[go: up one dir, main page]

JP5286730B2 - Flat electrochemical cell - Google Patents

Flat electrochemical cell Download PDF

Info

Publication number
JP5286730B2
JP5286730B2 JP2007256433A JP2007256433A JP5286730B2 JP 5286730 B2 JP5286730 B2 JP 5286730B2 JP 2007256433 A JP2007256433 A JP 2007256433A JP 2007256433 A JP2007256433 A JP 2007256433A JP 5286730 B2 JP5286730 B2 JP 5286730B2
Authority
JP
Japan
Prior art keywords
electrochemical cell
packaging material
layer
flat electrochemical
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007256433A
Other languages
Japanese (ja)
Other versions
JP2009087750A (en
Inventor
孝典 山下
正隆 奥下
裕久 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007256433A priority Critical patent/JP5286730B2/en
Publication of JP2009087750A publication Critical patent/JP2009087750A/en
Application granted granted Critical
Publication of JP5286730B2 publication Critical patent/JP5286730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、熱接着された包装材周縁部を折り曲げた場合にも、安定した密封性、絶縁性を示す扁平型電気化学セルに関するものである。   The present invention relates to a flat electrochemical cell that exhibits stable sealing and insulating properties even when a peripheral edge of a thermally bonded packaging material is bent.

扁平型電気化学セルの一例であるリチウムイオン電池は、リチウム二次電池ともいわれ、液状、ゲル状又は高分子ポリマー状の電解質を持ち、正極・負極活物質が高分子ポリマーからなるものを含むものである。このリチウムイオン電池は、充電時には正極活物質であるリチウム遷移金属酸化物中のリチウム原子(Li)がリチウムイオン(Li+)となって負極の炭素層間に入り込み(インターカレーション)、放電時にはリチウムイオン(Li+)が炭素層間から離脱(デインターカレーション)して正極に移動し、元のリチウム化合物となることにより充放電反応が進行する電池であり、ニッケル・カドミウム電池やニッケル水素電池より出力電圧が高く、高エネルギー密度である上、浅い放電と再充電を繰り返すことにより見掛け上の放電容量が低下する、いわゆるメモリー効果がないという優れた特長を有している。 A lithium ion battery, which is an example of a flat electrochemical cell, is also referred to as a lithium secondary battery, and includes a liquid, gel-like or polymer polymer electrolyte, and a cathode / negative electrode active material comprising a polymer polymer. . In this lithium ion battery, the lithium atom (Li) in the lithium transition metal oxide, which is the positive electrode active material, is charged as lithium ion (Li + ) during charging and enters the carbon layer of the negative electrode (intercalation). This is a battery in which charge / discharge reaction proceeds when ions (Li + ) are separated from the carbon layer (deintercalation) and move to the positive electrode to become the original lithium compound. From the nickel-cadmium battery and the nickel-hydrogen battery The output voltage is high, the energy density is high, and the apparent discharge capacity is reduced by repeating shallow discharge and recharging, so that there is no so-called memory effect.

また、リチウムイオン電池の構成は、一般的に正極集電材(アルミニウム、ニッケル)/正極活性物質層(金属酸化物、カーボンブラック、金属硫化物、電解液、ポリアクリロニトリル等の高分子正極材料)/電解質層(プロピレンカーボネート、エチレンカーボネート、炭酸ジメチル、エチレンメチルカーボネート等のカーボネート系電解液、リチウム塩からなる無機固体電解質、ゲル電解質等)/負極活性物質層(リチウム金属、合金、カーボン、電解液、ポリアクリロニトリル等の高分子負極材料)/負極集電材(銅、ニッケル、ステンレス)で構成されるリチウムイオン電池本体(本発明の扁平型電気化学セル本体に相当する)及び、リチウムイオン電池本体を包装する包装材からなる。   In addition, the configuration of the lithium ion battery generally includes a positive electrode current collector (aluminum, nickel) / positive electrode active material layer (polymer positive electrode material such as metal oxide, carbon black, metal sulfide, electrolyte, polyacrylonitrile) / Electrolyte layer (carbonate electrolyte such as propylene carbonate, ethylene carbonate, dimethyl carbonate, ethylene methyl carbonate, inorganic solid electrolyte composed of lithium salt, gel electrolyte, etc.) / Negative electrode active material layer (lithium metal, alloy, carbon, electrolyte, Lithium ion battery main body (corresponding to the flat electrochemical cell main body of the present invention) composed of a polymer negative electrode material such as polyacrylonitrile) / negative electrode current collector (copper, nickel, stainless steel) and a lithium ion battery main body are packaged Made of packaging material.

包装材は、柔軟性を有し形状を自由に設計することができることから基材層、金属箔層である金属層、熱接着性樹脂層を順次積層した積層体が、近年、包装材として好適に用いられる傾向にある。また、リチウムイオン電池本体の包装方法により、複数のタイプに分けることができる。図7は、袋状の包装材を用いるパウチタイプのリチウムイオン電池101の斜視図であり、図8は図7のリチウムイオン電池101を分解した状態を示す斜視図である。図7及び図8に示すように、パウチタイプのリチウムイオン電池101は、リチウムイオン電池本体102及び包装材105から構成されており、包装材105に収納されたリチウムイオン電池本体102は、その包装材周縁部105cを密封することにより包装材105内部に密封収納され、内部の防湿性が確保されている。   Since the packaging material is flexible and can be designed freely, a laminate in which a base material layer, a metal layer as a metal foil layer, and a heat-adhesive resin layer are sequentially laminated is suitable as a packaging material in recent years. Tend to be used. Moreover, according to the packaging method of a lithium ion battery main body, it can be divided into a plurality of types. FIG. 7 is a perspective view of a pouch-type lithium ion battery 101 using a bag-shaped packaging material, and FIG. 8 is a perspective view showing a state in which the lithium ion battery 101 of FIG. 7 is disassembled. As shown in FIGS. 7 and 8, the pouch-type lithium ion battery 101 is composed of a lithium ion battery main body 102 and a packaging material 105, and the lithium ion battery main body 102 accommodated in the packaging material 105 is a package of the lithium ion battery main body 102. By sealing the material peripheral portion 105c, the packaging material 105 is hermetically sealed, and the moisture resistance inside is ensured.

図9は、エンボスタイプのリチウムイオン電池101の斜視図であり、図10は図9のリチウムイオン電池101を分解した状態を示す斜視図である。図9及び図10に示すように、エンボスタイプのリチウムイオン電池101は、エンボス部が形成されたトレイ110aとシート110bとから成る積層体を重ね合わせて包装材110が構成されている。また、トレイ110a内部にリチウムイオン電池本体102を収納し、シート110bでトレイ110aを閉蓋し、包装材周縁部110cを重ね合わせて包装材周縁部110cをヒートシールすることでリチウムイオン電池本体102が包装材110内部に密封収納されている。なお、いずれのタイプの包装方法においても、リチウムイオン電池101はリチウムイオン電池本体102の電池タブ104が外側に突出した状態で包装材110に挟持されている。   FIG. 9 is a perspective view of an embossed type lithium ion battery 101, and FIG. 10 is a perspective view showing a state in which the lithium ion battery 101 of FIG. 9 is disassembled. As shown in FIGS. 9 and 10, the embossed type lithium ion battery 101 includes a packaging material 110 that is formed by stacking a laminated body composed of a tray 110 a on which an embossed portion is formed and a sheet 110 b. Further, the lithium ion battery main body 102 is housed in the tray 110a, the tray 110a is closed with a sheet 110b, the packaging material peripheral edge portion 110c is overlapped, and the packaging material peripheral edge portion 110c is heat-sealed. Is hermetically sealed in the packaging material 110. In any type of packaging method, the lithium ion battery 101 is sandwiched between the packaging material 110 with the battery tab 104 of the lithium ion battery main body 102 protruding outward.

また、図11はプラスチックケース150内に収納したリチウムイオン電池101を示す斜視図である。図11に示すように、通常、リチウムイオン電池101を外部からの衝撃から護るため、リチウムイオン電池101はプラスッチクケース150に収納して使用される。このとき、特許文献1又は特許文献2に示されるように、リチウムイオン電池101の体積当たりの容量を増加させ、容積効率の向上を図るため、ヒートシールした包装材周縁部110cを折り曲げてプラスチックケース150内に収納する。しかし、ヒートシールした包装材周縁部110cを構成する熱接着性樹脂層はヒートシールにより一度溶融し、その後、再結晶化したものである。このため、熱接着性樹脂層に余分な負荷がかかるとクラックが発生しやすい状態にある。したがって、この折り曲げ工程において、特に熱接着性樹脂層にクラックが発生し易く、このクラックを通じて包装材110内に密封収納された電解質が金属箔層と接触し、金属箔層が通電することがあった。そして、リチウムイオン電池101の出力が著しく低下することが問題となっていた。   FIG. 11 is a perspective view showing the lithium ion battery 101 housed in the plastic case 150. As shown in FIG. 11, normally, the lithium ion battery 101 is housed and used in a plastic case 150 in order to protect the lithium ion battery 101 from an external impact. At this time, as shown in Patent Document 1 or Patent Document 2, in order to increase the capacity per volume of the lithium ion battery 101 and improve the volumetric efficiency, the heat-sealed packaging material peripheral portion 110c is bent to form a plastic case. Store in 150. However, the heat-adhesive resin layer constituting the heat-sealed packaging material peripheral portion 110c is once melted by heat sealing and then recrystallized. For this reason, when an excessive load is applied to the heat-adhesive resin layer, cracks are likely to occur. Therefore, in this folding process, cracks are particularly likely to occur in the heat-adhesive resin layer, and the electrolyte hermetically sealed in the packaging material 110 may come into contact with the metal foil layer through the crack, and the metal foil layer may be energized. It was. And it has been a problem that the output of the lithium ion battery 101 is remarkably lowered.

また、リチウムイオン電池本体102を包装材110に収納する以外に、キャパシタ、電気二重層キャパシタを包装材110に収納し密封シールした場合にも同様の問題が生じる。
特開2002−319374号公報 特開2002−319375号公報
In addition to housing the lithium ion battery main body 102 in the packaging material 110, the same problem occurs when the capacitor and the electric double layer capacitor are housed in the packaging material 110 and hermetically sealed.
JP 2002-319374 A JP 2002-319375 A

そこで、本発明は上記問題点に鑑み、長期間の使用においても密封性が確保される耐久性、安全性の高いリチウムイオン電池等の扁平型電気化学セルを提供することにある。   Accordingly, in view of the above problems, the present invention is to provide a flat electrochemical cell such as a lithium ion battery having high durability and high safety that ensures hermeticity even after long-term use.

上記目的を達成するために、本発明の扁平型電気化学セルは、基材層と、金属箔層と、熱接着性樹脂層とが、少なくとも順次積層された積層体を重ね合わせて形成される包装材内部に、正極活物質及び正極集電体から成る正極と、負極活物質及び負極集電体から成る負極と、前記正極及び負極間に充填される電解質と、を含む扁平型電気化学セル本体を収納し、前記負極及び前記正極に連結されるタブの先端を前記包装材外部に突出させ、前記包装材の周縁部を熱接着して、前記扁平型電気化学セル本体を前記包装材内部に密封し、前記包装材の周縁部を折り曲げる、扁平型電気化学セルであって、前記包装材の周縁部の折り曲げ方向が、前記熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)と略同一になるよう、前記積層体を重ね合わせたことを特徴とすることを特徴とする。   In order to achieve the above object, the flat electrochemical cell of the present invention is formed by laminating a laminate in which a base material layer, a metal foil layer, and a thermoadhesive resin layer are at least sequentially laminated. A flat electrochemical cell including a positive electrode composed of a positive electrode active material and a positive electrode current collector, a negative electrode composed of a negative electrode active material and a negative electrode current collector, and an electrolyte filled between the positive electrode and the negative electrode inside the packaging material The main body is housed, the tip of the tab connected to the negative electrode and the positive electrode is protruded to the outside of the packaging material, the peripheral portion of the packaging material is thermally bonded, and the flat electrochemical cell body is disposed inside the packaging material. A flat-type electrochemical cell that is bent at the peripheral edge of the packaging material, and the bending direction of the peripheral edge of the packaging material is the flow direction (MD direction) of the resin constituting the thermoadhesive resin layer And stack the laminates so that Characterized in that wherein the allowed.

この構成によると、扁平型電気化学セルの包装材周縁部を折り曲げることで、扁平型電気化学セルの容積効率の向上を図ることができる。また、熱接着性樹脂層を構成する樹脂は、熱接着後の再結晶化した後でも、MD方向の曲げに対してクラックが発生し難い。したがって、熱接着された包装材周縁部を折り曲げる方向に対して、包装材の熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)が略同一になるように積層体を重ね合わせて扁平型電気化学セルを作製することにより、包装材周縁部の折り曲げによる熱接着樹脂層のクラック発生を防止し、長期間の使用においても密封性が確保される扁平型電気化学セルを提供することが可能になる。   According to this configuration, the volume efficiency of the flat electrochemical cell can be improved by bending the peripheral edge of the packaging material of the flat electrochemical cell. In addition, the resin constituting the heat-adhesive resin layer is less likely to crack with respect to bending in the MD direction even after recrystallization after heat bonding. Therefore, the laminates are overlapped and flattened so that the flow direction (MD direction) of the resin constituting the thermoadhesive resin layer of the packaging material is substantially the same as the direction in which the peripheral edge of the thermally bonded packaging material is bent. By providing a flat electrochemical cell, it is possible to provide a flat electrochemical cell that prevents cracking of the thermoadhesive resin layer due to bending of the peripheral edge of the packaging material, and ensures hermeticity even during long-term use. It becomes possible.

また本発明は、上記構成の扁平型電気化学セルにおいて、前記タブの引き出し方向と前記熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)とが略直交することを特徴とする。   In the flat electrochemical cell having the above-described configuration, the pull-out direction of the tab and the flow direction (MD direction) of the resin constituting the thermoadhesive resin layer are substantially orthogonal.

この構成によると、タブの引き出し方向に対して包装材の熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)が略直交になるように積層体を重ねあわせることにより、熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)と同一方向に折り曲げることができる包装材周縁部の領域を広く確保することができる。扁平型電気化学セルの包装材をこのように構成することで、包装材周縁部の折り曲げによる熱接着樹脂層のクラック発生を防止し、長期間の使用においても密封性を確保しながら、扁平型電気化学セルの容積効率の向上を図ることができる。   According to this configuration, the thermoadhesive resin is formed by overlapping the laminate so that the flow direction (MD direction) of the resin constituting the thermoadhesive resin layer of the packaging material is substantially orthogonal to the pulling-out direction of the tab. The area | region of the packaging material peripheral part which can be bend | folded in the same direction as the flow direction (MD direction) of resin which comprises a layer can be ensured widely. By configuring the packaging material of the flat electrochemical cell in this way, it prevents the occurrence of cracks in the heat-adhesive resin layer due to the folding of the peripheral edge of the packaging material, while ensuring the sealing property even for long-term use. The volumetric efficiency of the electrochemical cell can be improved.

また本発明は、上記構成の扁平型電気化学セルにおいて、前記積層体がプレス加工により成形された凹部を有し、前記凹部に前記扁平型電気化学セル本体を収納する扁平型電気化学セルであって、前記凹部が直方体状に成形され、前記凹部の長手方向と前記熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)とが略直交することを特徴とする。   The present invention also relates to a flat electrochemical cell having the above-described configuration, wherein the laminate has a recess formed by press working, and the flat electrochemical cell body is accommodated in the recess. The concave portion is formed in a rectangular parallelepiped shape, and the longitudinal direction of the concave portion and the flow direction (MD direction) of the resin constituting the thermoadhesive resin layer are substantially orthogonal.

この構成によると、積層体をプレス加工して成形された凹部に扁平型電気化学セル本体を収納するエンボスタイプの扁平型電気化学セルにおいて、直方体状の凹部の長手方向と熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)とが略直交するため、凹部に形成される4辺の包装材周縁部のうち長辺部分を熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)と同一方向に折り曲げることができる。したがって、包装材周縁部の折り曲げによる熱接着樹脂層のクラック発生を防止し、長期間の使用においても密封性を確保しながら、エンボスタイプの扁平型電気化学セルの容積効率の向上を図ることができる。   According to this configuration, in the embossed-type flat electrochemical cell in which the flat electrochemical cell main body is housed in the concave portion formed by pressing the laminate, the longitudinal direction of the rectangular parallelepiped concave portion and the thermoadhesive resin layer are provided. Since the flow direction (MD direction) of the constituting resin is substantially orthogonal, the flow direction (MD direction) of the resin constituting the heat-adhesive resin layer at the long side portion of the four-side packaging material peripheral portion formed in the recess. ) In the same direction. Therefore, it is possible to improve the volume efficiency of the embossed flat electrochemical cell while preventing cracking of the heat-adhesive resin layer due to bending of the peripheral edge of the packaging material and ensuring hermeticity even during long-term use. it can.

本発明は、包装材周縁部の折り曲げによる熱接着樹脂層のクラック発生を防止し、長期間の使用においても密封性が確保しながら、容積効率の向上を図ることができる扁平型電気化学セルである。その構成について、図等を利用してさらに詳細に説明する。   The present invention is a flat electrochemical cell that prevents the occurrence of cracks in the heat-adhesive resin layer due to bending of the peripheral edge of the packaging material, and can improve the volumetric efficiency while ensuring the sealing performance even during long-term use. is there. The configuration will be described in more detail with reference to the drawings.

図1は、本発明の扁平型電気化学セル1を構成する包装材10の積層構成を示す断面図である。図1に示すように、本発明に係る包装材10の積層体は少なくとも最外層に基材層6、最内層に熱接着性樹脂層8、その間に金属箔層7が配されたものである。このとき、金属箔層7表面に化成処理層7aを設けることで、基材層6及び熱接着性樹脂層8と金属箔層7との層間接着強度はいっそう安定する。   FIG. 1 is a cross-sectional view showing a laminated structure of a packaging material 10 constituting the flat electrochemical cell 1 of the present invention. As shown in FIG. 1, the laminate of the packaging material 10 according to the present invention has a base material layer 6 as an outermost layer, a heat-adhesive resin layer 8 as an innermost layer, and a metal foil layer 7 disposed therebetween. . At this time, by providing the chemical conversion treatment layer 7 a on the surface of the metal foil layer 7, the interlayer adhesive strength between the base material layer 6 and the heat-adhesive resin layer 8 and the metal foil layer 7 is further stabilized.

ここで、本発明に係る外装体10における金属箔層7と熱接着性樹脂層8の積層方法としては、ドライラミネーション法、サーマルラミネーション法、サンドイッチラミネーション法等があるが、いずれの方法においても、熱接着性樹脂層8を構成する樹脂は所定の流れ方向(MD方向)を有している。ここで、熱接着性樹脂層8は、熱接着後の再結晶化した後でも、MD方向の曲げに対して最もクラックが発生し難い。したがって、本発明は熱接着された包装材周縁部10cの折り曲げ方向を熱接着性樹脂層8のMD方向と一致するように、包装材を構成するものである。   Here, as a method of laminating the metal foil layer 7 and the heat-adhesive resin layer 8 in the outer package 10 according to the present invention, there are a dry lamination method, a thermal lamination method, a sandwich lamination method, and the like. The resin constituting the heat-adhesive resin layer 8 has a predetermined flow direction (MD direction). Here, even after the thermal adhesive resin layer 8 is recrystallized after thermal bonding, cracks hardly occur with respect to bending in the MD direction. Therefore, the present invention configures the packaging material so that the folding direction of the thermally bonded packaging material peripheral edge portion 10c matches the MD direction of the thermal adhesive resin layer 8.

図2〜図7は本発明に係るパウチタイプの扁平型電気化学セル1の製造工程を示す図である。図2〜図7を参照して、本発明に係る扁平型電気化学セルの製造工程について説明する。まず、図2に示すように長尺帯状のフープ材(積層体)10を用意する。このとき、フープ材(積層体)10は図1に示した積層構造を有しており、最内層の熱接着性樹脂層8はフープ材10の長手方向にMD方向を有する。次に、図3に示すように、フープ材を長手方向に沿って所定間隔ごとに所定形状にプレス成形してトレイ部10aを成形する。このとき、トレイ部10aは直方体状に形成されており、トレイ部10aの長手方向は熱接着性樹脂層8のMD方向と直交する方向に形成されている。次に、図4に示すように隣接するトレイ部10a間を所定幅残して切断し、積層体10を分離する。このとき、積層体10はトレイ部10a以外の領域にシート部10bが連設された構成となる、また、トレイ部10aの周縁にはシール領域となる包装材周縁部10cも連設された構成となる。次に、図5に示すようにトレイ部10aに扁平型電気化学セル本体2を収納し、シート部10bとトレイ部10aの連設部を折り曲げてトレイ部10aを閉蓋する。このとき、図6に示すように、扁平型電気化学本体2の正極及び負極と接続されたタブ4はトレイ部10bの一短辺からシート部10bとトレイ部10aの周縁部により挟持された状態で、包装材10外部に先端が突出した状態となる。そして、包装材10の周縁部10cをヒートシールして扁平型電気化学セル本体2を包装材10内部に密封収納する。なお、このとき、タブ4の引き出し方向と熱接着性樹脂層8MD方向は略直交している。したがって、包装材周縁部10cの2つの長辺をMD方向に折り曲げて、扁平型電気化学セル1の容積効率を高めることができる。なお、熱接着性樹脂層8はMD方向に折り曲げたとき、最もクラックが発生し難い。したがって、本発明に係る扁平型電気化学セル1は包装材周縁部10cのMD方向への折り曲げによる熱接着樹脂層8のクラック発生を防止し、長期間の使用においても密封性を確保しながら、エンボスタイプの扁平型電気化学セル1の容積効率の向上を図ることができる。   2-7 is a figure which shows the manufacturing process of the pouch type flat electrochemical cell 1 which concerns on this invention. With reference to FIGS. 2-7, the manufacturing process of the flat type electrochemical cell based on this invention is demonstrated. First, as shown in FIG. 2, a long belt-like hoop material (laminated body) 10 is prepared. At this time, the hoop material (laminate) 10 has the laminated structure shown in FIG. 1, and the innermost thermal adhesive resin layer 8 has the MD direction in the longitudinal direction of the hoop material 10. Next, as shown in FIG. 3, the hoop material is press-formed into a predetermined shape at predetermined intervals along the longitudinal direction to form the tray portion 10a. At this time, the tray part 10 a is formed in a rectangular parallelepiped shape, and the longitudinal direction of the tray part 10 a is formed in a direction orthogonal to the MD direction of the thermoadhesive resin layer 8. Next, as shown in FIG. 4, the adjacent tray portions 10 a are cut leaving a predetermined width, and the stacked body 10 is separated. At this time, the laminated body 10 has a configuration in which the sheet portion 10b is continuously provided in a region other than the tray portion 10a, and a configuration in which a packaging material peripheral portion 10c serving as a seal region is also provided continuously at the periphery of the tray portion 10a. It becomes. Next, as shown in FIG. 5, the flat electrochemical cell main body 2 is accommodated in the tray portion 10a, the connecting portion of the sheet portion 10b and the tray portion 10a is bent, and the tray portion 10a is closed. At this time, as shown in FIG. 6, the tab 4 connected to the positive electrode and the negative electrode of the flat electrochemical main body 2 is sandwiched by the sheet portion 10b and the peripheral portion of the tray portion 10a from one short side of the tray portion 10b. Thus, the tip protrudes outside the packaging material 10. And the peripheral part 10c of the packaging material 10 is heat-sealed, and the flat type electrochemical cell main body 2 is sealed and accommodated in the packaging material 10 inside. At this time, the pull-out direction of the tab 4 and the direction of the thermal adhesive resin layer 8MD are substantially orthogonal. Therefore, the volume efficiency of the flat electrochemical cell 1 can be increased by bending the two long sides of the packaging material peripheral edge portion 10c in the MD direction. The thermal adhesive resin layer 8 is least prone to crack when bent in the MD direction. Therefore, the flat electrochemical cell 1 according to the present invention prevents cracking of the thermoadhesive resin layer 8 due to bending of the peripheral edge portion 10c of the packaging material in the MD direction, while ensuring the sealing performance even in long-term use, The volume efficiency of the embossed flat electrochemical cell 1 can be improved.

なお、本発明はエンボスタイプの扁平型電気化学セルに限定されるわけではなく、全ての電気化学セルに適応可能である。例えば、パウチ状の包装材をタブの引き出し方向に対して熱接着樹脂層のMD方向が略直交するように構成し、MD方向と同一方向に包装材周縁部10cを折り曲げることにより、エンボスタイプの扁平型電気化学セル1と同様に、包装材周縁部10cの折り曲げによる熱接着樹脂層8のクラック発生を防止し、長期間の使用においても密封性が確保しながら、パウチタイプの扁平型電気化学セル1の容積効率の向上を図ることができる。   The present invention is not limited to the embossed flat electrochemical cell, but can be applied to all electrochemical cells. For example, a pouch-shaped packaging material is configured so that the MD direction of the thermal bonding resin layer is substantially orthogonal to the pulling-out direction of the tab, and the packaging material peripheral portion 10c is bent in the same direction as the MD direction. Like the flat electrochemical cell 1, the pouch-type flat electrochemical cell prevents cracking of the thermoadhesive resin layer 8 due to bending of the peripheral edge portion 10c of the packaging material, and ensures sealing performance even in long-term use. The volume efficiency of the cell 1 can be improved.

以上より、包装材周縁部の折り曲げ方向が熱接着性樹脂層8を構成する樹脂の流れ方向(MD方向)と略同一になるように積層体を重ね合わせて包装材10を成形し、扁平型電気化学セル1を作製することにより、包装材周縁部10cの折り曲げによる熱接着樹脂層8のクラック発生を防止し、長期間の使用においても密封性が確保される扁平型電気化学セルを提供することが可能になる。   As described above, the packaging material 10 is formed by overlapping the laminate so that the folding direction of the peripheral edge of the packaging material is substantially the same as the flow direction (MD direction) of the resin constituting the heat-adhesive resin layer 8, and the flat type By producing the electrochemical cell 1, it is possible to provide a flat electrochemical cell that prevents cracking of the heat-adhesive resin layer 8 due to bending of the peripheral edge portion 10c of the packaging material, and ensures hermeticity even during long-term use. It becomes possible.

また、タブの引き出し方向に対して包装材の熱接着性樹脂層8を構成する樹脂の流れ方向(MD方向)が略直交になるように積層体を重ねあわせて包装材10を形成することにより、熱接着性樹脂層8を構成する樹脂の流れ方向(MD方向)と同一方向に折り曲げることができる包装材周縁部10cの領域を広く確保することができる。   Further, by forming the packaging material 10 by stacking the laminate so that the flow direction (MD direction) of the resin constituting the thermal adhesive resin layer 8 of the packaging material is substantially orthogonal to the pulling-out direction of the tab Further, it is possible to ensure a wide area of the peripheral edge portion 10c of the packaging material that can be bent in the same direction as the flow direction (MD direction) of the resin constituting the thermal adhesive resin layer 8.

また、積層体をプレス加工して成形された凹部10aに扁平型電気化学セル本体2を収納するエンボスタイプの扁平型電気化学セル1において、直方体状の凹部10aの長手方向と熱接着性樹脂層8を構成する樹脂の流れ方向(MD方向)とを略直交するように積層体を重ね合わせて包装材10を形成することにより、凹部10aに形成される4辺の包装材周縁部10cのうち長辺部分を熱接着性樹脂層8を構成する樹脂の流れ方向(MD方向)と同一方向に折り曲げることができる。したがって、包装材周縁部10cの折り曲げによる熱接着樹脂層8のクラック発生を防止し、長期間の使用においても密封性が確保しながら、エンボスタイプの扁平型電気化学セル1の容積効率の向上を図ることができる。   Further, in the embossed flat electrochemical cell 1 in which the flat electrochemical cell main body 2 is accommodated in the concave portion 10a formed by pressing the laminate, the longitudinal direction of the rectangular parallelepiped concave portion 10a and the thermoadhesive resin layer Of the four sides of the packaging material peripheral portion 10c formed in the recess 10a by forming the packaging material 10 by overlapping the laminate so that the flow direction (MD direction) of the resin constituting 8 is substantially orthogonal to each other. The long side portion can be bent in the same direction as the flow direction (MD direction) of the resin constituting the heat-adhesive resin layer 8. Therefore, it is possible to prevent the occurrence of cracks in the thermal adhesive resin layer 8 due to the bending of the peripheral edge portion 10c of the packaging material, and to improve the volumetric efficiency of the embossed flat electrochemical cell 1 while ensuring the sealing performance even during long-term use. Can be planned.

次に、図1に示した外装体10の各層について具体的に説明する。熱接着性樹脂層8は、リチウム電池本体2の金属端子4を外側に突出した状態で挟持して熱接着する際に熱接着性樹脂層8と金属端子4との間に金属端子密封用接着性フィルムを介在させるか否かで構成するポリプロピレン層の種類が異なる。金属端子密封用接着性フィルムを介在させる場合には、プロピレン系樹脂の単体ないし混合物などからなるフィルムを用いればよいが、金属端子密封用接着性フィルムを介在させない場合、不飽和カルボン酸でグラフト変性した酸変性オレフィン樹脂からなるフィルムを用いる必要がある。   Next, each layer of the outer package 10 shown in FIG. 1 will be specifically described. The heat-adhesive resin layer 8 is used to seal the metal terminal between the heat-adhesive resin layer 8 and the metal terminal 4 when the metal terminal 4 of the lithium battery body 2 is sandwiched in a state of protruding outward and thermally bonded. The type of polypropylene layer to be constructed differs depending on whether or not a conductive film is interposed. When an adhesive film for sealing metal terminals is interposed, a film made of a propylene-based resin alone or a mixture may be used. When an adhesive film for sealing metal terminals is not interposed, graft modification with unsaturated carboxylic acid is performed. It is necessary to use a film made of the acid-modified olefin resin.

なお、熱接着性樹脂層8としてはポリプロピレンが好適に用いられるが、線状低密度ポリエチレン、中密度ポリエチレンの単層または多層、または、線状低密度ポリエチレン、中密度ポリエチレンのブレンド樹脂からなる単層または多層からなるフィルムも使用できる。   Polypropylene is preferably used as the heat-adhesive resin layer 8, but a single layer or a multilayer of linear low density polyethylene or medium density polyethylene, or a single resin composed of a blend resin of linear low density polyethylene or medium density polyethylene. Films consisting of layers or multilayers can also be used.

次に基材層6について説明する。基材層6は、一般に、延伸ポリエステルまたはナイロンフィルムからなるが、この時、ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネート等が挙げられる。またナイロンとしては、ポリアミド樹脂、すなわち、ナイロン6、ナイロン6,6、ナイロン6とナイロン6,6との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)等が挙げられる。   Next, the base material layer 6 will be described. The base material layer 6 is generally made of stretched polyester or nylon film. At this time, examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolymerized polyester, and polycarbonate. . Examples of nylon include polyamide resin, that is, nylon 6, nylon 6,6, a copolymer of nylon 6 and nylon 6,6, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like.

次に金属箔層7について説明する。金属箔層7は、外部からリチウムイオン電池の内部に水蒸気が浸入することを防止するための層で、金属箔層単体のピンホール、及び加工適性(パウチ化、エンボス成形性)を安定化し、かつ耐ピンホール性をもたせるために厚さ15μm以上のアルミニウム、ニッケルなどの金属、又は、無機化合物、例えば、酸化珪素、アルミナ等を蒸着したフィルムなども挙げられるが、金属箔層7として好ましくは厚さが20〜80μmのアルミニウムとする。   Next, the metal foil layer 7 will be described. The metal foil layer 7 is a layer for preventing water vapor from entering the inside of the lithium ion battery from the outside, and stabilizes the pinhole and processability (pouching, embossing formability) of the metal foil layer alone, In order to provide pinhole resistance, a metal such as aluminum or nickel having a thickness of 15 μm or more, or a film on which an inorganic compound such as silicon oxide or alumina is vapor-deposited may be mentioned. The aluminum has a thickness of 20 to 80 μm.

また、金属箔層7であるアルミニウムの表、裏面に化成処理7aを施すことによって、接着剤15との接着強度が向上する。   Moreover, the adhesive strength with the adhesive 15 improves by performing the chemical conversion treatment 7a on the front and back surfaces of the aluminum that is the metal foil layer 7.

次にこの化成処理層7aについて説明する。化成処理層7aは少なくとも金属箔層7の熱接着性樹脂層8側の面に形成するものである。化成処理層7aは酸変性ポリオレフィン層9と金属箔層7とを安定的に接着し、金属箔層7と熱接着性樹脂層8のデラミネーションを防止することができる。また、アルミニウムの腐食を防止する働きも有る。   Next, the chemical conversion treatment layer 7a will be described. The chemical conversion treatment layer 7 a is formed on at least the surface of the metal foil layer 7 on the heat-adhesive resin layer 8 side. The chemical conversion treatment layer 7a can stably bond the acid-modified polyolefin layer 9 and the metal foil layer 7 and prevent delamination of the metal foil layer 7 and the heat-adhesive resin layer 8. It also has the function of preventing aluminum corrosion.

具体的には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物等の耐酸性皮膜を形成することによってエンボス成形時の金属箔層7と熱接着性樹脂層8との間のデラミネーション防止と、リチウムイオン電池の電解質と水分とによる反応で生成するフッ化水素により、アルミニウム表面の溶解、腐食、特にアルミニウムの表面に存在する酸化アルミが溶解、腐食することを防止し、かつ、アルミニウム表面の接着性(濡れ性)を向上させることができる。   Specifically, delamination between the metal foil layer 7 and the heat-adhesive resin layer 8 at the time of embossing by forming an acid-resistant film such as phosphate, chromate, fluoride, triazine thiol compound, etc. And hydrogen fluoride produced by the reaction between the electrolyte and water in the lithium ion battery prevents the aluminum surface from being dissolved and corroded, especially the aluminum oxide present on the aluminum surface from being dissolved and corroded. Surface adhesion (wetting) can be improved.

化成処理層7aは、クロム酸クロメート処理、リン酸クロメート処理、塗布型クロメート処理等のクロム系化成処理、あるいは、ジルコニウム、チタン、リン酸亜鉛等の非クロム系(塗布型)化成処理等により金属箔層7面に形成されるものであるが、フッ素系樹脂15と強固に接着するという点、また、連続処理が可能であると共に水洗工程が不要で処理コストを安価にすることができるという点などから塗布型化成処理、特にアミノ化フェノール重合体、3価クロム化合物、リン化合物、を含有する処理液で処理するのが最も好ましい。   The chemical conversion treatment layer 7a is made of metal by chromium-based chemical conversion treatment such as chromate chromate treatment, phosphoric acid chromate treatment, and coating-type chromate treatment, or non-chromium (coating-type) chemical conversion treatment such as zirconium, titanium, and zinc phosphate. Although it is formed on the surface of the foil layer 7, it is firmly bonded to the fluororesin 15, and a continuous process is possible and a water washing step is unnecessary and the processing cost can be reduced. It is most preferable to treat with a treatment solution containing a coating type chemical conversion treatment, particularly an aminated phenol polymer, a trivalent chromium compound and a phosphorus compound.

また、化成処理層7aの形成方法としては、前記処理液をバーコード法、ロールコート法、グラビアコート法、浸漬法等の周知の塗布法を選択して成形すればよい。また、化成処理層7aを形成する前に金属箔層7表面に、予め、アルカリ浸漬法、電解洗浄法、酸洗浄法、酸活性化法等の周知の脱脂処理法で処理を施しておく方が、化成処理層7aの機能を最大限に発現させるとともに、長期間維持することができる点から好ましい。   Moreover, as a formation method of the chemical conversion treatment layer 7a, a known coating method such as a barcode method, a roll coating method, a gravure coating method, a dipping method, or the like may be selected to form the processing liquid. Moreover, before forming the chemical conversion treatment layer 7a, the surface of the metal foil layer 7 is previously treated by a known degreasing method such as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an acid activation method, or the like. However, it is preferable in that the function of the chemical conversion treatment layer 7a is maximized and can be maintained for a long time.

また、前記の各層には、適宜、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性を向上、安定化する目的のために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理をしてもよい。   In addition, for each of the above layers, corona treatment, blast treatment, and oxidation treatment are appropriately performed for the purpose of improving and stabilizing film forming properties, lamination processing, and final product secondary processing (pouching, embossing). Surface activation treatment such as ozone treatment may be performed.

なお、本発明は上述した各実施形態に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the present invention. Included in the technical scope.

次に本発明による包装材周縁の折り曲げ方向を熱接着性樹脂層のMD方向と一致させた包装材の絶縁性について、実施例により以下説明する。
[実施例]
Next, the insulating property of the packaging material in which the folding direction of the peripheral edge of the packaging material according to the present invention is matched with the MD direction of the heat-adhesive resin layer will be described below with reference to examples.
[Example]

[包装材の作製]
まず、本実施例で用いる電気化学セル用包装材料の製造方法について説明する。まず、アルミニウム(厚さ40μm)の両面に化成処理を施し、一方の化成処理面に、延伸ナイロンフィルム(厚さ25μm)を2液硬化型ポリウレタン系接着剤を介してドライラミネート法により貼り合わせた。次に、他の化成処理面に酸変性ポリプロピレン(以下酸変性PPと略す)をロールコート法により塗布、焼付けし、未延伸ポリプロピレンフィルム(厚さ30μm)を熱ラミネート法により、積層して本実施例で用いる電気化学セル用包装材を得た。このとき酸変性PPの厚さは15μmとする。
[Production of packaging materials]
First, the manufacturing method of the packaging material for electrochemical cells used in a present Example is demonstrated. First, a chemical conversion treatment was performed on both surfaces of aluminum (thickness 40 μm), and a stretched nylon film (thickness 25 μm) was bonded to one chemical conversion treatment surface by a dry laminating method via a two-component curable polyurethane adhesive. . Next, acid-modified polypropylene (hereinafter abbreviated as acid-modified PP) is applied and baked on the other chemical conversion treated surface by a roll coating method, and an unstretched polypropylene film (thickness 30 μm) is laminated by a thermal laminating method. The packaging material for electrochemical cells used in the examples was obtained. At this time, the thickness of the acid-modified PP is 15 μm.

なお、本実施例において、化成処理層には、フェノール樹脂、フッ化クロム化合物、リン酸からなる処理液をロールコート法により塗布し、皮膜温度が190℃以上となる条件において焼付けた。ここで、クロムの塗布量は10mg/m2(乾燥重量)であり、酸変性PPは、アルミニウム温度が140℃以上となる条件において焼付け、酸変性PPの塗布量は、3g/m2(乾燥重量)とした。 In this example, the chemical conversion treatment layer was coated with a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid by a roll coating method, and baked under conditions where the film temperature was 190 ° C. or higher. Here, the application amount of chromium is 10 mg / m 2 (dry weight), and the acid-modified PP is baked under the condition that the aluminum temperature is 140 ° C. or higher, and the application amount of the acid-modified PP is 3 g / m 2 (dry). Weight).

[タブフィルムの作製]
次に、厚さ12μmのポリエチレンナフタレートフィルム(PENフィルム)の一方の面にマレイン酸変性ポリプロピレンをTダイ押出機で44μm厚さに押出し塗布した後、PENフィルム他方の面にマレイン酸変性ポリプロピレンをTダイ押出機で44μm厚さに押出し塗布し、タブフィルムを得た。
[Production of tab film]
Next, maleic acid-modified polypropylene was extruded on one side of a 12 μm thick polyethylene naphthalate film (PEN film) to a thickness of 44 μm using a T-die extruder, and then maleic acid-modified polypropylene was applied to the other side of the PEN film. A tab film was obtained by extrusion coating to a thickness of 44 μm with a T-die extruder.

[サンプルの作製]
上記電気化学セル用包装材料に54mm(TD方向)×32mm(MD方向)で深さ4mmのエンボス部とそのエンボス部周縁に7mm幅のシール領域を有するトレイを成形し、エンボス部に電解液を入れ、トレイの一辺において3mm×10mmで厚さ100μmのタブ1、タブ2を上記タブフィルムを巻き付けた状態でエンボス部の同一短辺側(32mm幅)に載置し、シート状の上記電気化学セル用包装材料で挟持し、7mm巾で周縁部をヒートシールした。そして、60℃で24時間保存して実施例1に係るサンプルを得た。このとき、ヒートシールは、面圧1.0MPa、シール温度190℃、シール時間3.0秒の条件で行なった。
[Preparation of sample]
A tray having an embossed portion of 54 mm (TD direction) × 32 mm (MD direction) and a depth of 4 mm is formed on the packaging material for an electrochemical cell, and a 7 mm wide seal region is formed on the periphery of the embossed portion. The tab 1 and the tab 2 having a thickness of 3 mm × 10 mm and a thickness of 100 μm on one side of the tray are placed on the same short side (32 mm width) of the embossed portion in a state where the tab film is wound. It was sandwiched between cell packaging materials, and the periphery was heat-sealed with a width of 7 mm. And it stored at 60 degreeC for 24 hours, and obtained the sample concerning Example 1. At this time, the heat sealing was performed under conditions of a surface pressure of 1.0 MPa, a sealing temperature of 190 ° C., and a sealing time of 3.0 seconds.

上記電気化学セル用包装材料に54mm(MD方向)×32mm(TD方向)で深さ4mmのエンボス部とそのエンボス部周縁に7mm幅のシール領域を有するトレイを成形し、エンボス部に電解液を入れ、トレイの一辺において3mm×10mmで厚さ100μmのタブ1、タブ2を上記タブフィルムを巻き付けた状態でエンボス部の同一短辺側(32mm幅)に載置し、シート状の上記電気化学セル用包装材料で挟持し、7mm巾で周縁部をヒートシールした。そして、60℃で24時間保存して比較例1に係るサンプルを得た。このとき、ヒートシールは、面圧1.0MPa、シール温度190℃、シール時間3.0秒の条件で行なった。   A tray having an embossed portion of 54 mm (MD direction) × 32 mm (TD direction) and a depth of 4 mm and a 7 mm wide sealing region at the periphery of the embossed portion is formed on the packaging material for electrochemical cells, and an electrolyte solution is applied to the embossed portion. The tab 1 and the tab 2 having a thickness of 3 mm × 10 mm and a thickness of 100 μm on one side of the tray are placed on the same short side (32 mm width) of the embossed portion in a state where the tab film is wound. It was sandwiched between cell packaging materials, and the periphery was heat-sealed with a width of 7 mm. And it stored at 60 degreeC for 24 hours, and the sample which concerns on the comparative example 1 was obtained. At this time, the heat sealing was performed under conditions of a surface pressure of 1.0 MPa, a sealing temperature of 190 ° C., and a sealing time of 3.0 seconds.

上記電気化学セル用包装材料に100mm(TD方向)×55mm(MD方向)で深さ6mmのエンボス部とそのエンボス部周縁に15mm幅のシール領域を有するトレイを成形し、エンボス部に電解液を入れ、トレイの一辺において30mm×50mmで厚さ300μmのタブ1、タブ2を上記タブフィルムを巻き付けた状態でエンボス部の対向する短辺(55mm幅)にそれぞれ載置し、シート状の上記電気化学セル用包装材料で挟持し、15mm巾で周縁部をヒートシールした。そして、60℃で24時間保存して実施例2に係るサンプルを得た。このとき、ヒートシールは、面圧1.0MPa、シール温度190℃、シール時間3.0秒の条件で行なった。   A tray having an embossed portion of 100 mm (TD direction) × 55 mm (MD direction) and a depth of 6 mm and a seal region of 15 mm width at the periphery of the embossed portion is formed on the packaging material for electrochemical cells, and an electrolytic solution is applied to the embossed portion. The tab 1 and the tab 2 having a thickness of 30 mm × 50 mm and a thickness of 300 μm on one side of the tray are respectively placed on the short sides (55 mm width) of the embossed portion in a state where the tab film is wound. It was sandwiched between packaging materials for chemical cells, and the periphery was heat-sealed with a width of 15 mm. And it stored at 60 degreeC for 24 hours, and obtained the sample concerning Example 2. At this time, the heat sealing was performed under conditions of a surface pressure of 1.0 MPa, a sealing temperature of 190 ° C., and a sealing time of 3.0 seconds.

上記電気化学セル用包装材料に100mm(MD方向)×55mm(TD方向)で深さ6mmのエンボス部とそのエンボス部周縁に15mm幅のシール領域を有するトレイを成形し、エンボス部に電解液を入れ、トレイの一辺において30mm×50mmで厚さ300μmのタブ1、タブ2を上記タブフィルムを巻き付けた状態でエンボス部の対向する短辺(55mm幅)にそれぞれ載置し、シート状の上記電気化学セル用包装材料で挟持し、15mm巾で周縁部をヒートシールした。そして、60℃で24時間保存して比較例2に係るサンプルを得た。このとき、ヒートシールは、面圧1.0MPa、シール温度190℃、シール時間3.0秒の条件で行なった。   A tray having an embossed portion of 100 mm (MD direction) × 55 mm (TD direction) and a depth of 6 mm and a seal region of 15 mm width at the periphery of the embossed portion is formed on the packaging material for an electrochemical cell, and an electrolytic solution is applied to the embossed portion. The tab 1 and the tab 2 having a thickness of 30 mm × 50 mm and a thickness of 300 μm on one side of the tray are respectively placed on the short sides (55 mm width) of the embossed portion in a state where the tab film is wound. It was sandwiched between packaging materials for chemical cells, and the periphery was heat-sealed with a width of 15 mm. And it stored at 60 degreeC for 24 hours, and the sample which concerns on the comparative example 2 was obtained. At this time, the heat sealing was performed under conditions of a surface pressure of 1.0 MPa, a sealing temperature of 190 ° C., and a sealing time of 3.0 seconds.

[包装材周縁部の絶縁性の測定] [Measurement of insulation at the periphery of packaging materials]

次に上記各サンプルにおいて、ヒートシールした包装材周縁部のうち対向する長辺を折り曲げた。このとき、実施例1、2では折り曲げ方向がMD方向と一致し、比較例1、2では折り曲げ方向がTD方向と一致した。また、折り曲げ工程は各辺を90°往復して20回折り曲げた。   Next, in each of the above samples, the opposite long sides of the heat-sealed packaging material peripheral portion were bent. At this time, in Examples 1 and 2, the folding direction coincided with the MD direction, and in Comparative Examples 1 and 2, the folding direction coincided with the TD direction. In the bending step, each side was reciprocated 90 ° and bent 20 times.

次に、正極端子をタブに、負極端子の先端が外装体のアルミニウム箔に達するようにセットし、電圧計により電圧25Vを5秒間印加し抵抗値を測定した。このとき、100MΩ以下の抵抗値の発生率をn=1000において、タブ1及びタブ2ついてそれぞれ測定し表1にまとめた。   Next, the positive electrode terminal was set to the tab and the tip of the negative electrode terminal was set to reach the aluminum foil of the outer package, and a voltage of 25 V was applied for 5 seconds with a voltmeter to measure the resistance value. At this time, the occurrence rates of resistance values of 100 MΩ or less were measured for tab 1 and tab 2 at n = 1000, and are summarized in Table 1.

Figure 0005286730
Figure 0005286730

以上より、包装材周縁部をMD方向に折り曲げた実施例1及び実施例2は、包装材周縁部をTD方向に折り曲げた比較例1及び比較例2と比較して高い絶縁性を確認することができた。この結果より、包装材周縁部の折り曲げ方向と包装材を構成する熱接着性樹脂層のMD方向を一致させることで、折り曲げによる絶縁性の低下を防止することが確認された。   As mentioned above, Example 1 and Example 2 which bent the packaging material peripheral part in MD direction should confirm high insulation compared with the comparative example 1 and comparative example 2 which bent the packaging material peripheral part in TD direction. I was able to. From this result, it was confirmed that by matching the folding direction of the peripheral portion of the packaging material with the MD direction of the heat-adhesive resin layer constituting the packaging material, a decrease in insulation due to bending was prevented.

本発明の扁平型電気化学セルに係る包装材(積層体)の層構造を示す断面図である。It is sectional drawing which shows the layer structure of the packaging material (laminated body) which concerns on the flat type electrochemical cell of this invention. 本発明の扁平型電気化学セルの製造工程を示す積層体の平面図である。It is a top view of the laminated body which shows the manufacturing process of the flat type electrochemical cell of this invention. 本発明の扁平型電気化学セルの製造工程を示す積層体の平面図である。It is a top view of the laminated body which shows the manufacturing process of the flat type electrochemical cell of this invention. 本発明の扁平型電気化学セルの製造工程を示す積層体の平面図である。It is a top view of the laminated body which shows the manufacturing process of the flat type electrochemical cell of this invention. 本発明の扁平型電気化学セルの製造工程を示す積層体の斜視図である。It is a perspective view of the laminated body which shows the manufacturing process of the flat type electrochemical cell of this invention. 本発明の扁平型電気化学セルの製造工程を示す扁平型電気化学セルの平面図である。It is a top view of the flat type electrochemical cell which shows the manufacturing process of the flat type electrochemical cell of this invention. 従来のパウチ型扁平型電気化学セルの斜視図である。It is a perspective view of the conventional pouch-type flat electrochemical cell. 従来のパウチ型扁平型電気化学セルの分解斜視図である。It is a disassembled perspective view of the conventional pouch-type flat electrochemical cell. 従来のエンボス型扁平型電気化学セルの斜視図である。It is a perspective view of the conventional embossed flat type electrochemical cell. 従来のエンボス型扁平型電気化学セルの分解斜視図である。It is a disassembled perspective view of the conventional emboss type flat type electrochemical cell. 従来のエンボス型扁平型電気化学セルの斜視図である。It is a perspective view of the conventional embossed flat type electrochemical cell.

符号の説明Explanation of symbols

1 リチウムイオン電池
2 リチウムイオン電池本体
4 金属端子(タブ)
6 基材層
7 金属箔
7a 化成処理層
8 熱接着性樹脂
9 酸変性ポリオレフィン
10 包装材(積層体)
10a トレイ部
10b シート部
10c 包装材周縁部
10c 折り曲げ部
12 接着剤層
15 プラスチックケース
1 Lithium ion battery 2 Lithium ion battery body 4 Metal terminal (tab)
6 Base material layer 7 Metal foil 7a Chemical conversion treatment layer 8 Thermal adhesive resin 9 Acid-modified polyolefin 10 Packaging material (laminate)
10a Tray part 10b Sheet part 10c Peripheral part of packaging material 10c Bending part 12 Adhesive layer 15 Plastic case

Claims (3)

基材層と、金属箔層と、熱接着性樹脂層とが、少なくとも順次積層された積層体を重ね合わせて形成される包装材内部に、
正極活物質及び正極集電体から成る正極と、負極活物質及び負極集電体から成る負極と、前記正極及び負極間に充填される電解質と、を含む扁平型電気化学セル本体を収納し、
前記負極及び前記正極に連結されるタブの先端を前記包装材外部に突出させ、
前記包装材の周縁部を熱接着して、前記扁平型電気化学セル本体を前記包装材内部に密封し、
前記包装材の熱接着された周縁部を折り曲げる、扁平型電気化学セルであって、
熱接着された前記周縁部を折り曲げた際に形成される折り線の延びる方向が、前記熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)と直交になるよう、前記積層体を重ね合わせたことを特徴とすることを特徴とする扁平型電気化学セル。
A base material layer, a metal foil layer, and a heat-adhesive resin layer are formed in a packaging material formed by overlapping a laminate in which at least a layer is sequentially laminated.
A flat electrochemical cell body including a positive electrode composed of a positive electrode active material and a positive electrode current collector, a negative electrode composed of a negative electrode active material and a negative electrode current collector, and an electrolyte filled between the positive electrode and the negative electrode,
The tip of the tab connected to the negative electrode and the positive electrode protrudes outside the packaging material,
Thermally bonding the peripheral edge of the packaging material, sealing the flat electrochemical cell body inside the packaging material,
A flat electrochemical cell that bends the thermally bonded peripheral edge of the packaging material,
The laminated body is stacked so that the direction in which the fold line formed when the thermally bonded peripheral edge is folded is perpendicular to the flow direction (MD direction) of the resin constituting the thermal adhesive resin layer. A flat electrochemical cell characterized by being combined.
前記タブの引き出し方向と前記熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)とが直交することを特徴とする請求項1に記載の扁平型電気化学セル。 2. The flat electrochemical cell according to claim 1, wherein a drawing direction of the tab and a flow direction (MD direction) of a resin constituting the thermoadhesive resin layer are orthogonal to each other. 前記積層体がプレス加工により成形された凹部を有し、
前記凹部に前記扁平型電気化学セル本体を収納する扁平型電気化学セルであって、
前記凹部が直方体状に成形され、
前記凹部の長手方向と前記熱接着性樹脂層を構成する樹脂の流れ方向(MD方向)とが直交することを特徴とする請求項1又は請求項2に記載の扁平型電気化学セル。
The laminate has a recess formed by pressing,
A flat electrochemical cell storing the flat electrochemical cell main body in the recess,
The recess is formed in a rectangular parallelepiped shape,
3. The flat electrochemical cell according to claim 1, wherein a longitudinal direction of the concave portion and a flow direction (MD direction) of a resin constituting the thermoadhesive resin layer are orthogonal to each other.
JP2007256433A 2007-09-28 2007-09-28 Flat electrochemical cell Active JP5286730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256433A JP5286730B2 (en) 2007-09-28 2007-09-28 Flat electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256433A JP5286730B2 (en) 2007-09-28 2007-09-28 Flat electrochemical cell

Publications (2)

Publication Number Publication Date
JP2009087750A JP2009087750A (en) 2009-04-23
JP5286730B2 true JP5286730B2 (en) 2013-09-11

Family

ID=40660905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256433A Active JP5286730B2 (en) 2007-09-28 2007-09-28 Flat electrochemical cell

Country Status (1)

Country Link
JP (1) JP5286730B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485313B1 (en) * 2009-09-30 2021-11-24 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
JP5467387B2 (en) * 2010-03-02 2014-04-09 興人フィルム&ケミカルズ株式会社 Battery case packaging material for cold forming containing biaxially stretched nylon film
JP6035754B2 (en) * 2012-01-31 2016-11-30 凸版印刷株式会社 Power storage device
JP6003170B2 (en) * 2012-04-12 2016-10-05 凸版印刷株式会社 Secondary battery
CN103985829B (en) * 2014-04-15 2016-08-17 惠州亿纬锂能股份有限公司 Soft Roll arc battery seaming operation
JP6716102B1 (en) * 2018-10-15 2020-07-01 大日本印刷株式会社 Electric storage device, electric storage device assembly, and electric vehicle
CN118867503A (en) * 2020-02-07 2024-10-29 大日本印刷株式会社 Electricity storage device and cover for electricity storage device
KR102640354B1 (en) * 2020-12-28 2024-02-27 주식회사 리베스트 Exterior material, method for forming pattern on exterior material and method for manufacturing battery including exterior material
WO2023013783A1 (en) * 2021-08-06 2023-02-09 大日本印刷株式会社 Power storage device and method for producing power storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154633B2 (en) * 1999-03-12 2008-09-24 ソニー株式会社 Non-aqueous electrolyte battery
JP4096643B2 (en) * 2002-06-25 2008-06-04 日産自動車株式会社 Battery structure

Also Published As

Publication number Publication date
JP2009087750A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5286730B2 (en) Flat electrochemical cell
EP2434564B1 (en) Rechargeable lithium battery in pouch form
JP5266628B2 (en) Battery packaging material
KR101387025B1 (en) Secondary electric cell with enhanced contact resistance
JP5347411B2 (en) Packaging materials for electrochemical cells
JP5369583B2 (en) Battery packaging material
JP4620202B2 (en) Method for producing polymer battery packaging material
JP5273331B2 (en) Flat electrochemical cell
JP6611455B2 (en) Assembled battery
KR20160102878A (en) Electrical storage device and manufacturing method thereof
JP2007273398A (en) Packaging material for battery
TW201637262A (en) Package for power storage device
JP5842340B2 (en) Packaging material for electrochemical cell and method for producing the same
JP2014525658A (en) Secondary battery with improved long-term reliability against water penetration
KR101192092B1 (en) Stacking type electrode assembly and lithium ion secondary battery having the same
JP5668785B2 (en) Battery packaging materials
JP5194922B2 (en) Packaging materials for electrochemical cells
JP2006310039A (en) Battery exterior structure
KR102504794B1 (en) Case for rechargeable battery and rechargeable battery comprising the same
KR102414195B1 (en) Pouch for rechargeable battery and rechargeable battery comprising the same
JP2008041403A (en) Manufacturing method of flat electrochemical cell
JP5521710B2 (en) Packaging materials for electrochemical cells
JP5187370B2 (en) Polymer battery packaging materials
JP2009245680A (en) Wrapping material for electrochemical cell
WO2021049572A1 (en) Electric storage element, production method for electric storage element, and design method for electric storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03