JP5280417B2 - Method for stopping operation of fuel cell system - Google Patents
Method for stopping operation of fuel cell system Download PDFInfo
- Publication number
- JP5280417B2 JP5280417B2 JP2010214501A JP2010214501A JP5280417B2 JP 5280417 B2 JP5280417 B2 JP 5280417B2 JP 2010214501 A JP2010214501 A JP 2010214501A JP 2010214501 A JP2010214501 A JP 2010214501A JP 5280417 B2 JP5280417 B2 JP 5280417B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- gas
- fuel
- cooling medium
- cell stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、酸化剤ガス及び燃料ガスの電気化学反応により発電する燃料電池を備える燃料電池システムの運転停止方法に関する。 The present invention relates to a method for shutting down a fuel cell system including a fuel cell that generates electricity by an electrochemical reaction between an oxidant gas and a fuel gas.
燃料電池は、燃料ガス(主に水素を含有するガス、例えば、水素ガス)及び酸化剤ガス(主に酸素を含有するガス、例えば、空気)をアノード電極及びカソード電極に供給して電気化学的に反応させることにより、直流の電気エネルギを得るシステムである。このシステムは、定置用の他、車載用として燃料電池車両に組み込まれている。 In a fuel cell, a fuel gas (a gas mainly containing hydrogen, for example, hydrogen gas) and an oxidant gas (a gas mainly containing oxygen, for example, air) are supplied to an anode electrode and a cathode electrode to be electrochemical. It is a system that obtains direct-current electric energy by reacting with. This system is incorporated in a fuel cell vehicle for in-vehicle use as well as stationary use.
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード電極及びカソード電極を設けた電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持している。一方のセパレータと電解質膜・電極構造体との間には、アノード電極に燃料ガスを供給するための燃料ガス流路が形成されるとともに、他方のセパレータと前記電解質膜・電極構造体との間には、カソード電極に酸化剤ガスを供給するための酸化剤ガス流路が形成されている。 For example, in a polymer electrolyte fuel cell, an electrolyte membrane / electrode structure (MEA) provided with an anode electrode and a cathode electrode on both sides of an electrolyte membrane made of a polymer ion exchange membrane is sandwiched between a pair of separators. Yes. A fuel gas passage for supplying fuel gas to the anode electrode is formed between one separator and the electrolyte membrane / electrode structure, and between the other separator and the electrolyte membrane / electrode structure. Is formed with an oxidant gas flow path for supplying an oxidant gas to the cathode electrode.
ところで、燃料電池の停止時には、燃料ガス及び酸化剤ガスの供給が停止されるものの、燃料ガス流路内に前記燃料ガスが残留する一方、酸化剤ガス流路内に前記酸化剤ガスが残留している。従って、特に燃料電池の停止期間が長くなると、燃料ガスや酸化剤ガスが電解質膜を透過し、前記燃料ガスと前記酸化剤ガスとが混在するおそれがある。 By the way, when the fuel cell is stopped, the supply of the fuel gas and the oxidant gas is stopped, but the fuel gas remains in the fuel gas flow channel, while the oxidant gas remains in the oxidant gas flow channel. ing. Therefore, especially when the stop period of the fuel cell becomes long, the fuel gas and the oxidant gas may permeate the electrolyte membrane, and the fuel gas and the oxidant gas may be mixed.
そこで、例えば、特許文献1に開示されている燃料電池システムが知られている。この燃料電池システムは、図9に示すように、燃料電池1と、前記燃料電池1に水素ガス及び空気を供給するアノードガス供給ライン2及びカソードガス供給ライン3と、前記燃料電池1のアノード出口ガス及びカソード出口ガスを、それぞれ上流側に循環させるアノード循環ライン2a及びカソード循環ライン3aと、前記燃料電池1及び各ライン2、2a、3及び3aを不活性ガスによりパージするパージライン4と、前記燃料電池1の出力電路を運転停止時に遮断する遮断手段5と、を備えている。
Thus, for example, a fuel cell system disclosed in Patent Document 1 is known. As shown in FIG. 9, the fuel cell system includes a fuel cell 1, an anode
アノードガス供給ライン2は、水素貯蔵装置である図示しない水素タンクから燃料電池1のアノード側入口に接続される入口管路A1中に、入口遮断弁6a、ブロア7aを、この順に配置して備えている。また、燃料電池1のアノード側出口から図示しない燃料再生装置に接続される出口管路A2中に、パージ弁6b及び出口遮断弁6cを、この順に直列に配置して備えている。
The anode
アノードガス供給ライン2は、燃料電池1の運転中、入口遮断弁6a、出口遮断弁6c及びパージ弁6bを開放させており、水素タンクから送られる水素ガスをブロア7aを介して前記燃料電池1のアノード極1Aに供給している。
The anode
カソードガス供給ライン3は、圧縮空気を充填した図示しない空気タンクから燃料電池1のカソード側入口に接続される入口管路C1中に、入口遮断弁6d、ブロア7bを、この順に配置して備えている。また、燃料電池1のカソード側出口から図示しない生成水分離装置に接続される出口管路C2中に、出口遮断弁6eを配置して備えている。
The cathode
カソードガス供給ライン3は、燃料電池1の運転中、入口遮断弁6d及び出口遮断弁6eを開放させており、空気タンクから送られる空気をブロア7bを介して前記燃料電池1のカソード極1Cに供給している。
The cathode
そして、アノード循環ライン2aは、アノードガス供給ライン2の入口遮断弁6a及び出口遮断弁6cが、燃料電池1の運転停止により閉じられた時、循環遮断弁6fを開放して、前記燃料電池1のアノード出口ガスをブロア7aにより吸引して前記燃料電池1の上流側に循環させるように機能している。
The
一方、カソード循環ライン3aは、カソード供給ライン3の入口遮断弁6d及び出口遮断弁6eが、燃料電池1の運転停止により閉じられた時、循環遮断弁6gを開放して、前記燃料電池1のカソード出口ガスをブロア7bにより吸引して前記燃料電池1の上流側に循環させるように機能している。
On the other hand, the
この特許文献1では、運転停止時に、カソード側への反応ガスの供給を入口遮断弁で遮断し、カソード側排ガスを循環ラインを介して上流側に循環させ、燃料電池内の電池反応を継続させてカソード側排ガス中の酸素を消費することで、窒素ガスの不活性ガスを燃料電池内のカソード側及びアノード側のパージに利用する、としている。 In this Patent Document 1, when the operation is stopped, the supply of the reaction gas to the cathode side is shut off by the inlet shut-off valve, the cathode side exhaust gas is circulated upstream via the circulation line, and the cell reaction in the fuel cell is continued. By consuming oxygen in the cathode side exhaust gas, an inert gas of nitrogen gas is used for purging the cathode side and the anode side in the fuel cell.
上記の特許文献1では、アノードガス供給ライン2及びカソードガス供給ライン3に、燃料電池1のアノード出口ガスとカソード出口ガスを、それぞれ上流側に循環させるアノード循環ライン2a及びカソード循環ライン3aが設けられている。さらに、カソード循環ライン3aには、不活性ガスである窒素ガスを蓄積するために、ガス容積部であるタンク8が配設されている。
In the above-mentioned Patent Document 1, the anode
そして、燃料電池1内の電池反応を継続させてカソード側排ガス中の酸素を消費することで、窒素ガス等の不活性ガスを前記燃料電池1内のカソード側及びアノード側のパージに利用している。このため、燃料電池システム全体の構成が複雑化且つ大型化するとともに、コストが高騰するという問題がある。 Then, by continuing the cell reaction in the fuel cell 1 and consuming oxygen in the cathode side exhaust gas, an inert gas such as nitrogen gas is used for the cathode side and anode side purge in the fuel cell 1. Yes. For this reason, there exists a problem that the structure of the whole fuel cell system becomes complicated and enlarged, and cost increases.
本発明はこの種の問題を解決するものであり、簡単且つコンパクトな構成で、燃料電池の劣化を可及的に抑制することが可能な燃料電池システムの運転停止方法を提供することを目的とする。 An object of the present invention is to solve this type of problem, and to provide a method for stopping the operation of a fuel cell system that can suppress deterioration of the fuel cell as much as possible with a simple and compact configuration. To do.
本発明は、カソード側に供給される酸化剤ガス及びアノード側に供給される燃料ガスの電気化学反応により発電する燃料電池と、前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給装置と、前記燃料電池に前記燃料ガスを供給する燃料ガス供給装置と、前記燃料電池に冷却媒体を供給する冷却媒体供給装置と、前記燃料電池に接続自在な蓄電装置とを備える燃料電池システムの運転停止方法に関するものである。 The present invention relates to a fuel cell that generates electricity by an electrochemical reaction between an oxidant gas supplied to the cathode side and a fuel gas supplied to the anode side, and an oxidant gas supply device that supplies the oxidant gas to the fuel cell. A fuel cell system comprising: a fuel gas supply device that supplies the fuel gas to the fuel cell; a cooling medium supply device that supplies a cooling medium to the fuel cell; and a power storage device that is connectable to the fuel cell. It is about the method.
この運転停止方法は、燃料電池に酸化剤ガス及び燃料ガスを供給しながら、前記燃料電池を発電させる第1の工程と、前記燃料電池の停止指令を検出した際、前記燃料ガスの供給を停止する一方、前記酸化剤ガスを、通常発電時の酸素ストイキよりも低い低酸素ストイキで前記燃料電池に供給しながら、前記低酸素ストイキの前記酸化剤ガスと前記燃料電池内に残存する前記燃料ガスとにより該燃料電池を発電させるとともに、該燃料電池から得られる発電電力を蓄電装置に供給する第2の工程と、前記燃料電池に対し前記低酸素ストイキの前記酸化剤ガスの供給を停止した後、前記燃料電池内の残留ガスのみで該燃料電池を発電させるとともに、前記燃料電池から得られる発電電力を前記冷却媒体供給装置に供給する第3の工程とを有している。 In this operation stop method, the supply of the fuel gas is stopped when the first step of generating the fuel cell while supplying the oxidant gas and the fuel gas to the fuel cell and the stop command of the fuel cell is detected. On the other hand, while supplying the oxidant gas to the fuel cell with a low oxygen stoichiometry lower than that during normal power generation, the low-oxygen stoichiometric oxidant gas and the fuel gas remaining in the fuel cell And a second step of supplying the power generated by the fuel cell to the power storage device and stopping the supply of the oxidant gas of the low oxygen stoichiometry to the fuel cell. And a third step of generating the fuel cell with only the residual gas in the fuel cell and supplying the generated electric power obtained from the fuel cell to the cooling medium supply device. That.
また、この運転停止方法では、燃料電池から得られる発電電力を、ダウンバータを介して降圧した後、冷却媒体供給装置に供給することが好ましい。 In this operation stop method, it is preferable that the generated power obtained from the fuel cell is stepped down via a downverter and then supplied to the cooling medium supply device.
さらに、この運転停止方法では、冷却媒体供給装置は、冷却媒体を冷却させるラジエータに配置されるラジエータファン及び前記冷却媒体を燃料電池に循環させるポンプを備え、第3の工程では、前記ラジエータファン及び前記ポンプに発電電力を供給することが好ましい。 Furthermore, in this operation stop method, the cooling medium supply device includes a radiator fan disposed in a radiator that cools the cooling medium and a pump that circulates the cooling medium to the fuel cell. In the third step, the radiator fan and It is preferable to supply generated power to the pump.
さらにまた、この運転停止方法では、低酸素ストイキの酸化剤ガスは、前記低酸素ストイキが1前後に設定されることが好ましい。 Furthermore, in this operation stop method, it is preferable that the low oxygen stoichiometric oxidant gas is set to about 1.
本発明では、燃料電池内に残存する燃料ガスと低酸素ストイキの酸化剤ガスとにより発電されるため、排ガスとして窒素濃度の高い不活性ガスが発生する一方、前記燃料電池内の前記燃料ガスの水素濃度が低下する。しかも、発電電力が蓄電装置に供給された後、残留ガスのみで燃料電池を発電させて得られた発電電力が、冷却媒体供給装置に供給されている。 In the present invention, since power is generated by the fuel gas remaining in the fuel cell and the low-oxygen stoichiometric oxidant gas, an inert gas having a high nitrogen concentration is generated as exhaust gas, while the fuel gas in the fuel cell Hydrogen concentration decreases. Moreover, after the generated power is supplied to the power storage device, the generated power obtained by generating the fuel cell with only the residual gas is supplied to the cooling medium supply device.
このため、燃料電池の残存電圧をより低電圧まで低下させることができ、前記燃料電池内の酸素濃度が一層低減される。従って、カソード側には、窒素ガスが充満して酸素濃度が低下し、燃料電池及びガス配管内を前記窒素ガスにより満たすことができる。 For this reason, the residual voltage of the fuel cell can be lowered to a lower voltage, and the oxygen concentration in the fuel cell is further reduced. Therefore, the cathode side is filled with nitrogen gas to reduce the oxygen concentration, and the fuel cell and the gas pipe can be filled with the nitrogen gas.
一方、燃料電池は、冷却媒体供給装置の駆動作用下に冷却されている。これにより、温度が高い程、劣化し易い燃料電池は、高温に曝されることがなく、前記燃料電池の停止中の劣化や起動時の劣化が良好に抑制される。このため、簡単且つコンパクトな構成で、燃料電池の劣化を可及的に抑制することが可能になる。 On the other hand, the fuel cell is cooled under the driving action of the cooling medium supply device. Thereby, the higher the temperature, the more easily the fuel cell that is deteriorated is not exposed to a high temperature, and the deterioration during the stop and the start-up deterioration of the fuel cell are favorably suppressed. For this reason, it becomes possible to suppress deterioration of the fuel cell as much as possible with a simple and compact configuration.
図1に示すように、本発明の実施形態に係る運転停止方法が実施される燃料電池システム10は、燃料電池スタック12と、前記燃料電池スタック12に酸化剤ガスを供給する酸化剤ガス供給装置14と、前記燃料電池スタック12に冷却媒体を供給する冷却媒体供給装置15と、前記燃料電池スタック12に燃料ガスを供給する燃料ガス供給装置16と、前記燃料電池スタック12に接続自在なバッテリ(蓄電装置)17と、前記燃料電池システム10全体の制御を行うコントローラ18とを備える。燃料電池システム10は、燃料電池自動車等の燃料電池車両に搭載される。バッテリ17は、燃料電池車両を通常走行可能であり、例えば、20A、〜500V程度であるとともに、後述する12V電源98よりも高電圧且つ高電力容量である。
As shown in FIG. 1, a
燃料電池スタック12は、複数の燃料電池20を積層して構成される。各燃料電池20は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜22をカソード電極24とアノード電極26とで挟持した電解質膜・電極構造体(MEA)28を備える。
The
カソード電極24及びアノード電極26は、カーボンペーパ等からなるガス拡散層と、白金合金(又はRu等)が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成された電極触媒層とを有する。電極触媒層は、固体高分子電解質膜22の両面に形成される。
The
電解質膜・電極構造体28をカソード側セパレータ30及びアノード側セパレータ32で挟持する。カソード側セパレータ30及びアノード側セパレータ32は、例えば、カーボンセパレータ又は金属セパレータで構成される。
The electrolyte membrane /
カソード側セパレータ30と電解質膜・電極構造体28との間には、酸化剤ガス流路34が設けられるとともに、アノード側セパレータ32と前記電解質膜・電極構造体28との間には、燃料ガス流路36が設けられる。燃料電池20間には、冷却媒体流路37が形成される。
An oxidant
燃料電池スタック12には、各燃料電池20の積層方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガス(以下、空気ともいう)を供給する酸化剤ガス入口連通孔38a、燃料ガス、例えば、水素含有ガス(以下、水素ガスともいう)を供給する燃料ガス入口連通孔40a、冷却媒体(例えば、純水やエチレングリコール、オイル等)を供給する冷却媒体入口連通孔41a、前記酸化剤ガスを排出する酸化剤ガス出口連通孔38b、前記燃料ガスを排出する燃料ガス出口連通孔40b、及び前記冷却媒体を排出する冷却媒体出口連通孔41bが設けられる。
The
酸化剤ガス供給装置14は、大気からの空気を圧縮して供給するエアポンプ50を備え、前記エアポンプ50が空気供給流路52に配設される。空気供給流路52には、供給ガスと排出ガスとの間で水分と熱を交換する加湿器54が配設されるとともに、前記空気供給流路52は、燃料電池スタック12の酸化剤ガス入口連通孔38aに連通する。
The oxidant
酸化剤ガス供給装置14は、酸化剤ガス出口連通孔38bに連通する空気排出流路56を備える。空気排出流路56は、加湿器54の加湿媒体通路(図示せず)に連通するとともに、この空気排出流路56には、エアポンプ50から空気供給流路52を通って燃料電池スタック12に供給される空気の圧力を調整するための開度調整可能な背圧制御弁58が設けられる。背圧制御弁58は、ノーマルクローズ型(通電されない時に閉塞される)背圧弁により構成されることが好ましい。
The oxidant
空気排出流路56は、希釈ボックス60に連通する。空気供給流路52及び空気排出流路56には、酸化剤ガス入口連通孔38a及び酸化剤ガス出口連通孔38bに近接して開閉弁61a、61bが配設される。
The
燃料ガス供給装置16は、高圧水素を貯留する水素タンク62を備え、この水素タンク62は、水素供給流路64を介して燃料電池スタック12の燃料ガス入口連通孔40aに連通する。この水素供給流路64には、遮断弁65及びエゼクタ66が設けられる。エゼクタ66は、水素タンク62から供給される水素ガスを、水素供給流路64を通って燃料電池スタック12に供給するとともに、燃料電池スタック12で使用されなかった未使用の水素ガスを含む排ガスを、水素循環路68から吸引して、再度、前記燃料電池スタック12に燃料ガスとして供給する。
The fuel
燃料ガス出口連通孔40bには、オフガス流路70が連通する。オフガス流路70の途上には、水素循環路68が連通するとともに、前記オフガス流路70には、パージ弁72を介して希釈ボックス60が接続される。希釈ボックス60の排出口側には、排出流路74が接続され、前記排出流路74に貯蔵バッファ76が配設される。貯蔵バッファ76には、排気流路78が接続される。
The off
冷却媒体供給装置15は、燃料電池スタック12に設けられる冷却媒体入口連通孔41a及び冷却媒体出口連通孔41bに連通し、冷却媒体を前記燃料電池スタック12に循環させる冷却媒体循環路80を備える。冷却媒体循環路80には、ラジエータ82、サーモスタッド84及び冷却媒体循環用のポンプ86が配設されるとともに、前記ラジエータ82には、ラジエータファン88が配設される。
The cooling
サーモスタッド84には、ラジエータ82をバイパスするバイパス路80aが接続される。このサーモスタッド84は、冷却媒体の温度に基づいて、冷却媒体循環路80にラジエータ82とバイパス路80aとを選択的に連通させる。
A
図2に示すように、燃料電池スタック12には、バスライン90の一端が接続されるとともに、前記バスライン90の他端がインバータ92に接続される。インバータ92には、三相の車両走行用の駆動モータ94が接続される。なお、バスライン90は、実質的には、2本用いられているが、説明の簡素化を図るために、1本の前記バスライン90で記載する。以下に説明する他のラインにおいても、同様である。
As shown in FIG. 2, one end of a
バスライン90には、FCコンタクタ96が配設されるとともに、エアポンプ50が接続される。バスライン90には、電力線98の一端が接続され、前記電力線98には、DC/DCコンバータ100及びバッテリコンタクタ102を介装してバッテリ17が接続される。電力線98には、分岐電力線104が設けられ、前記分岐電力線104には、ダウンバータ(DC/DCコンバータ)106を介装して12V電源108が接続される。12V電源108は、燃料電池補機類、例えば、ラジエータファン88及びポンプ86に接続される。なお、12V電源108は、バッテリ17よりも低い電圧であればよく、12Vに限定されるものではない。
An
このように構成される燃料電池システム10の動作について、以下に説明する。
The operation of the
先ず、燃料電池システム10の運転時には、酸化剤ガス供給装置14を構成するエアポンプ50を介して、空気供給流路52に空気が送られる。この空気は、加湿器54を通って加湿された後、燃料電池スタック12の酸化剤ガス入口連通孔38aに供給される。空気は、燃料電池スタック12内の各燃料電池20に設けられている酸化剤ガス流路34に沿って移動することにより、カソード電極24に供給される。
First, during operation of the
使用済みの空気は、酸化剤ガス出口連通孔38bから空気排出流路56に排出され、加湿器54に送られることによって新たに供給される空気を加湿した後、背圧制御弁58を介して希釈ボックス60に導入される。この水素ガスは、空気オフガスと混合されることにより水素濃度が低下された後、貯蔵バッファ76に排出される。
The used air is exhausted from the oxidant gas
一方、燃料ガス供給装置16では、遮断弁65が開放されることにより、水素タンク62から減圧弁(図示せず)により減圧された後、水素供給流路64に水素ガスが供給される。この水素ガスは、水素供給流路64を通って燃料電池スタック12の燃料ガス入口連通孔40aに供給される。燃料電池スタック12内に供給された水素ガスは、各燃料電池20の燃料ガス流路36に沿って移動することにより、アノード電極26に供給される。
On the other hand, in the fuel
使用済みの水素ガスは、燃料ガス出口連通孔40bから水素循環路68を介してエゼクタ66に吸引され、燃料ガスとして、再度、燃料電池スタック12に供給される。従って、カソード電極24に供給される空気とアノード電極26に供給される水素ガスとが電気化学的に反応して発電が行われる。
The used hydrogen gas is sucked into the
なお、水素循環路68を循環する水素ガスには、不純物が混在し易い。このため、不純物を混在する水素ガスは、パージ弁72が開放されることによって希釈ボックス60に導入される。
The hydrogen gas circulating through the
さらに、冷却媒体供給装置15では、ポンプ86の作用下に、冷却媒体が冷却媒体循環路80から燃料電池スタック12の冷却媒体入口連通孔41aに導入される。冷却媒体は、燃料電池スタック12内の冷却媒体流路37に供給され、各燃料電池20を冷却した後、冷却媒体出口連通孔41bから冷却媒体循環路80に排出される。
Further, in the cooling
次いで、燃料電池システム10の運転停止方法について、図3に示すタイミングチャートに沿って、以下に説明する。
Next, a method for stopping operation of the
図示しない燃料電池自動車に搭載された燃料電池システム10は、上記のように、通常運転を行うことにより、所望の走行が行われている。そして、図示しないイグニッションスイッチがオフされると、燃料電池システム10の運転停止処理が開始される。
As described above, the
イグニッションスイッチがオフされてから、例えば、故障検知時間を含む所定の時間が経過した後、遮断弁65が閉塞される一方、背圧制御弁58は、開度制御が停止されて閉塞される(図4参照)。さらに、酸化剤ガス供給装置14を構成するエアポンプ50は、通常運転時に比べて相当に回転数が減速され、酸化剤ガス中の酸素ストイキを通常発電時の酸素ストイキよりも低い低酸素ストイキで供給する。具体的には、低酸素ストイキは、1前後に設定される。
For example, after a predetermined time including a failure detection time has elapsed after the ignition switch is turned off, the
一方、燃料電池スタック12は、発電が継続されており、発電電圧(FC電圧)は、通常発電時よりも高圧に設定されるとともに、前記燃料電池スタック12から取り出される電流(FC電流)は、固体高分子電解質膜22を透過してアノード側からカソード側に燃料ガスである水素ガスが移動することを阻止する値に設定される。その際、図2において、FCコンタクタ96及びバッテリコンタクタ102がオンされており、燃料電池スタック12の発電時に得られる電力は、DC/DCコンバータ100により電圧を降圧させた後、バッテリ17に充電される。
On the other hand, the
上記のように、燃料電池スタック12では、低酸素ストイキの空気が要求される一方、遮断弁65の閉塞により水素ガスの供給が停止した状態で、発電が行われている。そして、燃料電池スタック12による発電電力は、バッテリ17に供給されることにより、ディスチャージ(図3中、バッテリ DCHG)されている。従って、燃料電池スタック12の発電電圧が所定の電圧、すなわち、バッテリ17に供給不能な電圧N1(V)(バッテリ17の電圧とほぼ同じ電圧)まで低下すると、エアポンプ50にのみ発電電力が供給される。
As described above, in the
これにより、燃料電池スタック12内では、アノード側の水素濃度が低下する一方、カソード側の酸素濃度が低下していく。そこで、例えば、アノード側の水素圧力が所定の圧力以下となった際に、エアポンプ50がオフされるとともに、バッテリコンタクタ102がオフされる。所定の圧力とは、エアポンプ50が駆動できない程度まで電圧が低下する圧力をいう。
Thereby, in the
このため、図5に示すように、燃料電池スタック12は、内部に残存する水素ガスと空気とにより発電される。この燃料電池スタック12の発電により発生する電力は、ダウンバータ106を介して降圧された後、12V電源108に充電(D/V DCHG)されるとともに、前記12V電源108から冷却媒体供給装置15に、具体的には、ラジエータファン88及びポンプ86に、電力が供給される。
Therefore, as shown in FIG. 5, the
冷却媒体供給装置15では、ポンプ86が駆動されるため、冷却媒体循環路80及び燃料電池スタック12を冷却媒体が循環するとともに、前記冷却媒体は、ラジエータ82に送られる。冷却媒体は、ラジエータ82を通過する際に、ラジエータファン88の送風作用下に冷却され、燃料電池スタック12を外気温度近傍まで冷却することができる。
In the cooling
さらに、燃料電池スタック12の発電電圧が、ダウンバータ106の作動限界電圧の近傍まで低下すると、背圧制御弁58が一旦開放(大気圧)されるとともに、FCコンタクタ96がオフされる。
Further, when the power generation voltage of the
この場合、本実施形態では、イグニッションスイッチがオフされると、背圧制御弁58、エアポンプ50及び遮断弁65が操作されている。従って、燃料電池スタック12では、この燃料電池スタック12内に残存する水素ガスと低酸素ストイキの空気とにより発電が行われ、発電電力がバッテリ17に供給されてディスチャージされている。
In this case, in this embodiment, when the ignition switch is turned off, the back
これにより、燃料電池スタック12内のアノード側では、水素濃度が減少するとともに、カソード側では、酸素濃度が減少して窒素濃度が上昇している。このため、カソード側には、排ガスとして高濃度の窒素ガスが発生し、前記窒素ガスが希釈ボックス60及び貯蔵バッファ76に供給される。一方、アノード側では、水素濃度の低下により負圧状態となり、カソード側からアノード側に窒素ガスの透過が行われる。従って、燃料電池スタック12及びこの燃料電池スタック12に接続されるガス配管内には、不活性ガスである窒素ガスを満たすことができる。
As a result, the hydrogen concentration decreases on the anode side in the
しかも、燃料電池スタック12の発電時の発電電圧が、設定電圧値N1(V)以下に低下した際、バッテリ17への前記発電電力の供給を停止する一方、エアポンプ50にのみ前記発電電力が供給されている。このため、バッテリ17への電力の供給ができなくなった後にも、エアポンプ50に電力の供給が行われ、発電を継続することが可能になる。
Moreover, when the power generation voltage at the time of power generation of the
さらに、本実施形態では、エアポンプ50をオフすることにより、空気の供給を停止した状態で、すなわち、燃料電池スタック12内に残存する水素及び酸素のみで、前記燃料電池スタック12が発電されている(図3中、D/V DCHG)。
Further, in the present embodiment, the
このため、図6に示すように、エアポンプ50を介して空気の供給を行いながら、燃料電池スタック12の発電を行った場合、システム内の窒素置換範囲が、範囲B及び範囲Cまでであるのに対し、前記エアポンプ50を停止した後、前記燃料電池スタック12の発電を行うと、該燃料電池スタック12の入口側である範囲Aまで窒素ガスによる置換範囲が拡大している。これにより、燃料電池システム10は、比較的長期間にわたって停止されても、燃料電池20の劣化を可及的に阻止することができるという利点がある。
Therefore, as shown in FIG. 6, when the
さらにまた、燃料電池スタック12では、空気の供給を停止した後、発電が行われる際に、前記燃料電池スタック12から12V電源108に電力が供給されている。従って、12V電源108から燃料電池用補機、例えば、ラジエータファン88及びポンプ86に電圧供給が行われ、発電電力の消費(ディスチャージ)が確実に遂行される。
Furthermore, in the
このため、図7に示すように、燃料電池スタック12の電圧(スタック電圧)をより低電圧まで低下させることができ、前記燃料電池スタック12内の酸素濃度が一層低減される。これにより、燃料電池スタック12の停止中に、水素と酸素とが混在することによる固体高分子電解質膜22の劣化を抑制する一方、起動時に酸素不足により腐食電流を阻止して起動劣化を抑制することが可能になる。
For this reason, as shown in FIG. 7, the voltage (stack voltage) of the
また、燃料電池スタック12は、ディスチャージ処理時に、冷却媒体供給装置15の駆動作用下に冷却されている。従って、図8に示すように、一般的に温度が高い程、劣化し易い燃料電池20は、高温に曝されることがなく、前記燃料電池の停止中の劣化や起動時の劣化が良好に抑制される。
Further, the
燃料電池スタック12の停止中に温度低下が惹起すると、系外から空気を吸い込んで前記燃料電池スタック12内の酸化剤ガスの濃度が上昇する。このため、燃料電池スタック12を冷却しながら、停止処理を行うことにより、前記燃料電池スタック12の停止中の温度低下が殆どなく、空気の吸い込み量が削減されて酸素濃度の上昇速度が減少する。これにより、簡単且つコンパクトな構成で、燃料電池スタック12の劣化を可及的に抑制することが可能になるという効果が得られる。
If a temperature drop occurs while the
さらにまた、酸素ガスは、低酸素ストイキが1前後に設定されている。従って、発電時に、酸素を略完全に消費して窒素ガス濃度を有効に高めることができるとともに、酸素供給不足によるアノード側からカソード側への水素の透過を抑制することが可能になる。 Furthermore, the oxygen gas has a low oxygen stoichiometric value of around 1. Accordingly, during power generation, oxygen can be consumed almost completely to effectively increase the nitrogen gas concentration, and hydrogen permeation from the anode side to the cathode side due to insufficient oxygen supply can be suppressed.
10…燃料電池システム 12…燃料電池スタック
14…酸化剤ガス供給装置 16…燃料ガス供給装置
17…バッテリ 18…コントローラ
20…燃料電池 22…固体高分子電解質膜
24…カソード電極 26…アノード電極
28…電解質膜・電極構造体 30、32…セパレータ
34…酸化剤ガス流路 36…燃料ガス流路
37…冷却媒体流路 38a…酸化剤ガス入口連通孔
38b…酸化剤ガス出口連通孔 40a…燃料ガス入口連通孔
40b…燃料ガス出口連通孔 41a…冷却媒体入口連通孔
41b…冷却媒体出口連通孔 50…エアポンプ
52…空気供給流路 54…加湿器
56…空気排出流路 58…背圧制御弁
60…希釈ボックス 61a、61b…開閉弁
62…水素タンク 64…水素供給流路
65…遮断弁 66…エゼクタ
68…水素循環路 70…オフガス流路
72…パージ弁 74…排出流路
76…貯蔵バッファ 78…排気流路
80…冷却媒体循環路 80a…バイパス路
82…ラジエータ 84…サーモスタッド
86…ポンプ 88…ラジエータファン
96…FCコンタクタ 100…DC/DCコンバータ
102…バッテリコンタクタ 106…ダウンバータ
108…12V電源
DESCRIPTION OF
Claims (4)
前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給装置と、
前記燃料電池に前記燃料ガスを供給する燃料ガス供給装置と、
前記燃料電池に冷却媒体を供給する冷却媒体供給装置と、
前記燃料電池に接続自在な蓄電装置と、
を備える燃料電池システムの運転停止方法であって、
前記燃料電池に前記酸化剤ガス及び前記燃料ガスを供給しながら、前記燃料電池を発電させる第1の工程と、
前記燃料電池の停止指令を検出した際、前記燃料ガスの供給を停止する一方、前記酸化剤ガスを、通常発電時の酸素ストイキよりも低い低酸素ストイキで前記燃料電池に供給しながら、前記低酸素ストイキの前記酸化剤ガスと前記燃料電池内に残存する前記燃料ガスとにより該燃料電池を発電させるとともに、該燃料電池から得られる発電電力を前記蓄電装置に供給する第2の工程と、
前記燃料電池に対し前記低酸素ストイキの前記酸化剤ガスの供給を停止した後、前記燃料電池内の残留ガスのみで該燃料電池を発電させるとともに、前記燃料電池から得られる発電電力を前記冷却媒体供給装置に供給する第3の工程と、
を有することを特徴とする燃料電池システムの運転停止方法。 A fuel cell that generates electricity by an electrochemical reaction of an oxidant gas supplied to the cathode side and a fuel gas supplied to the anode side;
An oxidant gas supply device for supplying the oxidant gas to the fuel cell;
A fuel gas supply device for supplying the fuel gas to the fuel cell;
A cooling medium supply device for supplying a cooling medium to the fuel cell;
A power storage device connectable to the fuel cell;
A method for stopping operation of a fuel cell system comprising:
A first step of generating electricity in the fuel cell while supplying the oxidant gas and the fuel gas to the fuel cell;
Upon detecting a stop command of the fuel cell, while stopping supply of the fuel gas, the oxidant gas, while supplying to the fuel cell at a low hypoxic stoichiometric than the oxygen stoichiometry of the normal power generation, the low A second step of generating the fuel cell with the oxidant gas of oxygen stoichiometry and the fuel gas remaining in the fuel cell , and supplying generated electric power obtained from the fuel cell to the power storage device;
After the supply of the oxidant gas of the low oxygen stoichiometry to the fuel cell is stopped, the fuel cell is caused to generate power only with the residual gas in the fuel cell, and the generated power obtained from the fuel cell is supplied to the cooling medium. A third step of supplying to the supply device;
A method for stopping the operation of the fuel cell system.
前記第3の工程では、前記ラジエータファン及び前記ポンプに前記発電電力を供給することを特徴とする燃料電池システムの運転停止方法。 3. The operation stop method according to claim 1, wherein the cooling medium supply device includes a radiator fan disposed in a radiator that cools the cooling medium, and a pump that circulates the cooling medium to the fuel cell,
In the third step, the generated electric power is supplied to the radiator fan and the pump.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010214501A JP5280417B2 (en) | 2010-09-24 | 2010-09-24 | Method for stopping operation of fuel cell system |
US13/237,248 US9093679B2 (en) | 2010-09-24 | 2011-09-20 | Method of shutting down fuel cell system |
DE102011083327A DE102011083327A1 (en) | 2010-09-24 | 2011-09-23 | Method for switching off a fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010214501A JP5280417B2 (en) | 2010-09-24 | 2010-09-24 | Method for stopping operation of fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012069441A JP2012069441A (en) | 2012-04-05 |
JP5280417B2 true JP5280417B2 (en) | 2013-09-04 |
Family
ID=46166444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010214501A Active JP5280417B2 (en) | 2010-09-24 | 2010-09-24 | Method for stopping operation of fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5280417B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004127748A (en) * | 2002-10-03 | 2004-04-22 | Nissan Motor Co Ltd | Fuel cell system |
JPWO2005078844A1 (en) * | 2004-02-12 | 2007-08-02 | トヨタ自動車株式会社 | Fuel cell system and method for removing residual fuel gas |
JP2008004319A (en) * | 2006-06-21 | 2008-01-10 | Toyota Motor Corp | Fuel cell system and its operation stop method |
JP5262216B2 (en) * | 2008-03-24 | 2013-08-14 | トヨタ自動車株式会社 | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM |
JP2010086853A (en) * | 2008-10-01 | 2010-04-15 | Honda Motor Co Ltd | Fuel cell system and its operation stop method |
-
2010
- 2010-09-24 JP JP2010214501A patent/JP5280417B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012069441A (en) | 2012-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9093679B2 (en) | Method of shutting down fuel cell system | |
JP5007927B2 (en) | Fuel cell system | |
JP5711010B2 (en) | Method for stopping operation of fuel cell system | |
JP5759229B2 (en) | Control method of fuel cell system | |
CN102738489A (en) | Fuel cell system and method for stopping power generation in fuel cell system | |
JP2012212617A (en) | Start control method for fuel cell system | |
US7678480B2 (en) | Fuel cell system | |
JP2010086853A (en) | Fuel cell system and its operation stop method | |
JP2017152174A (en) | Stop control method for fuel cell system | |
JP5538192B2 (en) | Fuel cell system | |
JP5722669B2 (en) | Control method of fuel cell system | |
JP6335947B2 (en) | Stop control method for fuel cell system | |
JP5583536B2 (en) | Method for stopping operation of fuel cell system | |
JP5485930B2 (en) | Control method of fuel cell system | |
JP5480086B2 (en) | Method for stopping operation of fuel cell system | |
JP6389835B2 (en) | Pressure control method during output acceleration of fuel cell system | |
JP5280417B2 (en) | Method for stopping operation of fuel cell system | |
JP5480085B2 (en) | Method for stopping operation of fuel cell system | |
JP4397686B2 (en) | Fuel cell reactive gas supply device | |
JP5524787B2 (en) | Method for stopping operation of fuel cell system | |
JP6023403B2 (en) | Fuel cell system and its operation stop method | |
JP6315714B2 (en) | Operation control method of fuel cell system | |
JP2012129081A (en) | Operational method of fuel cell system | |
JP5711008B2 (en) | Idle stop method for vehicle fuel cell system | |
JP2010262937A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130522 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5280417 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |