[go: up one dir, main page]

JP5291354B2 - Gas nitriding furnace and gas soft nitriding furnace - Google Patents

Gas nitriding furnace and gas soft nitriding furnace Download PDF

Info

Publication number
JP5291354B2
JP5291354B2 JP2008029018A JP2008029018A JP5291354B2 JP 5291354 B2 JP5291354 B2 JP 5291354B2 JP 2008029018 A JP2008029018 A JP 2008029018A JP 2008029018 A JP2008029018 A JP 2008029018A JP 5291354 B2 JP5291354 B2 JP 5291354B2
Authority
JP
Japan
Prior art keywords
gas
chamber
heating
standby
standby chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008029018A
Other languages
Japanese (ja)
Other versions
JP2009186140A (en
Inventor
保男 大竹
Original Assignee
オリエンタルエンヂニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタルエンヂニアリング株式会社 filed Critical オリエンタルエンヂニアリング株式会社
Priority to JP2008029018A priority Critical patent/JP5291354B2/en
Publication of JP2009186140A publication Critical patent/JP2009186140A/en
Application granted granted Critical
Publication of JP5291354B2 publication Critical patent/JP5291354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel gas nitriding furnace and gas soft nitriding furnace capable of preventing generation of solid matter caused by outflowing of treatment gas. <P>SOLUTION: The gas nitriding furnace 100 includes a standby chamber 30 for passage and standby of an object S to be treated, between a heating chamber 10 for nitriding the object S to be treated and a pre/post-treatment chamber 20 for carrying out pretreatment and posttreatment of the object S to be treated. The standby chamber 30 has a heating means 38 for heating an interior of the standby chamber 30 to a predetermined temperature or more, and an exhaust means L3 for exhausting gas in the standby chamber 30. Since the treatment gas flowing out to the standby chamber 30 is discharged without solidifying thereby, deterioration of treatment efficiency of the whole treatment furnace is prevented which is due to generation of solid matter caused by outflowing of the treatment gas. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、鋼製機械部品などの被処理物をバッチ式にガス窒化処理するためのガス窒化炉およびガス軟窒化炉に関するものである。   The present invention relates to a gas nitriding furnace and a gas soft nitriding furnace for batch-type gas nitriding treatment of workpieces such as steel machine parts.

従来、機械金属部品などの表面硬化処理法の1つである窒化処理のうち、窒素ガス(N)雰囲気中にアンモニア(NH)ガスと炭酸(CO)ガスを所定の割合で添加したガスを原料ガスとして用いたガス軟窒化処理は、炭素の存在によって窒素の拡散が促進されることから、NHのみによる窒化などに比べて優れた耐摩耗性・耐焼付性・耐疲労性などを発揮することが知られている。 Conventionally, ammonia (NH 3 ) gas and carbonic acid (CO 2 ) gas are added at a predetermined ratio in a nitrogen gas (N 2 ) atmosphere in nitriding treatment, which is one of surface hardening treatment methods for machine metal parts and the like. Gas soft nitriding using gas as a source gas promotes the diffusion of nitrogen due to the presence of carbon, so it has superior wear resistance, seizure resistance, fatigue resistance, etc. compared to nitriding with NH 3 alone, etc. It is known to exert.

このようなガス軟窒化処理などを行うための熱処理装置(炉)としては、従来から様々な構成のものが提案されている。例えば、以下の特許文献1には、被熱物を加熱処理するための加熱室に冷却室とパージ室を付設し、この被熱物を昇降台によってこれら冷却室とパージ室間を移動させることでバッチ式に処理するようにしたものが開示されている。また、以下の特許文献2には、加熱室間と冷却室間に搬送機構を備えることで効率的な処理を行うようにしたものなどが開示されている。
特開平7−90361号公報 特開2003−183728号公報
As a heat treatment apparatus (furnace) for performing such a gas soft nitriding treatment, ones having various configurations have been proposed. For example, in Patent Document 1 below, a cooling chamber and a purge chamber are attached to a heating chamber for heat-treating a heated object, and the heated object is moved between the cooling chamber and the purge chamber by an elevator. Are disclosed in a batch process. Patent Document 2 below discloses an apparatus that performs efficient processing by providing a conveyance mechanism between heating chambers and between cooling chambers.
Japanese Unexamined Patent Publication No. 7-90361 JP 2003-183728 A

ところで、前述したように処理ガスとして窒素ガス(N)にアンモニア(NH)ガスと炭酸(CO)ガスを混合したガスなどを用いた場合、これらのガスが反応して炭酸アンモニウム((NHCO)などのアンモニア化合物のガスが生成する。
また、被処理物の表面を活性化させるなどの目的で適宜硝酸アンモニウム(NHNO)や塩化アンモニウム(NHCl)などを上述のガスに加えて処理する場合もこれらアンモニア化合物ガスを生ずる。
そして、これが加熱室から搬出入室などに流れ出て冷却されることで固化(気体→固体)し、搬出入室などに粉状となって堆積する。
そのため、このような現象が発生した場合には、堆積した固化物を除去するために炉を一旦停止してその除去作業や清掃作業を行わなければならず、処理炉全体の処理効率の低下を招くといった問題がある。
そこで、本発明はこのような課題を有効に解決するために案出されたものであり、その目的は、処理ガスの流出による固化物の発生を未然に防止できる新規なガス窒化炉およびガス軟窒化炉を提供するものである。
By the way, as described above, when a gas obtained by mixing ammonia (NH 3 ) gas and carbonic acid (CO 2 ) gas with nitrogen gas (N 2 ) is used as a processing gas, these gases react to react with ammonium carbonate (( A gas of ammonia compound such as NH 4 ) 2 CO 3 ) is generated.
Further, when ammonia nitrate (NH 4 NO 3 ), ammonium chloride (NH 4 Cl) or the like is appropriately added to the above gas for the purpose of activating the surface of the object to be processed, these ammonia compound gases are also generated.
Then, it flows out from the heating chamber to the carry-in / out chamber etc. and is cooled to solidify (gas → solid), and accumulates as powder in the carry-in / out chamber.
Therefore, when such a phenomenon occurs, the furnace must be temporarily stopped to remove the accumulated solid matter, and the removal work and cleaning work must be performed, thereby reducing the processing efficiency of the entire processing furnace. There is a problem of inviting.
Therefore, the present invention has been devised in order to effectively solve such problems, and an object of the present invention is to provide a novel gas nitriding furnace and gas softening which can prevent generation of solidified substances due to outflow of processing gas. A nitriding furnace is provided.

前記課題を解決するために請求項1の発明は、
被処理物を窒化処理する加熱室と前記被処理物の前後処理を行う前後処理室との間に、前記被処理物を待機させる待機室を備えたガス窒化炉であって、前記待機室に、当該待機室内の前後処理室側の底部付近に設けられ、前記待機室内をアンモニア化合物の固化温度よりも高い温度以上に加熱し、前記加熱室から前記待機室内に流れ出てきたアンモニア化合物のガスを加熱する加熱手段と、前記待機室内のガスを排気する排気手段とを備えたことを特徴とするガス窒化炉である。
また、請求項2のガス窒化炉は、
請求項1に記載のガス窒化炉において、前記待機室は垂直方向に昇降動可能な昇降台を備え、前記昇降台は被処理物を搬送可能に構成された底部及び上部を有するとともに、当該昇降台の底部及び上部のそれぞれが、前記加熱室と前記前後処理室とを水平に接続するように構成されたことを特徴とするガス窒化炉である。
また、請求項3のガス軟窒化炉は、
被処理物を窒化処理する加熱室と前記被処理物の前後処理を行う前後処理室との間に、前記被処理物を通過および待機させる待機室を備えたガス軟窒化炉であって、前記待機室に、当該待機室内の前後処理室側の底部付近に設けられ、前記待機室内を炭酸アンモニウム((NH4)2CO3)ガスの固化温度以上に加熱し、前記加熱室から前記待機室内に流れ出てきた炭酸アンモニウム((NH4)2CO3)ガスを加熱する加熱手段と、前記待機室内の炭酸アンモニウム((NH4)2CO3)ガスを排気する排気手段とを備えたことを特徴とするものである。
In order to solve the above-mentioned problem, the invention of claim 1
A gas nitriding furnace comprising a standby chamber for waiting for the object to be processed between a heating chamber for nitriding the object to be processed and a pre- and post-processing chamber for performing pre- and post-processing of the object to be processed. Provided in the vicinity of the bottom of the waiting chamber on the front and rear processing chamber side, heating the waiting chamber to a temperature higher than the solidification temperature of the ammonia compound, and the ammonia compound gas flowing out from the heating chamber into the waiting chamber. heating means for heating a gas nitriding furnace, characterized in that an exhaust means for exhausting the waiting room of the gas.
The gas nitriding furnace according to claim 2 is:
2. The gas nitriding furnace according to claim 1, wherein the standby chamber includes a lifting platform that is vertically movable, and the lifting platform has a bottom and an upper portion that are configured to convey an object to be processed. Each of the bottom part and the upper part of the base is a gas nitriding furnace configured to horizontally connect the heating chamber and the front and rear processing chambers .
The gas soft nitriding furnace of claim 3 is:
A gas soft nitriding furnace provided with a standby chamber for passing and waiting for the object to be processed between a heating chamber for nitriding the object to be processed and a pre- and post-processing chamber for performing pre- and post-processing of the object, The standby chamber is provided near the bottom of the standby chamber on the front and rear processing chamber side , heats the standby chamber above the solidification temperature of ammonium carbonate ((NH4) 2CO3) gas, and flows out of the heating chamber into the standby chamber. heating means for heating the ammonium carbonate ((NH4) 2CO3) gas, the ammonium carbonate waiting room ((NH4) 2CO3) is characterized in that an exhaust means for exhausting gas.

本発明のガス窒化炉およびガス軟窒化炉によれば、加熱室に隣接する待機室に加熱手段を設けたことから、その待機室内を所定温度、具体的には、少なくとも炭酸アンモニウム((NHCO)などのアンモニア化合物の固化温度よりも高い温度以上に加熱することができる。
これによって、加熱室から待機室に炭酸アンモニウム((NHCO)などのアンモニア化合物のガスが流出してきてもこのガスが固化して固化物となって待機室内に堆積するようなことがなくなるため、処理炉全体の処理効率の低下を未然に防止できる。
また、さらにこの待機室に排気手段を備えたことから、待機室に流出してきたガスをこの排気手段によって安全に排気することができるため、有害なガスがこの待機室から外部に漏れ出すようなこともない。
According to the gas nitriding furnace and the gas soft nitriding furnace of the present invention, since the heating means is provided in the standby chamber adjacent to the heating chamber, the standby chamber has a predetermined temperature, specifically, at least ammonium carbonate ((NH 4 ) It can be heated to a temperature higher than the solidification temperature of the ammonia compound such as 2 CO 3 ).
As a result, even if an ammonia compound gas such as ammonium carbonate ((NH 4 ) 2 CO 3 ) flows out from the heating chamber to the standby chamber, the gas is solidified to be solidified and deposited in the standby chamber. Therefore, it is possible to prevent a reduction in the processing efficiency of the entire processing furnace.
Further, since the standby chamber is further provided with exhaust means, the gas flowing into the standby chamber can be safely exhausted by the exhaust means, so that harmful gas leaks out from the standby chamber. There is nothing.

以下、本発明を実施するための最良の形態を添付図面を参照しながら詳述する。
(構成)
図1は本発明に係るガス軟窒化炉100の実施の一形態を示したものである。
図示するように、このガス軟窒化炉100は、機械金属部品などの被処理物Sをガス軟窒化処理する加熱室10と、被処理物Sの前後処理を行う真空パージ兼冷却室(前後処理室)20と、これら加熱室10と真空パージ兼冷却室20との間に位置する待機室30と、これら加熱室10、真空パージ兼冷却室20、待機室30における一連の処理を制御する制御部40とから主に構成されている。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.
(Constitution)
FIG. 1 shows an embodiment of a gas nitrocarburizing furnace 100 according to the present invention.
As shown in the figure, the gas nitrocarburizing furnace 100 includes a heating chamber 10 that performs gas soft nitriding treatment on an object S such as mechanical metal parts, and a vacuum purge / cooling chamber that performs before and after treatment of the object S (front and rear treatment). Chamber) 20, a standby chamber 30 located between the heating chamber 10 and the vacuum purge / cooling chamber 20, and a control for controlling a series of processes in the heating chamber 10, the vacuum purge / cooling chamber 20, and the standby chamber 30. It is mainly comprised from the part 40. FIG.

先ず、真空パージ兼冷却室20は、密閉可能な出入口22,23を備えた処理室本体21に、被処理物Sを水平搬送するローラコンベア24と、このハウジング21内を冷却する熱交換器25と、この処理室本体21内の雰囲気を攪拌する攪拌ファン26と、この処理室本体1内を真空パージする真空パージラインL1などを主に備えたものであり、被処理物Sを加熱室10側に搬出入すると共に、この被処理物Sの搬出入に際して必要な前後処理を実施するようになっている。   First, the vacuum purging / cooling chamber 20 includes a roller conveyor 24 that horizontally conveys the workpiece S to a processing chamber main body 21 that includes hermetic inlets 22 and 23, and a heat exchanger 25 that cools the inside of the housing 21. And an agitation fan 26 for agitating the atmosphere in the processing chamber main body 21, a vacuum purge line L1 for vacuum purging the processing chamber main body 1, and the like. In addition to carrying in / out to the side, the pre- and post-processing necessary for carrying in / out the workpiece S is carried out.

具体的に説明すると、被処理物Sを加熱室10で処理する前には、この被処理物Sを一旦この真空パージ兼冷却室20に収容した後、その出入口22,23を昇降式の開閉蓋22a、23aによって密閉した状態で真空パージラインL1によって所定時間真空パージして酸素などの不純物を除去するようになっている。
この真空パージラインL1には、真空ポンプP1とサージタンク50と分解炉60などが順に付設されており、真空ポンプP1によって真空パージ兼冷却室20内のガス(空気やアンモニアガスなど)を強制的に抜き出してサージタンク50に一旦貯めると共に、このサージタンク50に貯められた有害なアンモニアガスを分解炉60によって窒素と水素に分解して燃焼排気するようになっている。なお、この分解炉60にはNi触媒が充填されており、比較的低温でもアンモニアを効率良く分解処理できる構造となっている。
More specifically, before processing the object to be processed S in the heating chamber 10, the object S is once accommodated in the vacuum purge / cooling chamber 20, and its entrances 22 and 23 are opened and closed. In a state of being sealed by the lids 22a and 23a, vacuum purge is performed for a predetermined time by a vacuum purge line L1 to remove impurities such as oxygen.
A vacuum pump P1, a surge tank 50, a decomposition furnace 60, and the like are sequentially attached to the vacuum purge line L1, and the gas (air, ammonia gas, etc.) in the vacuum purge / cooling chamber 20 is forced by the vacuum pump P1. In addition to being temporarily stored in the surge tank 50, harmful ammonia gas stored in the surge tank 50 is decomposed into nitrogen and hydrogen by the decomposition furnace 60 and combusted and exhausted. The cracking furnace 60 is filled with a Ni catalyst, and has a structure capable of efficiently decomposing ammonia even at a relatively low temperature.

一方、この被処理物Sを加熱室10で処理した後は、再びこの被処理物Sを真空パージ兼冷却室20に戻し、同じく昇降式の開閉蓋22a、23aによって密閉した状態で熱交換器25に冷却水などの冷媒を流しながら攪拌ファン26を駆動してその雰囲気を攪拌させることで、この被処理物Sを例えば約100℃乃至室温付近まで冷却するようになっている。   On the other hand, after the object to be processed S is processed in the heating chamber 10, the object to be processed S is returned to the vacuum purge / cooling chamber 20 and sealed in the same manner by the liftable open / close lids 22a and 23a. The workpiece S is cooled to, for example, about 100 ° C. to near room temperature by driving the stirring fan 26 while flowing a coolant such as cooling water through 25 to stir the atmosphere.

なお、この真空パージ兼冷却室20の出入口22,23を開閉する開閉蓋22a、23aは、それぞれエアーシリンダ機構22b、23bによって昇降動すると共に、リンク機構22c、23cによって出入口22,23を密閉できるようになっている。また、このローラコンベア24には、図示しない駆動モータが備えられており、被処理物Sを出入口22,23方向に搬送できるようになっている。
また、この被処理物Sは、通常、例えばギヤーやシャフト、リング、プレートなどといった小さな機械金属部品(バラ物)が殆どであるため、サイズなどが規格化された搬送用のトレー(図示せず)上に複数上下多段に載置されてトレー単位で各室間を搬送されてバッチ式に各処理がなされるようになっている。
The open / close lids 22a and 23a for opening and closing the entrances 22 and 23 of the vacuum purge / cooling chamber 20 can be moved up and down by the air cylinder mechanisms 22b and 23b, respectively, and the entrances 22 and 23 can be sealed by the link mechanisms 22c and 23c. It is like that. The roller conveyor 24 is provided with a drive motor (not shown) so that the workpiece S can be conveyed in the direction of the entrances 22 and 23.
Further, since the object to be processed S is usually mostly small mechanical metal parts (separate objects) such as gears, shafts, rings, plates, etc., a transport tray (not shown) whose size is standardized is not shown. ) Are placed in a plurality of upper and lower stages, and are transported between the chambers in units of trays so that each process is performed in a batch manner.

次に、加熱室10は、耐火物で構成された加熱室本体11に、被処理物Sを搬出入する搬出入口12と、被処理物Sを水平搬送するローラコンベア13と、ラジアントヒータなどからなる複数の加熱器14と、この加熱室10内の雰囲気を攪拌する攪拌ファン15と、原料ガスを供給する原料ガス供給ラインL2などを備えたものである。   Next, the heating chamber 10 includes a loading / unloading port 12 for loading / unloading the workpiece S, a roller conveyor 13 for horizontally conveying the workpiece S, a radiant heater, and the like to / from a heating chamber body 11 made of refractory. A plurality of heaters 14, a stirring fan 15 for stirring the atmosphere in the heating chamber 10, a source gas supply line L 2 for supplying source gas, and the like.

そして、加熱室本体11内に被処理物Sを搬入した後、その搬出入口12を開閉蓋12aによって閉じてからその内部に原料ガス供給ラインL2からNとNHとCOの混合ガスなどの原料ガスを供給すると共にその雰囲気を攪拌ファン15によって攪拌しながら加熱器14によってその雰囲気を例えば400〜600℃×1.5〜2時間程度均一に加熱にすることで被処理物Sをガス軟窒化処理するようになっている。 Then, after loading the object to be treated S in the heating chamber body 11, the carry-out the inlet 12 therein to close the lid 12a raw gas from the supply line L2 N 2 and NH 3 and a mixed gas of CO 2, etc. While the atmosphere is being stirred by the stirring fan 15 and the atmosphere is heated uniformly by, for example, 400 to 600 ° C. × 1.5 to 2 hours, the workpiece S is gasified. Soft nitriding is performed.

なお、加熱室本体11の搬出入口12の開閉蓋12aも耐火物で構成されていると共に、エアーシリンダ機構12bによって昇降動して搬出入口12を開閉するようになっている。
次に、待機室30は、この加熱室10と真空パージ兼冷却室20間を連通するように位置する待機室本体31と、この待機室本体31内を昇降する昇降機構32と、この待機室本体31内を加熱すべく電熱線などからなる加熱手段38と、この待機室本体31内のガスを排気する排気ライン(排気手段)L3とを主に備えた構成となっている。
The opening / closing lid 12a of the carry-in / out port 12 of the heating chamber body 11 is also made of a refractory material, and is moved up and down by an air cylinder mechanism 12b to open and close the carry-in / out port 12.
Next, the standby chamber 30 includes a standby chamber main body 31 positioned so as to communicate between the heating chamber 10 and the vacuum purge / cooling chamber 20, an elevating mechanism 32 that moves up and down in the standby chamber main body 31, and the standby chamber. The heating unit 38 including a heating wire to heat the inside of the main body 31 and an exhaust line (exhaust unit) L3 for exhausting the gas in the standby chamber main body 31 are mainly provided.

この昇降機構32は、被処理物Sを搬送する矩形状の昇降台33と、この矩形状の昇降台33を垂直方向に昇降動する昇降用シリンダ34およびシリンダロッド35とから構成されている。
この昇降台33の底部および上部は、それぞれローラコンベア36、37で構成されており、図示するようにこの昇降台33が昇降することで加熱室10側のローラコンベア13と真空パージ兼冷却室20側のローラコンベア24に対してそれぞれ同じ高さに位置し、これらいずれか一方のローラコンベア36、37によってローラコンベア13とローラコンベア24間を同じレベルで接続するようになっている。
The elevating mechanism 32 includes a rectangular elevating table 33 that conveys the workpiece S, and an elevating cylinder 34 and a cylinder rod 35 that elevate and lower the rectangular elevating table 33 in the vertical direction.
The bottom and top of the lift 33 are respectively constituted by roller conveyors 36 and 37. As shown in the figure, the lift 33 is moved up and down, so that the roller conveyor 13 on the heating chamber 10 side and the vacuum purge / cooling chamber 20 are provided. The roller conveyor 24 is located at the same height with respect to the roller conveyor 24 on the side, and the roller conveyor 13 and the roller conveyor 24 are connected at the same level by either one of the roller conveyors 36 and 37.

すなわち、図中実線に示すようにこの昇降台33が降下したときは、その上部のローラコンベア36がローラコンベア13とローラコンベア24間に位置してこれらを水平に接続し、また、図中破線に示すようにこの昇降台33が上昇したときは、その下部のローラコンベア37がローラコンベア13とローラコンベア24間に位置してこれらを水平に接続するようになっている。   That is, as shown by the solid line in the figure, when the elevator platform 33 is lowered, the roller conveyor 36 on the upper side is located between the roller conveyor 13 and the roller conveyor 24 and is connected horizontally, and the broken line in the figure. As shown in FIG. 2, when the elevator platform 33 is raised, the lower roller conveyor 37 is positioned between the roller conveyor 13 and the roller conveyor 24 and is connected horizontally.

一方、加熱手段38は、通常運転時において待機室本体31内で最も温度が低くなる部分、すなわち図示するように真空パージ兼冷却室20側に近い待機室本体31内底部付近に設けられており、その待機室30内を常時所定温度以上、具体的には、窒素ガス、アンモニアガス、炭酸ガスのみによる場合は、炭酸アンモニウム((NHCO)の固化温度である約60℃よりも高い温度(80〜90℃程度)に、また、硝酸アンモニウム(NHNO)や塩化アンモニウム(NHCl)などを添加した場合にはさらに高い温度(150〜250℃程度)に加熱するようになっている。 On the other hand, the heating means 38 is provided in the portion where the temperature is lowest in the standby chamber main body 31 during normal operation, that is, in the vicinity of the bottom of the standby chamber main body 31 near the vacuum purge / cooling chamber 20 side as illustrated. The interior of the standby chamber 30 is always above a predetermined temperature. Specifically, when only nitrogen gas, ammonia gas, or carbon dioxide is used, the solidification temperature of ammonium carbonate ((NH 4 ) 2 CO 3 ) is about 60 ° C. When the addition of ammonium nitrate (NH 4 NO 3 ), ammonium chloride (NH 4 Cl), or the like is performed at a higher temperature (about 150 to 250 ° C.) It has become.

他方、排気ライン(排気手段)L3は、分解炉60に接続し、待機室本体31内に流れ込んだアンモニアやアンモニア化合物のガスを分解し燃焼して排気するようになっている。
次に、制御部40は、図示しない制御パネルを備えた制御盤内に所定の制御回路や制御用シーケンサなどを収容した制御機構であり、オペレータによる被処理物Sの処理温度や処理時間の調整、および前述した各室10,20,30の各部の機能や動作を所定のシーケンスなどに沿って制御するようになっている。
On the other hand, the exhaust line (exhaust means) L3 is connected to the cracking furnace 60, and decomposes, burns and discharges ammonia and ammonia compound gas flowing into the standby chamber body 31.
Next, the control unit 40 is a control mechanism in which a predetermined control circuit, a control sequencer, and the like are housed in a control panel having a control panel (not shown), and the operator adjusts the processing temperature and processing time of the workpiece S. In addition, the functions and operations of the respective sections of the chambers 10, 20, and 30 described above are controlled along a predetermined sequence.

(作用および効果)
このような構成をした本発明のガス軟窒化炉100にあっては、加熱室10での被処理物Sのガス軟窒化処理が終了したならば、この加熱室10の搬出入口12を開いて待機室30に取り出し、さらにこの待機室30を通過させて真空パージ兼冷却室20側に搬送し、ここで冷却処理されることになる。
この加熱室10に窒素ガス、アンモニアガス、炭酸ガスおよび必要に応じて硝酸アンモニウム(NHNO)などが供給されると、加熱室10内で発生した炭酸アンモニウム((NHCO)や硝酸アンモニウム(NHNO)などのアンモニア化合物のガスが待機室30内に流れ出てくることになる。
しかしながら、前述したようにこの待機室30内は、加熱手段38によって常時これらのアンモニア化合物の固化温度よりも高い温度に加熱しているため、これらアンモニア化合物がこの待機室30内で固化するようなことはない。
(Function and effect)
In the gas soft nitriding furnace 100 of the present invention having such a configuration, when the gas soft nitriding treatment of the workpiece S in the heating chamber 10 is completed, the carry-in / out port 12 of the heating chamber 10 is opened. It is taken out to the standby chamber 30 and further passed through the standby chamber 30 and conveyed to the vacuum purge / cooling chamber 20 side, where it is cooled.
When nitrogen gas, ammonia gas, carbon dioxide gas and, if necessary, ammonium nitrate (NH 4 NO 3 ) are supplied to the heating chamber 10, ammonium carbonate ((NH 4 ) 2 CO 3 ) generated in the heating chamber 10 Then, an ammonia compound gas such as ammonium nitrate (NH 4 NO 3 ) flows out into the standby chamber 30.
However, as described above, since the inside of the standby chamber 30 is constantly heated to a temperature higher than the solidification temperature of these ammonia compounds by the heating means 38, these ammonia compounds are solidified in the standby chamber 30. There is nothing.

図2は、この待機室30内の各部の温度分布(上下箇所平均値)を示したものである。
図示するように、本発明のような加熱手段38を備えていない従来例(図中破線)にあっては、加熱室10側の温度が最も高く、真空パージ兼冷却室20側にいくにしたがってその温度が低くなっている。これは、前述したように加熱室10側では高温でのガス軟窒化処理が行われるのに対し、真空パージ兼冷却室20側では熱交換器25による冷却処理が行われるからである。
FIG. 2 shows the temperature distribution (upper and lower part average value) of each part in the standby chamber 30.
As shown in the figure, in the conventional example (dotted line in the figure) that does not include the heating means 38 as in the present invention, the temperature on the heating chamber 10 side is the highest, and as it goes to the vacuum purge and cooling chamber 20 side. The temperature is low. This is because the gas soft nitriding process at a high temperature is performed on the heating chamber 10 side as described above, whereas the cooling process by the heat exchanger 25 is performed on the vacuum purge / cooling chamber 20 side.

従って、従来例ではその待機室30の中央部あたりから真空パージ兼冷却室20側の温度がアンモニア化合物の固化温度(約60℃)を下回ってしまい、流出してきたアンモニア化合物が固化してこの待機室30内に堆積してしまう結果となっていた。
これに対し、本発明では、待機室30内で最も温度が低くなる箇所(パージ兼冷却室20)を電熱線などの加熱手段38によって常時加熱するようにしたことから、図中実線に示すようにその待機室30内の温度がいずれの箇所でもアンモニア化合物の固化温度を超えることになる。
Therefore, in the conventional example, the temperature on the vacuum purge / cooling chamber 20 side from the central portion of the standby chamber 30 is lower than the solidification temperature of the ammonia compound (about 60 ° C.), and the ammonia compound that has flowed out solidifies. As a result, it was deposited in the chamber 30.
On the other hand, in the present invention, the portion (purge / cooling chamber 20) where the temperature is lowest in the standby chamber 30 is always heated by the heating means 38 such as a heating wire, so that the solid line in the figure shows. In addition, the temperature in the standby chamber 30 exceeds the solidification temperature of the ammonia compound at any location.

これによって、この待機室30内に流出してきたアンモニア化合物が固化して昇降台33に付着したり、待機室30の底部に堆積するといった不都合を未然に防止することができる。
また、さらに本発明はこの待機室30に排気手段(排気ラインL3)を備えたことから、固化せず待機室30に滞留しているアンモニア化合物のガスを排気ラインL3から迅速に排気して分解炉60に送って分解処理することができ、有害がガスがこの待機室30から外部に漏れ出すこともない。
As a result, it is possible to prevent inconveniences such as the ammonia compound flowing out into the standby chamber 30 solidifying and adhering to the lifting platform 33 or being deposited on the bottom of the standby chamber 30.
Further, according to the present invention, the standby chamber 30 is provided with exhaust means (exhaust line L3), so that the ammonia compound gas that has not solidified and remains in the standby chamber 30 is quickly exhausted from the exhaust line L3 for decomposition. The gas can be sent to the furnace 60 for decomposition, and no harmful gas leaks out of the standby chamber 30.

このように本発明のガス軟窒化炉100にあっては、待機室30に流出してきたガスの固化を未然に防止できることから、固化物による不都合や固化物の除去・清掃作業が不要となり、ガス軟窒化炉の信頼性および稼働効率を向上させることができる。
なお、本実施の形態では、ガス軟窒化処理を実施するガス軟窒化炉100を例に説明したが、その他の各種ガス窒化炉などにも同様に適用できることは勿論である。
As described above, in the gas nitrocarburizing furnace 100 of the present invention, since the solidification of the gas flowing out to the standby chamber 30 can be prevented in advance, inconvenience due to the solidified product and removal / cleaning work of the solidified product are not required. The reliability and operating efficiency of the nitrocarburizing furnace can be improved.
In the present embodiment, the gas soft nitriding furnace 100 for performing the gas soft nitriding treatment has been described as an example, but it is needless to say that the present invention can be similarly applied to other various gas nitriding furnaces.

本発明に係るガス(軟)窒化炉100の実施一形態を示す断面図である。1 is a cross-sectional view showing an embodiment of a gas (soft) nitriding furnace 100 according to the present invention. 待機室内の各部の温度分布を示す図である。It is a figure which shows the temperature distribution of each part in a waiting room.

符号の説明Explanation of symbols

100…ガス(軟)窒化炉
10…加熱室
20…真空パージ兼冷却室(前後処理室)
30…待機室
38…加熱手段
40…制御部
L1…真空パージライン
L2…原料ガス供給ライン
L3…排気ライン(排気手段)
S…被処理物
DESCRIPTION OF SYMBOLS 100 ... Gas (soft) nitriding furnace 10 ... Heating chamber 20 ... Vacuum purge and cooling chamber (front and back processing chamber)
DESCRIPTION OF SYMBOLS 30 ... Standby chamber 38 ... Heating means 40 ... Control part L1 ... Vacuum purge line L2 ... Raw material gas supply line L3 ... Exhaust line (exhaust means)
S: Object to be processed

Claims (3)

被処理物を窒化処理する加熱室と前記被処理物の前後処理を行う前後処理室との間に、前記被処理物を通過および待機させる待機室を備えたガス窒化炉であって、
前記待機室に、当該待機室内の前後処理室側の底部付近に設けられ、前記待機室内をアンモニア化合物の固化温度よりも高い温度以上に加熱し、前記加熱室から前記待機室内に流れ出てきたアンモニア化合物のガスを加熱する加熱手段と、前記待機室内のガスを排気する排気手段とを備えたことを特徴とするガス窒化炉。
A gas nitriding furnace provided with a standby chamber for passing and waiting for the object to be processed between a heating chamber for nitriding the object to be processed and a pre- and post-processing chamber for performing pre- and post-processing of the object to be processed,
Ammonia that is provided in the standby chamber near the bottom of the standby chamber on the front and rear processing chamber side , heats the standby chamber to a temperature higher than the solidification temperature of the ammonia compound, and flows out from the heating chamber into the standby chamber A gas nitriding furnace comprising heating means for heating a compound gas and exhaust means for exhausting the gas in the standby chamber.
請求項1に記載のガス窒化炉において、  In the gas nitriding furnace according to claim 1,
前記待機室は垂直方向に昇降動可能な昇降台を備え、  The waiting room includes a lifting platform that can move up and down in a vertical direction,
前記昇降台は被処理物を搬送可能に構成された底部及び上部を有するとともに、当該昇降台の底部及び上部のそれぞれが、前記加熱室と前記前後処理室とを水平に接続するように構成されたことを特徴とするガス窒化炉。  The lifting platform has a bottom portion and an upper portion configured to convey an object to be processed, and each of the bottom portion and the upper portion of the lifting platform is configured to horizontally connect the heating chamber and the front and rear processing chambers. A gas nitriding furnace characterized by that.
被処理物を窒化処理する加熱室と前記被処理物の前後処理を行う前後処理室との間に、前記被処理物を通過および待機させる待機室を備えたガス軟窒化炉であって、
前記待機室に、当該待機室内の前後処理室側の底部付近に設けられ、前記待機室内を炭酸アンモニウム((NH4)2CO3)ガスの固化温度以上に加熱し、前記加熱室から前記待機室内に流れ出てきた炭酸アンモニウム((NH4)2CO3)ガスを加熱する加熱手段と、前記待機室内の炭酸アンモニウム((NH4)2CO3)ガスを排気する排気手段とを備えたことを特徴とするガス軟窒化炉。
A gas soft nitriding furnace provided with a standby chamber for passing and waiting for the object to be processed between a heating chamber for nitriding the object to be processed and a pre- and post-processing chamber for performing pre- and post-processing of the object to be processed,
The standby chamber is provided near the bottom of the standby chamber on the front and rear processing chamber side, and heats the standby chamber to a temperature higher than the solidification temperature of ammonium carbonate ((NH4) 2CO3) gas and flows out of the heating chamber into the standby chamber. A gas soft nitriding furnace comprising heating means for heating the ammonium carbonate ((NH4) 2CO3) gas and exhaust means for exhausting the ammonium carbonate ((NH4) 2CO3) gas in the standby chamber.
JP2008029018A 2008-02-08 2008-02-08 Gas nitriding furnace and gas soft nitriding furnace Active JP5291354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029018A JP5291354B2 (en) 2008-02-08 2008-02-08 Gas nitriding furnace and gas soft nitriding furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029018A JP5291354B2 (en) 2008-02-08 2008-02-08 Gas nitriding furnace and gas soft nitriding furnace

Publications (2)

Publication Number Publication Date
JP2009186140A JP2009186140A (en) 2009-08-20
JP5291354B2 true JP5291354B2 (en) 2013-09-18

Family

ID=41069561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029018A Active JP5291354B2 (en) 2008-02-08 2008-02-08 Gas nitriding furnace and gas soft nitriding furnace

Country Status (1)

Country Link
JP (1) JP5291354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407420B2 (en) * 2015-05-01 2018-10-17 株式会社Ihi Heat treatment equipment
KR101852402B1 (en) * 2018-01-29 2018-04-27 (주)청호열처리 Driving control method of nitrocarburizing and carburizing heat treatment apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839296B2 (en) * 1989-09-19 1998-12-16 株式会社日本テクノ Exhaust gas treatment equipment for gas nitriding furnace
JP2954728B2 (en) * 1990-03-27 1999-09-27 光洋リンドバーグ株式会社 Nitriding equipment
JP3310797B2 (en) * 1994-11-14 2002-08-05 光洋サーモシステム株式会社 Gas nitrocarburizing method
JPH10185440A (en) * 1996-12-25 1998-07-14 Toyota Motor Corp Low temperature nitriding method for aluminum material and low temperature aluminum nitriding furnace

Also Published As

Publication number Publication date
JP2009186140A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4645592B2 (en) Two-chamber heat treatment furnace
US9890999B2 (en) Industrial heat treating furnace that uses a protective gas
JP2007273571A (en) Reflow furnace
WO1994013841A1 (en) Multipurpose atmosphere heat treatment apparatus
JP2005009702A (en) Multi-cell type vacuum heat treating apparatus
JP5291354B2 (en) Gas nitriding furnace and gas soft nitriding furnace
JPH08178535A (en) Multi-chamber type heat processing furnace
JP6136681B2 (en) Heat treatment equipment
CN116103479A (en) Vacuum double-chamber heat treatment furnace and its working method
US20070068606A1 (en) Single-chamber vacuum furnace with hydrogen quenching
JP5330651B2 (en) Heat treatment method
KR950001215B1 (en) Gas-caburizing process and apparatus
US20170254592A1 (en) Thermal treatment device
JPH06137765A (en) Automatically heat-treating apparatus
JP6209343B2 (en) Quenching treatment equipment, heat treatment equipment and quenching treatment method
JP2009091632A (en) Heat-treatment apparatus and heat-treatment method
JP2005326108A (en) Heat treatment equipment
JP5613943B2 (en) Continuous sintering furnace
JP2001141371A (en) Atmosphere continuous furnace
JP5225634B2 (en) Heat treatment method and heat treatment equipment
JP4392184B2 (en) Nitriding processing apparatus, nitriding processing method, and oxynitriding control apparatus
CN107250701B (en) Heat treatment system
JP6031313B2 (en) Carburizing method
JP7212421B2 (en) vacuum furnace
JP3553207B2 (en) Metal heat treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250