[go: up one dir, main page]

JP5293074B2 - 窒化物半導体基板及び窒化物半導体基板の製造方法 - Google Patents

窒化物半導体基板及び窒化物半導体基板の製造方法 Download PDF

Info

Publication number
JP5293074B2
JP5293074B2 JP2008269880A JP2008269880A JP5293074B2 JP 5293074 B2 JP5293074 B2 JP 5293074B2 JP 2008269880 A JP2008269880 A JP 2008269880A JP 2008269880 A JP2008269880 A JP 2008269880A JP 5293074 B2 JP5293074 B2 JP 5293074B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor substrate
substrate
edge
chamfered portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008269880A
Other languages
English (en)
Other versions
JP2010094793A (ja
Inventor
和俊 渡辺
丈洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008269880A priority Critical patent/JP5293074B2/ja
Priority to US12/585,109 priority patent/US8120059B2/en
Publication of JP2010094793A publication Critical patent/JP2010094793A/ja
Application granted granted Critical
Publication of JP5293074B2 publication Critical patent/JP5293074B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、窒化物半導体基板及び窒化物半導体基板の製造方法に関する。特に、本発明は、基板のエッジに面取りが施された窒化物半導体基板及び窒化物半導体基板の製造方法に関する。
電子デバイス等の製造に用いられる半導体基板であるSi基板、GaAs基板等においては、デバイス製造工程中における搬送時、又はデバイス製造工程中及び出荷時の外観検査等に、画像処理を用いた基板の形状認識、基板の位置確認が採用されている。基板の形状認識及び基板の位置確認は、可視光又は赤外光を基板に照射して、基板によって反射された光を検知することによって実施していることが多い。
従来の窒化物半導体基板として、上面視にて円形の窒化ガリウム(GaN)基板のエッジ部の面粗度をRa10nmからRa5μmとした窒化物半導体基板が知られている(例えば、特許文献1参照)。
特許文献1に記載の窒化物半導体基板は、エッジ部を平滑にすることによりクラック発生率を減少させることができ、当該窒化物半導体基板を用いた電子デバイスの製造工程において電子デバイスの歩留りを向上させることができる。
特開2004−319951号公報
しかし、特許文献1に記載の窒化物半導体基板は、可視光及び赤外光を透過するので、Si基板用又はGaAs基板用等の基板の形状認識の手法、及び基板の位置確認の手法をそのまま適用したとしても、窒化物半導体基板の表面及び表面の端部を認識することはできず、基板の形状の認識及び基板の位置確認をすることができない。
したがって、本発明の目的は、可視光及び赤外光を用いて窒化物半導体基板の端部を認識できる窒化物半導体基板及び窒化物半導体基板の製造方法を提供することにある。
本発明は、上記目的を達成するため、窒化物半導体からなる基板であって、基板は、表面と、表面の反対側の裏面と、基板の表面側の縁が面取り加工されて形成される第1のエッジ部とを備え、基板を表面側から見たときの第1のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、第1のエッジ部の平均表面粗さに対する表面の平均表面粗さの比が0.01以下である窒化物半導体基板が提供される。
また、上記窒化物半導体基板は、基板の裏面側の縁が面取り加工されて形成される第2のエッジ部を更に備え、基板を裏面側から見たときの第2のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、第2のエッジ部の平均表面粗さに対する裏面の平均表面粗さの比が、0.01以下であってもよい。
また、上記窒化物半導体基板は、第1のエッジ部は、表面の可視光透過率の0.2倍以下の可視光透過率を有していてもよく、第2のエッジ部は、裏面の可視光透過率の0.2倍以下の可視光透過率を有していてもよい。
本発明は、上記目的を達成するため、窒化物半導体からなる基板の表面を鏡面加工する表面加工工程と、基板の表面側の縁を面取り加工することにより第1のエッジ部を形成する第1エッジ形成工程とを備え、第1エッジ形成工程は、基板を表面側から見たときの第1のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、第1のエッジ部の平均表面粗さに対する表面の平均表面粗さの比が0.01以下であり、第1のエッジ部の可視光透過率が表面の可視光透過率の0.2倍以下である第1のエッジを形成する窒化物半導体基板の製造方法が提供される。
また、本発明は、上記目的を達成するため、基板の表面とは反対側の裏面を鏡面加工する裏面加工工程と、基板の裏面側の縁を面取り加工することにより第2のエッジ部を形成する第2エッジ形成工程とを更に備え、第2エッジ形成工程は、基板を裏面側から見たときの第2のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、第2のエッジ部の平均表面粗さに対する裏面の平均表面粗さの比が0.01以下であり、第2のエッジ部の可視光透過率が裏面の可視光透過率の0.2倍以下である第2のエッジを形成してもよい。
本発明に係る窒化物半導体基板及び窒化物半導体基板の製造方法によれば、可視光及び赤外光を用いて窒化物半導体基板の端部を認識できる窒化物半導体基板及び窒化物半導体基板の製造方法を提供できる。
[実施の形態]
図1(a)は、本発明の実施の形態に係る窒化物半導体基板の表面の概要を示し、(b)は、本発明の実施の形態に係る窒化物半導体基板の裏面の概要を示す。
(窒化物半導体基板1の構成)
図1(a)及び(b)を参照する。本実施の形態に係る窒化物半導体基板1は、鏡面加工された表面10と、窒化物半導体基板1の表面10側の縁の少なくとも一部が面取り加工されて形成される第1のエッジ部としての面取り部15と、表面10の反対側の鏡面加工された裏面20と、窒化物半導体基板1の裏面20側の縁の少なくとも一部が面取り加工されて形成される第2のエッジ部としての面取り部25とを備える。面取り部15は所定の面取り幅15aを有して形成される。面取り部25も面取り部15と同様にして、所定の面取り幅25aを有して形成される。
また、窒化物半導体基板1は、InAlGaN(0≦x<1、0≦y<1、0<z≦1、x+y+z=1)から形成することができる。窒化物半導体基板1をGaNから形成する場合、表面10は、例えば、Ga面であり、裏面20は、例えば、N面である。また、面取り部15は、等倍の実体顕微鏡で面取り部15を視認できると共に、窒化物半導体基板1の表面10のうち、実質的に素子成長させることのできる有効面積が減少しない範囲を有して形成される。例えば、面取り部15は、上面視にて、0.1mm以上1.0mm未満、好ましくは0.1mm以上0.5mm以下の面取り幅15aを有して形成される。同様にして、面取り部25は、上面視にて、0.1mm以上1.0mm未満、好ましくは0.1mm以上0.5mm以下の面取り幅25aを有して形成される。
また、表面10及び面取り部15は、表面10と面取り部15との境界及び面取り部15を顕微鏡により明瞭に認識できると共に、窒化物半導体基板1上に化合物半導体をエピタキシャル成長させた場合であっても面取り部15上における異常成長の発生、及び異常成長に起因する割れの発生を低減でき、砥粒径の大きな砥石を用いて表面10の縁に面取り加工を施しても実質的に問題とならない程度までチッピングの発生を低減させることを目的として、所定の平均粗さ(Ra)を有して形成される。
例えば、表面10及び面取り部15は、面取り部15の平均表面粗さ(Ra)に対する表面10の平均表面粗さ(Ra)の比が0.01以下、具体的には0.001以上0.01以下となる表面粗さを有して形成される。更に、面取り部15は、表面10の可視光透過率に対して0.2倍以下の可視光透過率を有して形成される。なお、可視光は、波長が400nm以上780nm以下の光である。同様にして、裏面20及び面取り部25は、面取り部25の平均表面粗さ(Ra)に対する裏面20の平均表面粗さ(Ra)の比が0.01以下、具体的には0.001以上0.01以下となる表面粗さを有して形成される。更に、面取り部25は、裏面20の可視光透過率に対して0.2倍以下の可視光透過率を有して形成される。
面取り部15の平均表面粗さ(Ra)に対する表面10の平均表面粗さ(Ra)の比が0.001以上0.01以下となる表面粗さを有して表面10及び面取り部15を形成することにより、表面10の光の透過率及び/又は反射率と、面取り部15の光の透過率及び/又は反射率との差を表面10と面取り部15とを明瞭に識別することができる範囲にすることができ、面取り部15を形成する場合に窒化物半導体基板1の表面10側の縁に接触させる砥石の砥粒径が大きくても実質上問題とならない程度までチッピングを低減できる。なお、裏面20の平均表面粗さと面取り部25の平均表面粗さも、表面10と面取り部15との間の関係と同様にして規定される。なお、表面の平均表面粗さ(Ra)は、JIS B 0601−1994に準拠して、原子間力顕微鏡を用いて50μm×50μmの範囲を測定することにより算出できる。
図2は、本発明の実施の形態に係る窒化物半導体基板の断面の概要を示す。
本実施の形態において面取り部15は、所定の面取り幅15aを有すると共に、表面10の水平方向に対して所定の角度を有して形成される。また、面取り部25も面取り部15と同様にして、裏面20の水平方向に対して所定の角度を有して形成される。更に、窒化物半導体基板1の端部30の表面は、表面10の法線方向及び裏面20の法線方向に水平な方向に沿って形成される。
なお、面取り部15及び面取り部25はそれぞれ、窒化物半導体基板1の表面10側及び裏面20側の縁の一部分にのみ形成することもできる。例えば、窒化物半導体基板1の面方位を示すオリエンテーションフラット等の直線部分を窒化物半導体基板1の縁に形成する場合、オリエンテーションフラットの領域に面取り部15及び面取り部25を形成することができる。また、窒化物半導体1の縁にノッチ等の切り込み部を形成する場合、切り込み部の領域にのみ面取り部15及び面取り部25を形成することもできる。
(窒化物半導体基板1の製造方法)
図3は、本発明の実施の形態に係る窒化物半導体基板の製造工程の流れの一例を示す。
まず、窒化物半導体基板1の原料となる窒化物半導体基板を準備する(基板準備工程:ステップ10、以下、ステップを「S」と略する)。例えば、異種基板であるサファイア基板上にEpitaxial Lateral Overgrowth(ELO)法等を用いて前処理を施す。続いて、Hydride Vapor Phase Epitaxy(HVPE)法により窒化物半導体の厚膜を形成する。次に、機械研磨又はレーザー剥離法によりサファイア基板を除去する。これにより、窒化物半導体の自立基板が原料となる窒化物半導体基板として得られる。なお、窒化物半導体基板のインゴットを成長して、インゴットをスライスすることにより原料となる窒化物半導体基板を得ることもできる。
次に、得られた窒化物半導体基板の裏面(窒化物半導体基板がGaNの場合は、N面)に鏡面加工を施す(裏面加工工程:S20)。裏面の研磨は、まず、裏面の凹凸を除くべく、研削又はラップ(GC#800等を用いる)により実施する。続いて、裏面にポリッシュを施すことにより裏面を鏡面化する。続いて、裏面に鏡面加工を施した窒化物半導体基板の表面(窒化物半導体基板がGaNの場合は、Ga面)に鏡面加工を施す(表面加工工程:S30)。表面の鏡面加工は、裏面と同様にして実施する。
続いて、窒化物半導体基板の表面側の縁に面取り加工を施す(第1エッジ形成工程:S40)。面取り加工は、研削又はラップにより実施する。また、面取り加工は、所定の形状、所定の表面粗さ、及び所定の可視光透過率を面取り部15が有するように実施する。次に、窒化物半導体基板の裏面側の縁に面取り加工を施す(第2エッジ形成工程:S50)。裏面の縁の面取り加工も、表面の縁の面取り加工と同様に実施する。本実施の形態においては、表面及び裏面の鏡面加工とは別個独立に、表面側の縁の面取り加工、及び裏面側の縁の面取り加工を実施する。これにより、本実施の形態に係る窒化物半導体基板1が得られる。
図4は、本発明の実施の形態に係る面取り加工方法の一例の概要を示す。
面取り加工は、表裏面鏡面加工済み窒化物半導体基板5を基板吸着ステージ100に搭載して、表裏面鏡面加工済み窒化物半導体基板5を砥石150に対して相対的に移動させながら、基板吸着ステージ100に搭載した表裏面鏡面加工済み窒化物半導体基板5の表面10側の縁又は裏面20側の縁に砥石150を接触させることにより実施する。
面取り加工時においては、砥石150は、ω方向150aに所定の回転速度で回転している。一方、表裏面鏡面加工済み窒化物半導体基板5は、基板吸着ステージがθ方向100aに所定の回転速度で回転することにより、θ方向100aに回転している。また、砥石150は、Z方向150bに稼動すると共に、基板吸着ステージ100は、X方向100b及びY方向100cに稼動する。
面取り加工は、表面10側の縁又は裏面20側の縁に回転している砥石150を接触させつつ、X方向100b、Y方向100c、及びZ方向150bのそれぞれについて移動量を調節することにより実施する。そして、所定の傾斜を有すると共に所定の表面粗さを有しており、表面10側の縁又は裏面20側の縁から基板の中心方向に、上面視にて、0.1mm以上1.0mm以下の幅を有する面取り部15及び面取り部25を形成する。なお、砥石150の粗さを変えることにより、面取り部15の表面粗さ及び面取り部25の表面粗さを調整する。
具体的に、面取り部15の平均表面粗さに対する表面10の平均表面粗さの比が0.001以上0.01以下であり、面取り部15の可視光透過率が表面10の可視光透過率の0.2倍以下となる平均表面粗さを有する面取り部15を表面10側の縁の面取り加工により形成する。同様にして、面取り部25の平均表面粗さに対する裏面20の平均表面粗さの比が0.001以上0.01以下であり、面取り部25の可視光透過率が裏面20の可視光透過率の0.2倍以下となる平均表面粗さを有する面取り部25を裏面20の縁の面取り加工により形成する。
(実施の形態の効果)
本実施の形態に係る窒化物半導体基板1は、表面10の端から窒化物半導体基板1の中心方向に向かって所定の範囲に面取り部15を形成すると共に、面取り部15の表面粗さに対する表面10の表面粗さの比を0.01以下にすると共に、面取り部15の可視光透過率を表面10の可視光透過率の0.2倍以下としたので、可視光又は赤外光が表面10及び面取り部15に照射された場合に、表面10と面取り部15との境界において窒化物半導体基板1の輪郭を光学的に明瞭に把握できる。これにより、本実施の形態に係る窒化物半導体基板1によれば、例えば、光学顕微鏡によって、若しくはステッパー装置、マスクアライナー装置等に搭載された画像処理装置によって、窒化物半導体基板1の輪郭を容易に把握できると共に、窒化物半導体基板1の端部(縁部)を容易に認識できる。
また、本実施の形態に係る窒化物半導体基板1は、裏面20の端から窒化物半導体基板1の中心方向に向かって所定の範囲に面取り部25を形成すると共に、面取り部25の表面粗さに対する裏面20の表面粗さの比を0.01以下にすると共に、面取り部25の可視光透過率を裏面20の可視光透過率の0.2倍以下としたので、可視光又は赤外光が裏面20及び面取り部25に照射された場合に、裏面20と面取り部25との境界において窒化物半導体基板1の輪郭を明瞭に把握できる。これにより、本実施の形態に係る窒化物半導体基板1によれば、例えば、光学顕微鏡によって、若しくはステッパー装置、マスクアライナー装置等に搭載された画像処理装置によって裏面アライメントをする場合に、窒化物半導体基板1の輪郭を容易に把握できると共に、窒化物半導体基板1の端部(縁部)を裏面側から容易に認識できる。
なお、本実施の形態に係る窒化物半導体基板1は、可視光又は赤外光によって窒化物半導体基板1の輪郭を認識できるので、輪郭認識用の特殊な光源(例えば、窒化物半導体基板を構成する窒化物半導体のバンドギャップよりも大きなエネルギーを有する紫外光)を用いなくても、半導体基板の位置検知装置、半導体基板の搬送装置、半導体基板の評価装置等に容易に適用できる。
[実施の形態の変形例]
図5は、本発明の実施の形態の変形例に係る窒化物半導体基板の断面の概要を示す。
実施の形態の変形例に係る窒化物半導体基板1は、実施の形態に係る窒化物半導体基板1の端の形状が異なる点を除き、実施の形態に係る窒化物半導体基板と略同一の構成を備える。したがって、相違点を除き、詳細な説明は省略する。
具体的に、実施の形態に係る窒化物半導体基板1は、面取り部15及び面取り部25の端にラウンド加工が施されて形成されるラウンド部32を備える。係る場合において、面取り部15及び面取り部25はそれぞれ、所定の曲率を有した湾曲面で形成される。ラウンド部32を備えることにより、窒化物半導体基板1の割れ、欠けを抑制できる。
図6は、本発明の実施の形態の変形例に係る面取り加工方法の一例を示す。
本発明の実施の形態の変形例に係る面取り加工は、製造すべき窒化物半導体基板1の縁の形状に予め対応させた形状を有する砥石152を用いて実施する。すなわち、砥石152は、窒化物半導体基板1の面取り部15の形状に対応させた砥石表面152bと、面取り部25の形状に対応させた砥石表面152cとを備え、方向152aに沿って稼動する。また、砥石152の砥石端部152dは、方向152aに対して垂直方向に沿った面を有する。なお、砥石端部152dは、所定の曲率を有した面で形成することもできる。
本発明の実施の形態に係る窒化物半導体基板の製造方法に基づいて、実施例に係る窒化物半導体基板を製造した。具体的には、以下の実施例1〜3に係る窒化物半導体基板を製造した。なお、実施例1〜3、及び比較例1〜3に係る窒化物半導体基板は、いずれも直径が50mmである。
(実施例1)
表面10、面取り部15、裏面20、及び面取り部25のそれぞれを鏡面化すると共に、面取り幅15a及び面取り幅25aを0.5mmにした。そして、面取り部15の平均表面粗さ(Ra)に対する表面10の平均表面粗さ(Ra)の比を0.001にした。なお、表面10のRaは、3nmにした。
(実施例2)
面取り部15の平均表面粗さ(Ra)に対する表面10の平均表面粗さ(Ra)の比を0.01にした点を除き、実施例1と同様にして窒化物半導体基板を製造した。
(実施例3)
面取り幅15a及び面取り幅25aを0.9mmにすると共に、面取り部15の平均表面粗さ(Ra)に対する表面10の平均表面粗さ(Ra)の比を0.01にした点を除き、実施例1と同様にして窒化物半導体基板を製造した。
具体的に、原料となる窒化物半導体基板の表面10及び裏面20に鏡面加工を施した後、面取り部15及び面取り部25を形成する面取り加工に用いる砥石150を#400にすることで実施例1に係る窒化物半導体基板を製造した。また、実施例1に係る粗さの比を、砥石150の砥粒径を#2000にすることで変更した実施例2及び実施例3に係る窒化物半導体基板を製造した。また、砥石150のZ方向150bの送り量と、基板吸着ステージ100のX方向100bの送り量とを調整することにより、面取り幅15a及び面取り幅25aを0.5mm(実施例1及び2)、0.9mm(実施例3)にした。
(比較例1)
一方、比較例1として、面取り部15を形成する面取り加工時に用いる砥石150を#200にすることにより、表面10の平均表面粗さ(Ra)の面取り部15の平均表面粗さ(Ra)に対する比を0.03にした窒化物半導体基板を製造した。
(比較例2)
また、比較例2として、表面10及び裏面20に鏡面加工を施す一方で、面取り加工を施さない窒化物半導体基板を製造した(面取り幅15a及び面取り幅25a=0.0mm)。
(比較例3)
更に、比較例3として、面取り部15を形成する面取り加工時の用いる砥石150を#3000にすることにより、面取り部15の平均表面粗さ(Ra)に対する表面10の平均表面粗さ(Ra)の比を0.0005にした窒化物半導体基板を製造した。
実施例1〜3、及び比較例1〜3に係る窒化物半導体基板をそれぞれ、SUS製のステージ上に黒色のプラスチック板を介して搭載した。そして、直径50mmの全域を同一画面で撮像するCCDカメラが搭載された実体顕微鏡で窒化物半導体基板を撮像した。なお、白色リング光源を備える実体顕微鏡を用いた。
ここで、表面10の表面粗さ、面取り部15の表面粗さ、又は裏面20の表面粗さ、面取り部25の表面粗さが増大すると、各々の表面における可視光及び/又は赤外光の散乱及び/又は反射も増大する。この場合、窒化物半導体基板を透過する可視光及び/又は赤外光が減少するので、窒化物半導体基板を搭載している黒色のプラスチック板に吸収される可視光及び/又は赤外光も減少する。
よって、面取り部15の表面粗さに対する表面10の表面粗さの比を小さくすると、面取り部15の可視光透過率が表面10の可視光透過率に対して減少するので、窒化物半導体基板の表面を撮像するCCDカメラに入射する面取り部15からの反射光は増大する。これにより、面取り部15の明度、表面10と面取り部15とのコントラスト(明度の差)が大きくなる。
また、窒化物半導体基板の輪郭の認識は、CCDカメラによって撮像された画像に二値化処理を施すことにより実施する。ここで、面取り部15の可視光透過率を、表面10の可視光透過率の0.2倍以下にすると、表面10と面取り部15とのコントラストが大きくなることにより、輪郭のコントラストが明確になる。面取り部25の可視光透過率を、裏面20の可視光透過率の0.2倍以下にした場合も同様である。例えば、実施例1〜3、比較例1においては、表面10の可視光透過率が65%から70%であるのに対して、面取り部15の可視光透過率は10%以下であり、面取り部15の可視光透過率が表面の可視光透過率の0.2倍以下であった。この場合、面取り部15は、蛍光灯下、目視にて、白濁した状態(不透明な状態)で観察された。
具体的に、撮像された画像において、実施例1〜3、比較例1、及び比較例3に係る窒化物半導体基板の表面と周囲のプラスチック板とは明度が低い状態(黒っぽい色)で観察され、面取り部については明度が高い状態(白色乃至白濁した色)で観察された。撮像した画像の256色ビットマップデータに二値化処理を施して、窒化物半導体基板の輪郭の認識結果を比較した。
実施例1〜3、及び比較例1〜2に係る窒化物半導体基板のそれぞれの二値化による基板輪郭の認識の評価結果を表1に示す。
Figure 0005293074
実施例1〜3に係る窒化物半導体基板においては、未認識率が10%以下であった。なお、二値化時の閾値を100以上150以下に設定した場合に、窒化物半導体基板の表面と当該表面を除く領域とが境界で分離され、かつ、分離された領域の面積が実際の表面積に対して±3%以内である場合に輪郭を認識できない、すなわち、輪郭未認識とした。
表1を参照すると、面取り幅15aが0.5mmの場合、表面10の粗さ/面取り部15の粗さの比が0.01以下であれば、輪郭未認識率は5%以下であった。しかしながら、面取り幅15aが0.9mmであって、かつ、表面10の粗さ/面取り部15の粗さの比が0.01より大きい場合(例えば、比較例1)、輪郭未認識率は10%を超えた。これは、面取り幅15aが所定値を超えると、表面10と面取り部15とのなす角が小さくなると共に、表面10の粗さ/面取り部15の粗さの比が小さくなることにより、表面10と面取り部15との境界の認識が困難になったためである。したがって、二値化して計算した面積は、実際の表面積よりも大きくなる傾向があることがわかる。
また、比較例1において#200という砥粒径の小さな砥石を用いる場合、所定形状の面取り部15を形成することに要する加工時間が6時間を超えた。したがって、加工時間の観点から砥粒径は、#200の砥粒径より大きいことが好ましい。
また、比較例2においては、リング照明が窒化物半導体基板に均等に照射された場合は基板の輪郭を認識できた。しかしながら、基板と照明との位置関係が変化すると、基板の端面が部分的に照明の光を反射することにより、基板の輪郭を認識できない場合があった。また、基板の輪郭が認識できたとしても、輪郭がぼやけ、未認識率が22%であった。これは、比較例2に係る窒化物半導体基板は面取り部を備えておらず、窒化物半導体基板とプラスチック板との段差によって生じる影の影響と考えられた。
以上より、面取り幅15aが0.1mm以上1.0mm未満の範囲である場合、表面10の粗さ/面取り部15の粗さの比は0.01以下であることが好ましいことが示された。
次に、実施例1〜3、及び比較例1〜3に係る窒化物半導体基板上に、5μm厚の窒化ガリウム(GaN)膜を有機金属気相成長法(MOCVD法)により成長した。そして、GaN膜を成長した後の窒化物半導体基板表面のクラック発生率を測定した。なお、有機金属材料として、トリメチルガリウム(TMG)、ガス原料としてアンモニア(NH)、キャリアガスとして水素及び窒素を用いた。表2に、実施例1〜3、及び比較例1〜2に係る窒化物半導体基板のクラック発生率の結果を示す。
Figure 0005293074
表2を参照するとわかるように、実施例1〜3に係る窒化物半導体基板においては、クラック発生率が5%以下であった。この値は、実際に実施例1〜3に係る窒化物半導体基板を電子デバイスの製造工程に供給する場合に問題とならない値である。一方、比較例2に係る窒化物半導体基板は、面取り部を備えていないことに起因した、基板周辺に盛り上がるようにGaN膜が成長する異常成長が観察され、異常成長した部分からクラックが多数発生していた。
次に、表面10の粗さ/面取り部15の粗さの比の違いによって面取り加工時に生じるクラック・深い傷の発生率の結果を表3に示す。
Figure 0005293074
表3の比較例3を参照するとわかるように、表面10の粗さ/面取り部15の粗さの比を小さくする、すなわち、表面10の粗さに対して面取り部15の粗さを大きくすることを目的として、粗い砥石150(例えば、#3000)を用いて面取り加工を施すと、大きく深い傷が面取り部に生じやすく、生じた傷を基点としてクラック等の破壊が発生しやすいと考えられた。したがって、表面10の粗さ/面取り部15の粗さとの比、及び裏面20の粗さ/面取り部25の粗さとの比は、0.001以上0.01以下にすることが好ましいことが示された。
以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
(a)は、本発明の実施の形態に係る窒化物半導体基板の表面図であり、(b)は、本発明の実施の形態に係る窒化物半導体基板の裏面図である。 本発明の実施の形態に係る窒化物半導体基板の断面図である。 本発明の実施の形態に係る窒化物半導体基板の製造工程の流れの図である。 本発明の実施の形態に係る面取り加工方法の図である。 本発明の実施の形態の変形例に係る窒化物半導体基板の断面図である。 本発明の実施の形態の変形例に係る面取り加工方法の図である。
符号の説明
1 窒化物半導体基板
5 表裏面鏡面加工済み窒化物半導体基板
10 表面
15、25 面取り部
15a、25a 面取り幅
17、27 面取り部表面
20 裏面
30 端部
32 ラウンド部
100 基板吸着ステージ
100a θ方向
100b X方向
100c Y方向
150、152 砥石
150a ω方向
150b Z方向
152a 方向
152b、152c 砥石表面
152d 砥石端部

Claims (6)

  1. 窒化物半導体からなる基板であって、
    前記基板は、表面と、前記表面の反対側の裏面と、前記基板の表面側の縁が面取り加工されて形成される第1のエッジ部とを備え、
    前記基板を前記表面側から見たときの前記第1のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、前記第1のエッジ部の平均表面粗さに対する前記表面の平均表面粗さの比が0.01以下である窒化物半導体基板。
  2. 前記基板の裏面側の縁が面取り加工されて形成される第2のエッジ部を更に備え、
    前記基板を前記裏面側から見たときの前記第2のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、前記第2のエッジ部の平均表面粗さに対する前記裏面の平均表面粗さの比が、0.01以下である請求項1に記載の窒化物半導体基板。
  3. 前記第1のエッジ部は、前記表面の可視光透過率の0.2倍以下の可視光透過率を有する請求項2に記載の窒化物半導体基板。
  4. 前記第2のエッジ部は、前記裏面の可視光透過率の0.2倍以下の可視光透過率を有するである請求項3に記載の窒化物半導体基板。
  5. 窒化物半導体からなる基板の表面を鏡面加工する表面加工工程と、
    前記基板の表面側の縁を面取り加工することにより第1のエッジ部を形成する第1エッジ形成工程とを備え、
    前記第1エッジ形成工程は、前記基板を前記表面側から見たときの前記第1のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、前記第1のエッジ部の平均表面粗さに対する前記表面の平均表面粗さの比が0.01以下であり、前記第1のエッジ部の可視光透過率が前記表面の可視光透過率の0.2倍以下である前記第1のエッジを形成する窒化物半導体基板の製造方法。
  6. 前記基板の前記表面とは反対側の裏面を鏡面加工する裏面加工工程と、
    前記基板の裏面側の縁を面取り加工することにより第2のエッジ部を形成する第2エッジ形成工程とを更に備え、
    前記第2エッジ形成工程は、前記基板を前記裏面側から見たときの前記第2のエッジ部の面取り幅が0.1mm以上1.0mm未満の範囲である場合、前記第2のエッジ部の平均表面粗さに対する前記裏面の平均表面粗さの比が0.01以下であり、前記第2のエッジ部の可視光透過率が前記裏面の可視光透過率の0.2倍以下である前記第2のエッジを形成する請求項5に記載の窒化物半導体基板の製造方法。
JP2008269880A 2008-10-20 2008-10-20 窒化物半導体基板及び窒化物半導体基板の製造方法 Active JP5293074B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008269880A JP5293074B2 (ja) 2008-10-20 2008-10-20 窒化物半導体基板及び窒化物半導体基板の製造方法
US12/585,109 US8120059B2 (en) 2008-10-20 2009-09-03 Nitride semiconductor substrate and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269880A JP5293074B2 (ja) 2008-10-20 2008-10-20 窒化物半導体基板及び窒化物半導体基板の製造方法

Publications (2)

Publication Number Publication Date
JP2010094793A JP2010094793A (ja) 2010-04-30
JP5293074B2 true JP5293074B2 (ja) 2013-09-18

Family

ID=42107986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269880A Active JP5293074B2 (ja) 2008-10-20 2008-10-20 窒化物半導体基板及び窒化物半導体基板の製造方法

Country Status (2)

Country Link
US (1) US8120059B2 (ja)
JP (1) JP5293074B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244962B2 (ja) * 2014-02-17 2017-12-13 株式会社Sumco 半導体ウェーハの製造方法
JP7562994B2 (ja) * 2020-06-08 2024-10-08 株式会社Sumco ウェーハ外周部の研磨装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481144B2 (ja) * 1998-08-31 2003-12-22 東芝セラミックス株式会社 面取り幅測定装置
US6884154B2 (en) * 2000-02-23 2005-04-26 Shin-Etsu Handotai Co., Ltd. Method for apparatus for polishing outer peripheral chamfered part of wafer
WO2002005337A1 (fr) * 2000-07-10 2002-01-17 Shin-Etsu Handotai Co., Ltd. Tranche a chanfreinage en miroir, tissu a polir pour chanfreinage en miroir, machine a polir pour chanfreinage en miroir et procede associe
JP2004050347A (ja) * 2002-07-19 2004-02-19 Mitsutoyo Corp 研削加工方法、及びこの方法を用いた平面研削盤またはグラインディングセンタ
JP4034682B2 (ja) * 2002-10-21 2008-01-16 株式会社東芝 半導体ウェーハ及び半導体ウェーハ製造方法
JP3534115B1 (ja) * 2003-04-02 2004-06-07 住友電気工業株式会社 エッジ研磨した窒化物半導体基板とエッジ研磨したGaN自立基板及び窒化物半導体基板のエッジ加工方法
JP2006038983A (ja) * 2004-07-23 2006-02-09 Seiko Epson Corp 電気光学装置用基板及びその製造方法、電気光学装置並びに電子機器
JP4721259B2 (ja) * 2004-08-30 2011-07-13 Hoya株式会社 マスクブランク用ガラス基板の製造方法、マスクブランクの製造方法、及び露光用マスクの製造方法
JP2007216355A (ja) * 2006-02-17 2007-08-30 Nidek Co Ltd カップ取付け装置及び該装置にて使用するためのパターン板
DE102006037267B4 (de) * 2006-08-09 2010-12-09 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben mit hochpräzisem Kantenprofil
JP2010092975A (ja) * 2008-10-06 2010-04-22 Hitachi Cable Ltd 窒化物半導体基板

Also Published As

Publication number Publication date
JP2010094793A (ja) 2010-04-30
US8120059B2 (en) 2012-02-21
US20100096728A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
US11911842B2 (en) Laser-assisted method for parting crystalline material
US7118813B2 (en) Vicinal gallium nitride substrate for high quality homoepitaxy
US8062960B2 (en) Compound semiconductor device and method of manufacturing compound semiconductor device
CN100424817C (zh) 半导体用氮化物衬底的制备方法及氮化物半导体衬底
US7374618B2 (en) Group III nitride semiconductor substrate
EP2543752A1 (en) Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
US9938638B2 (en) Method for producing semiconductor epitaxial wafer and semiconductor epitaxial wafer
US7986030B2 (en) Nitride semiconductor substrate
CN1201998A (zh) Iii-v族化合物半导体晶片
EP2378542A1 (en) Substrate and method for manufacturing substrate
JP5293074B2 (ja) 窒化物半導体基板及び窒化物半導体基板の製造方法
JP2008115074A (ja) 窒化ガリウム単結晶基板及び表面加工方法
JPWO2017216997A1 (ja) 窒化物半導体テンプレート、窒化物半導体テンプレートの製造方法および窒化物半導体自立基板の製造方法
WO2022004046A1 (ja) エピタキシャル結晶成長用自立基板および機能素子
JP5332691B2 (ja) 窒化物半導体基板の加工方法
WO2022059244A1 (ja) Iii族元素窒化物半導体基板
JP6978641B1 (ja) Iii族元素窒化物半導体基板
JP5126108B2 (ja) 窒化物半導体基板
EP1743961A1 (en) Compound semiconductor substrate
JP2005032804A (ja) 半導体ウェハの加工方法
CN204905260U (zh) Iii族氮化物衬底
JP2006147891A (ja) エピタキシャル成長用サファイア基板、およびその製造方法
JP2004165484A (ja) 半導体ウェハの加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350