTime) is larger than the threshold value C, the process proceeds to S3 and changes. If the rate (ΔTemp / ΔTime) is equal to or less than the threshold value C, the process proceeds to S6.

S3では、バッテリ18の充電量(SOC)が閾値Bよりも大きいか否かを判定し、バッテリ18の充電量(SOC)が閾値Bよりも大きければS4へ進み、バッテリ18の充電量(SOC)が閾値B以下であればS5へ進む。   In S3, it is determined whether or not the charge amount (SOC) of the battery 18 is larger than the threshold value B. If the charge amount (SOC) of the battery 18 is larger than the threshold value B, the process proceeds to S4 and the charge amount (SOC) of the battery 18 is increased. ) Is less than or equal to the threshold B, the process proceeds to S5.

S4では、前記電力供給回路が回路fに切り替えられ、電熱触媒9に電力が供給され(S7)、S11へ進む。S5及びS6では、前記電力供給回路が回路eに切り替えられ、電熱触媒9に電力が供給される(S7)、S11へ進む。   In S4, the power supply circuit is switched to the circuit f, power is supplied to the electrothermal catalyst 9 (S7), and the process proceeds to S11. In S5 and S6, the power supply circuit is switched to the circuit e, and power is supplied to the electrothermal catalyst 9 (S7), and the process proceeds to S11.

S8では、バッテリ18の充電量(SOC)が閾値Bよりも大きいか否かを判定し、バッテリ18の充電量(SOC)が閾値Bよりも大きければS9へ進み、バッテリ18の充電量(SOC)が閾値B以下であればS10へ進む。   In S8, it is determined whether or not the charge amount (SOC) of the battery 18 is larger than the threshold value B. If the charge amount (SOC) of the battery 18 is larger than the threshold value B, the process proceeds to S9, and the charge amount (SOC) of the battery 18 is determined. ) Is less than or equal to the threshold B, the process proceeds to S10.

S9では、前記電力供給回路が回路dに切り替えられ、電熱触媒9に電力が供給され(S7)、S11へ進む。S10では、前記電力供給回路が回路cに切り替えられ、S11へ進む。   In S9, the power supply circuit is switched to the circuit d, power is supplied to the electrothermal catalyst 9 (S7), and the process proceeds to S11. In S10, the power supply circuit is switched to the circuit c, and the process proceeds to S11.

S11では、モータ3の回生運転が終了したか否かを判定し、回生運転が終了(回生OFF)する場合には、車両減速時における電力供給回路の切り替え制御を終了し、回生運転が終了(回生OFF)しない場合には、S1へ戻り、車両減速時における前記電力供給回路の切り替え制御を継続する。   In S11, it is determined whether or not the regenerative operation of the motor 3 is finished. When the regenerative operation is finished (regeneration OFF), the switching control of the power supply circuit at the time of vehicle deceleration is finished, and the regenerative operation is finished ( If not (regeneration OFF), the process returns to S1, and the switching control of the power supply circuit at the time of vehicle deceleration is continued.

図9は、車両減速時における各種パラメータの変化の一例を示したタイミングチャートである。車両運転中に、アクセル開度が0となりフューエルカットが実施されたモータ3の回生運転中に、電熱触媒9の温度が閾値Aよりも低くなると、電熱触媒9の温度低下の変化率(ΔTemp/ΔTime)等に応じて、前記電力供給回路が回路dあるいは回路eに切り替えられる。   FIG. 9 is a timing chart showing an example of changes in various parameters during vehicle deceleration. If the temperature of the electrothermal catalyst 9 becomes lower than the threshold value A during the regenerative operation of the motor 3 in which the accelerator opening is 0 and the fuel cut is performed during vehicle operation, the rate of change in the temperature decrease of the electrothermal catalyst 9 (ΔTemp / The power supply circuit is switched to the circuit d or the circuit e according to ΔTime) or the like.

バッテリ18の電力を使って電熱触媒9を暖機させると、電熱触媒9に供給した電力に応じてバッテリ18の電圧が低下することなり、モータ3が回生運転を行っていない場合には、オルタネータ(図示せず)で発電してバッテリ18を充電しなければならい。   When the electrothermal catalyst 9 is warmed up using the electric power of the battery 18, the voltage of the battery 18 is lowered according to the electric power supplied to the electrothermal catalyst 9. When the motor 3 is not performing a regenerative operation, the alternator The battery 18 must be charged by generating electricity (not shown).

しかしながら、上述した本実施形態においては、減速時に電熱触媒9の暖機する際には、減速時に発生したエネルギーを積極的に使用して、電熱触媒9の温度低下を防止しているので、電熱触媒9の暖機に用いられるバッテリ18からの電力供給量を相対的に減少させることでき、バッテリ18を充電するためのオルタネータ(図示せず)での発電量を減少させることできるので、総じて燃費の向上を図ることができる。   However, in the above-described embodiment, when the electrothermal catalyst 9 is warmed up during deceleration, the energy generated during deceleration is actively used to prevent the temperature of the electrothermal catalyst 9 from decreasing. The amount of power supplied from the battery 18 used for warming up the catalyst 9 can be relatively reduced, and the amount of power generated by an alternator (not shown) for charging the battery 18 can be reduced. Can be improved.

また、車両減速時には、減速時の回生電力とバッテリ18の電力の双方を利用して電熱触媒9を暖機することが可能となるので、車両減速時に電熱触媒9の温度が大きく低下するような場合であっても、電熱触媒9を早期に活性化させることができる。   Further, when the vehicle decelerates, it becomes possible to warm up the electrothermal catalyst 9 using both the regenerative power during deceleration and the power of the battery 18, so that the temperature of the electrothermal catalyst 9 greatly decreases during vehicle deceleration. Even in this case, the electrothermal catalyst 9 can be activated early.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) エンジンとモータからなる駆動源を備え、前記エンジンに接続された排気通路に配置された電熱触媒と、前記電熱触媒に電力を供給可能なバッテリと、を有するハイブリッド車両の制御装置において、車両減速時に前記電熱触媒を暖機する際には、少なくとも前記モータの回生電力を前記電熱触媒に供給する。   (1) In a control device for a hybrid vehicle comprising a drive source including an engine and a motor, and having an electrothermal catalyst disposed in an exhaust passage connected to the engine, and a battery capable of supplying electric power to the electrothermal catalyst, When warming up the electrothermal catalyst during vehicle deceleration, at least regenerative power of the motor is supplied to the electrothermal catalyst.

バッテリの電力を使って電熱触媒を暖機させると、電熱触媒に供給した電力に応じてバッテリの電圧が低下することなり、オルタネータで発電してバッテリを充電しなければならい。しかしながら、減速時に電熱触媒の暖機する際には、減速時に発生したエネルギーを積極的に使用して、電熱触媒の温度低下を防止しているので、電熱触媒の暖機に用いられるバッテリからの電力供給量を相対的に減少させることでき、バッテリを充電するためのオルタネータでの発電量を減少させることできるので、総じて燃費の向上を図ることができる。   When the electrothermal catalyst is warmed up using the electric power of the battery, the voltage of the battery decreases according to the electric power supplied to the electrothermal catalyst, and the battery must be charged by generating electricity with an alternator. However, when the electrothermal catalyst warms up during deceleration, the energy generated during deceleration is actively used to prevent the temperature of the electrothermal catalyst from decreasing. Since the amount of power supply can be relatively reduced and the amount of power generated by the alternator for charging the battery can be reduced, fuel efficiency can be improved as a whole.

また、車両減速時には、減速時の回生電力とバッテリの電力の双方を利用して電熱触媒を暖機することが可能となるので、電熱触媒の温度が大きく低下しても、電熱触媒を早期に活性化させることができる。   In addition, when the vehicle decelerates, it is possible to warm up the electrothermal catalyst using both the regenerative power during deceleration and the battery power. Can be activated.

(2) 前記(1)に記載のハイブリッド車両の制御装置において、前記電熱触媒の温度を検知する電熱触媒温度検知手段を有し、前記バッテリは、前記電熱触媒に電力を供給可能であるとともに、前記モータで発電された回生電力を充電可能で、かつ前記モータに電力を供給可能なものであって、車両減速時に、前記電熱触媒の温度が所定温度以上で、前記バッテリの充電量が所定値よりも大きい場合には、前記モータの全ての回生電力を前記電熱触媒に供給して、前記電熱触媒を暖機する。これによって、発生した回生電力を無駄なく利用することができる。   (2) In the hybrid vehicle control device according to (1), the hybrid vehicle has an electrothermal catalyst temperature detecting means for detecting the temperature of the electrothermal catalyst, and the battery can supply electric power to the electrothermal catalyst. The regenerative electric power generated by the motor can be charged and the electric power can be supplied to the motor. When the vehicle is decelerated, the temperature of the electrothermal catalyst is equal to or higher than a predetermined temperature, and the charge amount of the battery is a predetermined value. If greater than, all the regenerative power of the motor is supplied to the electrothermal catalyst to warm up the electrothermal catalyst. As a result, the generated regenerative power can be used without waste.

(3) 前記(2)に記載のハイブリッド車両の制御装置において、車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率以下の場合には、前記モータの回生電力のみを前記電熱触媒に供給して、前記電熱触媒を暖機する。これによって、電熱触媒にバッテリの電力は供給されないので、バッテリの電圧低下を防止することができ、総じて燃費を向上させることができる。   (3) In the hybrid vehicle control apparatus according to (2), when the temperature of the electrothermal catalyst is lower than a predetermined temperature and the rate of change in temperature of the electrothermal catalyst is equal to or less than a predetermined rate when the vehicle decelerates. Only the regenerative electric power of the motor is supplied to the electrothermal catalyst to warm up the electrothermal catalyst. Thereby, since the electric power of a battery is not supplied to an electrothermal catalyst, the voltage drop of a battery can be prevented and a fuel consumption can be improved generally.

(4) 前記(2)または(3)に記載のハイブリッド車両の制御装置において、車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率より大きく、前記バッテリの充電量が所定値以下の場合には、前記モータの回生電力のみを前記電熱触媒に供給して、前記電熱触媒を暖機する。これによって、電熱触媒にバッテリの電力は供給されないので、バッテリの電圧低下を防止することができ、総じて燃費を向上させることができる。   (4) In the hybrid vehicle control device according to (2) or (3), when the vehicle decelerates, the temperature of the electrothermal catalyst is lower than a predetermined temperature, and the rate of change in temperature decrease of the electrothermal catalyst is higher than the predetermined rate of change. When the charge amount of the battery is large or less than a predetermined value, only the regenerative power of the motor is supplied to the electrothermal catalyst to warm up the electrothermal catalyst. Thereby, since the electric power of a battery is not supplied to an electrothermal catalyst, the voltage drop of a battery can be prevented and a fuel consumption can be improved generally.

(5) 前記(2)から(4)のいずれかに記載のハイブリッド車両の制御装置において、車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率より大きく、前記バッテリの充電量が所定値よりも大きい場合には、前記モータの回生電力と前記バッテリの電力の双方を前記電熱触媒に供給して、前記電熱触媒を暖機する。これによって、電熱触媒に回生電力及びバッテリの電力の双方が供給されるので、電熱触媒を速やかに暖機させることができる。   (5) In the hybrid vehicle control device according to any one of (2) to (4), when the vehicle decelerates, the temperature of the electrothermal catalyst is lower than a predetermined temperature, and the rate of change in temperature decrease of the electrothermal catalyst is predetermined. If the rate of change is greater than the rate of charge and the amount of charge of the battery is greater than a predetermined value, both the regenerative power of the motor and the power of the battery are supplied to the electrothermal catalyst to warm up the electrothermal catalyst. As a result, since both the regenerative power and the battery power are supplied to the electrothermal catalyst, the electrothermal catalyst can be quickly warmed up.

(6) 前記(1)〜(5)のいずれかに記載のハイブリッド車両の制御装置において、前記エンジンは車両のフロントに搭載され、前記排気通路は車両のフロントからリアに向かって配置されるものであって、前記電熱触媒は前記エンジンよりも車両後方で車両の床下に配置されている。つまり、エンジンの燃焼室から電熱触媒までの管路長が長く、電熱触媒を活性化状態に維持するのには、相応のエネルギーが必要な構成となっているため、電熱触媒の暖機する際に、モータの回生電力をより有効に活用することができる。   (6) In the hybrid vehicle control device according to any one of (1) to (5), the engine is mounted on the front of the vehicle, and the exhaust passage is disposed from the front of the vehicle toward the rear. And the said electrothermal catalyst is arrange | positioned under the vehicle floor in the vehicle back rather than the said engine. In other words, the length of the pipe line from the combustion chamber of the engine to the electrothermal catalyst is long, and it has a structure that requires appropriate energy to maintain the electrothermal catalyst in an activated state. In addition, the regenerative power of the motor can be utilized more effectively.

本発明が適用されたハイブリッド車両の制御装置を模式的に示した説明図。The explanatory view showing typically the control device of the hybrid vehicle to which the present invention was applied. 電力供給回路の切り替え例の一つである回路aを模式的に示した説明図。The explanatory view showing typically circuit a which is one of the examples of switching of a power supply circuit. 電力供給回路の切り替え例の一つである回路bを模式的に示した説明図。The explanatory view showing typically circuit b which is one of the examples of switching of a power supply circuit. 電力供給回路の切り替え例の一つである回路cを模式的に示した説明図。The explanatory view showing typically circuit c which is one of the examples of switching of a power supply circuit. 電力供給回路の切り替え例の一つである回路dを模式的に示した説明図。The explanatory view showing typically circuit d which is one of the examples of switching of a power supply circuit. 電力供給回路の切り替え例の一つである回路eを模式的に示した説明図。The explanatory view showing typically circuit e which is one of the examples of switching of a power supply circuit. 電力供給回路の切り替え例の一つである回路fを模式的に示した説明図。The explanatory view showing typically circuit f which is one of the examples of switching of a power supply circuit. 車両減速時における電力供給回路の切り替え制御の流れを示すフローチャート。The flowchart which shows the flow of switching control of the electric power supply circuit at the time of vehicle deceleration. 車両減速時における各種パラメータの変化の一例を示したタイミングチャート。The timing chart which showed an example of the change of the various parameters at the time of vehicle deceleration.

符号の説明Explanation of symbols

1…エンジン
3…モータ
5…排気マニホールド
6…排気通路
7…第1触媒
8…第2触媒
9…電熱触媒
18…バッテリ
DESCRIPTION OF SYMBOLS 1 ... Engine 3 ... Motor 5 ... Exhaust manifold 6 ... Exhaust passage 7 ... 1st catalyst 8 ... 2nd catalyst 9 ... Electrothermal catalyst 18 ... Battery

Claims (5)

エンジンとモータからなる駆動源を備え、前記エンジンに接続された排気通路に配置された電熱触媒と、前記電熱触媒に電力を供給可能なバッテリと、を有するハイブリッド車両の制御装置において、
前記電熱触媒の温度を検知する電熱触媒温度検知手段を有し、前記バッテリは、前記電熱触媒に電力を供給可能であるとともに、前記モータで発電された回生電力を充電可能で、かつ前記モータに電力を供給可能なものであり、
車両減速時に前記電熱触媒を暖機する際には、少なくとも前記モータの回生電力を前記電熱触媒に供給するものであって、
前記バッテリの電力が前記電熱触媒に供給されるのは、車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率より大きく、前記バッテリの充電量が所定値よりも大きい場合のみであり、車両減速時に、前記電熱触媒の温度が前記所定温度より低く、前記電熱触媒の温度低下の変化率が前記所定変化率以下の場合には、前記バッテリの電力を前記電熱触媒に供給しないことを特徴とするハイブリッド車両の制御装置。
In a control apparatus for a hybrid vehicle comprising a drive source comprising an engine and a motor, and having an electrothermal catalyst disposed in an exhaust passage connected to the engine, and a battery capable of supplying electric power to the electrothermal catalyst,
The battery has an electrothermal catalyst temperature detecting means for detecting the temperature of the electrothermal catalyst, the battery can supply electric power to the electrothermal catalyst, can be charged with regenerative electric power generated by the motor, and is supplied to the motor. It can supply power,
When warming up the electrothermal catalyst during vehicle deceleration, at least supplying regenerative power of the motor to the electrothermal catalyst,
The electric power of the battery is supplied to the electrothermal catalyst when the vehicle is decelerated, the temperature of the electrothermal catalyst is lower than a predetermined temperature, the rate of change in temperature decrease of the electrothermal catalyst is greater than the predetermined rate of change, and the battery is charged. Ri der only when the amount is larger than a predetermined value, when the vehicle decelerates, the electric heating temperature of the catalyst is lower than the predetermined temperature, when the change rate of the temperature drop of the electric heating catalyst is less than the predetermined rate of change, the A control apparatus for a hybrid vehicle, wherein power of a battery is not supplied to the electrothermal catalyst .
両減速時に、前記電熱触媒の温度が所定温度以上で、前記バッテリの充電量が所定値よりも大きい場合には、前記モータの全ての回生電力を前記電熱触媒に供給して、前記電熱触媒を暖機することを特徴とする請求項1に記載のハイブリッド車両の制御装置。 When the car both deceleration, the temperature of the heating catalyst is higher than a predetermined temperature, when the amount of charge of the battery is greater than a predetermined value, and supplies all the regenerated electric power of the motor to the electrical heating catalyst, said electric heating catalyst The hybrid vehicle control device according to claim 1, wherein the vehicle is warmed up. 車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率以下の場合には、前記モータの回生電力を前記電熱触媒に供給して、前記電熱触媒を暖機することを特徴とする請求項1または2に記載のハイブリッド車両の制御装置。 When the vehicle is decelerated, if the temperature of the electrothermal catalyst is lower than a predetermined temperature and the rate of change in temperature decrease of the electrothermal catalyst is less than or equal to a predetermined rate of change, regenerative power of the motor is supplied to the electrothermal catalyst, The control device for a hybrid vehicle according to claim 1 or 2, wherein the catalyst is warmed up. 車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率より大きく、前記バッテリの充電量が所定値以下の場合には、前記モータの回生電力のみを前記電熱触媒に供給して、前記電熱触媒を暖機することを特徴とする請求項1〜3のいずれかに記載のハイブリッド車両の制御装置。 When the vehicle is decelerated, if the temperature of the electrothermal catalyst is lower than a predetermined temperature, the rate of change in temperature decrease of the electrothermal catalyst is greater than a predetermined rate of change, and the amount of charge of the battery is less than or equal to a predetermined value, the regenerative power of the motor only then supplied to the electric heating catalyst control apparatus for a hybrid vehicle according to claim 1, characterized in that the warm-up of the electric heating catalyst. 車両減速時に、前記電熱触媒の温度が所定温度より低く、前記電熱触媒の温度低下の変化率が所定変化率より大きく、前記バッテリの充電量が所定値よりも大きい場合には、前記モータの回生電力と前記バッテリの電力の双方を前記電熱触媒に供給して、前記電熱触媒を暖機することを特徴とする請求項〜4のいずれかに記載のハイブリッド車両の制御装置。 When the vehicle is decelerated, if the temperature of the electrothermal catalyst is lower than a predetermined temperature, the rate of change in temperature decrease of the electrothermal catalyst is greater than a predetermined rate of change, and the amount of charge of the battery is greater than a predetermined value, the regeneration of the motor The hybrid vehicle control device according to any one of claims 1 to 4, wherein both the electric power and the electric power of the battery are supplied to the electrothermal catalyst to warm up the electrothermal catalyst.
JP2008060370A 2008-03-11 2008-03-11 Control device for hybrid vehicle Active JP5309624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060370A JP5309624B2 (en) 2008-03-11 2008-03-11 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060370A JP5309624B2 (en) 2008-03-11 2008-03-11 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2009214703A JP2009214703A (en) 2009-09-24
JP5309624B2 true JP5309624B2 (en) 2013-10-09

Family

ID=41187049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060370A Active JP5309624B2 (en) 2008-03-11 2008-03-11 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5309624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850472B1 (en) * 2018-01-29 2018-04-19 주식회사 경신 Device and method for controlling smart power of the vehicle
KR20180045869A (en) * 2018-01-29 2018-05-04 주식회사 경신 Device and method for controlling smart power of the vehicle
US11745617B2 (en) 2021-04-26 2023-09-05 Ford Global Technologies, Llc Managing a battery's state of charge using an eCAT for a hybrid vehicle

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111103A1 (en) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 Vehicle and method for controlling vehicle
US8919100B2 (en) * 2011-06-06 2014-12-30 GM Global Technology Operations LLC Method of using a regenerative brake system for heating a motor vehicle catalytic converter and powering other electrical accessories
CN103946093B (en) 2011-11-24 2016-08-24 丰田自动车株式会社 Vehicle and the control method of vehicle
JP5962486B2 (en) * 2012-12-17 2016-08-03 マツダ株式会社 Engine exhaust purification control system
JP6186860B2 (en) * 2013-05-07 2017-08-30 いすゞ自動車株式会社 Hybrid engine and control method thereof
JP6160213B2 (en) * 2013-05-07 2017-07-12 いすゞ自動車株式会社 Hybrid engine and control method thereof
KR101491297B1 (en) * 2013-08-13 2015-02-06 현대자동차주식회사 EHC Heater Control Method
US10557392B2 (en) 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
US10590818B2 (en) 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith
US9657622B2 (en) * 2013-09-18 2017-05-23 Advanced Technology Emission Solutions Inc. Catalytic converter system with control and methods for use therewith
US10590819B2 (en) 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
US10450915B2 (en) * 2013-09-18 2019-10-22 Advanced Technology Emission Solutions Inc. Emission control system with induction heating and methods for use therewith
JP6468877B2 (en) * 2015-02-20 2019-02-13 日本特殊陶業株式会社 Heat storage body arranged in an exhaust pipe of an internal combustion engine, control device for the heat storage body, and control method for the heat storage body
JP6699766B2 (en) * 2019-01-29 2020-05-27 トヨタ自動車株式会社 Hybrid vehicle
DE102019215530A1 (en) * 2019-10-10 2021-04-15 Vitesco Technologies GmbH System and method for operating a powertrain

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827568B2 (en) * 1991-04-30 1998-11-25 トヨタ自動車株式会社 Hybrid vehicle drive system
JP2914061B2 (en) * 1992-12-07 1999-06-28 日産自動車株式会社 Hybrid car
JPH0771236A (en) * 1993-09-02 1995-03-14 Mitsubishi Motors Corp Electric vehicle with electrically heated catalytic converter
JPH10288028A (en) * 1997-04-11 1998-10-27 Toyota Motor Corp Operation control device for hybrid vehicle
JP3867521B2 (en) * 2000-09-05 2007-01-10 トヨタ自動車株式会社 Electric oil pump control device
JP2005282527A (en) * 2004-03-30 2005-10-13 Mitsubishi Fuso Truck & Bus Corp Hybrid electric car

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850472B1 (en) * 2018-01-29 2018-04-19 주식회사 경신 Device and method for controlling smart power of the vehicle
KR20180045869A (en) * 2018-01-29 2018-05-04 주식회사 경신 Device and method for controlling smart power of the vehicle
US11745617B2 (en) 2021-04-26 2023-09-05 Ford Global Technologies, Llc Managing a battery's state of charge using an eCAT for a hybrid vehicle
US12157395B2 (en) 2021-04-26 2024-12-03 Ford Global Technologies, Llc Managing a battery's state of charge using an eCAT for a hybrid vehicle

Also Published As

Publication number Publication date
JP2009214703A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5309624B2 (en) Control device for hybrid vehicle
JP5093293B2 (en) Vehicle control device
JP7020496B2 (en) Hybrid vehicle catalyst warm-up control method and hybrid vehicle catalyst warm-up control device
US9127582B2 (en) Control apparatus for hybrid vehicle
US10946854B2 (en) Control device of hybrid vehicle
US8437898B2 (en) Vehicle control apparatus and vehicle control method
JP5553019B2 (en) Internal combustion engine start control device for hybrid vehicle
JP5621492B2 (en) Control device for hybrid vehicle
JP5206819B2 (en) Vehicle and vehicle control method
JP6767673B2 (en) Hybrid vehicle control device
JP2004100680A (en) Engine control system and control method of hybrid electric vehicle
WO2019088187A1 (en) Control device and control method for vehicle exhaust purification system
JP6725880B2 (en) Control device for hybrid vehicle
JP3705361B2 (en) Control device for hybrid vehicle
JPH06178401A (en) Hybrid automobile
JP3376902B2 (en) Internal combustion engine control device for hybrid vehicle
JP2007246009A (en) Controller for hybrid electric car
JP5884709B2 (en) Control device for hybrid vehicle
JP6649605B2 (en) Vehicle regenerative control device
JP2011162040A (en) Control device for hybrid vehicle
JP2014218947A (en) Catalyst warmup control device of vehicle
JP2001103612A (en) Fan controller of hybrid vehicle
JP4195018B2 (en) Control device for hybrid vehicle
JP6217616B2 (en) Automatic engine stop control device
JP7416230B2 (en) Hybrid vehicle control method and hybrid vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5309624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150