JP5286872B2 - Oriented electrical steel sheet and manufacturing method thereof - Google Patents
Oriented electrical steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP5286872B2 JP5286872B2 JP2008081896A JP2008081896A JP5286872B2 JP 5286872 B2 JP5286872 B2 JP 5286872B2 JP 2008081896 A JP2008081896 A JP 2008081896A JP 2008081896 A JP2008081896 A JP 2008081896A JP 5286872 B2 JP5286872 B2 JP 5286872B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- grain
- secondary recrystallization
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title description 9
- 229910000976 Electrical steel Inorganic materials 0.000 title description 2
- 238000000137 annealing Methods 0.000 claims description 87
- 238000001953 recrystallisation Methods 0.000 claims description 63
- 229910000831 Steel Inorganic materials 0.000 claims description 44
- 239000010959 steel Substances 0.000 claims description 44
- 238000005096 rolling process Methods 0.000 claims description 29
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000005097 cold rolling Methods 0.000 description 13
- 230000010354 integration Effects 0.000 description 13
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 230000004907 flux Effects 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052711 selenium Inorganic materials 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000005261 decarburization Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、方向性電磁鋼板およびその製造方法に関し、特に方向性電磁鋼板の方位集積度の一層の向上を図ろうとするものである。 The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the grain-oriented electrical steel sheet, and in particular, intends to further improve the orientation integration degree of the grain-oriented electrical steel sheet.
近年の地球温暖化防止や省エネルギー化への関心の高まりを反映して、鉄心材料である方向性電磁鋼板に対しても、低鉄損化、低騒音化の要求がますます厳しくなっている。 Reflecting increasing interest in preventing global warming and saving energy in recent years, demands for low iron loss and low noise are becoming increasingly stringent for grain-oriented electrical steel sheets, which are core materials.
方向性電磁鋼板は、鋼板の圧延方向に鉄の磁化容易軸である<001>方位を高度に集積させた鋼板である。通常、この結晶組織は、方向性電磁鋼板の製造工程中、特に仕上焼鈍工程において、ゴス方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる二次再結晶を通じて形成される。鉄損の低減や騒音の低減の観点からは、方向性電磁鋼板の組織はゴス方位への集積度が高いほど好ましいとされる。
以下、二次再結晶を発現させるための焼鈍を「二次再結晶焼鈍」と呼ぶ。
The grain-oriented electrical steel sheet is a steel sheet in which the <001> orientation, which is the easy axis of iron, is highly integrated in the rolling direction of the steel sheet. Usually, this crystal structure is obtained through secondary recrystallization that preferentially grows grains of {110} <001> orientation called goth orientation during the manufacturing process of grain-oriented electrical steel sheet, particularly in the finish annealing process. It is formed. From the viewpoint of reducing iron loss and noise, the structure of grain-oriented electrical steel sheet is preferably as high as possible in the Goss direction.
Hereinafter, annealing for causing secondary recrystallization is referred to as “secondary recrystallization annealing”.
方向性電磁鋼板の二次再結晶焼鈍は、二次再結晶の発現や被膜形成に長時間を要するため、一般的にコイルフォームすなわち鋼板をコイルに巻き取った状態でバッチ焼鈍によって行われている。
ところで、このコイルフォーム焼鈍で得られる二次再結晶粒の結晶方位は、材料座標系から見ると圧延方向に沿って連続的に変化している。すなわち、平坦化した製品板における二次再結晶粒の方位は、同一結晶粒内で圧延方向に傾き、圧延方向に沿って連続的にβ角が変化した状態となっている。ここに、β角とは、二次再結晶方位の圧延面内直角方向(TD)周りにおける理想ゴス方位からのずれ角(°)を意味する。
そして、これにより、コイル径に応じて製品板の方位集積度が劣化することが知られている。
Since secondary recrystallization annealing of grain-oriented electrical steel sheets takes a long time to develop secondary recrystallization and form a film, it is generally performed by batch annealing in a state where a coil form, that is, a steel sheet is wound around a coil. .
By the way, the crystal orientation of the secondary recrystallized grains obtained by this coil form annealing continuously changes along the rolling direction when viewed from the material coordinate system. That is, the orientation of the secondary recrystallized grains in the flattened product plate is in a state where the orientation of the secondary recrystallized grains is inclined in the rolling direction within the same crystal grains and the β angle is continuously changed along the rolling direction. Here, the β angle means a deviation angle (°) from the ideal Goss direction around the perpendicular direction (TD) in the rolling plane of the secondary recrystallization direction.
And it is known by this that the orientation integration degree of a product board will deteriorate according to a coil diameter.
高磁束密度方向性電磁鋼板では、二次再結晶粒径は数十mmに達するため、この幾何学的な方位集積度の劣化は無視できない大きさになる。
この方位集積度の劣化を抑制する技術として、特許文献1では、コイル内径を600mm以上とする方法を提案している。
As a technique for suppressing the deterioration of the orientation integration degree, Patent Document 1 proposes a method of setting the coil inner diameter to 600 mm or more.
しかし当然のことながら、従来技術では、鋼板を平坦にして二次再結晶焼鈍を行った際に得られる方位集積度を超えることはできない。実際には、コイル径:1000mm前後のコイルフォーム焼鈍で得られる方位集積度は、平坦焼鈍で得られる集積度とほぼ同等の域に達しており、方向性電磁鋼板の工業生産においては、内径:600〜外径:1200mm程度のコイル径で二次再結晶焼鈍が行われている。 However, as a matter of course, in the prior art, it is impossible to exceed the orientation integration degree obtained when the steel sheet is flattened and the secondary recrystallization annealing is performed. Actually, the orientation accumulation obtained by coil foam annealing around 1000 mm in coil diameter has reached almost the same range as the integration obtained by flat annealing. In industrial production of grain-oriented electrical steel sheets, 600 to outer diameter: Secondary recrystallization annealing is performed with a coil diameter of about 1200 mm.
本発明は、上記した技術の改良に係るもので、コイルフォーム焼鈍で得られる方位集積度をさらに向上させることによって、磁気特性の一層の向上を図った方向性電磁鋼板をその有利な製造方法と共に提案することを目的とする。 The present invention relates to an improvement of the above-described technique, and further improves the orientation integration degree obtained by coil foam annealing, thereby further improving the magnetic properties of the grain-oriented electrical steel sheet together with its advantageous manufacturing method. The purpose is to propose.
さて、発明者らは、上記の目的を達成すべく、鋭意研究を重ねた結果、従来のコイル径(600〜1200mm)よりもさらに巨大なコイル径(2000〜6200mm)で二次再結晶焼鈍を行うことによって、所期した目的が有利に達成されることの知見を得た。
本発明は上記の知見に立脚するものである。
Now, as a result of intensive studies to achieve the above object, the inventors have conducted secondary recrystallization annealing with a coil diameter (2000-6200mm) that is even larger than the conventional coil diameter (600-1200mm). We gained knowledge that the intended purpose can be achieved advantageously by doing so.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.コイル全長にわたり、同一の二次再結晶粒内における圧延方向に沿ったβ角の変化率の平均値が0.018〜0.06°/mmであることを特徴とする方向性電磁鋼板。
ここで、β角:二次再結晶方位の圧延面内直角方向(TD)周りにおける理想ゴス方位からのずれ角(°)。
That is, the gist configuration of the present invention is as follows.
1. A grain-oriented electrical steel sheet characterized in that the average value of the rate of change in β angle along the rolling direction in the same secondary recrystallized grains is 0.018 to 0.06 ° / mm over the entire length of the coil .
Here, β angle: deviation angle (°) from the ideal Goss direction around the perpendicular direction (TD) in the rolling plane of the secondary recrystallization orientation.
2.方向性電磁鋼板用スラブを、加熱後、熱間圧延し、ついで焼鈍と圧延を組み合わせて最終板厚としたのち、一次再結晶焼鈍と二次再結晶焼鈍を施すことによって方向性電磁鋼板を製造するに際し、圧延方向における鋼板の曲率半径がコイル全長にわたり1000〜3100mmの範囲を満足する状態下で二次再結晶焼鈍を行うことを特徴とする方向性電磁鋼板の製造方法。 2. The slab for grain-oriented electrical steel sheets is heated and then hot-rolled, then combined with annealing and rolling to obtain the final thickness, and then the grain-oriented electrical steel sheet is manufactured by performing primary recrystallization annealing and secondary recrystallization annealing. In doing so, secondary recrystallization annealing is performed under the condition that the radius of curvature of the steel sheet in the rolling direction satisfies the range of 1000 to 3100 mm over the entire length of the coil .
本発明によれば、従来にはない新しい手法で、方向性電磁鋼板の方位集積度を向上させることができる。
これにより、方位集積度の高い方向性電磁鋼板を提供できるようになり、ひいては地球温暖化の防止や省エネルギー化に貢献する。
ADVANTAGE OF THE INVENTION According to this invention, the orientation integration degree of a grain-oriented electrical steel sheet can be improved with the new method which is not in the past.
This makes it possible to provide a grain-oriented electrical steel sheet having a high degree of orientation integration, which in turn contributes to prevention of global warming and energy saving.
以下、本発明を具体的に説明する。
まず、一般的な二次再結晶の機構について述べる。
方向性電磁鋼板の製造プロセスにおいては、一次再結晶集合組織(二次再結晶焼鈍前の集合組織)とゴス方位は約30°ずれた方位関係にある。この状態では、ゴス方位を有する結晶粒(ゴス粒)に易動度の高い結晶粒界が形成される頻度が高いため、ゴス粒が優先的に成長し、ゴス方位に集積した二次再結晶集合組織が得られると考えられている。
Hereinafter, the present invention will be specifically described.
First, a general secondary recrystallization mechanism will be described.
In the production process of grain-oriented electrical steel sheets, the primary recrystallization texture (the texture before secondary recrystallization annealing) and the Goss orientation are in an orientation relationship shifted by about 30 °. In this state, the crystal grains having goth orientation (goss grains) are frequently formed with high mobility grain boundaries, so the goss grains grow preferentially and secondary recrystallization accumulated in the goss orientation. It is believed that a texture can be obtained.
次に、本発明の解明経緯について説明する。
さて、発明者らは、コイルフォームでの二次再結晶について、次のような考察を行った。まず、鋼板が平坦な状態(曲率半径=∞)において、二次再結晶核が一次再結晶組織を蚕食して成長する際、二次粒界が移動しても一次再結晶組織と二次再結晶核の方位関係は変化しない。しかしながら、鋼板が湾曲した状態では、二次再結晶核が成長して粒界が移動するにつれて、一次再結晶集合組織と二次再結晶核の方位関係は連続的に変化していく。例えば、曲率半径:1000mmの状態では、二次再結晶粒界が圧延方向に10mm進むごとに、二次再結晶核と一次再結晶集合組織の方位差は約0.6°変化する。この状態では、ゴス方位からやや方位のずれた二次再結晶核も、適切な方向に成長することで結晶粒の<001>方位と圧延方向を整合させることができると考えられる。ゴス方位に近づくように成長するほど二次粒界の易動度が高くなると考えられるから、このような方向への成長は優先的に起き易いと考えられる。
すなわち、発明者らは、平坦な状態での二次再結晶よりもコイルフォームでの二次再結晶のほうが、方位集積度が高くなる可能性があるという着想を得た。
以下、鋼板が湾曲していることに起因する方位集積度向上効果を「湾曲効果」と呼ぶ。
Next, the elucidation process of the present invention will be described.
Now, the inventors have considered the following about secondary recrystallization in coil foam. First, when the steel plate is flat (curvature radius = ∞), when the secondary recrystallization nucleus grows by engulfing the primary recrystallization structure, even if the secondary grain boundary moves, the primary recrystallization structure and the secondary recrystallization structure The orientation relation of crystal nuclei does not change. However, in a state where the steel plate is curved, as the secondary recrystallization nuclei grow and the grain boundaries move, the orientation relationship between the primary recrystallization texture and the secondary recrystallization nuclei changes continuously. For example, when the radius of curvature is 1000 mm, the orientation difference between the secondary recrystallization nucleus and the primary recrystallization texture changes by about 0.6 ° every time the secondary recrystallization grain boundary advances 10 mm in the rolling direction. In this state, it is considered that the secondary recrystallized nuclei slightly deviated from the Goss orientation can be aligned with the <001> orientation of the crystal grains and the rolling direction by growing in an appropriate direction. Since the mobility of the secondary grain boundary is considered to increase as it grows closer to the Goss direction, it is considered that the growth in this direction is likely to occur preferentially.
In other words, the inventors have come up with the idea that secondary recrystallization in coil form may have a higher orientation integration degree than secondary recrystallization in a flat state.
Hereinafter, the effect of improving the degree of orientation accumulation resulting from the curvature of the steel sheet is referred to as “curving effect”.
従来技術のコイル径(600〜1200mm)でも上記の湾曲効果は得られると考えられるが、これによる方位集積度の向上は、幾何学的な方位劣化によって相殺されていると考えられる。すなわち、コイルフォーム焼鈍で二次再結晶させたのち、湾曲した鋼板を焼鈍で平坦化するため、二次再結晶粒が逆に湾曲して粒内で方位変化が生じるが、従来のコイル径ではその程度が大きいため、集積度が劣化してしまうものと考えられる。
二次再結晶核生成頻度はゴス方位で最大となるが、完全にゴス方位に整合した二次再結晶核は湾曲効果の恩恵を受けず、幾何学的な劣化のみを受けてしまうことになる。
従って、適度にコイル径を大きくし、幾何学的な劣化の影響を小さくしなければ、湾曲効果による方位集積度の向上は得られないとの考えを得るに到った。
Although it is considered that the above-described bending effect can be obtained even with the coil diameter (600 to 1200 mm) of the prior art, it is considered that the improvement of the orientation integration degree due to this is offset by geometrical orientation deterioration. In other words, after secondary recrystallization by coil foam annealing, the curved steel sheet is flattened by annealing, so the secondary recrystallized grains are bent in the opposite direction and orientation changes occur within the grains. Since the degree is large, it is considered that the degree of integration deteriorates.
The frequency of secondary recrystallization nucleation is highest in the Goss orientation, but secondary recrystallization nuclei that are perfectly aligned with the Goss orientation will not benefit from the curving effect and will only receive geometrical degradation. .
Accordingly, the inventors have come to the idea that unless the coil diameter is increased appropriately and the influence of geometrical deterioration is reduced, the degree of orientation integration cannot be improved by the bending effect.
そこで、発明者らは、二次再結晶焼鈍における鋼板の曲率半径を従来よりも大きくすることが方位集積度の向上に有効との考えに立脚して、実験を行った。なお、成分に関する「%」表示は特に断らない限り「質量%」を意味するものとする。
C:0.051%、Si:3.2%、Mn:0.08%、S:0.015%、Al:0.022%、Sb:0.024%、Cr:0.02%およびN:0.0065%を含み、残部はFeおよび不可避的不純物の組成になる鋼を、実験室的に溶製し、1460℃で10分間加熱後、熱間圧延により板厚:2.4mmとした後、1170℃で2分間の熱延板焼鈍を施した。ついで、1回目の冷間圧延により1.7mm厚まで圧延し、1070℃で1分間の中間焼鈍後、2回目の冷間圧延によって0.27mm厚の最終冷延板とした。ついで、得られた冷延板に対し、H2:N2=55vol%:45vol%、露点:60℃の雰囲気中にて850℃、2分間の一次再結晶焼鈍を行い、引き続いてMgOを主体とする焼鈍分離剤を塗布した。その後、この板をさまざまな曲率半径を有するステンレス板に挟んで固定したのち、H2雰囲気中にて1150℃、15時間の最終仕上焼鈍を行い、二次再結晶板とした。ついで、この湾曲した二次再結晶板を平坦なステンレス板に挟んで固定し、乾燥N2雰囲気中にて900℃,2hの焼鈍を施して形状矯正したのち、圧延方向の磁束密度B8〈Hmax=800 A/mにおける磁束密度)を測定した。
Therefore, the inventors conducted an experiment based on the idea that increasing the radius of curvature of the steel sheet in the secondary recrystallization annealing is more effective than the conventional technique in improving the orientation accumulation degree. In addition, unless otherwise indicated, "%" display regarding a component shall mean "mass%".
C: 0.051%, Si: 3.2%, Mn: 0.08%, S: 0.015%, Al: 0.022%, Sb: 0.024%, Cr: 0.02% and N: 0.0065%, the balance being Fe and inevitable impurities The steel having the composition was melted in the laboratory, heated at 1460 ° C. for 10 minutes, hot rolled to a thickness of 2.4 mm, and then subjected to hot-rolled sheet annealing at 1170 ° C. for 2 minutes. Subsequently, it was rolled to 1.7 mm thickness by the first cold rolling, and after the intermediate annealing for 1 minute at 1070 ° C., the final cold rolled sheet having a thickness of 0.27 mm was obtained by the second cold rolling. Next, the obtained cold-rolled sheet was subjected to primary recrystallization annealing at 850 ° C. for 2 minutes in an atmosphere of H 2 : N 2 = 55 vol%: 45 vol% and dew point: 60 ° C., followed by MgO as the main component. An annealing separator was applied. Thereafter, this plate was sandwiched and fixed between stainless plates having various radii of curvature, and then subjected to final finish annealing at 1150 ° C. for 15 hours in an H 2 atmosphere to obtain a secondary recrystallized plate. Next, the curved secondary recrystallized plate is fixed by sandwiching it between flat stainless steel plates, subjected to annealing at 900 ° C. for 2 hours in a dry N 2 atmosphere, and then subjected to magnetic flux density B 8 < Magnetic flux density at H max = 800 A / m) was measured.
得られた結果を、圧延方向の磁束密度B8と二次再結晶焼鈍時の曲率半径との関係で、図1に示す。
同図に示したとおり、圧延方向における鋼板の曲率半径が1000〜3100mmの状態、すなわちコイル径に換算して2000〜6200mmの状態で二次再結晶焼鈍を行うことにより、方位集頻度が改善されて、B8が向上していることが分かる。
The obtained results are shown in FIG. 1 in relation to the magnetic flux density B 8 in the rolling direction and the radius of curvature during secondary recrystallization annealing.
As shown in the figure, the orientation frequency is improved by performing secondary recrystallization annealing in the state where the radius of curvature of the steel sheet in the rolling direction is 1000 to 3100 mm, that is, 2000 to 6200 mm in terms of the coil diameter. It can be seen that B 8 is improved.
次に、図2に、得られた各製品板の同一の二次再結晶粒内における圧延方向に沿ったβ角の変化率について調べた結果を示す。
同図にに示したとおり、上記のような曲率半径で処理されたことの反映として、同一の二次再結晶粒内における圧延方向に沿ったβ角の変化率(絶対値)は0.018〜0.06°/mmの範囲内となっていた。
Next, FIG. 2 shows the results of examining the rate of change of the β angle along the rolling direction in the same secondary recrystallized grains of each product plate obtained.
As shown in the figure, the change rate (absolute value) of the β angle along the rolling direction in the same secondary recrystallized grains is 0.018 to 0.06 as a reflection of the processing with the radius of curvature as described above. It was within the range of ° / mm.
上述したとおり、本発明に従う条件でコイルフォーム焼鈍して得られる方位集積度は、平坦焼鈍でのそれを上回っており、本発明は、従来の技術思想とは一線を画するものであることが分かる。 As described above, the orientation integration degree obtained by coil foam annealing under the conditions according to the present invention exceeds that of flat annealing, and the present invention is distinct from the conventional technical idea. I understand.
本発明で対象とする方向性電磁鋼板の成分組成範囲については特に制限はなく、従来公知のものであればいずれもが適合する。なお、方向性電磁鋼板の製造に際しては、脱炭焼鈍や最終仕上焼鈍において、素材である鋼スラブからCやAl,N等が除去されるので、鋼スラブの組成と製品板の組成は必ずしも一致しないが、鋼スラブの代表組成を示すと次のとおりである。
C:0.015〜0.1%
Cは、変態を利用して熱延組織を改善するのに有用な元素であるだけでなく、ゴス方位結晶粒の発生に有用な元素であり、鋼スラブ中に少なくとも0.015%を含有させることが好ましいが、一方で0.1%を超えると脱炭焼鈍において脱炭不良を起こすので、Cは0.015〜0.1%の範囲とすることが好ましい。なお、このCは、脱炭焼鈍によって0.005%以下まで低減される。
There is no restriction | limiting in particular about the component composition range of the grain-oriented electrical steel sheet made into object by this invention, All will be suitable if it is a conventionally well-known thing. In the production of grain-oriented electrical steel sheets, C, Al, N, etc. are removed from the steel slab as the raw material in decarburization annealing and final finish annealing, so the composition of the steel slab and the composition of the product plate are not necessarily the same. However, the representative composition of the steel slab is as follows.
C: 0.015-0.1%
C is not only an element useful for improving the hot-rolled structure by utilizing transformation, but also an element useful for the generation of goth-oriented grains, and at least 0.015% may be contained in the steel slab. On the other hand, if over 0.1%, decarburization failure occurs in decarburization annealing, so C is preferably in the range of 0.015-0.1%. In addition, this C is reduced to 0.005% or less by decarburization annealing.
Si:2.0〜7.0%
Siは、製品板の電気抵抗を高めて鉄損を低下させると共に、α鉄を安定化して高温の熱処理を可能とするために必要な元素であり、少なくとも2.0%を含有させることが好ましいが、7.0%を超すと冷延が困難となるので、Siは2.0〜7.0%とすることが好ましい。
Si: 2.0-7.0%
Si is an element necessary for increasing the electrical resistance of the product plate to reduce iron loss and stabilizing alpha iron to enable high-temperature heat treatment, and preferably contains at least 2.0%. If it exceeds 7.0%, cold rolling becomes difficult, so Si is preferably 2.0 to 7.0%.
Mn:0.02〜0.2%
Mnは、鋼の熱間脆性の改善に有効に寄与するだけでなく、SやSeが混在している場合には、MnSやMnSe等の析出物を形成してインヒビターとしての機能を発揮する。しかしながら、Mn量が0.02%より少ないと上記の効果が不十分であり、一方0.2%を超えるとMnSe等の析出物の粒径が粗大化してインヒビターとしての効果が失われるため、Mnは0.02〜0.2%の範囲とすることが好ましい。
Mn: 0.02 to 0.2%
Mn not only effectively contributes to the improvement of hot brittleness of steel, but when S and Se are mixed, precipitates such as MnS and MnSe are formed to exert a function as an inhibitor. However, if the amount of Mn is less than 0.02%, the above effect is insufficient. On the other hand, if the amount exceeds 0.2%, the particle size of precipitates such as MnSe becomes coarse and the effect as an inhibitor is lost. A range of 0.2% is preferable.
Sおよび/またはSe:それぞれ0.001〜0.03%
SeおよびSは、MnやCuと結合してMnSe、MnS、Cu2-XSe、Cu2-XSを形成し、鋼中の分散第二相としてインヒビターの作用を発輝する有用成分である。これらSe、Sの含有量がそれぞれ0.001%に満たないとその添加効果に乏しく、一方それぞれ0.03%を超えるとスラブ加熱時の固溶が不完全となるだけでなく、製品板表面の欠陥の原因ともなるため、鋼スラブ中にそれぞれ0.001〜0.03%の範囲で含有させることが好ましい。なお、これらのSeやSはそれぞれ、最終仕上焼鈍によってSe:0.001%未満、S:0.001%未満まで低減される。
S and / or Se: 0.001 to 0.03% each
Se and S combine with Mn and Cu to form MnSe, MnS, Cu 2-X Se, Cu 2-X S, and are useful components that emit the inhibitor action as a dispersed second phase in steel. . When the content of Se and S is less than 0.001%, the effect of addition is poor. On the other hand, when the content exceeds 0.03%, not only the solid solution during slab heating becomes incomplete, but also the cause of defects on the product plate surface. Therefore, the steel slab is preferably contained in the range of 0.001 to 0.03%. These Se and S are reduced to Se: less than 0.001% and S: less than 0.001%, respectively, by final finish annealing.
sol.Al:0.001〜0.04%
Alは、鋼中でAlNを形成して分散第二相としてインヒビターの作用をする有用元素である。しかしながら、含有量が0.001%に満たないとAlNの析出量を十分に確保することができず、一方0.04%を超えて添加するとAlNが粗大に析出してインヒビターとしての作用が失われるため、Alは鋼スラブ中にsol.Alとして0.001〜0.04%の範囲で含有させることが好ましい。なお、このAlは、最終仕上焼鈍によって0.001%未満まで低減される。
sol.Al: 0.001 to 0.04%
Al is a useful element that forms AlN in steel and acts as an inhibitor as a dispersed second phase. However, if the content is less than 0.001%, the precipitation amount of AlN cannot be secured sufficiently. On the other hand, if added over 0.04%, AlN precipitates coarsely and the action as an inhibitor is lost. Is preferably contained in the steel slab in the range of 0.001 to 0.04% as sol.Al. In addition, this Al is reduced to less than 0.001% by the final finish annealing.
N:0.003〜0.013%
Nは、AlNの析出分散相を形成するために必要な元素であり、インヒビターとしてAlNを良好に機能させるためには鋼スラブ中に0.003〜0.013%を含有させることが好ましい。とういのは、含有量が0.003%に満たないとAlNやBNの析出が不十分となり、一方0.013%を超えるとスラブ加熱時にふくれ等を生じるからである。なお、このNは、最終仕上焼鈍によって0.003%未満まで低減される。
N: 0.003-0.013%
N is an element necessary for forming a precipitated dispersed phase of AlN, and 0.003 to 0.013% is preferably contained in the steel slab in order to allow AlN to function well as an inhibitor. This is because if the content is less than 0.003%, precipitation of AlN or BN becomes insufficient, while if it exceeds 0.013%, blistering or the like occurs during slab heating. This N is reduced to less than 0.003% by the final finish annealing.
以上の成分のほか、抑制力を増強するために、Sb,Cu,Sn,Cr,Mo,PおよびBi等を単独または複合して添加することは、磁気特性をさらに向上させる上で有効である。
Sbは、粒界に偏析して抑制力を高める効果があり、0.01〜0.08%の範囲で含有させることが望ましい。
Cuは、Mnと同様、SeやSと結合して析出物を形成し抑制力を高める元素として有用であり、この効果は0.05〜0.02%の範囲で顕著である。
Snは、二次再結晶粒の生成頻度を高めることによって鉄損の低減に有効に作用する成分であり、0.005〜0.4%の範囲で含有させることが好ましい。
Crも、MnやCuと同様、SeやSと結合して析出物を形成し抑制力を高める元素として有用であり、この効果は0.02〜0.08%の範囲で顕著である。
Moは、二次粒の核をゴス方位に先鋭化させる効果を有し、0.01〜0.1%の範囲でその効果が顕著である。
Pは、Sbと同様、粒界に偏析して抑制力を高める元素であるが、0.01%未満では添加効果に乏しく、一方0.03%を超えると磁気特性、表面性状を不安定化させるので、0.01〜0.03%とすることが好ましい。
Biは、一次再結晶粒の粒界に優先的に濃化し、最終仕上げ焼鈍中の粒界の移動度を低下させることにより、二次再結晶温度を上昇させて結晶方位集積度の向上に有効に作用すると考えられる。しかしながら、Bi添加量が0.001%を下回ると鋼中からの消失が早期に起こるために十分な効果が得られず、一方0.04%を超えて添加すると製品板板地鉄中の残留量が過大となりヒステリシス損の劣化をきたすので、Biは0.001〜0.04%とすることが好ましい。
In addition to the above components, adding Sb, Cu, Sn, Cr, Mo, P, Bi or the like alone or in combination in order to enhance the suppressive force is effective in further improving the magnetic properties. .
Sb has the effect of segregating at the grain boundaries and increasing the suppression force, and it is desirable to contain Sb in the range of 0.01 to 0.08%.
Cu, like Mn, is useful as an element that combines with Se and S to form precipitates and enhances the suppressive force, and this effect is remarkable in the range of 0.05 to 0.02%.
Sn is a component that effectively acts to reduce iron loss by increasing the frequency of secondary recrystallized grains, and is preferably contained in the range of 0.005 to 0.4%.
Cr, like Mn and Cu, is useful as an element that combines with Se and S to form precipitates and enhances the suppressive force, and this effect is remarkable in the range of 0.02 to 0.08%.
Mo has the effect of sharpening the nuclei of the secondary grains in the Goth orientation, and the effect is remarkable in the range of 0.01 to 0.1%.
P, like Sb, is an element that segregates at the grain boundary and enhances the suppressive force. However, if less than 0.01%, the effect of addition is poor, while if it exceeds 0.03%, the magnetic properties and surface properties are destabilized. It is preferable to set it to -0.03%.
Bi is preferentially concentrated at the grain boundaries of the primary recrystallized grains, and by reducing the mobility of the grain boundaries during the final finish annealing, it is effective for raising the secondary recrystallization temperature and improving the crystal orientation accumulation degree. It is thought that it acts on. However, if the amount of Bi added is less than 0.001%, the disappearance from the steel will occur early, so that a sufficient effect cannot be obtained. On the other hand, if the amount added exceeds 0.04%, the residual amount in the product plate steel will be excessive. Since deterioration of hysteresis loss is caused, Bi is preferably 0.001 to 0.04%.
次に、本発明の製造工程について述べる。
本発明では、二次再結晶焼鈍時の鋼の曲率半径を規定すること以外は、公知のプロセスを採用することができる。好適製造条件について述べると次のとおりである。
上記した好適成分組成に調整された珪素鋼スラブを、インヒビター成分固溶のため1350℃以上の高温に加熱する。しかしながら、窒化等により後工程でインヒビタを補強する場合には、スラブ加熱温度は1280℃以下とすることができる。
ついで、熱間圧延後、焼鈍処理と冷間圧延を組み合わせて最終板厚とし、一次再結晶焼鈍および二次再結晶焼鈍を施したのち、絶縁張力コーティングを焼き付けて製品とする。
Next, the manufacturing process of the present invention will be described.
In the present invention, a known process can be adopted except that the radius of curvature of the steel at the time of secondary recrystallization annealing is defined. The preferred production conditions are as follows.
The silicon steel slab adjusted to the above-mentioned preferred component composition is heated to a high temperature of 1350 ° C. or higher for the inhibitor component solid solution. However, when the inhibitor is reinforced in the subsequent process by nitriding or the like, the slab heating temperature can be 1280 ° C. or less.
Next, after hot rolling, annealing treatment and cold rolling are combined to obtain a final thickness, and after performing primary recrystallization annealing and secondary recrystallization annealing, an insulating tension coating is baked to obtain a product.
ここに、焼鈍処理と冷間圧延を組み合わせて最終板厚とする方法としては、
1)熱間圧延後、熱延板焼鈍を施したのち、中間焼鈍を含む2回以上の冷間圧延で最終板厚とする方法、
2)熱間圧延後、熱延板焼鈍を施したのち、1回の冷間圧延で最終板厚とする方法、
3)熱間圧延後、熱延板焼鈍を施さずに、中間焼鈍を含む2回以上の冷間圧延で最終板厚とする方法
の3種類の工程が考えられるが、本発明ではいずれの工程を採ることも可能である。
その際、冷間圧延を 100〜200 ℃の温間で行ったり、パス間での時効処理を施すことも磁気特性を向上させるのに有利に作用する。
さらに、磁区細分化のために、鋼板の圧延方向と交差する向きに線状の溝を複数本設けることは、鉄損のさらなる低減を図る上で有用である。
Here, as a method of combining the annealing treatment and cold rolling to make the final plate thickness
1) After hot rolling, after performing hot-rolled sheet annealing, a method for obtaining a final sheet thickness by two or more cold rolling processes including intermediate annealing,
2) After hot rolling, after performing hot-rolled sheet annealing, a method of making the final sheet thickness by one cold rolling,
3) After hot rolling, there are three types of processes, ie, a method of obtaining a final sheet thickness by two or more cold rolling processes including intermediate annealing without performing hot-rolled sheet annealing. It is also possible to adopt.
At that time, cold rolling is performed at a temperature of 100 to 200 ° C., and aging treatment between passes is also advantageous for improving magnetic properties.
Furthermore, providing a plurality of linear grooves in the direction intersecting with the rolling direction of the steel sheet for magnetic domain subdivision is useful for further reducing the iron loss.
ついで、一次再結晶焼鈍を施すが、この一次再結晶焼鈍に際しては、雰囲気を水蒸気およびH2を含む酸化性雰囲気として、脱炭を併せて行うことが好ましい。
上記の一次再結晶焼鈍後、鋼板の表面に焼鈍分離剤を塗布する。ここに、焼鈍分離剤としては、通常、マグネシア主体のものが用いられる。
Next, primary recrystallization annealing is performed. In this primary recrystallization annealing, it is preferable to perform decarburization together with an atmosphere that is an oxidizing atmosphere containing water vapor and H 2 .
After the primary recrystallization annealing, an annealing separator is applied to the surface of the steel plate. Here, as the annealing separator, a magnesia-based material is usually used.
このような焼鈍分離剤を塗布してから、二次再結晶焼鈍および純化焼鈍からなる最終仕上焼鈍を施したのち、必要に応じて張力付与コーティングや絶縁コーティングを鋼板表面に焼き付け、ついで平坦化焼鈍を施して製品とする。
本発明では、上記の二次再結晶焼鈍を行う場合に、鋼板の曲率半径が1000〜3100mmの範囲を満足するように、換言するとコイル径を内径:2000mm〜外径:6200mmの範囲として焼鈍することが重要である。なお、かかる焼鈍は、必ずしもコイルフォーム焼鈍とする必要はなく、鋼板の曲率半径が1000〜3100mmの条件を満足することができれば、連続焼鈍ラインで二次再結晶焼鈍を行っても良い。
After applying such an annealing separator, the final finish annealing consisting of secondary recrystallization annealing and purification annealing is performed, and then a tension-imparting coating or insulating coating is baked on the steel sheet surface as necessary, followed by flattening annealing To make a product.
In the present invention, when the secondary recrystallization annealing is performed, annealing is performed so that the radius of curvature of the steel sheet satisfies the range of 1000 to 3100 mm, in other words, the coil diameter is in the range of inner diameter: 2000 mm to outer diameter: 6200 mm. This is very important. Such annealing does not necessarily need to be coil form annealing, and secondary recrystallization annealing may be performed in a continuous annealing line as long as the radius of curvature of the steel sheet can satisfy the condition of 1000 to 3100 mm.
なお、最終的に被覆する被膜の成分は、特に規定されるものではなく、例えばTiN、セラミック、リン酸塩、クロム酸塩および有機樹脂等を被膜として用いることができる。 In addition, the component of the film finally coat | covered is not prescribed | regulated, For example, TiN, a ceramic, a phosphate, chromate, an organic resin etc. can be used as a film.
C:0.042%、Si:3.3%、Mn:0.076%、S:0.019%、Al:0.021%、Sb:0.025%、Cr:0.02%およびN:0.0071%を含み、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1460℃で10分間加熱後、熱間圧延により板厚:2.4mmとしたのち、1170℃で2分間の熱延板焼鈍を施した。ついで、1回目の冷間圧延により1.8mm厚まで圧延し、1100℃で1分間の中間焼鈍後、2回目の冷間圧延によって0.27mm厚の最終冷延板とした。得られた冷延板に対し、H2:N2=60vol%:40vol%、露点:60℃の雰囲気中にて840℃、2分間の一次再結晶焼鈍を行い、引き続いてMgOを主体とする焼鈍分離剤を塗布した。その後、鋼板をさまざまなコイル径で巻き取ったのち、H2雰囲気中にて1180℃、15時間の最終仕上焼鈍を行って二次再結晶させ、ついで830℃で30秒間の平坦化焼鈍により形状を矯正して、製品板とした。
かくして得られた各製品板から試験片を切り出し、圧延方向のβ角の変化率の平均値と磁束密度B8を測定した結果を、表1に示す。
C: 0.042%, Si: 3.3%, Mn: 0.076%, S: 0.019%, Al: 0.021%, Sb: 0.025%, Cr: 0.02% and N: 0.0071%, the balance being Fe and inevitable impurities The steel slab having the composition was heated at 1460 ° C. for 10 minutes, hot rolled to a sheet thickness of 2.4 mm, and then subjected to hot-rolled sheet annealing at 1170 ° C. for 2 minutes. Subsequently, it was rolled to 1.8 mm thickness by the first cold rolling, and after the intermediate annealing at 1100 ° C. for 1 minute, a final cold rolled sheet having a thickness of 0.27 mm was obtained by the second cold rolling. The obtained cold-rolled sheet is subjected to primary recrystallization annealing at 840 ° C. for 2 minutes in an atmosphere of H 2 : N 2 = 60 vol%: 40 vol%, dew point: 60 ° C., and then mainly MgO. An annealing separator was applied. Then, after winding the steel plate with various coil diameters, it was subjected to final recrystallization at 1180 ° C for 15 hours in H 2 atmosphere, followed by secondary recrystallization, and then shaped by flattening annealing at 830 ° C for 30 seconds. Was corrected into a product plate.
Table 1 shows the results of measuring the average value of the rate of change of the β angle in the rolling direction and the magnetic flux density B 8 by cutting out a test piece from each product plate thus obtained.
同表に示したとおり、本発明に従い、二次再結晶焼鈍を、圧延方向における鋼板の曲率半径が1000〜3100mmの範囲を満足する状態下で行った場合には、優れたB8が得られることが分かる。 As shown in the table, according to the present invention, when the secondary recrystallization annealing is performed under the condition that the radius of curvature of the steel sheet in the rolling direction satisfies the range of 1000 to 3100 mm, excellent B 8 is obtained. I understand that.
C:0.051%、Si:3.1%、Mn:0.071%、S:0.020%、Al:0.024%、Sb:0.02%、Cr:0.02%およびN:0.079%を含み、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1380℃で20分間加熱後、熱間圧延により板厚:1.8mmとしたのち、1150℃で1分間の熱延板焼鈍を施した。ついで、1回の冷間圧延によって0.23mm厚の最終冷延板とした。得られた冷延板に対し、H2:N2=60vol%:40vol%、露点:55℃の雰囲気中にて830℃、2分間の一次再結晶焼鈍を行い。引き続いてMgOを主体とする焼鈍分離剤を塗布した。その後、鋼板をさまざまなコイル径で巻き取ったのち、H2雰囲気中にて1180℃、15時間の最終仕上焼鈍を行って二次再結晶させ、ついで830℃で30秒間の平坦化焼鈍により形状を矯正して、製品板とした。
かくして得られた各製品板から試験片を切り出し、圧延方向のβ角の変化率の平均値と磁束密度B8を測定した結果を、表2に示す。
C: 0.051%, Si: 3.1%, Mn: 0.071%, S: 0.020%, Al: 0.024%, Sb: 0.02%, Cr: 0.02% and N: 0.079%, the balance being Fe and inevitable impurities The steel slab having the composition was heated at 1380 ° C. for 20 minutes, hot rolled to a thickness of 1.8 mm, and then subjected to hot-rolled sheet annealing at 1150 ° C. for 1 minute. Then, a final cold-rolled sheet having a thickness of 0.23 mm was obtained by one cold rolling. The obtained cold-rolled sheet was subjected to primary recrystallization annealing at 830 ° C. for 2 minutes in an atmosphere of H 2 : N 2 = 60 vol%: 40 vol%, dew point: 55 ° C. Subsequently, an annealing separator mainly composed of MgO was applied. Then, after winding the steel plate with various coil diameters, it was subjected to final recrystallization at 1180 ° C for 15 hours in H 2 atmosphere, followed by secondary recrystallization, and then shaped by flattening annealing at 830 ° C for 30 seconds. Was corrected into a product plate.
Table 2 shows the result of measuring the average value of the rate of change of the β angle in the rolling direction and the magnetic flux density B 8 by cutting out a test piece from each product plate thus obtained.
同表に示したとおり、本発明に従い、二次再結晶焼鈍を、圧延方向における鋼板の曲率半径が1000〜3100mmの範囲を満足する状態下で行った場合には、優れたB8が得られることが分かる。 As shown in the table, according to the present invention, when the secondary recrystallization annealing is performed under the condition that the radius of curvature of the steel sheet in the rolling direction satisfies the range of 1000 to 3100 mm, excellent B 8 is obtained. I understand that.
表3に示す種々の成分になる鋼スラブを、1390℃で20分間加熱後、熱間圧延により板厚:2.3mmとしたのち、1120℃で2分間の熱延板焼鈍を施した。ついで、1回の冷間圧延によって0.27mm厚の最終冷延板とした。得られた冷延板に対し、H2:N2=55vol%:45vol%、露点:63℃の雰囲気中にて830℃、2分間の一次再結晶焼鈍を行い、引き続いてMgOを主体とする焼鈍分離剤を塗布した。その後、鋼板を、内径:2000mm、外径:3000mm(鋼板の曲率半径:1000〜1500mm)の条件で巻き取ったのち、H2雰囲気中にて1170℃、13時間の最終仕上焼鈍を行って二次再結晶させ、ついで820℃で20秒間の平坦化焼鈍により形状を矯正して、製品板とした。
かくして得られた各製品板から試験片を切り出し、圧延方向のβ角の変化率の平均値と磁束密度B8を測定した結果を、表3に併記する。
Steel slabs having various components shown in Table 3 were heated at 1390 ° C. for 20 minutes, hot rolled to a sheet thickness of 2.3 mm, and then subjected to hot rolled sheet annealing at 1120 ° C. for 2 minutes. Then, a final cold-rolled sheet having a thickness of 0.27 mm was obtained by one cold rolling. The obtained cold-rolled sheet is subjected to primary recrystallization annealing at 830 ° C. for 2 minutes in an atmosphere of H 2 : N 2 = 55 vol%: 45 vol% and dew point: 63 ° C., followed by MgO as the main component. An annealing separator was applied. Thereafter, the steel sheet was wound up under the conditions of an inner diameter of 2000 mm and an outer diameter of 3000 mm (curvature radius of the steel sheet: 1000 to 1500 mm), and then subjected to final finishing annealing at 1170 ° C. for 13 hours in an H 2 atmosphere. Next, it was recrystallized, and then the shape was corrected by flattening annealing at 820 ° C. for 20 seconds to obtain a product plate.
Table 3 shows the results of measuring the average value of the rate of change of the β angle in the rolling direction and the magnetic flux density B 8 by cutting out a test piece from each product plate thus obtained.
同表から明らかなように、鋼板の成分組成の如何にかかわらず、二次再結晶焼鈍を、圧延方向における鋼板の曲率半径が1000〜3100mmの範囲を満足する状態下で行った場合には、優れたB8が得られている。 As is clear from the table, regardless of the component composition of the steel sheet, when the secondary recrystallization annealing is performed under a condition where the radius of curvature of the steel sheet in the rolling direction satisfies the range of 1000 to 3100 mm, Excellent B 8 is obtained.
Claims (2)
ここで、β角:二次再結晶方位の圧延面内直角方向(TD)周りにおける理想ゴス方位からのずれ角(°)。 A grain-oriented electrical steel sheet characterized in that the average value of the rate of change in β angle along the rolling direction in the same secondary recrystallized grains is 0.018 to 0.06 ° / mm over the entire length of the coil .
Here, β angle: deviation angle (°) from the ideal Goss direction around the perpendicular direction (TD) in the rolling plane of the secondary recrystallization orientation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008081896A JP5286872B2 (en) | 2008-03-26 | 2008-03-26 | Oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008081896A JP5286872B2 (en) | 2008-03-26 | 2008-03-26 | Oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009235471A JP2009235471A (en) | 2009-10-15 |
JP5286872B2 true JP5286872B2 (en) | 2013-09-11 |
Family
ID=41249788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008081896A Active JP5286872B2 (en) | 2008-03-26 | 2008-03-26 | Oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5286872B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018056379A1 (en) | 2016-09-21 | 2018-03-29 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011031536A1 (en) * | 2009-08-27 | 2011-03-17 | Totes Isotoner Corporation | Glove with conductive fingertips |
RU2509164C1 (en) * | 2010-09-10 | 2014-03-10 | ДжФЕ СТИЛ КОРПОРЕЙШН | Texture electric steel sheet and method of its production |
JP5906654B2 (en) * | 2011-10-13 | 2016-04-20 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN104024451B (en) | 2011-12-26 | 2016-05-04 | 杰富意钢铁株式会社 | Orientation electromagnetic steel plate |
KR102457416B1 (en) * | 2018-07-31 | 2022-10-24 | 닛폰세이테츠 가부시키가이샤 | grain-oriented electrical steel sheet |
CN112513306B (en) * | 2018-07-31 | 2022-05-24 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet |
CN112469840B (en) | 2018-07-31 | 2022-07-08 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet |
KR102177044B1 (en) * | 2018-11-30 | 2020-11-10 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method of the same |
JP7492111B2 (en) * | 2020-02-05 | 2024-05-29 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
JP7492110B2 (en) * | 2020-02-05 | 2024-05-29 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
JP7492109B2 (en) * | 2020-02-05 | 2024-05-29 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
JP7492112B2 (en) * | 2020-02-05 | 2024-05-29 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02301571A (en) * | 1989-05-16 | 1990-12-13 | Nippon Steel Corp | Production of grain-oriented electrical steel sheet having uniform glassy coating film |
JPH0673509A (en) * | 1992-08-17 | 1994-03-15 | Nippon Steel Corp | Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof |
JPH08232021A (en) * | 1995-02-27 | 1996-09-10 | Nippon Steel Corp | Finishing annealing method for grain-oriented electrical steel sheet |
-
2008
- 2008-03-26 JP JP2008081896A patent/JP5286872B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018056379A1 (en) | 2016-09-21 | 2018-03-29 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
KR20190058542A (en) | 2016-09-21 | 2019-05-29 | 제이에프이 스틸 가부시키가이샤 | Directional electric steel sheet and manufacturing method thereof |
US11560603B2 (en) | 2016-09-21 | 2023-01-24 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2009235471A (en) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5286872B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR102239708B1 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP5760504B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
WO2006068399A1 (en) | Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same | |
EP3530770A1 (en) | Hot-rolled steel sheet for manufacturing electrical steel, and method for manufacturing same | |
JP6020768B1 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP7583813B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
EP3214188A1 (en) | Production method for oriented grain-electromagnetic steel sheet | |
JP6443355B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7197068B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5369454B2 (en) | Method for producing non-oriented electrical steel sheet | |
CN110088340B (en) | Non-oriented electrical steel sheet and preparation method thereof | |
JP7253055B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6432671B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2018070974A (en) | Production method for grain-oriented electromagnetic steel sheet | |
JP2009197299A (en) | Method for producing high silicon steel sheet | |
US20100279142A1 (en) | Grain-oriented electrical steel sheet excellent in magnetic properties | |
JP2011012347A (en) | Method for manufacturing hot-rolled steel sheet | |
JP2010053387A (en) | Hot-rolled steel sheet excellent in press-formability and magnetic characteristic and production method therefor | |
JP7211532B2 (en) | Method for manufacturing non-oriented electrical steel sheet | |
JP2008106367A (en) | Double oriented silicon steel sheet | |
JP2007262519A (en) | Method for producing double oriented silicon steel sheet | |
JP4016552B2 (en) | Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties | |
JP4665417B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5600991B2 (en) | Method for producing grain-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5286872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |