JP5279384B2 - Stt−mtj−mramセルおよびその製造方法 - Google Patents
Stt−mtj−mramセルおよびその製造方法 Download PDFInfo
- Publication number
- JP5279384B2 JP5279384B2 JP2008190225A JP2008190225A JP5279384B2 JP 5279384 B2 JP5279384 B2 JP 5279384B2 JP 2008190225 A JP2008190225 A JP 2008190225A JP 2008190225 A JP2008190225 A JP 2008190225A JP 5279384 B2 JP5279384 B2 JP 5279384B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- mtj
- stt
- mram cell
- ferromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3272—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/329—Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F41/305—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
- H01F41/307—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3295—Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Description
J. C. Slonczewski, J. Magn. Mater. 159 (1996) LI, and J. Z. Sun, Phys. Rev. B., Vol. 62 (2000) 570)
S.C. Oh et al., "Excellent scalability and switching characteristics in Spin-transfer torque MRAM" IEDM2006 288.1 and "Magnetic and electrical properties of magnetic tunnel junction with radical oxidized MgO barriers," IEEE Trans. Magn. P 2642 (2006))
J. C. Slonczewski, J. Magn. Mater. 159 (1996) LI
(eは、電子電荷、αはギルバート減衰係数、Msはフリー層の飽和磁化、tFはフリー層の膜厚、Haは外部磁場、Hkは異方性磁界、2・π・Msは減磁場、hはプランク定数、ηはスピン偏極率である。)
(Vは磁気ボリュームであり、それは熱の安定性を示す関数(Ku・V/kb・T)に関連するものである。そして、それは熱的に誘導された変動に対する磁化の安定性を支配するものである。
A novel nonvolatile memory with spin torque transfer magnetization switching: Spin RAM" 2005 IEDM, paper 19-1
Current -driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunnel junctions, Japn. J. Appl. Phys. V 44, p. 1267 (2005)
Ta\MnPt\CoFe\Ru\CoFeB\Al2 O3\CoFeB\スペーサ\CoFe\MnPt\Ta
Spin transfer switching current reduction in magnetic tunnel junction based dual spin filter structures" Appl. Phys. Lett. V 87, p 222510 (2005))
Ta\NiCr\MnPt\Co75 Fe25\Ru(0.75nm)\Co60 Fe20 B20 −Co-75Fe25 \(NOX)MgO(1.1nm)\Co60 Fe20 B20\Ta
ここでは、温度265℃、磁場10kOe(=104 ×(250/π)A/m)、2時間の各条件でアニール処理をおこない、非晶質のCo60 Fe20 B20 層を形成するようにしている。ピンニング層はMnPtからなる。面積抵抗RAは10Ω×μm2 未満であり、固有のdR/Rは約100%である。但し、0.1mVのバイアス電圧を印加した状態での実際のdR/Rは70〜80%程度である。100nm×150nmの形成面積である場合には、Rpの共分散は7%程度であると推定されるが、十分なリードマージンが得られるとは言い難い。
Study of the dynamic magnetic properties of soft CoFeB films", J. Appl. Phys. V 100, 053903 (2006) Magnetic damping in ferromagnetic thin film", Japn. J. Appl. Phys. V 45, p3889 (2006)
(A)基体を用意する工程。
(B)基体の上に、MnIrからなる反強磁性ピンニング層を形成する工程。
(C)反強磁性ピンニング層の上にシンセティック反強磁性ピンド層を形成したのち、その上面をプラズマ処理によって平坦化および平滑化する工程。
(D)シンセティック反強磁性ピンド層における平滑な上面と接するように、スパッタリングにより第1のマグネシウム層を形成したのち、第1のマグネシウム層を自然酸化処理することで結晶質の酸化マグネシウム層を含むトンネルバリア層を形成する工程。
(E)トンネルバリア層の上に、その結晶構造と整合する結晶構造を有する第1の強磁性層と、非晶質の第2の強磁性層と、結晶質の第3の強磁性層とを順に積層することで強磁性フリー層を形成する工程。
(F)強磁性フリー層の上に、キャップ層を形成する工程。
(G)トンネルバリア層の上に、鉄リッチな鉄コバルト合金からなる第1の結晶質層と、鉄リッチな鉄ニッケル合金からなる第2の結晶質層とを順に積層することで強磁性フリー層を形成する工程。
上記実施の形態では、フリー層7が、結晶質層と非晶質層とを含むようにしたが、本発明では、トンネルバリア層6の側から順に積層された鉄リッチな鉄コバルト二元合金(FeCo)からなる第1の結晶質層と、鉄リッチな鉄ニッケル二元合金(FeNi)からなる第2の結晶質層との2層構造によってフリー層7を構成するようにしてもよい。その場合、SyAPピンド層345は、第2強磁性層3としてのCo75Fe25層(例えば2.3nm厚)と、非磁性スペーサ層4としてのルテニウム(Ru)層(例えば0.75nm厚)と、第1強磁性層5としての複合層(例えば0.6nmの厚みを有するCo60 Fe20 B20 層、および0.7nmの厚みを有するCo75 Fe25 層の2層構造)とを順に積層した構成とすることが望ましい。また、本変形例では、300℃、より好ましくは330℃を超える温度下において全体をアニール処理することが望ましい。
Claims (24)
- フリー層を含むCPP構造を有し、前記フリー層の磁化方向を回転させるためにトルクによる伝導電子のスピン角運動量の変換を利用するSTT−MTJ−MRAMセルであって、
基体上に設けられた積層構造の磁気トンネル接合素子を備え、
前記磁気トンネル接合素子は、
マンガンイリジウム合金(MnIr)からなる反強磁性ピンニング層と、
プラズマ処理によって形成された平滑面を有するシンセティック反強磁性ピンド層と、
前記シンセティック反強磁性ピンド層の平滑面と接し、スパッタリングにより形成されたマグネシウム(Mg)層を自然酸化処理してなる結晶質のトンネルバリア層と、
前記トンネルバリア層の上に形成された強磁性フリー層と、
前記強磁性フリー層の上に設けられたキャップ層と
を含み、
前記強磁性フリー層は、強磁性の非晶質層と、前記強磁性の非晶質層と前記トンネルバリア層との間に設けられた強磁性の結晶質層とを有し、
前記磁気トンネル接合素子に対し、その積層方向にスピン変換された伝導電子が流れることで、前記シンセティック反強磁性ピンド層における磁化方向に対する前記強磁性フリー層の磁化方向が変化する
ことを特徴とするSTT−MTJ−MRAMセル。 - 前記フリー層は、鉄からなる0.3nm厚の結晶質層と、Co60 Fe20 B20からなる2nm厚の非晶質層との2層構造からなる
ことを特徴とする請求項1記載のSTT−MTJ−MRAMセル。 - 前記フリー層における前記結晶質層の結晶面は、(001)面である
ことを特徴とする請求項2記載のSTT−MTJ−MRAMセル。 - 前記フリー層は、鉄からなる0.3nm厚の第1の結晶質層と、Co60 Fe20 B20
からなる2nm厚の非晶質層と、鉄からなる0.6nm厚の第2の結晶質層との3層構造を有する
ことを特徴とする請求項1記載のSTT−MTJ−MRAMセル。 - 前記フリー層は、鉄からなる0.3nm厚の第1の結晶質層と、Co40 Fe40 B20
からなる1.5nm厚の非晶質層と、鉄からなる0.6nm厚の第2の結晶質層との3層構造を有する
ことを特徴とする請求項1記載のSTT−MTJ−MRAMセル。 - 前記第1および第2の結晶質層における結晶面は、いずれも(001)面である
ことを特徴とする請求項4または請求項5記載のSTT−MTJ−MRAMセル。 - 前記シンセティック反強磁性ピンド層は、
2.3nmの厚みを有するCo75Fe25層と、0.75nmの厚みを有するRu層と、1.5nmの厚みを有するCo60 Fe20 B20 層と、0.6nm以上0.7nm以下の厚みを有するCo75 Fe25 層とを含む
ことを特徴とする請求項1記載のSTT−MTJ−MRAMセル。 - 前記基体は下部導体であり、前記キャップ層はビット線と接続されている
ことを特徴とする請求項1記載のSTT−MTJ−MRAMセル。 - フリー層を含むCPP構造を有し、前記フリー層の磁化方向を回転させるために伝導電子のスピン角運動量のトルクによる変換を利用するSTT−MTJ−MRAMセルであって、
基体上に設けられた積層構造の磁気トンネル接合素子を備え、
前記磁気トンネル接合素子は、
マンガンイリジウム合金(MnIr)からなる反強磁性ピンニング層と、
プラズマ処理によって形成された平滑面を有するシンセティック反強磁性ピンド層と、
前記シンセティック反強磁性ピンド層の平滑面と接し、スパッタリングにより形成されたマグネシウム(Mg)層を自然酸化処理してなる結晶質のトンネルバリア層と、
前記トンネルバリア層の上に形成された強磁性フリー層と、
前記強磁性フリー層の上に設けられたキャップ層と
を含み、
前記強磁性フリー層は、鉄リッチな鉄コバルト二元合金(FeCo)からなる第1の結晶質層と、鉄リッチな鉄ニッケル二元合金(FeNi)からなる第2の結晶質層との2層構造からなり、
前記磁気トンネル接合素子に対し、その積層方向にスピン変換された伝導電子が流れることで、前記シンセティック反強磁性ピンド層における磁化方向に対する前記強磁性フリー層の磁化方向が変化する
ことを特徴とするSTT−MTJ−MRAMセル。 - 前記SyAPピンド層は、2.3nm厚を有するCo75Fe25層と、0.75nm厚を有するRu層と、0.6nm厚を有するCo60 Fe20 B20 層と、0.7nmの厚みを有するCo75 Fe25 層とを含む
ことを特徴とする請求項9記載のSTT−MTJ−MRAMセル。 - 前記トンネルバリア層は、1.2nmの厚みを有し、マグネシウム層を自然酸化処理してなる結晶質の酸化マグネシウム層を含むものである
ことを特徴とする請求項1または請求項9記載のSTT−MTJ−MRAMセル。 - 前記反強磁性ピンニング層は、7nmの厚みを有する
ことを特徴とする請求項1または請求項9記載のSTT−MTJ−MRAMセル。 - フリー層を含むCPP構造を有し、前記フリー層の磁化方向を回転させるために伝導電子のスピン角運動量のトルクによる変換を利用するSTT−MTJ−MRAMセルの製造方法であって、
基体を用意する工程と、
その基体の上に、マンガンイリジウム合金(MnIr)からなる反強磁性ピンニング層を形成する工程と、
前記反強磁性ピンニング層の上にシンセティック反強磁性ピンド層を形成したのち、その上面をプラズマ処理によって平坦化および平滑化する工程と、
前記シンセティック反強磁性ピンド層における平滑な上面と接するように、スパッタリングにより第1のマグネシウム(Mg)層を形成したのち、前記第1のマグネシウム層を自然酸化処理することで結晶質の酸化マグネシウム層を含むトンネルバリア層を形成する工程と、
前記トンネルバリア層の上に、その結晶構造と整合する結晶構造を有する第1の強磁性層と、非晶質の第2の強磁性層と、結晶質の第3の強磁性層とを順に積層することで強磁性フリー層を形成する工程と、
前記強磁性フリー層の上に、キャップ層を形成する工程と
を含むことを特徴とするSTT−MTJ−MRAMセルの製造方法。 - 2.3nmの厚みのCo75 Fe25 層と、0.75nmの厚みのルテニウム(Ru)層と、1.5nmの厚みを有するCo60 Fe20 B20 層と、0.6nm以上0.7nm以下の厚みを有するCo75 Fe25 層とを順に積層することにより前記シンセティック反強磁性ピンド層を形成する
ことを特徴とする請求項13記載のSTT−MTJ−MRAMセルの製造方法。 - 前記シンセティック反強磁性ピンド層の上面の平坦化および平滑化を、20Wの電力でのアルゴンイオンミリングによって行う
ことを特徴とする請求項13記載のSTT−MTJ−MRAMセルの製造方法。 - 前記強磁性フリー層を形成する工程において、
鉄を用いて0.3nmの厚みとなるように前記第1の強磁性層を形成し、Co60 Fe20 B20 を用いて2nmの厚みとなるように前記第2の強磁性層を形成し、鉄を用いて0.6nmの厚みとなるように前記第3の強磁性層を形成する
ことを特徴とする請求項13記載のSTT−MTJ−MRAMセルの製造方法。 - 前記強磁性フリー層を形成する工程において、
鉄を用いて0.3nmの厚みとなるように前記第1の強磁性層を形成し、Co40 Fe40 B20 を用いて1.5nmの厚みとなるように前記第2の強磁性層を形成し、鉄を用いて0.6nmの厚みとなるように前記第3の強磁性層を形成する
ことを特徴とする請求項13記載のSTT−MTJ−MRAMセルの製造方法。 - 前記第1および第3の強磁性層を、いずれも(001)面の結晶面を有するように形成する
ことを特徴とする請求項16または請求項17記載のSTT−MTJ−MRAMセルの製造方法。 - さらに、250℃以上265℃以下の温度下で、10kOe(=104 ×(250/π)A/m)の磁場を印加しつつ1時間以上2時間以下の範囲でアニール処理を行う
ことを特徴とする請求項13記載のSTT−MTJ−MRAMセルの製造方法。 - フリー層を含むCPP構造を有し、前記フリー層の磁化方向を回転させるために伝導電子のスピン角運動量のトルクによる変換を利用するSTT−MTJ−MRAMセルの製造方法であって、
基体を用意する工程と、
その基体の上に、マンガンイリジウム合金(MnIr)からなる反強磁性ピンニング層を形成する工程と、
前記反強磁性ピンニング層の上にシンセティック反強磁性ピンド層を形成したのち、その上面をプラズマ処理によって平坦化および平滑化する工程と、
前記シンセティック反強磁性ピンド層における平滑な上面と接するように、スパッタリングにより第1のマグネシウム(Mg)層を形成したのち、前記第1のマグネシウム層を自然酸化処理することで結晶質の酸化マグネシウム層を含むトンネルバリア層を形成する工程と、
前記トンネルバリア層の上に、鉄リッチな鉄コバルト合金(FeCo)からなる第1の結晶質層と、鉄リッチな鉄ニッケル合金(FeNi)からなる第2の結晶質層とを順に積層することで強磁性フリー層を形成する工程と、
前記強磁性フリー層の上に、キャップ層を形成する工程と
を含むことを特徴とするSTT−MTJ−MRAMセルの製造方法。 - さらに、330℃を超える温度下においてアニール処理を行う工程を含むことを特徴とする請求項20記載のSTT−MTJ−MRAMセルの製造方法。
- 2.3nmの厚みのCo75 Fe25 層と、0.75nmの厚みのルテニウム(Ru)層と、0.6nmの厚みを有するCo60 Fe20 B20 層と、0.7nmの厚みを有するCo75 Fe25 層とを順に積層することにより前記シンセティック反強磁性ピンド層を形成する
ことを特徴とする請求項20または請求項21記載のSTT−MTJ−MRAMセルの製造方法。 - 前記トンネルバリア層を、前記酸化マグネシウム層の上に第2の結晶質マグネシウム層をスパッタリングにより形成することで、1.2nm(12Å)の厚みとする
ことを特徴とする請求項13または請求項20記載のSTT−MTJ−MRAMセルの製造方法。 - 前記反強磁性ピンニング層を、7nmの厚みとする
ことを特徴とする請求項13または請求項20記載のSTT−MTJ−MRAMセルの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/880,583 US7750421B2 (en) | 2007-07-23 | 2007-07-23 | High performance MTJ element for STT-RAM and method for making the same |
US11/880,583 | 2007-07-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009027177A JP2009027177A (ja) | 2009-02-05 |
JP5279384B2 true JP5279384B2 (ja) | 2013-09-04 |
Family
ID=40295118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008190225A Active JP5279384B2 (ja) | 2007-07-23 | 2008-07-23 | Stt−mtj−mramセルおよびその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (4) | US7750421B2 (ja) |
EP (1) | EP2073285B1 (ja) |
JP (1) | JP5279384B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11018187B2 (en) | 2018-09-10 | 2021-05-25 | Toshiba Memory Corporation | Magnetic memory device |
Families Citing this family (220)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8755222B2 (en) | 2003-08-19 | 2014-06-17 | New York University | Bipolar spin-transfer switching |
US7911832B2 (en) * | 2003-08-19 | 2011-03-22 | New York University | High speed low power magnetic devices based on current induced spin-momentum transfer |
JP2007052886A (ja) * | 2005-08-19 | 2007-03-01 | Alps Electric Co Ltd | 垂直磁気記録ヘッド |
JP2007095750A (ja) * | 2005-09-27 | 2007-04-12 | Canon Anelva Corp | 磁気抵抗効果素子 |
FR2892871B1 (fr) * | 2005-11-02 | 2007-11-23 | Commissariat Energie Atomique | Oscillateur radio frequence a courant elelctrique polarise en spin |
US7710687B1 (en) * | 2006-09-13 | 2010-05-04 | Hutchinson Technology Incorporated | High conductivity ground planes for integrated lead suspensions |
US20080088983A1 (en) * | 2006-10-11 | 2008-04-17 | Gereon Meyer | Damping control in magnetic nano-elements using ultrathin damping layer |
US8089723B2 (en) * | 2006-10-11 | 2012-01-03 | Hitachi Global Storage Technologies Netherlands B.V. | Damping control in magnetic nano-elements using ultrathin damping layer |
US7695761B1 (en) | 2006-12-21 | 2010-04-13 | Western Digital (Fremont), Llc | Method and system for providing a spin tunneling magnetic element having a crystalline barrier layer |
US8559141B1 (en) | 2007-05-07 | 2013-10-15 | Western Digital (Fremont), Llc | Spin tunneling magnetic element promoting free layer crystal growth from a barrier layer interface |
JP4435207B2 (ja) * | 2007-06-13 | 2010-03-17 | 株式会社東芝 | 磁気ランダムアクセスメモリ |
US20090046397A1 (en) * | 2007-08-15 | 2009-02-19 | Freescale Semiconductor, Inc. | Methods and apparatus for a synthetic anti-ferromagnet structure with improved thermal stability |
US9812184B2 (en) | 2007-10-31 | 2017-11-07 | New York University | Current induced spin-momentum transfer stack with dual insulating layers |
US8094421B2 (en) * | 2007-12-26 | 2012-01-10 | Hitachi Global Storage Technologies Netherlands, B.V. | Current-perpendicular-to-plane (CPP) read sensor with multiple reference layers |
US8545999B1 (en) * | 2008-02-21 | 2013-10-01 | Western Digital (Fremont), Llc | Method and system for providing a magnetoresistive structure |
KR101586271B1 (ko) * | 2008-04-03 | 2016-01-20 | 삼성전자주식회사 | 자기 메모리 소자 및 그 정보 쓰기 및 읽기 방법 |
US7760542B2 (en) * | 2008-04-21 | 2010-07-20 | Seagate Technology Llc | Spin-torque memory with unidirectional write scheme |
US8659852B2 (en) | 2008-04-21 | 2014-02-25 | Seagate Technology Llc | Write-once magentic junction memory array |
US7852663B2 (en) * | 2008-05-23 | 2010-12-14 | Seagate Technology Llc | Nonvolatile programmable logic gates and adders |
US7855911B2 (en) * | 2008-05-23 | 2010-12-21 | Seagate Technology Llc | Reconfigurable magnetic logic device using spin torque |
US8081405B2 (en) * | 2008-05-29 | 2011-12-20 | Hitachi Global Storage Technologies Netherlands, B.V. | Current-perpendicular-to-plane (CPP) read sensor with smoothened multiple reference layers |
US8116122B2 (en) * | 2008-06-27 | 2012-02-14 | Seagate Technology Llc | Spin-transfer torque memory self-reference read method |
US8116123B2 (en) * | 2008-06-27 | 2012-02-14 | Seagate Technology Llc | Spin-transfer torque memory non-destructive self-reference read method |
US8233319B2 (en) * | 2008-07-18 | 2012-07-31 | Seagate Technology Llc | Unipolar spin-transfer switching memory unit |
US8274818B2 (en) * | 2008-08-05 | 2012-09-25 | Tohoku University | Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same |
US7881098B2 (en) * | 2008-08-26 | 2011-02-01 | Seagate Technology Llc | Memory with separate read and write paths |
JP2010062353A (ja) * | 2008-09-04 | 2010-03-18 | Fujitsu Ltd | 磁気抵抗効果素子 |
US7826255B2 (en) * | 2008-09-15 | 2010-11-02 | Seagate Technology Llc | Variable write and read methods for resistive random access memory |
US8482966B2 (en) * | 2008-09-24 | 2013-07-09 | Qualcomm Incorporated | Magnetic element utilizing protective sidewall passivation |
US9929211B2 (en) * | 2008-09-24 | 2018-03-27 | Qualcomm Incorporated | Reducing spin pumping induced damping of a free layer of a memory device |
US7985994B2 (en) | 2008-09-29 | 2011-07-26 | Seagate Technology Llc | Flux-closed STRAM with electronically reflective insulative spacer |
US7933146B2 (en) * | 2008-10-08 | 2011-04-26 | Seagate Technology Llc | Electronic devices utilizing spin torque transfer to flip magnetic orientation |
US8169810B2 (en) * | 2008-10-08 | 2012-05-01 | Seagate Technology Llc | Magnetic memory with asymmetric energy barrier |
US7933137B2 (en) * | 2008-10-08 | 2011-04-26 | Seagate Teachnology Llc | Magnetic random access memory (MRAM) utilizing magnetic flip-flop structures |
US8039913B2 (en) * | 2008-10-09 | 2011-10-18 | Seagate Technology Llc | Magnetic stack with laminated layer |
US8089132B2 (en) | 2008-10-09 | 2012-01-03 | Seagate Technology Llc | Magnetic memory with phonon glass electron crystal material |
US7966581B2 (en) * | 2008-10-16 | 2011-06-21 | Seagate Technology Llc | Generic non-volatile service layer |
US20100102405A1 (en) * | 2008-10-27 | 2010-04-29 | Seagate Technology Llc | St-ram employing a spin filter |
US8045366B2 (en) | 2008-11-05 | 2011-10-25 | Seagate Technology Llc | STRAM with composite free magnetic element |
US8043732B2 (en) | 2008-11-11 | 2011-10-25 | Seagate Technology Llc | Memory cell with radial barrier |
US7826181B2 (en) * | 2008-11-12 | 2010-11-02 | Seagate Technology Llc | Magnetic memory with porous non-conductive current confinement layer |
US8289756B2 (en) | 2008-11-25 | 2012-10-16 | Seagate Technology Llc | Non volatile memory including stabilizing structures |
US8536669B2 (en) * | 2009-01-13 | 2013-09-17 | Qualcomm Incorporated | Magnetic element with storage layer materials |
US7826259B2 (en) * | 2009-01-29 | 2010-11-02 | Seagate Technology Llc | Staggered STRAM cell |
US20100213073A1 (en) * | 2009-02-23 | 2010-08-26 | International Business Machines Corporation | Bath for electroplating a i-iii-vi compound, use thereof and structures containing same |
US8587993B2 (en) | 2009-03-02 | 2013-11-19 | Qualcomm Incorporated | Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM) |
US8120126B2 (en) * | 2009-03-02 | 2012-02-21 | Qualcomm Incorporated | Magnetic tunnel junction device and fabrication |
US20100254174A1 (en) * | 2009-04-02 | 2010-10-07 | Seagate Technology Llc | Resistive Sense Memory with Complementary Programmable Recording Layers |
US7969767B2 (en) * | 2009-05-29 | 2011-06-28 | Qualcomm Incorporated | Spin transfer torque—magnetic tunnel junction device and method of operation |
US8381391B2 (en) | 2009-06-26 | 2013-02-26 | Western Digital (Fremont), Llc | Method for providing a magnetic recording transducer |
US8406041B2 (en) | 2009-07-08 | 2013-03-26 | Alexander Mikhailovich Shukh | Scalable magnetic memory cell with reduced write current |
US9171601B2 (en) | 2009-07-08 | 2015-10-27 | Alexander Mikhailovich Shukh | Scalable magnetic memory cell with reduced write current |
US8154828B2 (en) | 2009-07-10 | 2012-04-10 | Tdk Corporation | Magnetoresistive effect element in CPP-type structure and magnetic disk device |
US8331063B2 (en) | 2009-07-10 | 2012-12-11 | Tdk Corporation | Magnetoresistive effect element in CPP-type structure and magnetic disk device |
US7999338B2 (en) | 2009-07-13 | 2011-08-16 | Seagate Technology Llc | Magnetic stack having reference layers with orthogonal magnetization orientation directions |
US8609262B2 (en) * | 2009-07-17 | 2013-12-17 | Magic Technologies, Inc. | Structure and method to fabricate high performance MTJ devices for spin-transfer torque (STT)-RAM application |
US8498084B1 (en) | 2009-07-21 | 2013-07-30 | Western Digital (Fremont), Llc | Magnetoresistive sensors having an improved free layer |
US8194365B1 (en) | 2009-09-03 | 2012-06-05 | Western Digital (Fremont), Llc | Method and system for providing a read sensor having a low magnetostriction free layer |
US8446753B2 (en) * | 2010-03-25 | 2013-05-21 | Qualcomm Incorporated | Reference cell write operations at a memory |
US20110236723A1 (en) * | 2010-03-26 | 2011-09-29 | Tsann Lin | CURRENT-PERPENDICULAR-TO-PLANE (CPP) READ SENSOR WITH Co-Fe BUFFER LAYERS |
WO2011121777A1 (ja) * | 2010-03-31 | 2011-10-06 | 株式会社 東芝 | 磁気抵抗素子及び磁気メモリ |
US8625337B2 (en) | 2010-05-06 | 2014-01-07 | Qualcomm Incorporated | Method and apparatus of probabilistic programming multi-level memory in cluster states of bi-stable elements |
US8300356B2 (en) * | 2010-05-11 | 2012-10-30 | Headway Technologies, Inc. | CoFe/Ni Multilayer film with perpendicular anistropy for microwave assisted magnetic recording |
US8604572B2 (en) * | 2010-06-14 | 2013-12-10 | Regents Of The University Of Minnesota | Magnetic tunnel junction device |
US8907436B2 (en) | 2010-08-24 | 2014-12-09 | Samsung Electronics Co., Ltd. | Magnetic devices having perpendicular magnetic tunnel junction |
US9299923B2 (en) | 2010-08-24 | 2016-03-29 | Samsung Electronics Co., Ltd. | Magnetic devices having perpendicular magnetic tunnel junction |
JP5123365B2 (ja) * | 2010-09-16 | 2013-01-23 | 株式会社東芝 | 磁気抵抗素子及び磁気メモリ |
US8310868B2 (en) | 2010-09-17 | 2012-11-13 | Micron Technology, Inc. | Spin torque transfer memory cell structures and methods |
US8358534B2 (en) | 2010-09-17 | 2013-01-22 | Micron Technology, Inc. | Spin torque transfer memory cell structures and methods |
US9666639B2 (en) | 2010-09-17 | 2017-05-30 | Micron Technology, Inc. | Spin torque transfer memory cell structures and methods |
US8300454B2 (en) | 2010-09-17 | 2012-10-30 | Micron Technology, Inc. | Spin torque transfer memory cell structures and methods |
JP5232206B2 (ja) * | 2010-09-21 | 2013-07-10 | 株式会社東芝 | 磁気抵抗素子及び磁気ランダムアクセスメモリ |
US8760819B1 (en) | 2010-12-23 | 2014-06-24 | Western Digital (Fremont), Llc | Magnetic recording sensor with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields |
US8786036B2 (en) | 2011-01-19 | 2014-07-22 | Headway Technologies, Inc. | Magnetic tunnel junction for MRAM applications |
US8325448B2 (en) | 2011-02-11 | 2012-12-04 | Headway Technologies, Inc. | Pinning field in MR devices despite higher annealing temperature |
US20120241878A1 (en) * | 2011-03-24 | 2012-09-27 | International Business Machines Corporation | Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier |
US9159908B2 (en) | 2011-05-05 | 2015-10-13 | Headway Technologies, Inc. | Composite free layer within magnetic tunnel junction for MRAM applications |
US8686484B2 (en) | 2011-06-10 | 2014-04-01 | Everspin Technologies, Inc. | Spin-torque magnetoresistive memory element and method of fabricating same |
US8462461B2 (en) * | 2011-07-05 | 2013-06-11 | HGST Netherlands B.V. | Spin-torque oscillator (STO) with magnetically damped free layer |
US8492169B2 (en) | 2011-08-15 | 2013-07-23 | Magic Technologies, Inc. | Magnetic tunnel junction for MRAM applications |
US8750031B2 (en) * | 2011-12-16 | 2014-06-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Test structures, methods of manufacturing thereof, test methods, and MRAM arrays |
US9093639B2 (en) | 2012-02-21 | 2015-07-28 | Western Digital (Fremont), Llc | Methods for manufacturing a magnetoresistive structure utilizing heating and cooling |
US8946834B2 (en) * | 2012-03-01 | 2015-02-03 | Headway Technologies, Inc. | High thermal stability free layer with high out-of-plane anisotropy for magnetic device applications |
US9007818B2 (en) | 2012-03-22 | 2015-04-14 | Micron Technology, Inc. | Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication |
US10312433B2 (en) | 2012-04-06 | 2019-06-04 | Taiwan Semiconductor Manufacturing Company, Ltd | Reduction of capping layer resistance area product for magnetic device applications |
US9054030B2 (en) | 2012-06-19 | 2015-06-09 | Micron Technology, Inc. | Memory cells, semiconductor device structures, memory systems, and methods of fabrication |
US8923038B2 (en) | 2012-06-19 | 2014-12-30 | Micron Technology, Inc. | Memory cells, semiconductor device structures, memory systems, and methods of fabrication |
US20140037991A1 (en) | 2012-07-31 | 2014-02-06 | International Business Machines Corporation | Magnetic random access memory with synthetic antiferromagnetic storage layers |
US8852762B2 (en) | 2012-07-31 | 2014-10-07 | International Business Machines Corporation | Magnetic random access memory with synthetic antiferromagnetic storage layers and non-pinned reference layers |
US8797692B1 (en) | 2012-09-07 | 2014-08-05 | Western Digital (Fremont), Llc | Magnetic recording sensor with AFM exchange coupled shield stabilization |
US9082888B2 (en) | 2012-10-17 | 2015-07-14 | New York University | Inverted orthogonal spin transfer layer stack |
US9082950B2 (en) | 2012-10-17 | 2015-07-14 | New York University | Increased magnetoresistance in an inverted orthogonal spin transfer layer stack |
US9064534B1 (en) | 2012-11-30 | 2015-06-23 | Western Digital (Fremont), Llc | Process for providing a magnetic recording transducer with enhanced pinning layer stability |
US8780505B1 (en) | 2013-03-12 | 2014-07-15 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having an improved composite magnetic shield |
US9379315B2 (en) | 2013-03-12 | 2016-06-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, semiconductor device structures, and memory systems |
US9660181B2 (en) * | 2013-03-15 | 2017-05-23 | Intel Corporation | Logic chip including embedded magnetic tunnel junctions |
US20140295579A1 (en) * | 2013-03-29 | 2014-10-02 | T3Memory, Inc. | Method of patterning mtj stack |
US9013836B1 (en) | 2013-04-02 | 2015-04-21 | Western Digital (Fremont), Llc | Method and system for providing an antiferromagnetically coupled return pole |
US9070381B1 (en) | 2013-04-12 | 2015-06-30 | Western Digital (Fremont), Llc | Magnetic recording read transducer having a laminated free layer |
US9431047B1 (en) | 2013-05-01 | 2016-08-30 | Western Digital (Fremont), Llc | Method for providing an improved AFM reader shield |
US9361913B1 (en) | 2013-06-03 | 2016-06-07 | Western Digital (Fremont), Llc | Recording read heads with a multi-layer AFM layer methods and apparatuses |
US8982613B2 (en) | 2013-06-17 | 2015-03-17 | New York University | Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates |
US9368714B2 (en) | 2013-07-01 | 2016-06-14 | Micron Technology, Inc. | Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems |
US9466787B2 (en) | 2013-07-23 | 2016-10-11 | Micron Technology, Inc. | Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems |
US9293695B2 (en) | 2013-09-09 | 2016-03-22 | Koji Ueda | Magnetoresistive element and magnetic random access memory |
US9299409B2 (en) * | 2013-09-11 | 2016-03-29 | Tadashi Miyakawa | Semiconductor storage device |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
US9608197B2 (en) | 2013-09-18 | 2017-03-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9121886B2 (en) * | 2013-09-25 | 2015-09-01 | Seagate Technology Llc | Magnetoresistive sensor including an amorphous insertion layer excluding glass former elements |
US9019754B1 (en) | 2013-12-17 | 2015-04-28 | Micron Technology, Inc. | State determination in resistance variable memory |
US9147408B1 (en) | 2013-12-19 | 2015-09-29 | Western Digital (Fremont), Llc | Heated AFM layer deposition and cooling process for TMR magnetic recording sensor with high pinning field |
US10454024B2 (en) | 2014-02-28 | 2019-10-22 | Micron Technology, Inc. | Memory cells, methods of fabrication, and memory devices |
US9281466B2 (en) | 2014-04-09 | 2016-03-08 | Micron Technology, Inc. | Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication |
US9269888B2 (en) | 2014-04-18 | 2016-02-23 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9263667B1 (en) | 2014-07-25 | 2016-02-16 | Spin Transfer Technologies, Inc. | Method for manufacturing MTJ memory device |
US9799382B2 (en) * | 2014-09-21 | 2017-10-24 | Samsung Electronics Co., Ltd. | Method for providing a magnetic junction on a substrate and usable in a magnetic device |
US9337412B2 (en) | 2014-09-22 | 2016-05-10 | Spin Transfer Technologies, Inc. | Magnetic tunnel junction structure for MRAM device |
US9349945B2 (en) | 2014-10-16 | 2016-05-24 | Micron Technology, Inc. | Memory cells, semiconductor devices, and methods of fabrication |
US9768377B2 (en) | 2014-12-02 | 2017-09-19 | Micron Technology, Inc. | Magnetic cell structures, and methods of fabrication |
US9437811B2 (en) * | 2014-12-05 | 2016-09-06 | Shanghai Ciyu Information Technologies Co., Ltd. | Method for making a magnetic random access memory element with small dimension and high quality |
US10074387B1 (en) | 2014-12-21 | 2018-09-11 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields |
US10439131B2 (en) | 2015-01-15 | 2019-10-08 | Micron Technology, Inc. | Methods of forming semiconductor devices including tunnel barrier materials |
US20160276580A1 (en) * | 2015-03-20 | 2016-09-22 | Globalfoundries Singapore Pte. Ltd. | Bottom electrode for magnetic memory to increase tmr and thermal budget |
US10128309B2 (en) | 2015-03-27 | 2018-11-13 | Globalfoundries Singapore Pte. Ltd. | Storage layer for magnetic memory with high thermal stability |
US11114611B2 (en) * | 2015-04-03 | 2021-09-07 | Yimin Guo | Method to make MRAM with small footprint |
US10468590B2 (en) | 2015-04-21 | 2019-11-05 | Spin Memory, Inc. | High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory |
US9728712B2 (en) | 2015-04-21 | 2017-08-08 | Spin Transfer Technologies, Inc. | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
US9853206B2 (en) | 2015-06-16 | 2017-12-26 | Spin Transfer Technologies, Inc. | Precessional spin current structure for MRAM |
US9537090B1 (en) | 2015-06-25 | 2017-01-03 | International Business Machines Corporation | Perpendicular magnetic anisotropy free layers with iron insertion and oxide interfaces for spin transfer torque magnetic random access memory |
US11245069B2 (en) | 2015-07-14 | 2022-02-08 | Applied Materials, Inc. | Methods for forming structures with desired crystallinity for MRAM applications |
US9773974B2 (en) | 2015-07-30 | 2017-09-26 | Spin Transfer Technologies, Inc. | Polishing stop layer(s) for processing arrays of semiconductor elements |
US10163479B2 (en) | 2015-08-14 | 2018-12-25 | Spin Transfer Technologies, Inc. | Method and apparatus for bipolar memory write-verify |
US10297745B2 (en) | 2015-11-02 | 2019-05-21 | Globalfoundries Singapore Pte. Ltd. | Composite spacer layer for magnetoresistive memory |
US10483320B2 (en) | 2015-12-10 | 2019-11-19 | Everspin Technologies, Inc. | Magnetoresistive stack with seed region and method of manufacturing the same |
EP4514109A2 (en) | 2015-12-10 | 2025-02-26 | Everspin Technologies, Inc. | Magnetoresistive stack, seed region therefor and method of manufacturing same |
US10062843B2 (en) | 2015-12-11 | 2018-08-28 | Samsung Electronics Co., Ltd. | Variable resistive memory device and method of manufacturing the same |
US9741926B1 (en) | 2016-01-28 | 2017-08-22 | Spin Transfer Technologies, Inc. | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
US10361361B2 (en) * | 2016-04-08 | 2019-07-23 | International Business Machines Corporation | Thin reference layer for STT MRAM |
US10437723B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device |
US11119910B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments |
US10546625B2 (en) | 2016-09-27 | 2020-01-28 | Spin Memory, Inc. | Method of optimizing write voltage based on error buffer occupancy |
US10818331B2 (en) | 2016-09-27 | 2020-10-27 | Spin Memory, Inc. | Multi-chip module for MRAM devices with levels of dynamic redundancy registers |
US10628316B2 (en) | 2016-09-27 | 2020-04-21 | Spin Memory, Inc. | Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register |
US10366774B2 (en) | 2016-09-27 | 2019-07-30 | Spin Memory, Inc. | Device with dynamic redundancy registers |
US10437491B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register |
US11119936B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Error cache system with coarse and fine segments for power optimization |
US10991410B2 (en) | 2016-09-27 | 2021-04-27 | Spin Memory, Inc. | Bi-polar write scheme |
US10460781B2 (en) | 2016-09-27 | 2019-10-29 | Spin Memory, Inc. | Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank |
US11151042B2 (en) | 2016-09-27 | 2021-10-19 | Integrated Silicon Solution, (Cayman) Inc. | Error cache segmentation for power reduction |
US10360964B2 (en) | 2016-09-27 | 2019-07-23 | Spin Memory, Inc. | Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device |
US10446210B2 (en) | 2016-09-27 | 2019-10-15 | Spin Memory, Inc. | Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers |
CN107958954B (zh) * | 2016-10-14 | 2021-07-13 | 中电海康集团有限公司 | 磁性隧道结的参考层的制备方法、磁性隧道结的制备方法 |
CN107958953B (zh) * | 2016-10-14 | 2021-07-13 | 中电海康集团有限公司 | 磁性隧道结的自由层的制备方法及磁性隧道结的制备方法 |
US10431734B2 (en) | 2017-01-24 | 2019-10-01 | Qualcomm Incorporated | Engineered barrier layer interface for high speed spin-transfer torque magnetic random access memory |
US10672976B2 (en) | 2017-02-28 | 2020-06-02 | Spin Memory, Inc. | Precessional spin current structure with high in-plane magnetization for MRAM |
US10665777B2 (en) | 2017-02-28 | 2020-05-26 | Spin Memory, Inc. | Precessional spin current structure with non-magnetic insertion layer for MRAM |
US9911483B1 (en) | 2017-03-21 | 2018-03-06 | International Business Machines Corporation | Thermally-assisted spin transfer torque memory with improved bit error rate performance |
US10510390B2 (en) | 2017-06-07 | 2019-12-17 | International Business Machines Corporation | Magnetic exchange coupled MTJ free layer having low switching current and high data retention |
US10332576B2 (en) | 2017-06-07 | 2019-06-25 | International Business Machines Corporation | Magnetic exchange coupled MTJ free layer with double tunnel barriers having low switching current and high data retention |
US10360958B2 (en) * | 2017-06-08 | 2019-07-23 | International Business Machines Corporation | Dual power rail cascode driver |
US10032978B1 (en) | 2017-06-27 | 2018-07-24 | Spin Transfer Technologies, Inc. | MRAM with reduced stray magnetic fields |
US10489245B2 (en) | 2017-10-24 | 2019-11-26 | Spin Memory, Inc. | Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them |
US10481976B2 (en) | 2017-10-24 | 2019-11-19 | Spin Memory, Inc. | Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers |
US10656994B2 (en) | 2017-10-24 | 2020-05-19 | Spin Memory, Inc. | Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques |
US10529439B2 (en) | 2017-10-24 | 2020-01-07 | Spin Memory, Inc. | On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects |
US10679685B2 (en) | 2017-12-27 | 2020-06-09 | Spin Memory, Inc. | Shared bit line array architecture for magnetoresistive memory |
US10811594B2 (en) | 2017-12-28 | 2020-10-20 | Spin Memory, Inc. | Process for hard mask development for MRAM pillar formation using photolithography |
US10424726B2 (en) | 2017-12-28 | 2019-09-24 | Spin Memory, Inc. | Process for improving photoresist pillar adhesion during MRAM fabrication |
US10360962B1 (en) | 2017-12-28 | 2019-07-23 | Spin Memory, Inc. | Memory array with individually trimmable sense amplifiers |
US10891997B2 (en) | 2017-12-28 | 2021-01-12 | Spin Memory, Inc. | Memory array with horizontal source line and a virtual source line |
US10395711B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Perpendicular source and bit lines for an MRAM array |
US10395712B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Memory array with horizontal source line and sacrificial bitline per virtual source |
US10236048B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | AC current write-assist in orthogonal STT-MRAM |
US10840439B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Magnetic tunnel junction (MTJ) fabrication methods and systems |
US10886330B2 (en) | 2017-12-29 | 2021-01-05 | Spin Memory, Inc. | Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch |
US10546624B2 (en) | 2017-12-29 | 2020-01-28 | Spin Memory, Inc. | Multi-port random access memory |
US10367139B2 (en) | 2017-12-29 | 2019-07-30 | Spin Memory, Inc. | Methods of manufacturing magnetic tunnel junction devices |
US10199083B1 (en) | 2017-12-29 | 2019-02-05 | Spin Transfer Technologies, Inc. | Three-terminal MRAM with ac write-assist for low read disturb |
US10784439B2 (en) | 2017-12-29 | 2020-09-22 | Spin Memory, Inc. | Precessional spin current magnetic tunnel junction devices and methods of manufacture |
US10236047B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM |
US10424723B2 (en) | 2017-12-29 | 2019-09-24 | Spin Memory, Inc. | Magnetic tunnel junction devices including an optimization layer |
US10840436B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture |
US10270027B1 (en) | 2017-12-29 | 2019-04-23 | Spin Memory, Inc. | Self-generating AC current assist in orthogonal STT-MRAM |
US10360961B1 (en) | 2017-12-29 | 2019-07-23 | Spin Memory, Inc. | AC current pre-charge write-assist in orthogonal STT-MRAM |
US10339993B1 (en) | 2017-12-30 | 2019-07-02 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching |
US10141499B1 (en) | 2017-12-30 | 2018-11-27 | Spin Transfer Technologies, Inc. | Perpendicular magnetic tunnel junction device with offset precessional spin current layer |
US10229724B1 (en) | 2017-12-30 | 2019-03-12 | Spin Memory, Inc. | Microwave write-assist in series-interconnected orthogonal STT-MRAM devices |
US10319900B1 (en) | 2017-12-30 | 2019-06-11 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density |
US10255962B1 (en) | 2017-12-30 | 2019-04-09 | Spin Memory, Inc. | Microwave write-assist in orthogonal STT-MRAM |
US10236439B1 (en) | 2017-12-30 | 2019-03-19 | Spin Memory, Inc. | Switching and stability control for perpendicular magnetic tunnel junction device |
US10468588B2 (en) | 2018-01-05 | 2019-11-05 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer |
US10438995B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Devices including magnetic tunnel junctions integrated with selectors |
US10438996B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Methods of fabricating magnetic tunnel junctions integrated with selectors |
US10446744B2 (en) | 2018-03-08 | 2019-10-15 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US10388861B1 (en) | 2018-03-08 | 2019-08-20 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US11107978B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US20190296220A1 (en) | 2018-03-23 | 2019-09-26 | Spin Transfer Technologies, Inc. | Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer |
US11107974B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer |
US10784437B2 (en) | 2018-03-23 | 2020-09-22 | Spin Memory, Inc. | Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US10411185B1 (en) | 2018-05-30 | 2019-09-10 | Spin Memory, Inc. | Process for creating a high density magnetic tunnel junction array test platform |
US10559338B2 (en) | 2018-07-06 | 2020-02-11 | Spin Memory, Inc. | Multi-bit cell read-out techniques |
US10600478B2 (en) | 2018-07-06 | 2020-03-24 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10692569B2 (en) | 2018-07-06 | 2020-06-23 | Spin Memory, Inc. | Read-out techniques for multi-bit cells |
US10593396B2 (en) | 2018-07-06 | 2020-03-17 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10650875B2 (en) | 2018-08-21 | 2020-05-12 | Spin Memory, Inc. | System for a wide temperature range nonvolatile memory |
US10699761B2 (en) | 2018-09-18 | 2020-06-30 | Spin Memory, Inc. | Word line decoder memory architecture |
US11621293B2 (en) | 2018-10-01 | 2023-04-04 | Integrated Silicon Solution, (Cayman) Inc. | Multi terminal device stack systems and methods |
US10971680B2 (en) | 2018-10-01 | 2021-04-06 | Spin Memory, Inc. | Multi terminal device stack formation methods |
US10580827B1 (en) | 2018-11-16 | 2020-03-03 | Spin Memory, Inc. | Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching |
US11009570B2 (en) * | 2018-11-16 | 2021-05-18 | Samsung Electronics Co., Ltd. | Hybrid oxide/metal cap layer for boron-free free layer |
US11069853B2 (en) | 2018-11-19 | 2021-07-20 | Applied Materials, Inc. | Methods for forming structures for MRAM applications |
JP7270740B2 (ja) | 2018-12-20 | 2023-05-10 | アプライド マテリアルズ インコーポレイテッド | 3dnand応用のためのメモリセルの製造 |
US10497858B1 (en) | 2018-12-21 | 2019-12-03 | Applied Materials, Inc. | Methods for forming structures for MRAM applications |
US11107979B2 (en) | 2018-12-28 | 2021-08-31 | Spin Memory, Inc. | Patterned silicide structures and methods of manufacture |
US11127760B2 (en) | 2019-02-01 | 2021-09-21 | Applied Materials, Inc. | Vertical transistor fabrication for memory applications |
US10923652B2 (en) | 2019-06-21 | 2021-02-16 | Applied Materials, Inc. | Top buffer layer for magnetic tunnel junction application |
US11264460B2 (en) | 2019-07-23 | 2022-03-01 | Applied Materials, Inc. | Vertical transistor fabrication for memory applications |
US11145808B2 (en) | 2019-11-12 | 2021-10-12 | Applied Materials, Inc. | Methods for etching a structure for MRAM applications |
CN113866690B (zh) * | 2021-12-01 | 2022-10-11 | 北京芯可鉴科技有限公司 | 三轴隧穿磁电阻传感器及其制备方法、使用方法 |
CN113866691B (zh) * | 2021-12-02 | 2022-09-23 | 北京芯可鉴科技有限公司 | 隧穿磁电阻传感器及其制备方法、使用方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1022969A (en) | 1909-11-13 | 1912-04-09 | Takanosuke Ohye | Ellipsograph. |
US5695164A (en) | 1994-03-24 | 1997-12-09 | Mr. Bracket, Inc. | Bracket |
US5695864A (en) | 1995-09-28 | 1997-12-09 | International Business Machines Corporation | Electronic device using magnetic components |
US6181537B1 (en) * | 1999-03-29 | 2001-01-30 | International Business Machines Corporation | Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers |
US6714444B2 (en) | 2002-08-06 | 2004-03-30 | Grandis, Inc. | Magnetic element utilizing spin transfer and an MRAM device using the magnetic element |
US6958927B1 (en) | 2002-10-09 | 2005-10-25 | Grandis Inc. | Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element |
US7006375B2 (en) | 2003-06-06 | 2006-02-28 | Seagate Technology Llc | Hybrid write mechanism for high speed and high density magnetic random access memory |
US20050110004A1 (en) * | 2003-11-24 | 2005-05-26 | International Business Machines Corporation | Magnetic tunnel junction with improved tunneling magneto-resistance |
US7264974B2 (en) * | 2004-01-30 | 2007-09-04 | Headway Technologies, Inc. | Method for fabricating a low resistance TMR read head |
US6967863B2 (en) | 2004-02-25 | 2005-11-22 | Grandis, Inc. | Perpendicular magnetization magnetic element utilizing spin transfer |
US6870711B1 (en) * | 2004-06-08 | 2005-03-22 | Headway Technologies, Inc. | Double layer spacer for antiparallel pinned layer in CIP/CPP GMR and MTJ devices |
US7126202B2 (en) | 2004-11-16 | 2006-10-24 | Grandis, Inc. | Spin scattering and heat assisted switching of a magnetic element |
US20060128038A1 (en) | 2004-12-06 | 2006-06-15 | Mahendra Pakala | Method and system for providing a highly textured magnetoresistance element and magnetic memory |
US7742261B2 (en) * | 2005-01-12 | 2010-06-22 | Headway Technologies, Inc. | Tunneling magneto-resistive spin valve sensor with novel composite free layer |
JP5077802B2 (ja) * | 2005-02-16 | 2012-11-21 | 日本電気株式会社 | 積層強磁性構造体、及び、mtj素子 |
JP2006319259A (ja) * | 2005-05-16 | 2006-11-24 | Fujitsu Ltd | 強磁性トンネル接合素子、これを用いた磁気ヘッド、磁気記録装置、および磁気メモリ装置 |
JP5096702B2 (ja) * | 2005-07-28 | 2012-12-12 | 株式会社日立製作所 | 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ |
JP2007081280A (ja) | 2005-09-16 | 2007-03-29 | Fujitsu Ltd | 磁気抵抗効果素子及び磁気メモリ装置 |
JP2007110011A (ja) | 2005-10-17 | 2007-04-26 | Tdk Corp | 磁気抵抗効果素子、薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、磁気メモリ素子、および磁気センサアセンブリ |
US20070096229A1 (en) * | 2005-10-28 | 2007-05-03 | Masatoshi Yoshikawa | Magnetoresistive element and magnetic memory device |
US7780820B2 (en) * | 2005-11-16 | 2010-08-24 | Headway Technologies, Inc. | Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier |
JP2007158137A (ja) * | 2005-12-07 | 2007-06-21 | Alps Electric Co Ltd | 薄膜の表面平坦化方法 |
US8497538B2 (en) * | 2006-05-31 | 2013-07-30 | Everspin Technologies, Inc. | MRAM synthetic antiferromagnet structure |
US7598579B2 (en) | 2007-01-30 | 2009-10-06 | Magic Technologies, Inc. | Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current |
US7508700B2 (en) * | 2007-03-15 | 2009-03-24 | Magic Technologies, Inc. | Method of magnetic tunneling junction pattern layout for magnetic random access memory |
US7602033B2 (en) * | 2007-05-29 | 2009-10-13 | Headway Technologies, Inc. | Low resistance tunneling magnetoresistive sensor with composite inner pinned layer |
-
2007
- 2007-07-23 US US11/880,583 patent/US7750421B2/en active Active
-
2008
- 2008-07-09 EP EP20080392010 patent/EP2073285B1/en active Active
- 2008-07-23 JP JP2008190225A patent/JP5279384B2/ja active Active
-
2010
- 2010-06-21 US US12/803,190 patent/US8080432B2/en active Active
- 2010-06-21 US US12/803,189 patent/US8058698B2/en active Active
- 2010-06-21 US US12/803,191 patent/US8436437B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11018187B2 (en) | 2018-09-10 | 2021-05-25 | Toshiba Memory Corporation | Magnetic memory device |
Also Published As
Publication number | Publication date |
---|---|
JP2009027177A (ja) | 2009-02-05 |
US8080432B2 (en) | 2011-12-20 |
US7750421B2 (en) | 2010-07-06 |
US20090027810A1 (en) | 2009-01-29 |
EP2073285A3 (en) | 2012-10-17 |
US20100258889A1 (en) | 2010-10-14 |
EP2073285A2 (en) | 2009-06-24 |
EP2073285B1 (en) | 2015-04-29 |
US20100261295A1 (en) | 2010-10-14 |
US8058698B2 (en) | 2011-11-15 |
US8436437B2 (en) | 2013-05-07 |
US20100258888A1 (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5279384B2 (ja) | Stt−mtj−mramセルおよびその製造方法 | |
US9419210B2 (en) | Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers | |
JP4371781B2 (ja) | 磁気セル及び磁気メモリ | |
JP5460606B2 (ja) | 分離cppアシスト書込を行うスピン注入mramデバイス | |
US6831312B2 (en) | Amorphous alloys for magnetic devices | |
JP4682998B2 (ja) | 記憶素子及びメモリ | |
JP5433284B2 (ja) | Mtj素子およびその形成方法、stt−ramの製造方法 | |
JP4873338B2 (ja) | スピン注入デバイス及びこれを用いた磁気装置 | |
US7894244B2 (en) | Tunnel magnetic resistance device, and magnetic memory cell and magnetic random access memory using the same | |
TWI397069B (zh) | Memory components and memory | |
JP4277870B2 (ja) | 記憶素子及びメモリ | |
US20120241878A1 (en) | Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier | |
JP2004179667A (ja) | 磁気抵抗効果素子および磁気抵抗効果記憶素子およびデジタル信号を記憶させる方法 | |
JP2009111396A (ja) | 磁気トンネル接合素子、mram、stt−ram、mramの製造方法、stt−ramの製造方法 | |
JP5034317B2 (ja) | 記憶素子及びメモリ | |
US20070133264A1 (en) | Storage element and memory | |
JP2003197872A (ja) | 磁気抵抗効果膜を用いたメモリ | |
WO2010125641A1 (ja) | トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ | |
JP2013016820A (ja) | トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ | |
KR20070017047A (ko) | 기억 소자 및 메모리 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121011 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121217 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121220 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130205 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130301 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130430 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130521 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5279384 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |