[go: up one dir, main page]

JP5283108B2 - Adsorbent for humidity sensor sensing and humidity control for electronic equipment - Google Patents

Adsorbent for humidity sensor sensing and humidity control for electronic equipment Download PDF

Info

Publication number
JP5283108B2
JP5283108B2 JP2008142965A JP2008142965A JP5283108B2 JP 5283108 B2 JP5283108 B2 JP 5283108B2 JP 2008142965 A JP2008142965 A JP 2008142965A JP 2008142965 A JP2008142965 A JP 2008142965A JP 5283108 B2 JP5283108 B2 JP 5283108B2
Authority
JP
Japan
Prior art keywords
relative humidity
water vapor
vapor adsorption
humidity
aluminum silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008142965A
Other languages
Japanese (ja)
Other versions
JP2009286672A (en
Inventor
亮介 中西
正哉 鈴木
恵一 犬飼
雅喜 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008142965A priority Critical patent/JP5283108B2/en
Publication of JP2009286672A publication Critical patent/JP2009286672A/en
Application granted granted Critical
Publication of JP5283108B2 publication Critical patent/JP5283108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorbent of which the steam absorbing amount is rectilinearly increases corresponding to relative humidity, which has 30 wt.% or more of a steam adsorption/desorption amount in the range of 5-60% of relative humidity, which has 80 wt.% or more of a steam adsorption/desorption amount in the range of 5-95% of relative humidity, and the content of Na and K is 1 ppm or smaller. <P>SOLUTION: An amorphous aluminum silicate is synthesized by using an organic Si solution and Al solution containing almost no Na and K, making Si/Al ratio in mixing to be 0.7-1.0, mixing both solutions and concentrating by heating a supernatant after centrifugal separation. In the obtained amorphous aluminum silicate, steam adsorption amount increases rectilinearly corresponding to relative humidity, the obtained amorphous aluminum silicate has 30 wt.% or more of steam adsorption/desorption amount in the range of 5-60% of relative humidity, and has 80 wt.% or more of steam adsorption/desorption amount in the range of 5-95% of relative humidity, and can be used as adsorbent for sensing humidity for humidity sensor and humidity conditioning agent for electronic equipment. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、次世代の産業を支える重要な基盤技術として、実用化が強く期待されているナノテクノロジーの技術分野において、その特異な形状に起因する微細構造により、高比表面積、高細孔容積、及び吸着能等に優れた物理化学的な特性を示し、革新的な機能性材料としての応用が期待されている物質に関するものであり、特に、相対湿度に対応し水蒸気吸着量が直線的に増加する水蒸気吸放湿特性を有する非晶質アルミニウムケイ酸塩、及びそれを用いた湿度センサー感知用吸着剤ならびに電子機器類用調湿剤に関するものである。   The present invention has a high specific surface area, a high pore volume due to the fine structure resulting from its unique shape in the technical field of nanotechnology, which is expected to be put to practical use as an important basic technology supporting the next generation industry. It is related to substances that have excellent physicochemical properties such as adsorption capacity and are expected to be applied as innovative functional materials. The present invention relates to an amorphous aluminum silicate having an increased moisture absorption and desorption property, a moisture sensor sensing adsorbent using the same, and a humidity control agent for electronic devices.

天然に存在するナノサイズのアルミニウムケイ酸塩としては、例えば、アロフェンおよびイモゴライトとして産出するが、このアロフェンおよびイモゴライトは、土壌中に存在し、主に火山灰由来の土壌に産する。また、天然のアロフェンおよびイモゴライトは、土壌における養分や水分の移動及び植物への供給、更に、有害な汚染物質の集積や残留等に対して影響を与えるものである。これらのアルミニウムケイ酸塩は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和珪酸アルミニウムであって、アロフェンは、外径3.5〜5.0nmのナノカプセル状の形態を有し、イモゴライトは、外径が2.2〜2.8nm、内径が0.5〜1.2nm、長さが10nm〜数μmのナノチューブ状の形態を有している。   Naturally-occurring nano-sized aluminum silicates are produced, for example, as allophane and imogolite. These allophane and imogolite are present in soil and mainly produced in soil derived from volcanic ash. Natural allophane and imogolite affect nutrients and moisture in soil, supply to plants, and accumulation and residue of harmful pollutants. These aluminum silicates are hydrated aluminum silicates whose main constituent elements are silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) and are assembled with a number of Si-O-Al bonds. Allophane has a nanocapsule-like form with an outer diameter of 3.5 to 5.0 nm, and imogolite has an outer diameter of 2.2 to 2.8 nm, an inner diameter of 0.5 to 1.2 nm, It has a nanotube-like form with a length of 10 nm to several μm.

一方、特徴的な形態を有しない非晶質アルミニウムケイ酸塩の中でも、イモゴライトの前駆体物質についてはプロトイモゴライトと呼ばれている。このプロトイモゴライトは、水溶液中に分散した状態のものを100℃程度で加熱するとイモゴライトとなり、それゆえイモゴライト形成過程途中の加熱前の前駆体物質としてプロトイモゴライトと呼ぶ。プロトイモゴライトは、イモゴライトの構造に由来する性質を有しているため、29Si固体NMRでは、イモゴライトと同じ−78ppmにピークを示し、ケイ素はOH−Si−(OAl)3の配位を有している。そのため水蒸気吸着特性においてもイモゴライトとプロトイモゴライトとは相対湿度20%以下における吸着挙動がほぼ同じであり、プロトイモゴライトは結晶性のイモゴライトのように比較的長いチューブ状の形態にまでは成長していないが、イモゴライトの構造をそれなりに有していると考えられている。それゆえプロトイモゴライトにおいても、低湿度領域においてはイモゴライトと同様な吸着剤の性質を有している。 On the other hand, among amorphous aluminum silicates that do not have a characteristic form, the precursor material of imogolite is called protoimogolite. This protoimogolite is converted to imogolite when heated in an aqueous solution at about 100 ° C., and is therefore referred to as protomogolite as a precursor material before heating during the imogolite formation process. Protoimogolite has a property derived from the structure of imogolite. Therefore, 29 Si solid-state NMR shows the same peak at −78 ppm as imogolite, and silicon has a coordination of OH—Si— (OAl) 3. ing. Therefore, in terms of water vapor adsorption characteristics, imogolite and protomogolite have almost the same adsorption behavior at a relative humidity of 20% or less, and protomogolite has not grown to a relatively long tubular form like crystalline imogolite. However, it is thought that it has the structure of imogolite. Therefore, Protoimogolite also has an adsorbent property similar to that of imogolite in the low humidity region.

このような、ナノサイズ状のアルミニウムケイ酸塩であるアロフェンおよびイモゴライトさらにはイモゴライトの前駆体であるプロトイモゴライトの特異な形状及び物性は、工業的にも有用であると考えられる。すなわち、アロフェンおよびイモゴライトさらにはその前駆体であるプロトイモゴライトは、その特異な微細構造に基づいて、各種物質を吸着することができる特性を有することから、例えば、有害汚染物質吸着剤、脱臭剤、さらには二酸化炭素やメタンなどのガス貯蔵剤等としての利用可能性については、従来から言及されている。また、優れた水蒸気吸着性能を有することから、ヒートポンプ熱交換材、結露防止剤、自律的調湿材料などの応用としても期待されている。   Such unique shapes and physical properties of allophane and imogolite, which are nano-sized aluminum silicates, and protoimogolite, which is a precursor of imogolite, are considered to be useful industrially. That is, allophane and imogolite, and also prototomogolite, which is a precursor thereof, have characteristics capable of adsorbing various substances based on its unique fine structure. For example, harmful pollutant adsorbents, deodorants, Furthermore, the possibility of using it as a gas storage agent such as carbon dioxide or methane has been mentioned conventionally. In addition, since it has excellent water vapor adsorption performance, it is also expected to be used as a heat pump heat exchange material, anti-condensation agent, autonomous humidity control material and the like.

特に、湿度センサーではある湿度に対応して感知することが目的であるため、水蒸気吸着量が相対湿度に応じて直線的に増加し、かつ違いを精度よく感知できるよる吸着量の多い吸着剤の開発が必要とされている。そのような背景から、相対湿度と水蒸気吸着量の関係が直線的に増加し、かつ吸着量の多い無機材料系の吸着剤の開発が行なわれている。   In particular, the humidity sensor is intended for sensing according to a certain humidity, so that the amount of water vapor adsorbed increases linearly according to the relative humidity, and the adsorbent with a large adsorbed amount can be sensed accurately. Development is needed. From such a background, the relationship between the relative humidity and the amount of water vapor adsorption increases linearly, and an inorganic material type adsorbent having a large amount of adsorption has been developed.

このような中で、アロフェンやイモゴライトなどのアルミニウムケイ酸塩の上記特性を有しつつ、水蒸気吸着量が相対湿度に応じて直線的に増加していく吸着剤の開発が行なわれてきた。
しかしながら、従来の方法では、水蒸気吸着量が相対湿度に応じて直線的に増加する非晶質アルミニウムケイ酸塩からなる吸着剤は開発されているものの、Naが0.1%以上のオーダーで残留している(特許文献1)。NaやKなどによる塩が残留している場合、センサーをはじめ電子部品における腐食の問題点が存在する。
特開2006−240956号公報
Under such circumstances, adsorbents have been developed that have the above characteristics of aluminum silicates such as allophane and imogolite while increasing the water vapor adsorption amount linearly according to the relative humidity.
However, in the conventional method, an adsorbent composed of amorphous aluminum silicate whose water vapor adsorption amount increases linearly with relative humidity has been developed, but Na remains in the order of 0.1% or more. (Patent Document 1). When salt due to Na or K remains, there is a problem of corrosion in electronic parts including sensors.
JP 2006-240956 A

本発明者らは、湿度センサー感知用吸着剤および電子機器類用調湿剤の開発を目的として、水蒸気吸着量が相対湿度に応じて直線的に増加する吸着剤の開発を行なってきた。
その結果、原料として無機ケイ素化合物と無機アルミニウム化合物を用い、Si/Al比が0.6〜1となるようにして合成を行い、水蒸気吸着量が相対湿度に応じて直線的に増加する吸着剤の開発を行なうことが可能となった(特願2006−351792号)が、その水蒸気吸着量は35wt%程度であった。
また、同様にして、Si/Al比を1〜3の範囲にて合成を行なったところ、相対湿度80%以上の高湿度条件下において相当な水蒸気吸着量を有するもの得られた(特願2006−351447号)ものの、中湿度領域においては、ほとんど水蒸気吸着は行なわれていなかった。
The present inventors have developed an adsorbent in which the amount of water vapor adsorption increases linearly with relative humidity for the purpose of developing an adsorbent for sensing a humidity sensor and a humidity adjusting agent for electronic devices.
As a result, an inorganic silicon compound and an inorganic aluminum compound are used as raw materials, the synthesis is performed so that the Si / Al ratio is 0.6 to 1, and the water vapor adsorption amount increases linearly according to the relative humidity. (Japanese Patent Application No. 2006-351792), the water vapor adsorption amount was about 35 wt%.
Similarly, when the synthesis was performed with the Si / Al ratio in the range of 1 to 3, a compound having a considerable water vapor adsorption amount under high humidity conditions with a relative humidity of 80% or more was obtained (Japanese Patent Application No. 2006). -351447), however, water vapor adsorption was hardly performed in the middle humidity region.

本発明は、以上のような事情に鑑みてなされたものであって、相対湿度に応じて水蒸気吸着量が直線的に増加し、かつ相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上を有し、さらにNaやK含有量が1ppm以下であり、特に湿度センサー感知用吸着剤および電子機器類用調湿剤を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and the amount of water vapor adsorption increases linearly according to the relative humidity, and the amount of water vapor adsorption and the relative humidity at a relative humidity of 5% are 60%. The difference in water vapor adsorption amount at 30% by weight or more in water, the difference between water vapor adsorption amount at 5% relative humidity and water vapor adsorption amount at 95% relative humidity is 80% by weight or more, and Na or K content is 1 ppm. The object of the present invention is to provide an adsorbent for sensing a humidity sensor and a humidity conditioner for electronic equipment.

本発明者らは、上記目的を達成すべく検討を重ねた結果、Si源およびAl源として、従来の無機系の原料に代えて、NaやK等のアルカリ金属を含まない有機系の原料から形成した、Si/Al比が0.7〜1.0のアルミニウムケイ酸塩は、水蒸気吸着量が相対湿度に応じて直線的に増加し、かつ相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上を有し、さらにNaやK含有量が1ppm以下である非晶質アルミニウムケイ酸の合成法を開発することに成功し、本発明を完成するに至った。 As a result of repeated investigations to achieve the above object, the present inventors have used organic materials that do not contain alkali metals such as Na and K, instead of conventional inorganic materials, as Si sources and Al sources. The formed aluminum silicate having a Si / Al ratio of 0.7 to 1.0 has a water vapor adsorption amount that increases linearly according to the relative humidity, and a water vapor adsorption amount and a relative humidity at a relative humidity of 5%. The difference in water vapor adsorption at 60% is 30 wt% or more, the difference between water vapor adsorption at 5% relative humidity and water vapor adsorption at 95% relative humidity is 80 wt% or more, and further contains Na and K The present inventors have succeeded in developing a method for synthesizing amorphous aluminum silicic acid having an amount of 1 ppm or less, and completed the present invention.

すなわち、上記課題を解決するための本発明は、以下のとおりである。
(1)Si源およびAl源としてナトリウム及びカリウム含有量が1ppm以下である有機系の原料を、そのSi/Al比が0.7〜1.0となるように混合して前駆体を形成した後、遠心分離を行い、得られた上澄み液を加熱濃縮することを特徴とする非晶質アルミニウムケイ酸塩の製造方法。
(2)Na及びK含有量が1ppm以下、Si/Al比が0.7〜1.0であり、水蒸気吸着量が相対湿度に応じて直線的に増加し、かつ相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を有し、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上を有することを特徴とする非晶質アルミニウムケイ酸
)上記(2)非晶質アルミニウムケイ酸塩からなる吸着剤。
)上記(2)非晶質アルミニウムケイ酸塩からなる湿度センサー感知用吸着剤。
)上記(2)非晶質アルミニウムケイ酸塩からなる電子機器類における湿度制御剤。
)上記(2)非晶質アルミニウムケイ酸塩からなる電子機器類における結露防止剤。
That is, the present invention for solving the above-described problems is as follows.
(1) As a Si source and an Al source, an organic raw material having a sodium and potassium content of 1 ppm or less was mixed so that the Si / Al ratio was 0.7 to 1.0 to form a precursor. Thereafter, centrifugation is performed, and the resulting supernatant is heated and concentrated, thereby producing an amorphous aluminum silicate.
(2) Na and K content of 1ppm or less, a Si / Al ratio of 0.7 to 1.0, the water vapor adsorption amount increased linearly depending on the relative humidity, and at a relative humidity of 5% The difference between the water vapor adsorption amount and the water vapor adsorption amount when the relative humidity is 60% is 30 wt% or more, and the difference between the water vapor adsorption amount when the relative humidity is 5% and the water vapor adsorption amount when the relative humidity is 95% is 80 wt% or more. amorphous aluminum silicate, characterized in that it comprises.
( 3 ) An adsorbent comprising the amorphous aluminum silicate of (2) above.
( 4 ) The humidity sensor sensing adsorbent comprising the amorphous aluminum silicate of (2) above.
( 5 ) A humidity control agent in electronic equipment comprising the amorphous aluminum silicate of (2) above.
( 6 ) An anti-condensation agent for electronic equipment comprising the amorphous aluminum silicate of (2) above.

本発明により、Na及びKの含有量が1ppm以下である非晶質アルミニウムケイ酸が有する、水蒸気吸着量が相対湿度に応じて直線的に増加し、かつ相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上を有するという特性を用い、湿度センサー感知用吸着剤および電子機器類用調湿剤を提供することができる。 According to the present invention, the amorphous aluminum silicic acid having a Na and K content of 1 ppm or less has a water vapor adsorption amount that increases linearly according to the relative humidity, and a water vapor adsorption amount at 5% relative humidity. Using the characteristic that the difference in water vapor adsorption amount at a relative humidity of 60% is 30 wt% or more, and the difference in water vapor adsorption amount at a relative humidity of 5% and the water vapor adsorption amount at a relative humidity of 95% is 80 wt% or more, It is possible to provide an adsorbent for sensing a humidity sensor and a humidity conditioner for electronic devices.

次に、本発明について更に詳細に説明する。
本発明のNa及びKの含有量が1ppm以下である非晶質アルミニウムケイ酸塩は、Na及びKがほとんど含まれていない有機ケイ素化合物溶液と有機アルミニウム化合物溶液からなる溶液を混合し、ケイ素とアルミニウムの重合化後、遠心分離による上澄み溶液を加熱濃縮することにより人工的に得ることが可能である。
Next, the present invention will be described in more detail.
The amorphous aluminum silicate having a Na and K content of 1 ppm or less of the present invention is prepared by mixing an organosilicon compound solution containing almost no Na and K with a solution composed of an organoaluminum compound solution, and silicon. After the polymerization of aluminum, it can be obtained artificially by heating and concentrating the supernatant solution by centrifugation.

本発明における、非晶質アルミニウムケイ酸塩は、相対湿度に応じて水蒸気吸着量が直線的に増加し、また相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上、相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上の水蒸気を吸着する性能を有し、かつ残留ナトリウム濃度が1ppm以下である、従来公知のアルミニウムケイ酸塩とは異なるアルミニウムケイ酸塩である高吸着性物質である。
すなわち、本発明者らが鋭意検討を重ねた結果、有機ケイ素化合物および有機アルミニウム化合物を用い、Si/Al=0.7〜1.0の範囲で有機ケイ素化合物および有機アルミニウム化合物を混合し、上澄み溶液を加熱することにより、従来では得られなかった、残留ナトリウム濃度が1ppm以下であり、相対湿度に応じて水蒸気吸着量が直線的に増加する優れた吸湿挙動を有する物質を提供しうる非晶質アルミニウムケイ酸塩が得られるものである。
In the present invention, the amorphous aluminum silicate linearly increases the water vapor adsorption amount according to the relative humidity, and the difference between the water vapor adsorption amount when the relative humidity is 5% and the water vapor adsorption amount when the relative humidity is 60%. The difference between the water vapor adsorption amount when the relative humidity is 5% and the water vapor adsorption amount when the relative humidity is 95% is the ability to adsorb water vapor of 80 wt% or more, and the residual sodium concentration is 1 ppm or less. It is a highly adsorptive substance which is an aluminum silicate different from the conventionally known aluminum silicate.
That is, as a result of intensive studies by the present inventors, an organosilicon compound and an organoaluminum compound are used, an organosilicon compound and an organoaluminum compound are mixed in a range of Si / Al = 0.7 to 1.0, and a supernatant is obtained. By heating the solution, an amorphous material that has not been obtained in the past and has an excellent hygroscopic behavior in which the residual sodium concentration is 1 ppm or less and the water vapor adsorption amount increases linearly according to the relative humidity can be provided. Quality aluminum silicate is obtained.

本発明において、非晶質アルミニウムケイ酸塩の調製には、原料として、有機ケイ素化合物と有機アルミニウム化合物が用いられる。具体的には、ケイ素源として使用される試剤はオルトケイ酸エチル、アルミニウム源としてアルミニウムトリ−s−ブトキシドが挙げられる。これらのケイ素源及びアルミニウム源は、上記の化合物に限定されるものではなく、それらと同効のものであれば同様に使用することができる。   In the present invention, an organosilicon compound and an organoaluminum compound are used as raw materials for the preparation of the amorphous aluminum silicate. Specifically, the reagent used as the silicon source includes ethyl orthosilicate, and the aluminum source includes aluminum tri-s-butoxide. These silicon sources and aluminum sources are not limited to the above-mentioned compounds, and can be used in the same manner as long as they have the same effect.

これらの原料を適切な水溶液に溶解させ、所定の濃度の溶液を調製する。相対湿度に応じて水蒸気吸着量が直線的に増加するには、ケイ素/アルミニウム比は0.7〜1.0となるように混合することが必要である。溶液中のケイ素化合物の濃度は1〜500mmol/Lで、アルミニウム化合物の溶液の濃度は1〜500mmol/Lである。これらの比率及び濃度に基づいて、アルミニウム化合物溶液にケイ素化合物溶液を混合し、前駆体を形成した後遠心分離を行い、その後、回収した上澄み液を超純水により3〜10倍希釈し、加熱合成することにより生成された固形分が本発明における非晶質アルミニウムケイ酸塩である。   These raw materials are dissolved in an appropriate aqueous solution to prepare a solution having a predetermined concentration. In order for the water vapor adsorption amount to increase linearly according to the relative humidity, it is necessary to mix so that the silicon / aluminum ratio is 0.7 to 1.0. The concentration of the silicon compound in the solution is 1 to 500 mmol / L, and the concentration of the aluminum compound solution is 1 to 500 mmol / L. Based on these ratios and concentrations, a silicon compound solution is mixed with an aluminum compound solution to form a precursor, followed by centrifugation. Thereafter, the recovered supernatant is diluted 3 to 10 times with ultrapure water and heated. The solid content produced by the synthesis is the amorphous aluminum silicate in the present invention.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例)
過塩素酸75mmolを含む950mLの水溶液のSi濃度が、150mmol/Lになるようにオルトケイ酸エチルを、また、Al濃度が150mmol/Lになるようにアルミニウムトリ−s−ブトキシドをそれぞれ溶解させ、マグネティックスターラーを用いて室温下で18時間撹拌した。このときのケイ素/アルミニウム比は0.90であった。この溶液から遠心分離により沈殿を除いた上澄み液を回収し純水で6倍希釈した。希釈溶液を500mLの密閉容器に移し替え、恒温槽にて98℃で4日間加熱を行った。こうして本発明における非晶質アルミニウムケイ酸塩を含む水溶液を得た。この溶液を60℃で2日間濃縮、乾燥させたところ約0.5gの生成物を得た。
EXAMPLES Next, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited at all by the following examples.
(Example)
A magnetic solution is prepared by dissolving ethyl orthosilicate so that the Si concentration of 950 mL of an aqueous solution containing 75 mmol of perchloric acid is 150 mmol / L, and aluminum tri-s-butoxide so that the Al concentration is 150 mmol / L. The mixture was stirred for 18 hours at room temperature using a stirrer. The silicon / aluminum ratio at this time was 0.90. The supernatant liquid from which the precipitate was removed by centrifugation was collected and diluted 6-fold with pure water. The diluted solution was transferred to a 500 mL sealed container and heated at 98 ° C. for 4 days in a thermostatic bath. Thus, an aqueous solution containing the amorphous aluminum silicate in the present invention was obtained. The solution was concentrated and dried at 60 ° C. for 2 days to obtain about 0.5 g of product.

得られた生成物については、粉末X線回折測定を行った。
図1に得られた生成物の粉末X線回折図形を示す。図1に見られるように、2θ=25°と40°付近にブロードなピークが見られ、非晶質なアルミニウムケイ酸塩に特徴的なピークが観察された。
この結果から実施例1の物質は非晶質物質であることが確認された。
The obtained product was subjected to powder X-ray diffraction measurement.
FIG. 1 shows a powder X-ray diffraction pattern of the product obtained. As seen in FIG. 1, broad peaks were observed around 2θ = 25 ° and 40 °, and peaks characteristic of amorphous aluminum silicate were observed.
From this result, it was confirmed that the substance of Example 1 was an amorphous substance.

(比較例:プロトイモゴライトの調製)
プロトイモゴライトを以下のようにして得た。
Si濃度が60mmol/Lになるように純水で希釈したオルトケイ酸ナトリウム水溶液200mlを調整した後。また、これとは別に塩化アルミニウムを純水に溶解させ、Al濃度が150mmol/L水溶液200mlを調整した。塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を混合し、マグネティックスターラーで撹拌した。このときのケイ素/アルミニウム比は0.4である。この混合溶液に、1N水酸化ナトリウム水溶液44.8mlを滴下しpHを6とした。この溶液から遠心分離により前駆体を回収し、更に、純水で前駆体を2回遠心分離により洗浄した後、2Lの純水中に分散させた。この前駆体の懸濁液2Lに、1N塩酸を10ml加えpHを4.2とした後、室温下で1時間攪拌した後、この溶液を60℃で6日間濃縮、乾燥させたところ約1gの生成物を得た。
(Comparative example: Preparation of Protoimogolite)
Protoimogolite was obtained as follows.
After adjusting 200 ml of sodium orthosilicate aqueous solution diluted with pure water so that the Si concentration becomes 60 mmol / L. Separately, aluminum chloride was dissolved in pure water to prepare 200 ml of an aqueous solution having an Al concentration of 150 mmol / L. A sodium orthosilicate aqueous solution was mixed with the aluminum chloride aqueous solution and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time is 0.4. To this mixed solution, 44.8 ml of 1N aqueous sodium hydroxide solution was added dropwise to adjust the pH to 6. The precursor was recovered from this solution by centrifugation, and the precursor was washed twice with pure water by centrifugation, and then dispersed in 2 L of pure water. To 2 L of this precursor suspension, 10 ml of 1N hydrochloric acid was added to adjust the pH to 4.2, followed by stirring at room temperature for 1 hour. The solution was concentrated and dried at 60 ° C. for 6 days. The product was obtained.

得られた生成物について、そのX線回折パターンを解析した。
図2に得られた生成物の粉末X線回折図形を示す。図2からわかるように、得られたアルミニウムケイ酸塩は、特定のピークのない非晶質であることを示すX線回折パターンを示した。
About the obtained product, the X-ray-diffraction pattern was analyzed.
FIG. 2 shows a powder X-ray diffraction pattern of the product obtained. As can be seen from FIG. 2, the obtained aluminum silicate exhibited an X-ray diffraction pattern indicating that it was amorphous without specific peaks.

(水蒸気吸着評価)
実施例で得られた非晶質アルミニウムケイ酸塩、および比較例で得られたプロトイモゴライトについて、水蒸気吸着評価を行った。図3に、その結果を示す。
図3に示すように、実施例で得られた非晶質アルミニウムケイ酸塩は、水蒸気吸着等温線において、相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を有し、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%を有していることが示された。
(Water vapor adsorption evaluation)
Water vapor adsorption evaluation was performed on the amorphous aluminum silicate obtained in the examples and the protoimogolite obtained in the comparative example. FIG. 3 shows the result.
As shown in FIG. 3, the amorphous aluminum silicate obtained in the example has a difference between the water vapor adsorption amount at a relative humidity of 5% and the water vapor adsorption amount at a relative humidity of 60% in the water vapor adsorption isotherm. It has more than 30 wt%, also the amount of adsorbed water vapor and the relative humidity at a relative humidity of 5% was indicated that the difference in water vapor adsorption amount has a 80 wt% at 95%.

本発明は、水蒸気吸着量が相対湿度に応じて直線的に増加し、かつ相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上を有する高性能な吸着性を有し、かつNaやK含有量ナトリウム濃度が1ppm以下の非晶質アルミニウムケイ酸塩であり、湿度センサー感知用吸着剤および電子機器類用調湿剤として有用である。 In the present invention, the water vapor adsorption amount increases linearly according to the relative humidity, and the difference between the water vapor adsorption amount when the relative humidity is 5% and the water vapor adsorption amount when the relative humidity is 60% is 30 wt% or more. A high-performance adsorbent having a difference between the water vapor adsorption amount at 5% and the water vapor adsorption amount at a relative humidity of 95% of 80 wt% or more, and an amorphous aluminum having a Na or K content sodium concentration of 1 ppm or less It is a silicate, and is useful as a moisture sensor sensing adsorbent and a humidity control agent for electronic devices.

実施例1の粉末X線回折図形を示す。The powder X-ray diffraction pattern of Example 1 is shown. 比較例1の粉末X線回折図形を示す。The powder X-ray diffraction pattern of the comparative example 1 is shown. 実施例1および比較例1について水蒸気吸着等温線の結果を示す図。The figure which shows the result of a water vapor | steam adsorption isotherm about Example 1 and Comparative Example 1. FIG.

Claims (6)

Si源およびAl源としてナトリウム及びカリウムを含まない有機系の原料を、そのSi/Al比が0.7〜1.0となるように混合して前駆体を形成した後、遠心分離を行い、得られた上澄み液を加熱濃縮することを特徴とする非晶質アルミニウムケイ酸塩の製造方法。   An organic raw material not containing sodium and potassium as the Si source and Al source is mixed so that the Si / Al ratio is 0.7 to 1.0 to form a precursor, and then centrifuged. A method for producing an amorphous aluminum silicate, which comprises heating and concentrating the obtained supernatant. Na及びK含有量が1ppm以下、Si/Al比が0.7〜1.0であり、水蒸気吸着量が相対湿度に応じて直線的に増加し、かつ相対湿度が5%における水蒸気吸着量と相対湿度が60%における水蒸気吸着量の差が30wt%以上を有し、また相対湿度が5%における水蒸気吸着量と相対湿度が95%における水蒸気吸着量の差が80wt%以上を有することを特徴とする非晶質アルミニウムケイ酸Na and K content of 1ppm or less, a Si / Al ratio of 0.7 to 1.0, increases linearly water vapor adsorption amount depending on the relative humidity and water vapor adsorption amount relative humidity in 5% And the difference in water vapor adsorption amount at 30% relative humidity is 30 wt% or more, and the water vapor adsorption amount in relative humidity 95% and water vapor adsorption amount at 95% relative humidity is 80 wt% or more. amorphous aluminum silicate, wherein. 請求項2に記載の非晶質アルミニウムケイ酸塩からなる吸着剤。 An adsorbent comprising the amorphous aluminum silicate according to claim 2 . 請求項2に記載の非晶質アルミニウムケイ酸塩からなる湿度センサー感知用吸着剤。 A humidity sensor sensing adsorbent comprising the amorphous aluminum silicate according to claim 2 . 請求項2に記載の非晶質アルミニウムケイ酸塩からなる電子機器類における湿度制御剤。 A humidity control agent in electronic equipment comprising the amorphous aluminum silicate according to claim 2 . 請求項2に記載の非晶質アルミニウムケイ酸塩からなる電子機器類における結露防止剤。 An anti-condensation agent for electronic equipment comprising the amorphous aluminum silicate according to claim 2 .
JP2008142965A 2008-05-30 2008-05-30 Adsorbent for humidity sensor sensing and humidity control for electronic equipment Expired - Fee Related JP5283108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142965A JP5283108B2 (en) 2008-05-30 2008-05-30 Adsorbent for humidity sensor sensing and humidity control for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142965A JP5283108B2 (en) 2008-05-30 2008-05-30 Adsorbent for humidity sensor sensing and humidity control for electronic equipment

Publications (2)

Publication Number Publication Date
JP2009286672A JP2009286672A (en) 2009-12-10
JP5283108B2 true JP5283108B2 (en) 2013-09-04

Family

ID=41456253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142965A Expired - Fee Related JP5283108B2 (en) 2008-05-30 2008-05-30 Adsorbent for humidity sensor sensing and humidity control for electronic equipment

Country Status (1)

Country Link
JP (1) JP5283108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684847B1 (en) * 2011-03-11 2017-02-01 Hitachi Chemical Company, Ltd. Aluminum silicate, metal ion adsorbent, and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2962999D1 (en) * 1978-07-07 1982-07-22 Nat Res Dev Method of synthesising imogolite and product of the method
JP3168280B2 (en) * 1997-04-30 2001-05-21 文部科学省無機材質研究所長 Method for producing fine hollow spheres of amorphous aluminum silicon oxide
JP2000070659A (en) * 1998-09-02 2000-03-07 Sharp Corp Dehumidifying material and dehumidifier
JP2002086413A (en) * 2000-09-12 2002-03-26 National Institute Of Advanced Industrial & Technology Wood material with improved moisture absorption ability and method for producing the same
JP2006240956A (en) * 2005-03-07 2006-09-14 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate, adsorbent having amorphous aluminum silicate, dehumidifying rotor and air conditioner
WO2008081606A1 (en) * 2006-12-27 2008-07-10 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate having excellent adsorption characteristics in high-humidity range and process for producing the same
WO2008081605A1 (en) * 2006-12-27 2008-07-10 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
JP5213111B2 (en) * 2008-05-20 2013-06-19 独立行政法人産業技術総合研究所 Aluminum silicate in which water molecules are regularly arranged and synthesis method thereof

Also Published As

Publication number Publication date
JP2009286672A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
Minelli et al. Characterization of novel geopolymer–zeolite composites as solid adsorbents for CO2 capture
JP5229916B2 (en) Carbon dioxide adsorbent that can be adsorbed and desorbed depending on the pressure above atmospheric pressure
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
JP2013147415A (en) Strontium-exchanged clinoptilolite
JP2001064010A (en) Synthetic method of tubular aluminum silicate from high concentration inorganic solution
JP5283108B2 (en) Adsorbent for humidity sensor sensing and humidity control for electronic equipment
JP5213111B2 (en) Aluminum silicate in which water molecules are regularly arranged and synthesis method thereof
JP5495054B2 (en) Method for producing aluminum silicate composite
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
Azmiyawati et al. Adsorption of Mg (II) and Ca (II) on disulfonato-silica hybrid
JP5354561B2 (en) Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same
JP5807904B2 (en) Method for separating and recovering carbon dioxide from mixed gas
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP4941963B2 (en) Tubular aluminum silicate, gel material comprising the same, and method for preparing the same
CN116571206B (en) Aluminum-containing silicon-based adsorbent, preparation method thereof and application of adsorbent in removing glyphosate in water
JP6303791B2 (en) Method for producing strontium clinoptilolite
JP5665118B2 (en) Method for producing volatile organic compound adsorbent and volatile organic compound adsorbent produced by the method
JP2011046579A (en) Mesoporous silica and method for producing the same
JP4538626B2 (en) Method for producing tubular aluminum silicate having fine pores
JP2019171286A (en) Absorbing and separating method of nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Ref document number: 5283108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees