[go: up one dir, main page]

JP5293879B2 - Exhaust device for internal combustion engine - Google Patents

Exhaust device for internal combustion engine Download PDF

Info

Publication number
JP5293879B2
JP5293879B2 JP2012504243A JP2012504243A JP5293879B2 JP 5293879 B2 JP5293879 B2 JP 5293879B2 JP 2012504243 A JP2012504243 A JP 2012504243A JP 2012504243 A JP2012504243 A JP 2012504243A JP 5293879 B2 JP5293879 B2 JP 5293879B2
Authority
JP
Japan
Prior art keywords
catalyst
ecu
engine
concentration
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012504243A
Other languages
Japanese (ja)
Other versions
JPWO2011111217A1 (en
Inventor
祥尚 篠田
幸一 星
啓介 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011111217A1 publication Critical patent/JPWO2011111217A1/en
Application granted granted Critical
Publication of JP5293879B2 publication Critical patent/JP5293879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/018Natural gas engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/103Natural gas, e.g. methane or LNG used as a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Silencers (AREA)

Description

本発明は、内燃機関(エンジン)の排気を浄化する技術に関する。   The present invention relates to a technology for purifying exhaust gas from an internal combustion engine (engine).

従来から、天然ガスを水蒸気と共に触媒の存在で改質させる技術が存在する。例えば、特許文献1には、メタン(CH)と水蒸気(HO)とを反応させ、一酸化炭素(CO)と水素(H)とからなる改質燃料に変換する技術が開示されている。また、特許文献2には、エンジン始動時に、エンジンの温度が所定の閾値より低い場合には、気体燃料をエンジンに供給する技術が開示されている。Conventionally, there is a technique for reforming natural gas together with water vapor in the presence of a catalyst. For example, Patent Document 1 discloses a technique for reacting methane (CH 4 ) with water vapor (H 2 O) and converting it into a reformed fuel composed of carbon monoxide (CO) and hydrogen (H 2 ). ing. Patent Document 2 discloses a technique for supplying gaseous fuel to an engine when the temperature of the engine is lower than a predetermined threshold when the engine is started.

特開2005−030243号公報JP-A-2005-030243 特開2008−169704号公報JP 2008-169704 A

特許文献1の技術によれば、CHを改質燃料へ変換することができる。しかしながら、特許文献1の場合、水蒸気を別途供給する必要がある。また、特許文献1には、CHを改質してエミッションを低減させる点については、何ら開示及び示唆がない。According to the technique of Patent Document 1, CH 4 can be converted into reformed fuel. However, in the case of Patent Document 1, it is necessary to supply water vapor separately. In Patent Document 1, the point of reducing the emissions by reforming CH 4, it is not any disclosure and suggestion.

本発明は、上記のような課題を解決するためになされたものであり、CHを改質してエミッションを低減させることが可能な内燃機関の排気装置を提供することを目的とする。The present invention has been made to solve the above problems, and an object thereof is to provide an exhaust device for an internal combustion engine capable of reducing the emissions by reforming CH 4.

本発明の1つの観点では、内燃機関の排気装置は、CNGを含む複数種類の燃料を切り替えて運転可能なエンジンと、前記エンジンに連通する排気通路と、前記排気通路上に設けられ、CH4を改質して還元剤を生じさせる改質触媒と、前記改質触媒の下流側の前記排気通路上に設けられ、前記還元剤によりNOxを浄化するNOx浄化触媒と、前記改質触媒の温度が所定値以上の場合、CNGを前記エンジンに供給する制御手段と、を備える。
In one aspect of the present invention, an exhaust system for an internal combustion engine includes an engine that can be operated by switching a plurality of types of fuel including CNG, an exhaust passage that communicates with the engine, and an exhaust passage provided on the exhaust passage. A reforming catalyst for reforming to produce a reducing agent; a NOx purification catalyst for purifying NOx by the reducing agent provided on the exhaust passage downstream of the reforming catalyst; and a temperature of the reforming catalyst. And control means for supplying CNG to the engine when the value is equal to or greater than a predetermined value .

上記の内燃機関の排気装置は、車両に搭載され、排気通路と、改質触媒と、NOx浄化触媒と、を備える。排気通路は、エンジンに連通する。改質触媒は、NOx浄化触媒より上流の排気通路上に設けられ、CHを改質して還元剤を生じさせる。NOx浄化触媒は、改質触媒により生成された還元剤によりNOxを浄化する。このように、内燃機関の排気装置は、排気ガス中のCHを低減すると共に、CHを改質して生成した還元剤によりNOxを低減する。従って、内燃機関の排気装置は、エミッションを低減させることができる。The internal combustion engine exhaust device is mounted on a vehicle and includes an exhaust passage, a reforming catalyst, and a NOx purification catalyst. The exhaust passage communicates with the engine. The reforming catalyst is provided on the exhaust passage upstream of the NOx purification catalyst, and reforms CH 4 to generate a reducing agent. The NOx purification catalyst purifies NOx with a reducing agent generated by the reforming catalyst. As described above, the exhaust device of the internal combustion engine reduces CH 4 in the exhaust gas and reduces NOx by the reducing agent generated by reforming CH 4 . Therefore, the exhaust device of the internal combustion engine can reduce emissions.

また、前記エンジンは、燃料としてCNG(Compressed Natural Gas)を使用する。一般に、CNGを燃料とした場合、二酸化炭素(CO2)や黒煙などの排出量が少ない。一方で、この場合、CH4の排出量が比較的多くなる。従って、この態様では、内燃機関の排気装置は、エンジンから排出されたCH4に基づき還元剤を生成してNOxを浄化することができるため、他の燃料よりエミッションを低減させることができる。
The engine uses CNG (Compressed Natural Gas) as fuel. In general, when CNG is used as a fuel, the emission amount of carbon dioxide (CO2), black smoke, and the like is small. On the other hand, in this case, the amount of CH4 discharged is relatively large. Therefore, in this aspect, the exhaust device of the internal combustion engine can generate a reducing agent based on CH4 discharged from the engine to purify NOx, and therefore can reduce emissions compared to other fuels.

さらに、前記エンジンは、CNGを含む複数種類の燃料を切り替えて運転可能であり、前記改質触媒の温度が所定値以上の場合、CNGを前記エンジンに供給する制御手段をさらに備える。この態様では、内燃機関の排気装置は、制御手段をさらに備える。また、エンジンは、CNGを含む複数種類の燃料を切り替えて運転可能なバイフューエルエンジンである。制御手段は、例えばECU(Electronic Control Unit)であり、改質触媒の温度が所定値以上の場合、CNGをエンジンに供給する。一般に、改質触媒の温度が低い場合には、改質触媒によりCH4を改質させる変換率が低くなる。従って、この態様では、内燃機関の排気装置は、CH4の改質が可能な場合に限定してCNG運転を行うことで、エミッションを低減させることができる。 Further, the engine can be operated by switching a plurality of types of fuel including CNG, and further includes control means for supplying CNG to the engine when the temperature of the reforming catalyst is equal to or higher than a predetermined value. In this aspect, the exhaust device for the internal combustion engine further includes control means. The engine is a bi-fuel engine that can be operated by switching a plurality of types of fuel including CNG. The control means is, for example, an ECU (Electronic Control Unit), and supplies CNG to the engine when the temperature of the reforming catalyst is equal to or higher than a predetermined value. Generally, when the temperature of the reforming catalyst is low, the conversion rate for reforming CH4 by the reforming catalyst becomes low. Therefore, in this aspect, the exhaust device of the internal combustion engine can reduce emissions by performing the CNG operation only when CH4 can be reformed.

上記の内燃機関の排気装置の他の一態様では、前記改質触媒は、CH及びHOを改質して前記還元剤を生成し、前記所定値は、前記エンジンから排気されるガスのCH濃度及びHO濃度に基づき決定される。この態様では、改質触媒は、CH及びHOを改質する。一方、エンジンから供給される排気ガス中のCH濃度及びHO濃度によって、CH及びHOを改質する変換率の目標値が異なる。従って、この態様では、内燃機関の排気装置は、CH濃度及びHO濃度に基づき上述の所定値を決定することで、CNGを使用した運転領域を拡大することができ、エミッションを低減させることができる。In another aspect of the exhaust system for an internal combustion engine, the reforming catalyst reforms CH 4 and H 2 O to generate the reducing agent, and the predetermined value is a gas exhausted from the engine Of CH 4 and H 2 O. In this embodiment, the reforming catalyst reforms CH 4 and H 2 O. On the other hand, the target value of the conversion rate for reforming CH 4 and H 2 O differs depending on the CH 4 concentration and H 2 O concentration in the exhaust gas supplied from the engine. Therefore, in this aspect, the exhaust system of the internal combustion engine can expand the operating range using CNG by determining the above-described predetermined values based on the CH 4 concentration and the H 2 O concentration, thereby reducing emissions. be able to.

上記の内燃機関の排気装置の他の一態様では、前記改質触媒は、CH及びHOを改質して前記還元剤を生成し、前記制御手段は、CNGを前記エンジンに供給する場合、CNGより排気に含まれるCH濃度に対するHO濃度の割合が高い燃料を、前記エンジンに追加供給して燃焼させる。ここで、「CNGより排気に含まれるCH濃度に対するHO濃度の割合が高い燃料」とは、例えばエタノールを含有した燃料が該当する。このように、内燃機関の排気装置は、エンジンによる燃焼後のHOの割合が高い燃料を、CNGの使用時に追加供給することで、改質触媒に供給される水蒸気を増加させ、改質触媒での改質反応を促進することができる。従って、内燃機関の排気装置は、排気ガス中のCHの浄化率を向上させることができる。In another aspect of the exhaust system for an internal combustion engine, the reforming catalyst reforms CH 4 and H 2 O to generate the reducing agent, and the control means supplies CNG to the engine. In this case, a fuel having a higher ratio of H 2 O concentration to CH 4 concentration contained in the exhaust than CNG is additionally supplied to the engine for combustion. Here, “a fuel having a higher ratio of H 2 O concentration to CH 4 concentration contained in exhaust gas than CNG” corresponds to, for example, a fuel containing ethanol. As described above, the exhaust system of the internal combustion engine increases the water vapor supplied to the reforming catalyst by additionally supplying the fuel having a high H 2 O ratio after combustion by the engine when using CNG, thereby The reforming reaction with the catalyst can be promoted. Therefore, the exhaust device of the internal combustion engine can improve the purification rate of CH 4 in the exhaust gas.

上記の内燃機関の排気装置の他の一態様では、空燃比センサをさらに備え、前記改質触媒は、CH及びHOを改質して前記還元剤を生成し、前記空燃比センサは、前記改質触媒の下流の前記排気通路上に設けられる。改質触媒は、CHと共にHOを改質する。また、空燃比センサは、水蒸気を被水することにより素子の劣化が生じる可能性がある。従って、内燃機関の排気装置は、空燃比センサを改質触媒の下流に設置することで、空燃比センサの被水を抑制することができ、空燃比センサの破損等を確実に抑制することができる。In another aspect of the exhaust apparatus for an internal combustion engine, the air conditioner further includes an air / fuel ratio sensor, the reforming catalyst reforms CH 4 and H 2 O to generate the reducing agent, and the air / fuel ratio sensor And provided on the exhaust passage downstream of the reforming catalyst. The reforming catalyst reforms H 2 O together with CH 4 . In addition, the air-fuel ratio sensor may be deteriorated by being exposed to water vapor. Therefore, the exhaust system of the internal combustion engine can suppress water exposure of the air-fuel ratio sensor by installing the air-fuel ratio sensor downstream of the reforming catalyst, and can reliably prevent damage to the air-fuel ratio sensor. it can.

第1実施形態に係る内燃機関の排気装置の概略構成の一例である。It is an example of schematic structure of the exhaust apparatus of the internal combustion engine which concerns on 1st Embodiment. 前段触媒及び後段触媒の構成を示した図である。It is the figure which showed the structure of the front | former stage catalyst and the back | latter stage catalyst. CH変換率と、排気ガス温度との関係を示すグラフの一例である。And CH 4 conversion, is an example of a graph showing the relationship between the exhaust gas temperature. 比較例に係る内燃機関の排気装置の概略構成図である。It is a schematic block diagram of the exhaust apparatus of the internal combustion engine which concerns on a comparative example. エンジンの始動運転時における第1実施形態の処理手順を示すフローチャートの一例である。It is an example of the flowchart which shows the process sequence of 1st Embodiment at the time of engine starting driving | operation. CNG運転への切り替え時における第1実施形態の処理手順を示すフローチャートの一例である。It is an example of the flowchart which shows the process sequence of 1st Embodiment at the time of the switch to CNG driving | operation. 第2実施形態に係る内燃機関の排気装置の概略構成の一例である。It is an example of schematic structure of the exhaust apparatus of the internal combustion engine which concerns on 2nd Embodiment. 第2実施形態に係る内燃機関の排気装置中の排気ガスの流れを示した図である。It is the figure which showed the flow of the exhaust gas in the exhaust apparatus of the internal combustion engine which concerns on 2nd Embodiment. エンジン始動後の凝縮水発生量の時間変化のグラフの一例である。It is an example of the graph of the time change of the condensed water generation amount after an engine start.

以下、図面を参照して本発明の好適な実施の形態である第1実施形態乃至第3実施形態について説明する。   Hereinafter, a first embodiment to a third embodiment, which are preferred embodiments of the present invention, will be described with reference to the drawings.

[第1実施形態]
(概略構成)
図1は、本発明に係る内燃機関の排気装置100の概略構成図を示す。
[First Embodiment]
(Outline configuration)
FIG. 1 is a schematic configuration diagram of an exhaust device 100 for an internal combustion engine according to the present invention.

内燃機関の排気装置100は、主に、エンジン1と、排気通路2と、前段触媒3と、後段触媒4と、ECU50と、を備える。   An exhaust device 100 for an internal combustion engine mainly includes an engine 1, an exhaust passage 2, a front catalyst 3, a rear catalyst 4, and an ECU 50.

エンジン1は、4つの気筒11を備え、供給される燃料と空気との混合気を燃焼させることによって動力を発生する装置である。各気筒11は、CNGを供給する図示しない燃料供給弁及び液体燃料を供給する図示しない燃料供給弁により、各燃料が供給される。液体燃料は、例えば、ガソリン、軽油、メタノールやエタノールなどのアルコール、又はこれらの混合燃料である。なお、CNG及び液体燃料は、それぞれ図示しない燃料タンクに貯蔵されている。   The engine 1 is a device that includes four cylinders 11 and generates power by burning a mixture of supplied fuel and air. Each cylinder 11 is supplied with fuel by a fuel supply valve (not shown) that supplies CNG and a fuel supply valve (not shown) that supplies liquid fuel. The liquid fuel is, for example, gasoline, light oil, alcohol such as methanol or ethanol, or a mixed fuel thereof. CNG and liquid fuel are respectively stored in a fuel tank (not shown).

また、エンジン1は、気筒11及びシリンダーヘッド12等を冷却するための冷却水の通路となるウォータージャケット13を備える。本実施形態では、ウォータージャケット13は、排気ガスが通過する排気ポート及びエグゾーストマニホールド(以後、単に「排気系」とも呼ぶ。)の表面との濡れ面積が低減されている。即ち、ウォータージャケット13は、排気系の熱容量が低減されるように設計される。これにより、内燃機関の排気装置100は、排気系での水蒸気の凝縮を防止する。   The engine 1 also includes a water jacket 13 serving as a coolant passage for cooling the cylinder 11 and the cylinder head 12 and the like. In the present embodiment, the water jacket 13 has a reduced wetted area with the exhaust port through which the exhaust gas passes and the surface of the exhaust manifold (hereinafter also simply referred to as “exhaust system”). That is, the water jacket 13 is designed so that the heat capacity of the exhaust system is reduced. Thereby, the exhaust device 100 of the internal combustion engine prevents water vapor from condensing in the exhaust system.

各気筒11により生成された排気ガスは、排気ポート及びエグゾーストマニホールドを介して排気通路2を通過する。排気通路2上には、エグゾーストマニホールドの直後に配置され、メタン(CH)及び水蒸気(HO)の改質触媒である前段触媒3と、NOxを浄化する後段触媒4とが設けられている。The exhaust gas generated by each cylinder 11 passes through the exhaust passage 2 via the exhaust port and the exhaust manifold. On the exhaust passage 2, a pre-stage catalyst 3 that is disposed immediately after the exhaust manifold and is a reforming catalyst of methane (CH 4 ) and steam (H 2 O), and a post-stage catalyst 4 that purifies NOx are provided. Yes.

ここで、前段触媒3及び後段触媒4について、図2を参照して詳しく説明する。図2(a)は、前段触媒3の構成を示す図の一例である。図2(a)に示すように、前段触媒3は、CNGの主成分であるCHへの吸着能力が高い吸着剤に、CHの改質能力が高いニッケル(Ni)を所定の割合で混合した粒子と、酸化アルミニウム(Al)とを備える。ここで、吸着剤は、二酸化ケイ素(SiO)とAlとを所定の割合で混合したものである。これにより、前段触媒3は、CHを吸着し、CHを水蒸気で改質して浄化する。即ち、前段触媒3は、以下の反応式(1)に示す反応を行い、CHを浄化する。Here, the front catalyst 3 and the rear catalyst 4 will be described in detail with reference to FIG. FIG. 2A is an example of a diagram illustrating the configuration of the front catalyst 3. As shown in FIG. 2 (a), the pre-catalyst 3 has a predetermined ratio of nickel (Ni) having a high CH 4 reforming ability to an adsorbent having a high adsorption ability to CH 4 which is the main component of CNG. It comprises mixed particles and aluminum oxide (Al 2 O 3 ). Here, the adsorbent is a mixture of silicon dioxide (SiO 2 ) and Al 2 O 3 at a predetermined ratio. Thus, the front catalyst 3 adsorbed CH 4, purifying by reforming CH 4 with water vapor. That is, the pre-stage catalyst 3 purifies CH 4 by performing the reaction shown in the following reaction formula (1).

CH+HO→CO+3H 反応式(1)
さらに、前段触媒3は、酸素(O)との部分酸化反応を起こす。即ち、前段触媒3は、反応式(1)に示す反応と共に、以下の反応式(2)に示す反応を起こす。
CH 4 + H 2 O → CO + 3H 2 reaction formula (1)
Furthermore, the pre-stage catalyst 3 causes a partial oxidation reaction with oxygen (O 2 ). That is, the pre-stage catalyst 3 causes the reaction shown in the following reaction formula (2) together with the reaction shown in the reaction formula (1).

CH+1/2O→CO+2H 反応式(2)
反応式(1)、(2)に示すように、前段触媒3は、反応式(1)、(2)に示す反応により、後段触媒4の還元剤となる一酸化炭素(CO)及び水素(H)を生成する。このように、CO及びHは、本発明における「還元剤」の一例である。これにより、後述するように、内燃機関の排気装置100は、CHを改質させてエミッションを低減させることができる。また、内燃機関の排気装置100は、CHに加えて水蒸気を改質させることで、前段触媒3通過後の排気ガスの水蒸気濃度を低減させることができる。
CH 4 + 1 / 2O 2 → CO + 2H 2 reaction formula (2)
As shown in the reaction formulas (1) and (2), the pre-catalyst 3 is reacted with carbon monoxide (CO) and hydrogen (reducing agents for the post-catalyst 4 by the reactions shown in the reaction formulas (1) and (2) ( H 2 ). Thus, CO and H 2 are examples of the “reducing agent” in the present invention. Thereby, as will be described later, the exhaust device 100 of the internal combustion engine can reform CH 4 to reduce emissions. Further, the exhaust device 100 of the internal combustion engine can reduce the water vapor concentration of the exhaust gas after passing through the pre-stage catalyst 3 by reforming the water vapor in addition to CH 4 .

また、好適には、前段触媒3は、ヒータを備えた電気加熱式触媒(EHC:Electrically Heated Catalyst)であり、ECU50の制御に基づき暖機が実行される。   Preferably, the pre-stage catalyst 3 is an electrically heated catalyst (EHC) provided with a heater, and warm-up is executed based on control of the ECU 50.

なお、前段触媒3は、CHと水蒸気との改質に対する触媒活性を示す金属としてNiを備えたが、これに代えて、ロジウム(Rh)、ルテニウム(Ru)、白金(Pt)等を備えてもよい。The pre-stage catalyst 3 includes Ni as a metal exhibiting catalytic activity for the reforming of CH 4 and water vapor, but instead includes rhodium (Rh), ruthenium (Ru), platinum (Pt), and the like. May be.

図2(b)は、後段触媒4の構成を示す図の一例である。図2(b)に示すように、後段触媒4は、NOx吸着能力の高い吸着剤(ZrO+CeO)にNOx還元能力の高いRhが備えられた粒子と、Alと、を有する。これにより、後段触媒4は、NOxを吸着し、NOxを還元して浄化する。このとき、後段触媒4は、前段触媒3で生成されたCO及びHを一酸化窒素(NO)の還元剤として利用する。即ち、後段触媒4は、以下の反応式(3)及び反応式(4)に示す反応を起こす。FIG. 2B is an example of a diagram illustrating a configuration of the rear catalyst 4. As shown in FIG. 2 (b), the post-catalyst 4 has particles in which an adsorbent (ZrO 2 + CeO 2 ) having a high NOx adsorption capability is provided with Rh having a high NOx reduction capability, and Al 2 O 3. . Thereby, the rear catalyst 4 adsorbs NOx and reduces and purifies NOx. At this time, the post-catalyst 4 uses CO and H 2 produced by the pre-catalyst 3 as nitrogen monoxide (NO) reducing agents. That is, the rear catalyst 4 causes the reactions shown in the following reaction formula (3) and reaction formula (4).

NO+H→1/2N+HO 反応式(3)
2NO+CO→1/2N+CO 反応式(4)
反応式(3)、(4)に示すように、後段触媒4は、前段触媒3で生成されたCO及びHを還元剤として用いることで、NOxを浄化し、エミッションを低減させることができる。
NO + H 2 → 1 / 2N 2 + H 2 O Reaction formula (3)
2NO + CO → 1 / 2N 2 + CO 2 reaction formula (4)
As shown in the reaction formulas (3) and (4), the post-catalyst 4 can purify NOx and reduce emissions by using CO and H 2 produced by the pre-catalyst 3 as a reducing agent. .

次に、再び図1を参照し、内燃機関の排気装置100の構成を説明する。ECU50は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを備え、内燃機関の排気装置100の各構成要素に対して種々の制御を行う。例えば、ECU50は、上記のようにして供給された検出信号に基づいて、液体燃料及びCNGの燃料噴射制御を行う。そして、ECU50は、本発明における制御手段として機能する。   Next, the configuration of the exhaust device 100 for an internal combustion engine will be described with reference to FIG. 1 again. The ECU 50 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (not shown), and performs various controls on each component of the exhaust device 100 of the internal combustion engine. For example, the ECU 50 performs fuel injection control of liquid fuel and CNG based on the detection signal supplied as described above. The ECU 50 functions as control means in the present invention.

なお、以後では、「CNG運転」とは、CNGを使用した運転を指し、「液体燃料運転」とは、液体燃料を使用した運転を指す。   In the following, “CNG operation” refers to an operation using CNG, and “liquid fuel operation” refers to an operation using liquid fuel.

(制御方法)
次に、ECU50が実行する制御について具体的に説明する。概略的には、ECU50は、前段触媒3の温度(以後、「触媒温度T」と呼ぶ。)が所定値(以後、「閾値T1」と呼ぶ。)に満たない場合には、触媒温度Tが閾値T1以上になるまでCNG運転を禁止する。これにより、ECU50は、反応式(1)に示す改質反応を促進し、CHの浄化率の向上及び前段触媒3通過後の水蒸気濃度の低減を実現する。
(Control method)
Next, the control executed by the ECU 50 will be specifically described. Schematically, the ECU 50 determines that the temperature of the catalyst 3 (hereinafter referred to as “catalyst temperature T”) is less than a predetermined value (hereinafter referred to as “threshold T1”). CNG operation is prohibited until the threshold value T1 is reached. Thereby, the ECU 50 promotes the reforming reaction shown in the reaction formula (1), and realizes the improvement of the purification rate of CH 4 and the reduction of the water vapor concentration after passing through the front catalyst 3.

これについて、図3を参照して補足説明する。なお、以後では、「CH変換率」とは、エンジン1から排出される排気ガス中のCHのうち、前段触媒3で改質されるCHの割合を指す。また、「HO変換率」とは、エンジン1から排出される排気ガス中のHOのうち、前段触媒3で改質されるHOの割合を指す。また、「CH濃度」とは、排気ガス中のCHの濃度を指し、「HO濃度」とは、排気ガス中のHOの濃度を指す。This will be supplementarily described with reference to FIG. In the following, “CH 4 conversion rate” refers to the proportion of CH 4 reformed by the pre-stage catalyst 3 out of CH 4 in the exhaust gas discharged from the engine 1. The “H 2 O conversion rate” refers to the ratio of H 2 O reformed by the pre-stage catalyst 3 in the H 2 O in the exhaust gas discharged from the engine 1. The “CH 4 concentration” refers to the concentration of CH 4 in the exhaust gas, and the “H 2 O concentration” refers to the concentration of H 2 O in the exhaust gas.

図3は、CH変換率と、触媒温度Tとほぼ等価である排気ガス温度と、の関係を示すマップの一例である。図3に示すように、触媒温度Tとほぼ等価である排気ガス温度が大きいほど、反応式(1)に示す反応が促進され、CH変換率は高くなる。同様に、排気ガス温度が大きいほど、反応式(1)に示す反応が促進される結果、HO変換率も高くなる。従って、ECU50は、前段触媒3の暖機後にCNG運転を行うことで、前段触媒3通過後のCH濃度及びHO濃度を低減させることができる。また、ECU50は、前段触媒3の暖機後にCNG運転を行うことで、反応式(1)及び反応式(2)により、還元剤として機能するH及びCOを後段触媒4に供給することができる。従って、ECU50は、前段触媒3の暖機後にCNG運転を行うことで、反応式(3)及び反応式(4)に示す反応を促進することができ、NOx浄化によりエミッションを低減させることができる。FIG. 3 is an example of a map showing the relationship between the CH 4 conversion rate and the exhaust gas temperature that is substantially equivalent to the catalyst temperature T. As shown in FIG. 3, the larger the exhaust gas temperature that is substantially equivalent to the catalyst temperature T, the more the reaction shown in the reaction formula (1) is promoted, and the CH 4 conversion rate becomes higher. Similarly, as the exhaust gas temperature increases, the reaction shown in the reaction formula (1) is promoted, and as a result, the H 2 O conversion rate increases. Therefore, the ECU 50 can reduce the CH 4 concentration and the H 2 O concentration after passing through the front catalyst 3 by performing CNG operation after the front catalyst 3 is warmed up. Further, the ECU 50 can supply H 2 and CO that function as a reducing agent to the rear catalyst 4 by the reaction formula (1) and the reaction formula (2) by performing the CNG operation after the front catalyst 3 is warmed up. it can. Therefore, the ECU 50 can promote the reactions shown in the reaction formula (3) and the reaction formula (4) by performing the CNG operation after the pre-stage catalyst 3 is warmed up, and can reduce emission by NOx purification. .

次に、閾値T1の決定方法について具体的に説明する。ECU50は、閾値T1を、前段触媒3通過前の排気ガスのCH濃度とHO濃度とに基づき決定する。具体的には、ECU50は、例えば燃料噴射量及びエンジン1の状態等に基づき、CNG運転を開始した場合の前段触媒3通過前のCH濃度及びHO濃度を推定する。そして、ECU50は、当該CH濃度及びHO濃度に基づき、例えば所定のマップ又は式を参照し、閾値T1を設定する。上述のマップ等は、例えば実験等に基づき予め作成され、ECU50のメモリに記憶される。Next, a method for determining the threshold value T1 will be specifically described. The ECU 50 determines the threshold T1 based on the CH 4 concentration and the H 2 O concentration of the exhaust gas before passing through the front catalyst 3. Specifically, the ECU 50 estimates the CH 4 concentration and the H 2 O concentration before passing through the front catalyst 3 when the CNG operation is started based on, for example, the fuel injection amount and the state of the engine 1. Then, the ECU 50 sets the threshold T1 with reference to, for example, a predetermined map or expression based on the CH 4 concentration and the H 2 O concentration. The above-described map and the like are created in advance based on, for example, experiments and stored in the memory of the ECU 50.

このとき、ECU50は、好適には、前段触媒3通過前のCH濃度及びHO濃度が高いほど、閾値T1を大きく設定する。例えば、ECU50は、前段触媒3通過前のCH濃度及びH0濃度が高い場合、閾値T1を、図3に示す温度「T1b」に設定する。即ち、この場合、ECU50は、前段触媒3通過前のCH濃度及びHO濃度が高いことから、前段触媒3通過後のCH濃度及びH0濃度を所定の目標値以下に抑制するため、閾値T1を、CH変換率及びHO変換率が高い温度T1bに設定する。At this time, the ECU 50 preferably sets the threshold value T1 larger as the CH 4 concentration and the H 2 O concentration before passing through the front catalyst 3 are higher. For example, the ECU 50 sets the threshold value T1 to the temperature “T1b” shown in FIG. 3 when the CH 4 concentration and the H 20 concentration before passing through the front catalyst 3 are high. That is, in this case, since the CH 4 concentration and H 2 O concentration before passing through the front catalyst 3 are high, the ECU 50 suppresses the CH 4 concentration and H 2 0 concentration after passing through the front catalyst 3 to a predetermined target value or less. Therefore, the threshold value T1 is set to a temperature T1b where the CH 4 conversion rate and the H 2 O conversion rate are high.

一方、ECU50は、前段触媒3通過前のCH濃度及びHO濃度が上述の例より低い所定値の場合、閾値T1を、温度T1bより低い温度「T1a」に設定する。即ち、この場合、ECU50は、前段触媒3通過前のCH濃度及びHO濃度が低いことから、CH変換率及びHO変換率を、温度T1bに相当するCH変換率及びHO変換率まで設定する必要がないと判断する。言い換えると、ECU50は、前段触媒3通過前の時点でCH濃度及びHO濃度が既に低いことから、触媒温度T1が温度T1a以上にすれば、前段触媒3通過後のCH濃度及びHO濃度を所定の目標値以下に抑制できると判断する。従って、ECU50は、この場合、閾値T1を、CH変換率及びHO変換率が温度T1bの場合より低い温度T1aに設定する。このように、ECU50は、前段触媒3通過前のCH濃度及びHO濃度が低いときには、触媒温度Tが比較的低温の場合であっても、CNG運転を開始することができる。On the other hand, the ECU 50 sets the threshold value T1 to a temperature “T1a” lower than the temperature T1b when the CH 4 concentration and the H 2 O concentration before passing through the front catalyst 3 are lower than the above example. That is, in this case, ECU 50, since the front catalyst 3 passes CH 4 concentration and H 2 O concentration before low, the CH 4 conversion rate and H 2 O conversion rate, which corresponds to the temperature T1b CH 4 conversion and the H It is determined that it is not necessary to set up to 2 O conversion rate. In other words, ECU 50, since it is already low CH 4 concentration and H 2 O concentration in the front catalyst 3 before passing through time, if the catalyst temperature T1 is above temperature T1a, the front catalyst 3 after passing through CH 4 concentration and H It is determined that the 2 O concentration can be suppressed below a predetermined target value. Therefore, ECU 50 in this case, the threshold value T1, CH 4 conversion rate and H 2 O conversion rate is set at a lower temperature T1a than temperature T1b. Thus, when the CH 4 concentration and the H 2 O concentration before passing through the front catalyst 3 are low, the ECU 50 can start the CNG operation even when the catalyst temperature T is relatively low.

以上のように、ECU50は、CH濃度及びHO濃度に基づき閾値T1を決定することで、エミッションを低減しつつ、CNG運転を制限する時期を最小限に縮小させることができる。As described above, the ECU 50 determines the threshold value T1 based on the CH 4 concentration and the H 2 O concentration, thereby reducing the timing for limiting the CNG operation to the minimum while reducing the emission.

次に、CNG運転を禁止する場合の具体例について説明する。第1の例では、ECU50は、CNG運転によるエンジン1の始動運転要求時に、触媒温度Tが閾値T1に満たない場合には、触媒温度Tが閾値T1以上になるまでCNG運転を禁止して前段触媒3をヒータにより加熱する。そして、ECU50は、触媒温度Tが閾値T1以上に達した場合、CNG運転によりエンジン1を始動させる。このようにすることで、ECU50は、CNG運転時に前段触媒3での反応式(1)に示す反応を促進させてCHの浄化率を向上させると共に、後段触媒4でのNOx浄化を促進させることができる。また、ECU50は、同時に前段触媒3通過後のHO濃度を低減させることで、前段触媒3より下流での排気通路2内での凝縮水発生量を低減し、被水に起因したセンサの破損等の劣化を防止することができる。Next, a specific example when CNG operation is prohibited will be described. In the first example, the ECU 50 prohibits the CNG operation until the catalyst temperature T becomes equal to or higher than the threshold T1 when the catalyst temperature T is less than the threshold T1 when the engine 1 is requested to start the engine by CNG operation. The catalyst 3 is heated by a heater. Then, when the catalyst temperature T reaches the threshold value T1 or higher, the ECU 50 starts the engine 1 by CNG operation. In this way, the ECU 50 promotes the reaction shown in the reaction formula (1) in the front catalyst 3 during CNG operation to improve the CH 4 purification rate, and promotes NOx purification in the rear catalyst 4. be able to. Further, the ECU 50 reduces the H 2 O concentration after passing through the front catalyst 3 at the same time, thereby reducing the amount of condensed water generated in the exhaust passage 2 downstream from the front catalyst 3, and the sensor caused by the flooding. Deterioration such as breakage can be prevented.

第2の例では、ECU50は、液体燃料運転からCNG運転への切り替え要求時に、触媒温度Tが閾値T1未満の場合には、触媒温度Tが閾値T1以上になるまでCNG運転への切り替えを禁止する。そして、ECU50は、触媒温度Tが閾値T1以上になった場合に、CNG運転を行う。これによっても、ECU50は、排出するCH濃度を低減することができると共に前段触媒3通過後のHO濃度を低減させることができる。In the second example, the ECU 50 prohibits switching to the CNG operation until the catalyst temperature T becomes equal to or higher than the threshold value T1 when the catalyst temperature T is lower than the threshold value T1 when requesting switching from the liquid fuel operation to the CNG operation. To do. Then, the ECU 50 performs the CNG operation when the catalyst temperature T becomes equal to or higher than the threshold value T1. Also by this, the ECU 50 can reduce the CH 4 concentration to be discharged and can reduce the H 2 O concentration after passing through the front catalyst 3.

(効果)
次に、第1実施形態の効果について補足説明する。
(effect)
Next, the effect of the first embodiment will be supplementarily described.

一般に、前段触媒3を通過前のHO濃度が低い場合、反応式(1)に示す反応が起こりにくい。従って、排気ポートやエグゾーストマニホールド等で水蒸気の凝縮が発生する条件下では、前段触媒3でのHO濃度が低くなり、反応式(1)に示す反応が起こりにくくなる。ここで、水蒸気が凝縮する条件とは、例えば、排気ポートの壁面が露点以下の場合が該当する。一方、前段触媒3通過前のHO濃度を高くするために燃料を増量して空燃比をリッチにした場合、CHも増加する。Generally, when the H 2 O concentration before passing through the front catalyst 3 is low, the reaction shown in the reaction formula (1) hardly occurs. Therefore, under conditions where water vapor condenses in the exhaust port, the exhaust manifold, etc., the H 2 O concentration in the pre-stage catalyst 3 becomes low, and the reaction shown in the reaction formula (1) hardly occurs. Here, the condition for condensing water vapor corresponds to, for example, the case where the wall surface of the exhaust port is below the dew point. On the other hand, when the amount of fuel is increased to increase the air-fuel ratio in order to increase the H 2 O concentration before passing through the front catalyst 3, CH 4 also increases.

以上を勘案し、第1実施形態では、ECU50は、触媒温度Tが閾値T1以上の場合に、CNG運転を行う。これにより、ECU50は、水蒸気を別途前段触媒3に供給することなく、反応式(1)に示す反応を促進させ、前段触媒3通過後のCH濃度及びHO濃度を低減させることができる。Considering the above, in the first embodiment, the ECU 50 performs the CNG operation when the catalyst temperature T is equal to or higher than the threshold value T1. Thus, the ECU 50 can promote the reaction shown in the reaction formula (1) without separately supplying water vapor to the front catalyst 3, and can reduce the CH 4 concentration and the H 2 O concentration after passing through the front catalyst 3. .

また、第1実施形態では、内燃機関の排気装置100は、前段触媒3の下流に、NOx浄化触媒である後段触媒4を備える。これにより、内燃機関の排気装置100は、反応式(1)及び反応式(2)に示す反応により発生したH及びCOに基づき後段触媒4でのNOxの浄化を促進させることができる。即ち、ECU50は、反応式(1)に示す改質反応を促進することで、後段触媒4での反応に必要な還元剤を増加させることができ、NOx浄化を促進させることができる。In the first embodiment, the exhaust device 100 for the internal combustion engine includes the rear catalyst 4 that is a NOx purification catalyst downstream of the front catalyst 3. Thereby, the exhaust device 100 of the internal combustion engine can promote the purification of NOx in the rear catalyst 4 based on H 2 and CO generated by the reactions shown in the reaction formulas (1) and (2). That is, the ECU 50 can increase the reducing agent necessary for the reaction in the post-catalyst 4 by promoting the reforming reaction shown in the reaction formula (1), and can promote NOx purification.

さらに、第1実施形態では、内燃機関の排気装置100は、排気ポートやエグゾーストマニホールドを冷却するためのウォータージャケット13の冷却面積が少なく設計されている。これについて、図4に示す比較例を用いて説明する。図4は、比較例に係る内燃機関の排気装置100xの概略構成図である。内燃機関の排気装置100xは、主に、エンジン1xと、排気通路2xと、前段触媒3xと、後段触媒4xと、ECU50xと、を備える。   Furthermore, in the first embodiment, the exhaust device 100 for an internal combustion engine is designed so that the cooling area of the water jacket 13 for cooling the exhaust port and the exhaust manifold is small. This will be described using a comparative example shown in FIG. FIG. 4 is a schematic configuration diagram of an exhaust device 100x for an internal combustion engine according to a comparative example. The exhaust device 100x for an internal combustion engine mainly includes an engine 1x, an exhaust passage 2x, a front catalyst 3x, a rear catalyst 4x, and an ECU 50x.

図4に示すように、比較例では、図1に示す第1実施形態の場合と比較して、ウォータージャケット13xは、各気筒11xから排気通路2xへ連通する排気系を冷却するための排気系との接触面積が大きい。言い換えると、第1実施形態に係る内燃機関の排気装置100は、比較例に係る内燃機関の排気装置100xより、ウォータージャケット13xによる排気系への冷却度合いが小さい。従って、第1実施形態では、内燃機関の排気装置100は、比較例と比べて、排気系の熱容量を低減させることができ、排気系での水蒸気の凝縮を防止することができる。   As shown in FIG. 4, in the comparative example, compared to the case of the first embodiment shown in FIG. 1, the water jacket 13x has an exhaust system for cooling the exhaust system communicating from each cylinder 11x to the exhaust passage 2x. The contact area is large. In other words, the exhaust device 100 for the internal combustion engine according to the first embodiment is less cooled to the exhaust system by the water jacket 13x than the exhaust device 100x for the internal combustion engine according to the comparative example. Therefore, in the first embodiment, the exhaust device 100 for an internal combustion engine can reduce the heat capacity of the exhaust system and prevent condensation of water vapor in the exhaust system as compared with the comparative example.

(処理フロー)
次に、第1実施形態における処理手順について、図5、図6を参照して説明する。以下では、まず、エンジン1の始動運転時の制御について説明した後、液体燃料運転からCNG運転への切り替え時の制御について説明する。
(Processing flow)
Next, the processing procedure in 1st Embodiment is demonstrated with reference to FIG. 5, FIG. In the following, first, the control at the start of the engine 1 will be described, and then the control at the time of switching from the liquid fuel operation to the CNG operation will be described.

1.始動運転時の制御
図5は、エンジン1の始動運転時の第1実施形態の処理手順を示すフローチャートの一例である。図5に示すフローチャートは、ECU50により所定の周期に従い繰り返し実行される。
1. FIG. 5 is an example of a flowchart showing the processing procedure of the first embodiment during the starting operation of the engine 1. The flowchart shown in FIG. 5 is repeatedly executed by the ECU 50 according to a predetermined cycle.

まず、ECU50は、エンジン1の始動要求があるか否か判定する(ステップS101)。そして、ECU50は、始動要求があると判断した場合(ステップS101;Yes)、液体燃料での始動禁止要求があるか否か判定する(ステップS102)。そして、ECU50は、液体燃料での始動禁止要求があると判断した場合(ステップS102;Yes)、ステップS103乃至ステップS105の処理を実行する。   First, the ECU 50 determines whether or not there is a request for starting the engine 1 (step S101). When it is determined that there is a start request (step S101; Yes), the ECU 50 determines whether there is a start prohibition request with liquid fuel (step S102). If the ECU 50 determines that there is a request to prohibit starting with liquid fuel (step S102; Yes), the ECU 50 executes the processing of steps S103 to S105.

一方、ECU50は、始動要求がないと判断した場合(ステップS101;No)、又は、液体燃料での始動禁止要求がないと判断した場合(ステップS102;No)、フローチャートの処理を終了する。具体的には、ECU50は、液体燃料での始動禁止要求がないと判断した場合(ステップS102;No)、液体燃料を用いて燃料噴射制御を行い、エンジン1を始動させる。   On the other hand, when the ECU 50 determines that there is no start request (step S101; No) or when it determines that there is no start prohibition request using liquid fuel (step S102; No), the process of the flowchart ends. Specifically, when the ECU 50 determines that there is no request to prohibit starting with liquid fuel (step S102; No), the ECU 50 performs fuel injection control using the liquid fuel and starts the engine 1.

次に、ステップS103で、ECU50は、触媒温度Tが閾値T1以上であるか否か判定する(ステップS103)。例えば、ECU50は、排気通路2上に設けられた図示しない温度センサの検出値に基づき触媒温度Tを推定してもよく、前段触媒3に設置された温度センサの検出値に基づき触媒温度Tを測定してもよい。また、ECU50は、CNG運転を実行した場合のHO濃度及びCH濃度を推定し、所定のマップ等を参照して、閾値T1を決定する。Next, in step S103, the ECU 50 determines whether or not the catalyst temperature T is equal to or higher than a threshold value T1 (step S103). For example, the ECU 50 may estimate the catalyst temperature T based on a detection value of a temperature sensor (not shown) provided on the exhaust passage 2, and may calculate the catalyst temperature T based on a detection value of a temperature sensor installed in the upstream catalyst 3. You may measure. Further, the ECU 50 estimates the H 2 O concentration and the CH 4 concentration when the CNG operation is executed, and determines the threshold value T1 with reference to a predetermined map or the like.

そして、ECU50は、触媒温度Tが閾値T1以上であると判断した場合(ステップS103;Yes)、CNGでの始動運転を開始する(ステップS104)。即ち、この場合、ECU50は、触媒温度T、CH濃度、及びHO濃度を考慮し、前段触媒3通過後のCH濃度及びHO濃度を一定の基準以下に抑制できると判断する。そして、ECU50は、この場合、CNGにより始動運転を開始することで、前段触媒3通過後のCH濃度及びHO濃度を低減することができると共に、前段触媒3で生成されたH及びCOを還元剤として機能させて後段触媒4でNOxを浄化することができる。即ち、ECU50は、低エミッションを実現することができる。When the ECU 50 determines that the catalyst temperature T is equal to or higher than the threshold value T1 (step S103; Yes), the ECU 50 starts the starting operation with CNG (step S104). That is, in this case, the ECU 50 considers the catalyst temperature T, the CH 4 concentration, and the H 2 O concentration, and determines that the CH 4 concentration and the H 2 O concentration after passing through the pre-stage catalyst 3 can be suppressed below a certain standard. . Then, ECU 50 in this case, by starting the start-up operation by CNG, it is possible to reduce the CH 4 concentration and H 2 O concentration in the pre-stage catalyst 3 after passing through, H 2 and generated in the front catalyst 3 The post-catalyst 4 can purify NOx by making CO function as a reducing agent. That is, the ECU 50 can achieve low emission.

一方、ECU50は、触媒温度Tが閾値T1以上でないと判断した場合(ステップS103;No)、即ち、触媒温度Tが閾値T1未満であると判断した場合、CNGでの始動運転を禁止すると共に、前段触媒3の暖機を行う(ステップS104)。例えば、ECU50は、前段触媒3に設置されたヒータにより前段触媒3を暖機する。そして、ECU50は、触媒温度Tが閾値T1以上になるまでステップS104の処理を継続する。これにより、ECU50は、CHの未浄化によるエミッション低下を抑制すると共に、水蒸気の凝縮によるセンサの破損等を抑制する。On the other hand, when the ECU 50 determines that the catalyst temperature T is not equal to or higher than the threshold value T1 (step S103; No), that is, when it is determined that the catalyst temperature T is lower than the threshold value T1, the ECU 50 prohibits the start operation at CNG. The front catalyst 3 is warmed up (step S104). For example, the ECU 50 warms up the front catalyst 3 with a heater installed in the front catalyst 3. And ECU50 continues the process of step S104 until the catalyst temperature T becomes more than threshold value T1. Thus, the ECU 50 suppresses emission reduction due to unpurified CH 4 and suppresses damage to the sensor due to condensation of water vapor.

2.CNG運転への切り替え制御
図6は、CNG運転への切り替え時での第1実施形態の処理手順を示すフローチャートの一例である。ECU50は、図6に示すフローチャートの処理を、所定の周期に従い繰り返し実行する。
2. Control for Switching to CNG Operation FIG. 6 is an example of a flowchart illustrating a processing procedure of the first embodiment at the time of switching to CNG operation. The ECU 50 repeatedly executes the process of the flowchart shown in FIG. 6 according to a predetermined cycle.

まず、ECU50は、液体燃料運転中であるか否か判定する(ステップS201)。そして、ECU50は、液体燃料運転中であると判断した場合(ステップS201;Yes)、CNG運転への切り替え要求があるか否か判定する(ステップS202)。そして、ECU50は、CNG運転への切り替え要求があると判断した場合(ステップS202;Yes)、ステップS203乃至ステップS205の処理を実行する。   First, the ECU 50 determines whether or not the liquid fuel operation is in progress (step S201). If the ECU 50 determines that the liquid fuel operation is being performed (step S201; Yes), the ECU 50 determines whether there is a request for switching to the CNG operation (step S202). If the ECU 50 determines that there is a request for switching to CNG operation (step S202; Yes), the ECU 50 executes the processing of steps S203 to S205.

一方、ECU50は、液体燃料運転でないと判断した場合(ステップS201;No)、又は、CNG運転への切り替え要求がないと判断した場合(ステップS202;No)、フローチャートの処理を終了する。具体的には、ECU50は、液体燃料運転でないと判断した場合(ステップS201;No)、即ち、CNG運転の場合には、CNG運転を継続する。一方、ECU50は、CNG運転への切り替え要求がない場合(ステップS202;No)、引き続き液体燃料運転を継続する。   On the other hand, when the ECU 50 determines that it is not the liquid fuel operation (step S201; No), or when it is determined that there is no request for switching to the CNG operation (step S202; No), the process of the flowchart is ended. Specifically, when the ECU 50 determines that it is not the liquid fuel operation (step S201; No), that is, in the case of the CNG operation, the CNG operation is continued. On the other hand, when there is no request for switching to the CNG operation (step S202; No), the ECU 50 continues the liquid fuel operation.

そして、ステップS203で、ECU50は、触媒温度Tが閾値T1以上であるか否か判定する(ステップS203)。そして、ECU50は、触媒温度が閾値T1以上であると判断した場合(ステップS203;Yes)、CNGでの始動運転を開始する(ステップS204)。ECU50は、この場合、CNGにより始動運転を開始することで、前段触媒3通過後のCH濃度及びHO濃度を低減することができると共に、前段触媒3で生成されたHに基づき後段触媒4でNOxを浄化することができる。即ち、ECU50は、低エミッションを実現することができる。In step S203, the ECU 50 determines whether or not the catalyst temperature T is equal to or higher than the threshold value T1 (step S203). When the ECU 50 determines that the catalyst temperature is equal to or higher than the threshold value T1 (step S203; Yes), the ECU 50 starts a start operation with CNG (step S204). In this case, the ECU 50 can reduce the CH 4 concentration and the H 2 O concentration after passing through the front catalyst 3 by starting the starting operation with CNG, and at the rear stage based on H 2 generated by the front stage catalyst 3. The catalyst 4 can purify NOx. That is, the ECU 50 can achieve low emission.

一方、ECU50は、触媒温度Tが閾値T1以上でないと判断した場合(ステップS203;No)、CNG運転への切り替えを禁止すると共に、前段触媒3の暖機を行う(ステップS205)。そして、ECU50は、触媒温度Tが閾値T1以上になるまで、ステップS205の処理を継続する。これによっても、ECU50は、CHの未浄化によるエミッション低下を抑制すると共に、水蒸気の凝縮によるセンサの破損等を抑制することができる。On the other hand, when the ECU 50 determines that the catalyst temperature T is not equal to or higher than the threshold T1 (step S203; No), the ECU 50 prohibits switching to the CNG operation and warms up the front catalyst 3 (step S205). And ECU50 continues the process of step S205 until the catalyst temperature T becomes more than threshold value T1. This also makes it possible for the ECU 50 to suppress a reduction in emissions due to unpurified CH 4 and to prevent damage to the sensor due to condensation of water vapor.

[第2実施形態]
概略的には、第2実施形態では、第1実施形態に代えて、またはこれに加えて、内燃機関の排気装置100は、排気ガス中の空燃比を検出するA/Fセンサを前段触媒3の下流に備える。これにより、内燃機関の排気装置100は、被水によるA/Fセンサの破損等を抑制する。以下第2実施形態の概略構成を説明した後、制御方法について説明する。
[Second Embodiment]
Schematically, in the second embodiment, instead of or in addition to the first embodiment, the exhaust device 100 of the internal combustion engine uses an A / F sensor for detecting the air-fuel ratio in the exhaust gas as the front catalyst 3. Prepare downstream. Thereby, the exhaust device 100 of the internal combustion engine suppresses the damage of the A / F sensor due to the flooding. Hereinafter, after describing a schematic configuration of the second embodiment, a control method will be described.

(概略構成)
図7は、第2実施形態に係る内燃機関の排気装置100の概略構成の一例である。内燃機関の排気装置100は、主に、エンジン1と、排気通路2と、前段触媒3と、後段触媒4と、切り替えバルブ5と、A/Fセンサ6と、バイパス通路7と、ECU50と、を備える。なお、以後では、図1と同一の構成要素の説明を適宜省略する。
(Outline configuration)
FIG. 7 is an example of a schematic configuration of an exhaust device 100 for an internal combustion engine according to the second embodiment. An exhaust system 100 for an internal combustion engine mainly includes an engine 1, an exhaust passage 2, a front catalyst 3, a rear catalyst 4, a switching valve 5, an A / F sensor 6, a bypass passage 7, an ECU 50, Is provided. Hereinafter, description of the same components as those in FIG. 1 will be omitted as appropriate.

図7に示すように、内燃機関の排気装置100は、前段触媒3の上流側の排気通路2と、前段触媒3の下流かつA/Fセンサ6の上流側の排気通路2と、に連通するバイパス通路7を備える。さらに、前段触媒3の上流側の排気通路2とバイパス通路7との分岐点には、排気ガスの流れを制御するための切り替えバルブ5が設置されている。切り替えバルブ5は、ECU50から供給される制御信号S5に基づき、バイパス通路7又は前段触媒3が設置された排気通路2に排気ガスを供給する。   As shown in FIG. 7, the exhaust device 100 of the internal combustion engine communicates with the exhaust passage 2 upstream of the front catalyst 3 and the exhaust passage 2 downstream of the front catalyst 3 and upstream of the A / F sensor 6. A bypass passage 7 is provided. Further, a switching valve 5 for controlling the flow of exhaust gas is installed at a branch point between the exhaust passage 2 and the bypass passage 7 upstream of the front catalyst 3. The switching valve 5 supplies exhaust gas to the exhaust passage 2 in which the bypass passage 7 or the pre-stage catalyst 3 is installed based on the control signal S5 supplied from the ECU 50.

また、バイパス通路7の下流かつ後段触媒4の上流の排気通路2上には、排気ガス中の空燃比を検出するためのA/Fセンサ6が設置されている。即ち、内燃機関の排気装置100は、A/Fセンサ6を、前段触媒3の下流側の排気通路2に備える。   An A / F sensor 6 for detecting an air-fuel ratio in the exhaust gas is installed on the exhaust passage 2 downstream of the bypass passage 7 and upstream of the rear catalyst 4. That is, the exhaust device 100 of the internal combustion engine includes the A / F sensor 6 in the exhaust passage 2 on the downstream side of the front catalyst 3.

(制御方法)
次に、第2実施形態でECU50が実行する制御について説明する。ECU50は、エミッション低減等のため、エンジン1の始動時では、H/C比が高いCNGにより始動運転を行う。この場合、ECU50は、CNG運転時に、前段触媒3により反応式(1)に示す水蒸気改質反応を起こさせ、A/Fセンサ6の被水量を抑制する。これについて、図8、図9を参照して説明する。
(Control method)
Next, control executed by the ECU 50 in the second embodiment will be described. The ECU 50 performs a start operation with CNG having a high H / C ratio when starting the engine 1 in order to reduce emissions. In this case, during the CNG operation, the ECU 50 causes the steam reforming reaction shown in the reaction formula (1) by the pre-catalyst 3 to suppress the water coverage of the A / F sensor 6. This will be described with reference to FIGS.

図8(a)は、CNG運転時の内燃機関の排気装置100内の状態を示す。図8(a)中の破線矢印は、排気ガスの流れを示す。図8(a)に示すように、ECU50は、CNG運転時には、切り替えバルブ5を、排気ガスが前段触媒3を通過するように制御する。これにより、ECU50は、前段触媒3での反応式(1)に示す水蒸気改質反応を促進させ、排気ガス中のHO濃度を低減させることができる。従って、内燃機関の排気装置100は、A/Fセンサ6を通過時の排気ガス中のHO濃度を低減させることができ、A/Fセンサ6の被水量を抑制することができる。FIG. 8A shows a state in the exhaust device 100 of the internal combustion engine during the CNG operation. The broken line arrows in FIG. 8A indicate the flow of exhaust gas. As shown in FIG. 8A, the ECU 50 controls the switching valve 5 so that the exhaust gas passes through the pre-stage catalyst 3 during the CNG operation. Thereby, the ECU 50 can promote the steam reforming reaction shown in the reaction formula (1) in the pre-catalyst 3 and reduce the H 2 O concentration in the exhaust gas. Therefore, the exhaust device 100 of the internal combustion engine can reduce the H 2 O concentration in the exhaust gas when passing through the A / F sensor 6, and can suppress the amount of water covered by the A / F sensor 6.

図8(b)は、液体燃料運転を実行する場合の内燃機関の排気装置100内の状態を示す。図8(b)中の破線矢印は、排気ガスの流れを示す。図8(b)に示すように、ECU50は、液体燃料運転時には、切り替えバルブ5を、排気ガスがバイパス通路7を通過するように制御する。即ち、この場合、ECU50は、凝縮水発生量がCNG運転時より少ない液体燃料運転時では、排気ガスを前段触媒3に供給しない。これにより、ECU50は、前段触媒3をCNG運転時のみ使用し、前段触媒3の劣化等を抑制する。   FIG. 8B shows a state in the exhaust device 100 of the internal combustion engine when the liquid fuel operation is executed. The broken line arrows in FIG. 8B indicate the flow of exhaust gas. As shown in FIG. 8B, the ECU 50 controls the switching valve 5 so that the exhaust gas passes through the bypass passage 7 during the liquid fuel operation. That is, in this case, the ECU 50 does not supply the exhaust gas to the pre-catalyst 3 when the liquid fuel operation is less than the CNG operation. Thus, the ECU 50 uses the front catalyst 3 only during CNG operation, and suppresses deterioration of the front catalyst 3 and the like.

CNG運転を行う領域と、凝縮水発生量との関係について、図9を参照してさらに詳しく説明する。図9は、エンジン1の始動後の凝縮水発生量の時間変化のグラフである。図9に示すように、凝縮水発生量は、エンジン1の始動時に最大値をとり、その後徐々に減少する。   The relationship between the region where the CNG operation is performed and the amount of condensed water generated will be described in more detail with reference to FIG. FIG. 9 is a graph of the change over time in the amount of condensed water generated after the engine 1 is started. As shown in FIG. 9, the amount of condensed water generated takes a maximum value when the engine 1 is started and then gradually decreases.

まず、エンジン1の始動後の時刻「t1」まで、ECU50は、エミッション低下の観点から、CNG運転を行う。そして、ECU50は、この場合、排気ガスを前段触媒3へ供給するように、切り替えバルブ5を制御する。これにより、ECU50は、凝縮水発生量が多いエンジン1の始動直後の所定期間に、前段触媒3で反応式(1)に示す水蒸気改質反応を起こさせ、A/Fセンサ6の被水量を抑制することができる。   First, until the time “t1” after the engine 1 is started, the ECU 50 performs CNG operation from the viewpoint of emission reduction. In this case, the ECU 50 controls the switching valve 5 so that the exhaust gas is supplied to the front catalyst 3. As a result, the ECU 50 causes the steam reforming reaction shown in the reaction formula (1) to occur in the pre-stage catalyst 3 in a predetermined period immediately after the start of the engine 1 where the amount of condensed water is large, and the water amount of the A / F sensor 6 is increased. Can be suppressed.

[第3実施形態]
第3実施形態では、第1実施形態又は第2実施形態に代えて、又はこれに加えて、ECU50は、CNG運転時に、燃焼後の排気ガスに含まれるCH濃度に対するHO濃度の割合(以後、「HO/CH濃度割合」と呼ぶ。)がCNGよりも高い燃料を追加供給する。これにより、ECU50は、前段触媒3通過前の排気ガス中の水蒸気を増加させて反応式(1)に示す反応を促進させる。
[Third Embodiment]
In the third embodiment, instead of or in addition to the first embodiment or the second embodiment, the ECU 50 performs the ratio of the H 2 O concentration to the CH 4 concentration contained in the exhaust gas after combustion during the CNG operation. (Hereinafter referred to as “H 2 O / CH 4 concentration ratio”) is additionally supplied with a fuel that is higher than CNG. Thereby, the ECU 50 increases the water vapor in the exhaust gas before passing through the front catalyst 3 to promote the reaction shown in the reaction formula (1).

これについて具体的に説明する。まず、第3実施形態における内燃機関の排気装置100の構成について説明する。第3実施形態では、内燃機関の排気装置100は、第1実施形態又は第2実施形態の構成に加え、CNG運転時に追加供給する排気中のHO/CH濃度割合がCNGよりも高い燃料(以後、「高水蒸気燃料」と呼ぶ。)を有する。ここで、高水蒸気燃料としては、例えば、エタノール又はこれを含有した混合燃料が該当する。内燃機関の排気装置100は、例えば、第1実施形態又は第2実施形態でエンジン1の燃料として貯蔵していたCNG及び液体燃料とは別に高水蒸気燃料をさらに貯蔵してもよい。他の例では、内燃機関の排気装置100は、液体燃料として高水蒸気燃料を備えてもよい。This will be specifically described. First, the configuration of the exhaust device 100 for an internal combustion engine in the third embodiment will be described. In the third embodiment, in addition to the configuration of the first embodiment or the second embodiment, the exhaust device 100 for an internal combustion engine has a higher H 2 O / CH 4 concentration ratio in the exhaust gas that is additionally supplied during CNG operation than CNG. Fuel (hereinafter referred to as “high steam fuel”). Here, as the high steam fuel, for example, ethanol or a mixed fuel containing the same is applicable. The exhaust device 100 of the internal combustion engine may further store, for example, high steam fuel separately from the CNG and liquid fuel stored as the fuel of the engine 1 in the first embodiment or the second embodiment. In another example, the exhaust device 100 of the internal combustion engine may include a high steam fuel as the liquid fuel.

次に、第3実施形態でECU50が実行する制御について説明する。ECU50は、CNG運転時に、高水蒸気燃料を各気筒11へ追加供給する。これにより、ECU50は、エンジン1から前段触媒3へ供給されるHO濃度を高くして反応式(1)の反応を促進させることができる。従って、ECU50は、前段触媒3通過後の排気ガス中のCH濃度を低減させ、低エミッション化を実現することができる。Next, control executed by the ECU 50 in the third embodiment will be described. The ECU 50 additionally supplies high steam fuel to each cylinder 11 during CNG operation. Thereby, the ECU 50 can increase the concentration of H 2 O supplied from the engine 1 to the pre-stage catalyst 3 and promote the reaction of the reaction formula (1). Therefore, the ECU 50 can reduce the CH 4 concentration in the exhaust gas after passing through the front catalyst 3 and realize low emission.

また、好適には、ECU50は、第3実施形態では、第1実施形態と比べ、閾値T1を小さく設定してもよい。具体的には、ECU50は、前段触媒3通過前のCH濃度及びHO濃度に加え、さらに高水蒸気燃料の供給量も考慮して閾値T1を定めてもよい。例えば、ECU50は、CH濃度、HO濃度、及び高水蒸気燃料の供給量と、閾値T1とのマップ等を予めメモリに記憶し、当該マップ等を参照して閾値T1を決定する。このようにすることで、ECU50は、エミッションを向上させつつ、CNG運転を禁止する期間を縮小させることができる。Preferably, the ECU 50 may set the threshold value T1 smaller in the third embodiment than in the first embodiment. Specifically, the ECU 50 may determine the threshold T1 in consideration of the supply amount of the high steam fuel in addition to the CH 4 concentration and the H 2 O concentration before passing through the front catalyst 3. For example, the ECU 50 stores, in advance, a map of the CH 4 concentration, the H 2 O concentration, the supply amount of the high steam fuel, and the threshold value T1 in a memory, and determines the threshold value T1 with reference to the map and the like. By doing in this way, ECU50 can reduce the period which prohibits CNG driving | operation, improving an emission.

1 エンジン
2 排気通路
3 前段触媒
4 後段触媒
5 切り替えバルブ
6 A/Fセンサ
7 バイパス通路
11 気筒
12 シリンダーヘッド
13 ウォータージャケット
50 ECU
100 内燃機関の排気装置
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust passage 3 Front stage catalyst 4 Rear stage catalyst 5 Switching valve 6 A / F sensor 7 Bypass passage 11 Cylinder 12 Cylinder head 13 Water jacket 50 ECU
100 Exhaust device for internal combustion engine

Claims (4)

CNGを含む複数種類の燃料を切り替えて運転可能なエンジンと、
前記エンジンに連通する排気通路と、
前記排気通路上に設けられ、CH4を改質して還元剤を生じさせる改質触媒と、
前記改質触媒の下流側の前記排気通路上に設けられ、前記還元剤によりNOxを浄化するNOx浄化触媒と、
前記改質触媒の温度が所定値以上の場合、CNGを前記エンジンに供給する制御手段と、
を備えることを特徴とする内燃機関の排気装置。
An engine that can be operated by switching a plurality of types of fuel including CNG;
An exhaust passage communicating with the engine,
A reforming catalyst provided on the exhaust passage and reforming CH4 to generate a reducing agent;
A NOx purification catalyst that is provided on the exhaust passage downstream of the reforming catalyst and purifies NOx by the reducing agent;
Control means for supplying CNG to the engine when the temperature of the reforming catalyst is equal to or higher than a predetermined value;
An exhaust device for an internal combustion engine, comprising:
前記改質触媒は、CH4及びH2Oを改質して前記還元剤を生成し、
前記所定値は、前記エンジンから排気されるガスのCH4濃度及びH2O濃度に基づき決定される請求項に記載の内燃機関の排気装置。
The reforming catalyst reforms CH4 and H2O to generate the reducing agent,
The exhaust system for an internal combustion engine according to claim 1 , wherein the predetermined value is determined based on a CH4 concentration and a H2O concentration of gas exhausted from the engine.
前記改質触媒は、CH4及びH2Oを改質して前記還元剤を生成し、
前記制御手段は、CNGを前記エンジンに供給する場合、CNGより排気に含まれるCH4濃度に対するH2O濃度の割合が高い燃料を、前記エンジンに追加供給して燃焼させる請求項またはに記載の内燃機関の排気装置。
The reforming catalyst reforms CH4 and H2O to generate the reducing agent,
Wherein, when supplying CNG to the engine, an internal combustion according to fuel ratio of H2O concentration is high relative to CH4 concentration in the exhaust from the CNG, to claim 1 or 2 to burn in addition supplied to the engine Engine exhaust system.
空燃比センサをさらに備え、
前記改質触媒は、CH4及びH2Oを改質して前記還元剤を生成し、
前記空燃比センサは、前記改質触媒の下流の前記排気通路上に設けられる請求項乃至のいずれか一項に記載の内燃機関の排気装置。
An air-fuel ratio sensor,
The reforming catalyst reforms CH4 and H2O to generate the reducing agent,
The exhaust device for an internal combustion engine according to any one of claims 1 to 3 , wherein the air-fuel ratio sensor is provided on the exhaust passage downstream of the reforming catalyst.
JP2012504243A 2010-03-12 2010-03-12 Exhaust device for internal combustion engine Expired - Fee Related JP5293879B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054182 WO2011111217A1 (en) 2010-03-12 2010-03-12 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPWO2011111217A1 JPWO2011111217A1 (en) 2013-06-27
JP5293879B2 true JP5293879B2 (en) 2013-09-18

Family

ID=44563059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504243A Expired - Fee Related JP5293879B2 (en) 2010-03-12 2010-03-12 Exhaust device for internal combustion engine

Country Status (5)

Country Link
US (1) US8925305B2 (en)
EP (1) EP2546485A4 (en)
JP (1) JP5293879B2 (en)
CN (1) CN102791973B (en)
WO (1) WO2011111217A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014019621A8 (en) * 2012-02-09 2017-07-11 Toyota Motor Co Ltd CONTROL SYSTEM FOR VARIOUS FUEL INTERNAL COMBUSTION ENGINE
US8893471B2 (en) * 2013-02-28 2014-11-25 Kawasaki Jukogyo Kabushiki Kaisha Exhaust apparatus for four wheeled utility vehicle
AT516320B1 (en) * 2014-10-06 2016-07-15 Ge Jenbacher Gmbh & Co Og Method for operating an auto-ignition internal combustion engine
US10176696B2 (en) * 2014-11-21 2019-01-08 Richard Harper Apparatus and process for measuring gaseous emissions from an engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186532A (en) * 1998-12-22 2000-07-04 Toyota Motor Corp Internal combustion engine having lean NOx catalyst
JP2004270604A (en) * 2003-03-11 2004-09-30 Toyota Motor Corp Vehicle with bi-fuel engine
JP2005030243A (en) * 2003-07-09 2005-02-03 Fuji Seratekku Kk Fuel reforming device
JP2006502345A (en) * 2002-10-02 2006-01-19 ウエストポート リサーチ インコーポレイテッド NOx adsorber bypass controlled regeneration
JP2006226218A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Exhaust gas purification apparatus and method
JP2008169704A (en) * 2007-01-09 2008-07-24 Toyota Motor Corp Control device and method for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953911A (en) * 1998-02-04 1999-09-21 Goal Line Environmental Technologies Llc Regeneration of catalyst/absorber
GB0314242D0 (en) * 2003-06-18 2003-07-23 Johnson Matthey Plc Fluid treatment
DE102006025259A1 (en) * 2006-05-31 2007-12-06 Volkswagen Ag Bivalent internal combustion engine and method for operating a bivalent internal combustion engine
GB0721528D0 (en) * 2007-11-02 2007-12-12 T Baden Hardstaff Ltd Exhaust system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186532A (en) * 1998-12-22 2000-07-04 Toyota Motor Corp Internal combustion engine having lean NOx catalyst
JP2006502345A (en) * 2002-10-02 2006-01-19 ウエストポート リサーチ インコーポレイテッド NOx adsorber bypass controlled regeneration
JP2004270604A (en) * 2003-03-11 2004-09-30 Toyota Motor Corp Vehicle with bi-fuel engine
JP2005030243A (en) * 2003-07-09 2005-02-03 Fuji Seratekku Kk Fuel reforming device
JP2006226218A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Exhaust gas purification apparatus and method
JP2008169704A (en) * 2007-01-09 2008-07-24 Toyota Motor Corp Control device and method for internal combustion engine

Also Published As

Publication number Publication date
EP2546485A1 (en) 2013-01-16
US20130042599A1 (en) 2013-02-21
JPWO2011111217A1 (en) 2013-06-27
EP2546485A4 (en) 2014-09-03
CN102791973B (en) 2016-10-05
CN102791973A (en) 2012-11-21
WO2011111217A1 (en) 2011-09-15
US8925305B2 (en) 2015-01-06
EP2546485A8 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP3826770B2 (en) Fuel reforming system
JP4710846B2 (en) Exhaust gas purification device for internal combustion engine
JP3885479B2 (en) Fuel cell reformer
JP4834041B2 (en) Exhaust gas purification device
JP2006274838A (en) Exhaust gas purification system for internal combustion engine
JP2006511747A (en) Reduction of nitrogen oxides using hydrogen generated from engine fuel and exhaust
JP6123822B2 (en) Exhaust purification device deterioration diagnosis device
JP5293879B2 (en) Exhaust device for internal combustion engine
KR101005742B1 (en) Nox Purification Device And Method Using Reformed Gas
JP2010270664A (en) Exhaust gas purification system for internal combustion engine
JPWO2005103461A1 (en) Exhaust gas purification device for internal combustion engine
JP2019203487A (en) Fuel reforming device and control method therefor
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP5149647B2 (en) Fuel reformer
JP2002339772A (en) Engine system
JP5369862B2 (en) Exhaust gas purification device for internal combustion engine
JP2005201094A (en) Exhaust emission control system and exhaust emission control method
CN107534172B (en) Exhaust purification system with power generation function
US10358963B2 (en) Exhaust purification system of internal combustion engine
JP2009108755A (en) Exhaust emission control device of internal combustion engine
KR101836287B1 (en) Catalyst heating control apparatus and the method
JP5407904B2 (en) Exhaust gas purification method and apparatus
JP2018076798A (en) Exhaust gas purification device for internal combustion engine
JP5006776B2 (en) Fuel reformer
JP5904399B2 (en) Fuel reforming method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

LAPS Cancellation because of no payment of annual fees