[go: up one dir, main page]

JP5275537B2 - Oral preparation for preventing muscle oxidative stress - Google Patents

Oral preparation for preventing muscle oxidative stress Download PDF

Info

Publication number
JP5275537B2
JP5275537B2 JP2004244145A JP2004244145A JP5275537B2 JP 5275537 B2 JP5275537 B2 JP 5275537B2 JP 2004244145 A JP2004244145 A JP 2004244145A JP 2004244145 A JP2004244145 A JP 2004244145A JP 5275537 B2 JP5275537 B2 JP 5275537B2
Authority
JP
Japan
Prior art keywords
muscle
group
sod
oxidative stress
oral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004244145A
Other languages
Japanese (ja)
Other versions
JP2006062976A (en
Inventor
俊夫 三上
哲生 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Combi Corp
Nippon Medical School Foundation
Original Assignee
Combi Corp
Nippon Medical School Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Combi Corp, Nippon Medical School Foundation filed Critical Combi Corp
Priority to JP2004244145A priority Critical patent/JP5275537B2/en
Publication of JP2006062976A publication Critical patent/JP2006062976A/en
Application granted granted Critical
Publication of JP5275537B2 publication Critical patent/JP5275537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、スーパーオキシドジスムターゼ複合体を含有する筋肉の酸化ストレス軽減用経口剤に関し、特に、酸化ストレスによる筋肉組織の分解を抑制し、廃用性筋萎縮等の筋萎縮障害を阻止し得る経口用剤に関する。   The present invention relates to an oral preparation for reducing oxidative stress in muscles containing a superoxide dismutase complex, and in particular, an oral agent capable of suppressing the degradation of muscle tissue due to oxidative stress and preventing muscle atrophy disorders such as disused muscle atrophy. It relates to the preparation.

筋肉は自発的な運動のみならず、消化管の運動、呼吸又は心臓の拍動などの生命維持活動にも深く関与しており、筋萎縮による機能障害は重篤な症状を引き起こすことが知られている。筋萎縮とは筋の容積が減少することをいい、骨格筋の萎縮は筋繊維の萎縮や筋繊維数の減少によりもたらされる。筋萎縮の原因には、細胞内での活性酸素の増加が関与していると言われている。
生体の抗酸化能力以上に活性酸素が増加している状態を酸化ストレス状態と言う。生体内では、生理活動から派生して、或いは、体内に侵入した毒物又は免疫学的異物を分解するなどの様々な目的のために活性酸素(スーパーオキシドアニオンラジカル、過酸化水素、ヒドロキシラジカル、窒素酸化物など)が生成し、生理機能の維持に役立っている。正常な状態では、体内の余分な活性酸素は抗酸化酵素を含む制御系により除去され、過剰になることはない。しかしながら、筋萎縮では、このような酸化ストレス状態が引き起こされる。
Muscles are deeply involved in life-sustaining activities such as gastrointestinal motility, breathing, and heart pulsation, as well as spontaneous movement, and dysfunction due to muscle atrophy is known to cause serious symptoms. ing. Muscle atrophy refers to a decrease in muscle volume, and skeletal muscle atrophy is caused by atrophy of muscle fibers or a decrease in the number of muscle fibers. The cause of muscle atrophy is said to be associated with an increase in intracellular active oxygen.
A state in which active oxygen is increased more than the antioxidant capacity of a living body is called an oxidative stress state. In vivo, active oxygen (superoxide anion radical, hydrogen peroxide, hydroxy radical, nitrogen, for various purposes, such as degrading toxic or immunological foreign substances derived from physiological activities or entering the body. Oxides, etc.) are produced, which helps maintain physiological functions. Under normal conditions, excess active oxygen in the body is removed by a control system containing antioxidant enzymes and does not become excessive. However, muscular atrophy causes such an oxidative stress state.

筋萎縮のなかでも、廃用性筋萎縮(disuse muscle atrophy)は、寝たきり等の安静状態、或いは、疾病による長期臥床やギプス固定などの活動制限により引き起こされ、日常散見される現象である。筋萎縮に伴う筋力低下は日常生活での身体活動を制限し、Quality of life(QOL)を低下させる。
従来、廃用性筋萎縮を防止又は改善するためには、健常時に適度な運動などの予防を実践すること、或いは、術後早期より十分なリハビリテーションを施行することなどが行われているが、これら以外に有効な解決方法は無かった。そのため、寝たきり状態や手術後の長期臥床によって廃用性筋萎縮が生じると、身体の回復がさらに困難になるという問題がある。
特に、加齢に伴い筋タンパク合成能は低下するため、老齢期では退縮からの筋機能の回復は遷延すると考えられる。そのため、高齢化社会を迎えた現在において、高齢期における廃用性筋萎縮の予防は、健康的な日常生活の活動を確保するうえで重要な課題の一つである。
Among muscle atrophys, disuse muscle atrophy is a phenomenon that is caused by resting state such as bedridden, or activity restriction such as long-term bed rest and cast fixation due to illness, and is a common phenomenon. Muscle weakness associated with muscle atrophy limits physical activity in daily life and reduces Quality of life (QOL).
Conventionally, in order to prevent or improve disuse muscular atrophy, it has been practiced to prevent moderate exercise etc. at normal times, or to carry out sufficient rehabilitation from the early stage after surgery. There was no effective solution other than these. Therefore, when disuse muscle atrophy occurs due to a bedridden state or a long-term bed after surgery, there is a problem that recovery of the body becomes more difficult.
In particular, since the ability to synthesize muscle protein decreases with age, it is considered that recovery of muscle function from retraction will be prolonged in old age. Therefore, in the present age of aging society, prevention of disuse muscle atrophy in the elderly is one of the important issues for ensuring healthy daily life activities.

Kondoらは(非特許文献1)、下肢をギプス拘束することによりヒラメ筋のtiobarbituric acid reactive substance(TBARS)が増加することを報告している。また、Lawlerらも(非特許文献2)、尾部懸垂によりヒラメ筋で過酸化脂質とdichlorohydro-fluorescein diacetate(DCFH−DA)の酸化が増加することを報告している。
活性酸素の増加(酸化ストレス状態)による筋萎縮亢進の作用機序については不明な点が多いが、その一つに細胞内のカルシウムイオンの増加が考えられている(非特許文献3)。細胞膜が脂質過酸化反応により障害され、細胞質のカルシウム濃度が上昇することにより(非特許文献4)、カルシウム依存性のプロテアーゼが活性化され、タンパク分解が亢進する。その結果、筋肉組織の分解を引き起こし、筋萎縮を生じさせると考えられる。
さらに、フリーラジカルにより酸化されたタンパク質は生体内で分解されやすくなり(非特許文献5)、このことが筋肉組織の分解及び筋萎縮を更に進行させると考えられる。
Kondo et al. (Non-Patent Document 1) have reported that the tiobarbituric acid reactive substance (TBARS) of the soleus increases by restraining the lower limbs with casts. Lawler et al. (Non-Patent Document 2) also reported that oxidation of lipid peroxide and dichlorohydro-fluorescein diacetate (DCFH-DA) increases in the soleus due to tail suspension.
Although there are many unclear points about the mechanism of action of increased muscle atrophy due to an increase in active oxygen (oxidative stress state), one of them is thought to be an increase in intracellular calcium ions (Non-patent Document 3). When the cell membrane is damaged by lipid peroxidation and the calcium concentration in the cytoplasm increases (Non-patent Document 4), a calcium-dependent protease is activated and proteolysis is enhanced. As a result, it is considered that muscle tissue is decomposed to cause muscle atrophy.
Furthermore, proteins oxidized by free radicals are likely to be degraded in the living body (Non-patent Document 5), which is considered to further promote the degradation of muscle tissue and muscle atrophy.

このような廃用性筋萎縮を抑制する手段として、抗酸化物質の投与が検討され、抗酸化ビタミンであるビタミンEの投与が廃用性筋萎縮の程度を減少させることが報告されている(非特許文献6、非特許文献7、非特許文献8)。
従来知られているビタミンE、ビタミンC、β−カロチン等の抗酸化物質は、他の栄養分と同様に摂取後数時間で体内に吸収され、速やかに効果を発揮し、活性酸素を消去する。しかし、これらは活性酸素と反応することにより自らは酸化されしまうため、化学量論的に消費され、効果の持続性がないため、頻繁に摂取し続ける必要がある。
As a means of suppressing such disuse muscle atrophy, administration of an antioxidant substance has been studied, and it has been reported that administration of vitamin E, an antioxidant vitamin, reduces the degree of disuse muscle atrophy ( Non-patent document 6, Non-patent document 7, Non-patent document 8).
Antioxidants such as vitamin E, vitamin C, and β-carotene, which are conventionally known, are absorbed into the body within a few hours after ingestion, like other nutrients, and quickly exert an effect to eliminate active oxygen. However, since they are oxidized by reacting with active oxygen, they are consumed stoichiometrically and do not have a sustained effect. Therefore, they need to be ingested frequently.

スーパーオキシドジスムターゼ(Superoxide Dismutase, 以下「SOD」と略記する場合がある)は様々な生物の組織に存在する抗酸化酵素であり、銅、亜鉛、マンガン等を含むタンパク質からなり、特に肝臓、副腎、腎臓などに多く含まれており、細胞質内に局在するCu,Zn−SOD、ミトコンドリア内に局在するMn−SOD、体液中に局在するEC−SODの3種類が知られている。
SODは、生体内で発生した反応性の強い活性酸素であるスーパーオキシドアニオンラジカル(以下「O 」と略記する場合がある)を分解する。生体内の活性酸素制御系においては、O が発生するとSODの作用により不均化されて過酸化水素が生じ、過剰の過酸化水素はカタラーゼやグルタチオンペルオキシダーゼ等の過酸化水素の除去に関連した酵素により分解される。この一連のスキームを以下に示す。
Superoxide dismutase (hereinafter sometimes abbreviated as “SOD”) is an antioxidant enzyme present in various living tissues, and is composed of proteins containing copper, zinc, manganese, etc., particularly in the liver, adrenal gland, Three types are known, Cu, Zn-SOD localized in the cytoplasm, Mn-SOD localized in mitochondria, and EC-SOD localized in body fluids, which are contained in the kidney and the like.
SOD decomposes a superoxide anion radical (hereinafter sometimes abbreviated as “O 2 ”), which is a highly reactive active oxygen generated in a living body. In the active oxygen control system in the living body, when O 2 - is generated, it is disproportionated by the action of SOD to generate hydrogen peroxide, and the excess hydrogen peroxide is related to the removal of hydrogen peroxide such as catalase and glutathione peroxidase. It is decomposed by the enzyme. This series of schemes is shown below.

SODの作用: 2O +2H → H+O
カタラーゼの作用: 2H → O+2H
グルタチオンペルオキシダーゼの作用: ROOH+2GSH → ROH+2HO+GSSG
なお、カタラーゼ及びグルタチオンペルオキシダーゼの存在量が不十分の場合には、そして特に細胞病変に起因して鉄の存在量が非常に少ない場合には、過酸化水素は以下のスキームによって、毒性がより強いヒドロキシラジカルに転化される(フェントン反応)。
フェントン反応:
+Fe3+ → Fe2++O
Fe2++H → Fe3++OH+OH
+H → O+OH+OH
Action of SOD: 2O 2 + 2H + → H 2 O 2 + O 2
Catalase action: 2H 2 O 2 → O 2 + 2H 2 O
Action of glutathione peroxidase: ROOH + 2GSH → ROH + 2H 2 O + GSSG
It should be noted that hydrogen peroxide is more toxic according to the following scheme when the abundance of catalase and glutathione peroxidase is insufficient, and especially when the abundance of iron is very low due to cellular lesions. Converted to hydroxy radical (Fenton reaction).
Fenton reaction:
O 2 + Fe 3+ → Fe 2+ + O 2
Fe 2+ + H 2 O 2 → Fe 3+ + OH + OH 0
O 2 + H 2 O 2 → O 2 + OH + OH 0

特許文献1には、スパーオキシドジスムターゼを含有する経口投与用の医薬品組成物が記載されており、その用途は異なる炎症性作用(特にリューマチや繊維症)、ウィルス性作用(特にHIV感染)、及び多量の酸素の存在と関連している毒性症状(中枢神経系、虚血、非血管性胃腸障害、眼性障害又は抗癌治療の望ましくない効果抑制)等の緩和に役立つとされている。しかしながら、SODが筋萎縮に有効に作用することは全く記載されていない。
また、特許文献2には、神経変性疾患、肝硬変、レンチウィルス感染、寄生虫感染及び医原性疾患(薬物中毒)からなる群から選択される変性疾患の治療のためにSODを使用することが記載されている。しかしながら、この文献には、細胞を用いた実験結果しか記載されておらず、SODが筋萎縮に有効であることも、経口投与が可能であることも記載されていない。
Patent Document 1 describes a pharmaceutical composition for oral administration containing superoxide dismutase, which uses different inflammatory effects (especially rheumatism and fibrosis), viral effects (especially HIV infection), and It is said to help relieve toxic symptoms (central nervous system, ischemia, nonvascular gastrointestinal disorders, ocular disorders or suppression of undesirable effects of anticancer treatment) associated with the presence of large amounts of oxygen. However, there is no description that SOD effectively acts on muscle atrophy.
Patent Document 2 also discloses the use of SOD for the treatment of degenerative diseases selected from the group consisting of neurodegenerative diseases, cirrhosis, lentivirus infection, parasitic infections and iatrogenic diseases (drug addiction). Have been described. However, this document only describes the experimental results using cells, and does not describe that SOD is effective for muscle atrophy and that it can be administered orally.

特表平10−511944号公報Japanese National Patent Publication No. 10-511944 特表2002−500236号公報Special Table 2002-500236 Kondo et al., Acta Physiosol Scand 142, p527-528 (1991)Kondo et al., Acta Physiosol Scand 142, p527-528 (1991) Lawler et al., Free Radic Biol Med 35, 9-16 (2003)Lawler et al., Free Radic Biol Med 35, 9-16 (2003) 井上正康, 「廃用性筋萎縮における酸化的ストレス.活性酸素と運動−しなやかな健康と長寿を求めて−」共立出版(東京), p115-119 (1999)Masayasu Inoue, "Oxidative stress in disuse muscle atrophy. Reactive oxygen and exercise-in search of supple health and longevity-" Kyoritsu Shuppan (Tokyo), p115-119 (1999) Mourelle et al., J. Appl Toxicol 10, p23-27 (1990)Mourelle et al., J. Appl Toxicol 10, p23-27 (1990) Davies et al., J. Biol Chem 262, p8220-8226 (1987)Davies et al., J. Biol Chem 262, p8220-8226 (1987) Appell et al., Int J. Sports Med 18, p157-160 (1997)Appell et al., Int J. Sports Med 18, p157-160 (1997) Kondo et al., Am J. Physiol 262, E583-590 (1992)Kondo et al., Am J. Physiol 262, E583-590 (1992) Kondo et al., FEBS Lett 326, p189-919 (1993)Kondo et al., FEBS Lett 326, p189-919 (1993)

本発明者らは、筋肉の酸化ストレスが筋肉組織の分解及び筋萎縮の一因であると考え、その阻止のために有用な経口用剤を開発すべく鋭意研究を進めた。
本発明の目的は、経口摂取によって生体内のSOD活性を誘導し得る、筋肉の酸化ストレス軽減用経口剤、特に、筋肉の酸化ストレスが一因と考えられる筋肉組織の分解及び筋萎縮を阻止し得る経口用剤を提供することにある。
The present inventors considered that the oxidative stress of muscle contributes to the degradation of muscle tissue and muscle atrophy, and have conducted extensive research to develop an oral preparation useful for the prevention thereof.
An object of the present invention is to reduce muscle oxidative stress, which can induce in vivo SOD activity by ingestion, and in particular to prevent muscle tissue degradation and muscle atrophy, which are thought to be due to muscle oxidative stress. It is to provide an oral preparation to be obtained.

本発明により提供される筋肉の酸化ストレス由来疾患予防経口剤は、メロン由来スーパーオキシドジスムターゼとプロラミンとの複合体を有効成分として含有し、経口摂取用に処方された筋肉の酸化ストレス由来疾患予防経口剤である。
本発明に係る筋肉の酸化ストレス由来疾患予防経口剤は、経口摂取により筋肉の酸化ストレス状態を軽減し、筋肉の酸化ストレス状態に起因する生体の様々な疾患、機能障害又はそれらの発症前段階を阻止すると考えられる。
特に、本発明に係る筋肉の酸化ストレス由来疾患予防経口剤は、臨床上頻繁に遭遇する廃用性筋萎縮をはじめとして、筋肉組織の分解又は筋萎縮に対し広く予防的及び治療的効果を発揮する。
The oxidative stress- preventing oral agent for muscular oxidative stress provided by the present invention contains a complex of melon-derived superoxide dismutase and prolamin as an active ingredient, and is a oxidative stress- preventing oral muscular stress- derived disease prescribed for oral consumption. It is an agent.
The muscle oxidative stress- derived disease preventive oral preparation according to the present invention reduces the oxidative stress state of muscle by ingestion, and various diseases, dysfunctions of the living body caused by the oxidative stress state of muscle, or pre-onset stages thereof It is thought to prevent.
In particular, the oral muscular oxidative stress- preventing oral agent according to the present invention exerts a wide range of preventive and therapeutic effects on muscle tissue degradation or muscle atrophy, including disuse muscle atrophy frequently encountered clinically. To do.

有効成分であるSOD複合体は、消化抵抗性を持っているため、分解されずに腸管から吸収されると同時に、生体に対する異物として認識され、免疫系を刺激する。そのためSOD複合体は、生体の防御反応の一環として内因性SOD及びその他の抗酸化酵素活性、例えばカタラーゼ、グルタチオンペルオキシダーゼ等を誘導し、活性酸素抑制系に対して全体的に改善効果を与えると考えられる。   Since the SOD complex, which is an active ingredient, has digestion resistance, it is absorbed from the intestinal tract without being decomposed, and at the same time is recognized as a foreign substance to the living body and stimulates the immune system. For this reason, the SOD complex induces endogenous SOD and other antioxidant enzyme activities such as catalase and glutathione peroxidase as part of the defense reaction of the living body, and gives an overall improvement effect on the active oxygen suppression system. It is done.

本発明に係る筋肉の酸化ストレス軽減用経口剤は、経口摂取により筋肉の酸化ストレス状態に対して優れた軽減効果が認められるため、投与経路が簡便である。
特に、廃用性筋萎縮を薬物療法により予防、改善、治療するためには、萎縮の原因となる長期間の活動制限状態及びその後の回復期間にわたり薬物投与を続ける必要がある。本発明に係る筋肉の酸化ストレス軽減用経口剤は、経口投与により優れた筋萎縮阻止の効果が認められるため長期投与に適しており、廃用性筋萎縮阻止剤として非常に利用価値が高い。
The oral preparation for reducing oxidative stress of muscle according to the present invention has a simple administration route because an excellent reduction effect on the oxidative stress state of muscle is observed by ingestion.
In particular, in order to prevent, ameliorate, and treat disuse muscle atrophy by drug therapy, it is necessary to continue drug administration over a long-term activity-limiting state that causes atrophy and the subsequent recovery period. The oral preparation for reducing muscular oxidative stress according to the present invention is suitable for long-term administration because of its superior effect of preventing muscle atrophy by oral administration, and is very useful as a disuse muscle atrophy inhibitor.

本発明に係る筋肉の酸化ストレス軽減用経口剤は、消化管内で消化抵抗性を有するSOD複合体を有効成分として含有し、経口摂取により生体内のSOD活性を誘導する。
複合体を形成するSODとしては、ヒト由来SODでなければ、いかなる起源の異種SODを用いても良いが、SOD含量の高いメロン果実から抽出されるSODを用いることが好ましい。
SODはそのまま用いても良いし、薬学上許容される塩を用いても良い。また本発明においては、天然SODに部位特異的変異法等の方法を行って配列中のアミノ酸の一部を他のアミノ酸に変換したものや、一部のアミノ酸を化学的に修飾したものであっても、SOD活性を失っていないものである限り、SODとして用いることができる。
The oral preparation for reducing oxidative stress in muscle according to the present invention contains an SOD complex having digestion resistance in the digestive tract as an active ingredient, and induces SOD activity in vivo by ingestion.
As the SOD that forms the complex, a heterogeneous SOD of any origin may be used as long as it is not a human-derived SOD, but it is preferable to use an SOD extracted from a melon fruit having a high SOD content.
SOD may be used as it is, or a pharmaceutically acceptable salt may be used. In the present invention, a natural SOD is subjected to a method such as site-directed mutagenesis to convert a part of the amino acid in the sequence to another amino acid, or a part of the amino acid is chemically modified. However, as long as it does not lose SOD activity, it can be used as SOD.

SODに付加して複合体を形成する物質としては、経口摂取時に消化酵素に抵抗性を持ち、かつ、生体内において異物として認識されやすいものを選択すべきであり、例えば、種々の脂質や蛋白質を用いることができる。
具体的に好ましい複合体としては、SODと少なくともプロラミンを含む1種または2種以上の付加物質との複合体が挙げられる。プロラミンは、植物起源、特に種々の穀類(小麦、ライ麦、大麦、エンバク、米、キビ及びトウモロコシ等)から誘導される天然(すなわち、非変性)の不溶性蛋白であり、特に小麦から得られるプロラミン(グリアジン)が好ましい。
SOD複合体は、特表平10-511944に記載の方法により製造することが可能であるほか、市販品のメロンSOD−グリアジン複合体(商品名「オキシカイン(登録商標)」、製造会社ISOCELL S.A.)を用いることができる。
As a substance that forms a complex when added to SOD, a substance that has resistance to digestive enzymes when taken orally and is easily recognized as a foreign substance in vivo should be selected. For example, various lipids and proteins Can be used.
As a particularly preferred complex, a complex of SOD and one or more additional substances containing at least prolamin can be mentioned. Prolamin is a natural (ie non-denatured) insoluble protein derived from plant origin, especially various cereals (wheat, rye, barley, oats, rice, millet, corn, etc.), especially prolamin obtained from wheat ( Gliadin) is preferred.
The SOD complex can be produced by the method described in JP-T-10-511944, and a commercially available melon SOD-gliadin complex (trade name “Oxycaine (registered trademark)”, manufacturer ISOCELL SA). Can be used.

本発明に係る筋肉の酸化ストレス軽減用経口剤は、経口摂取により筋肉の酸化ストレス状態を軽減し、筋肉の酸化ストレス状態に起因する生体の様々な疾患、機能障害又はそれらの発症前段階を阻止すると考えられる。
すなわち、有効成分であるSOD複合体は、経口摂取される際に消化抵抗性を持っているため、分解されずに腸管から吸収されると同時に、生体に対する異物として認識され、免疫系を刺激する。異物として認識されたSOD複合体は、マクロファージ等が産生する活性酸素等により分解を受けるが、SOD複合体自体が活性酸素を分解してしまうため、SOD複合体は本質的に分解されにくい。そのためSOD複合体は、生体内において手強い異物として認識され、生体の防御反応の一環として内因性SOD及びその他の抗酸化酵素活性、例えばカタラーゼ、グルタチオンペルオキシダーゼ等を誘導し、活性酸素抑制系に対して全体的に改善効果を与えると考えられる。
The oral preparation for reducing muscle oxidative stress according to the present invention reduces muscle oxidative stress state by ingestion and prevents various diseases, functional disorders or pre-onset stages due to muscle oxidative stress state I think that.
That is, since the SOD complex which is an active ingredient has digestion resistance when ingested orally, it is absorbed from the intestinal tract without being decomposed, and at the same time, it is recognized as a foreign substance to the living body and stimulates the immune system. . The SOD complex recognized as a foreign substance is decomposed by active oxygen or the like produced by macrophages or the like, but the SOD complex itself decomposes active oxygen, so that the SOD complex is essentially hardly decomposed. Therefore, the SOD complex is recognized as a strong foreign substance in the living body, and induces endogenous SOD and other antioxidant enzyme activities such as catalase and glutathione peroxidase as part of the defense reaction of the living body. It is thought that the improvement effect is given overall.

SOD誘導体を注射により直接体内に投与する場合には、それ自身の酵素作用によって活性酸素を消去するだけであるが、本発明に係る筋肉の酸化ストレス軽減用経口剤は、SOD複合体が免疫系を刺激することにより活性酸素抑制系全体を改善する点で、効果発現のメカニズムが異なっている。
また、本発明に係る筋肉の酸化ストレス軽減用経口剤の効果は免疫系を刺激によるものであるから、一旦発現すると持続性がある。しかも、本発明に係る筋肉の酸化ストレス軽減用経口剤は経口摂取するものであるから、投与時の生体に与える侵襲が注射剤と比べて少ない。
When the SOD derivative is administered directly into the body by injection, the active oxygen is only eliminated by its own enzyme action. However, the oral agent for reducing oxidative stress of muscle according to the present invention has an SOD complex as an immune system. In terms of improving the overall active oxygen suppression system by stimulating, the mechanism of effect expression is different.
Moreover, since the effect of the oral preparation for reducing oxidative stress of muscle according to the present invention is due to stimulation of the immune system, once it is expressed, it is persistent. Moreover, since the oral preparation for reducing oxidative stress of muscle according to the present invention is taken orally, it has less invasiveness to the living body at the time of administration than the injection.

本発明に係る筋肉の酸化ストレス軽減用経口剤は、臨床上頻繁に遭遇する廃用性筋萎縮をはじめとして、筋肉組織の分解又は筋萎縮の予防、改善、治療を目的として、医薬品又は健康食品として用いることができる。
実際の投与に際し、本発明に係る筋肉の酸化ストレス軽減用経口剤は、筋肉組織の分解又は筋萎縮の進行度に合わせて、その投与量、投与スケジュール等の条件を適宜決定される。
特に、廃用性筋萎縮を薬物療法により予防、改善、治療するためには、萎縮の原因となる長期間の活動制限状態及びその後の回復期間にわたり薬物投与を続ける必要があるが、本発明に係る筋肉の酸化ストレス軽減用経口剤は経口投与で有効であり、且つ、効果に持続性があるため長期投与に適しており、非常に利用価値が高い。
The oral preparation for reducing oxidative stress of muscle according to the present invention is a pharmaceutical or health food for the purpose of prevention, improvement, treatment of muscle tissue degradation or muscle atrophy, including disuse muscle atrophy frequently encountered clinically. Can be used as
In actual administration, the oral preparation for reducing oxidative stress of muscle according to the present invention is appropriately determined in terms of the dosage, administration schedule and other conditions according to the progress of muscle tissue degradation or muscle atrophy.
In particular, in order to prevent, ameliorate, and treat disuse muscle atrophy with drug therapy, it is necessary to continue drug administration over a long-term activity-restricted state that causes atrophy and the subsequent recovery period. Such an oral preparation for reducing oxidative stress of muscle is effective for oral administration and has a long-lasting effect because of its long-lasting effect, and has a very high utility value.

経口投与する場合の投与量は、予防的又は保健的に用いるのか、治療的に用いるのかでも異なるが、通常は成人1人1日当り、SOD量として1mg〜25mg又は100〜2,500単位を1〜4回程度に分けて投与すればよい。
なお、本発明においてSODの1単位とは、McCordとFridovichの方法に従い、キサンチン/キサンチンオキシダーゼにより発生させたO により発色する系の550nmの吸光度が直線的に増加する濃度域において、1分間の吸光度変化0.025を、O を消去することにより50%に阻害するときに試験系(3.0ml)中に含まれるSOD量である(McCord, J.M. & Fridovich, I. : J. Biol. Chem., 244, 6049-6055 (1969))。
The dose for oral administration varies depending on whether it is used prophylactically or healthily or therapeutically, but usually 1 mg to 25 mg or 100 to 2,500 units as SOD amount per day per adult. What is necessary is just to divide and administer to about 4 times.
In the present invention, one unit of SOD means 1 minute in a concentration range where the absorbance at 550 nm of the system that develops color by O 2 generated by xanthine / xanthine oxidase increases linearly according to the method of McCord and Fridovich. Is the amount of SOD contained in the test system (3.0 ml) when the absorbance change of 0.025 is inhibited to 50% by eliminating O 2 (McCord, JM & Fridovich, I .: J. Biol. Chem., 244, 6049-6055 (1969)).

経口投与剤の剤型や処方等の製剤化も、投与経路及び投与条件を考慮して適宜設計される。経口投与の剤型としては、錠剤、ハード又はソフトカプセル、顆粒又は細粒のような粒剤、散剤等の公知のものを選択できる。経口投与の処方としては、SOD複合体を有効成分とし、上記剤型に合わせて、公知の賦型剤、結合剤、滑沢剤、着色剤、及びその他の成分を適宜配合すればよい。   Preparation of oral dosage forms such as dosage forms and formulations is also appropriately designed in consideration of the administration route and administration conditions. As the dosage form for oral administration, known ones such as tablets, hard or soft capsules, granules such as granules or fine particles, powders and the like can be selected. As a prescription for oral administration, a known excipient, binder, lubricant, colorant, and other components may be appropriately blended in accordance with the above dosage form with the SOD complex as an active ingredient.

(1)実験方法
(a)実験動物の群分け及び飼育条件
5週齢のWister系ラットを無作為に、(a)水投与群(以下「W群」と略す)、(b)複合SODであるオキシカイン(商品名)の投与群(以下「O群」と略す)、(c)ビタミンE投与群(以下「E群」と略す)、(d)対照群(以下「C群」と略す)の4群に分け、1群につき8〜10匹の動物を割り当た。
各群のラットを、実験動物用固形飼料MF(オリエンタル酵母工業)と水を自由摂取させて5週間飼育し、この飼育期間中、以下の投与を行った。
(1) Experimental method (a) Grouping and rearing conditions of experimental animals Randomized 5 week old Wister rats, (a) Water-administered group (hereinafter abbreviated as “W group”), (b) Compound SOD Administration group of certain oxycaine (trade name) (hereinafter abbreviated as “O group”), (c) Vitamin E administration group (hereinafter abbreviated as “E group”), (d) Control group (hereinafter abbreviated as “C group”) Were divided into 4 groups, and 8 to 10 animals were assigned to each group.
Rats in each group were fed with experimental animal chow MF (Oriental Yeast Industry) and water ad libitum for 5 weeks, and the following administration was performed during this breeding period.

O群には、水に溶解したオキシカインを小動物用ゾンデを用いて週6回の頻度で経口投与したが、体重の変化を考慮して投与量を調整した結果、その投与量は1日1回、1kg当たり5〜6.25mgであった。
E群には、大豆油に溶解したα−トコフェロール酢酸塩(和光純薬)を小動物用ゾンデを用いて週6回の頻度で経口投与したが、体重の変化を考慮して投与量を調整した結果、その投与量は1日1回、体重1kg当たり30〜35mgであった。
W群には水を小動物用ゾンデにて、1日1回、体重1kg当たり0.2mlを週6日の頻度で経口投与した。C群は飼料と水の自由摂取だけで飼育した。
In group O, oxycaine dissolved in water was orally administered at a frequency of 6 times a week using a small animal sonde. The dose was adjusted in consideration of changes in body weight. As a result, the dose was once a day. It was 5 to 6.25 mg per kg.
In group E, α-tocopherol acetate (Wako Pure Chemical Industries) dissolved in soybean oil was orally administered at a frequency of 6 times a week using a small animal sonde, but the dose was adjusted in consideration of changes in body weight. As a result, the dose was 30 to 35 mg per kg body weight once a day.
In group W, water was orally administered once a day at a frequency of 6 days a week with a small animal sonde at a dose of 0.2 ml per kg body weight. Group C was raised only with free intake of feed and water.

(b)骨格筋萎縮の方法
飼育開始から5週間目に入った日(飼育開始から29日目)から、下肢の筋を萎縮させるために、W群、O群、E群のラットの両下肢を、いわゆる「ふくらはぎ」側の筋であるヒラメ筋(soleus)、足底筋(plantaris)、腓腹筋(gastrocnemius)が緩み、いわゆる「すね」側の筋である長指伸筋(extensor digitorum longus)が引っ張られる状態に進展し、石膏ギプスにより固定した。一方、C群はギプス拘束しなかった。なお、拘束期間中も、上記の投与スケジュールを続行した。
(B) Method of skeletal muscle atrophy Both lower limbs of rats of W group, O group, and E group in order to atrophy the muscles of the lower limbs from the day of the fifth week after the start of breeding (29 days from the start of breeding) The so-called “calf” muscles, soleus, plantaris, gastrocnemius, and so-called “shin” muscles, extensor digitorum longus It developed into a pulled state and was fixed with a plaster cast. On the other hand, group C was not cast. The above administration schedule was continued during the restraint period.

(c)骨格筋の採取
飼育開始から5週間経過後(飼育開始から35日目)、ネンブタール麻酔下のラットから骨格筋を採取した。採取した骨格筋はギプス拘束により緩ませた部分、すなわちヒラメ筋、足底筋及び、腓腹筋である。
採取した骨格筋は、筋湿重量を測定した後、直ちに液体窒素で凍結し、分析に供するまでは−80℃で凍結保存した。
(C) Collection of skeletal muscle Five weeks after the start of breeding (35 days after the start of breeding), skeletal muscle was collected from rats under Nembutal anesthesia. The collected skeletal muscles are loosened by cast restraint, that is, soleus, plantar and gastrocnemius.
The collected skeletal muscles were immediately frozen in liquid nitrogen after measuring the muscle wet weight and stored frozen at -80 ° C. until analysis.

(2)測定方法
(a)SOD活性値の測定
SOD測定キット(SOD Assay Kit-WST;Dojindo Molecular Technology社)を用いて測定した。約20mgの骨格筋サンプルに、キットに付属の希釈用バッファを10倍量で添加し、ハンドホモジナイザーにてホモジナイズした。その後、遠心分離(6,500 rpm×10 min)して上清を回収し、これを希釈用バッファで10倍に希釈したものを測定に用いた。反応は、96wellプレートを用いて行い、測定手順はキットのプロトコールに順じ、プレートリーダー(Multistan;Labsystems社)で450nmでの吸光度の変化を測定し、サンプル添加による吸光度上昇の阻害率を求めた。
(2) Measuring method (a) Measurement of SOD activity value It measured using the SOD measuring kit (SOD Assay Kit-WST; Dojindo Molecular Technology). To a skeletal muscle sample of about 20 mg, the dilution buffer attached to the kit was added in a 10-fold amount and homogenized with a hand homogenizer. Thereafter, the supernatant was recovered by centrifugation (6,500 rpm × 10 min), and the supernatant diluted 10-fold with a dilution buffer was used for measurement. The reaction was performed using a 96-well plate, and the measurement procedure was in accordance with the protocol of the kit. The change in absorbance at 450 nm was measured with a plate reader (Multistan; Labsystems), and the inhibition rate of the increase in absorbance due to sample addition was determined. .

同時に、既知濃度のSODをサンプルと同様の手順で測定し、この時の阻害率を基に検量線を作成し、サンプルの阻害率をこの検量線に代入して、サンプルのSOD活性値を求めた。また、Coomassie Plus Protein Assay Reagent Kit (Pierce社)を用いてSOD測定に用いた希釈サンプルのタンパク質濃度を測定した。最終的にサンプルのSOD値は、筋のタンパク1mg当たりのSOD活性値(U/mg protein)として表した。   At the same time, the SOD at a known concentration is measured in the same procedure as the sample, a calibration curve is created based on the inhibition rate at this time, and the SOD activity value of the sample is obtained by substituting the inhibition rate of the sample into this calibration curve. It was. Moreover, the protein concentration of the diluted sample used for SOD measurement was measured using Coomassie Plus Protein Assay Reagent Kit (Pierce). Finally, the SOD value of the sample was expressed as an SOD activity value (U / mg protein) per 1 mg of muscle protein.

(b)α−トコフェロールの測定
組織サンプル中のα−トコフェロール量は、Uedaらの方法(五十嵐、島崎共著、生物化学実験法34, 過酸化脂質・フリーラジカル実験法, p65-69, 学会出版センター, 東京(1995))に従い、高速クロマトグラフィーを用いて以下の手順で測定した。
約20mgの組織サンプルをハサミで1mm角以下の大きさに細切りし、チューブに入れて重量を測定した後、0.02mlの1%NaCl溶液を加えて細切り試料を分散させ、その後、0.2mlの6%ピロガロール/エタノール溶液と、0.2mlのPMC(2,2,5,7,8−pentamethyl−6−hydroxychroman)内部標準液(1μg/ml)を加えて混和した。さらに、0.04mlの60%KOH溶液を加え、キャップをして混和した後、70℃の水浴中で時々振り混ぜながら約30分間けん化した。チューブを氷水中で冷却した後に、0.9mlの1%NaCl溶液と、0.6mlの10%酢酸エチル/n−ヘキサン溶液を加え、1分間激しく混和してα−トコフェロールを抽出した。再びチューブを氷水中で約5分間冷却した後、遠心分離(3,000 rpm×5 min)し、0.4mlの上層(酢酸エチル/n−ヘキサン層)を別のチューブに分取した。
(B) Measurement of α-tocopherol The amount of α-tocopherol in the tissue sample was determined by the method of Ueda et al. , Tokyo (1995)), and using high performance chromatography, the following procedure was used.
A tissue sample of about 20 mg is cut into pieces of 1 mm square or less with scissors, put into a tube and weighed. Then, 0.02 ml of 1% NaCl solution is added to disperse the cut sample, and then 0.2 ml. 6% pyrogallol / ethanol solution and 0.2 ml of PMC (2,2,5,7,8-pentamethyl-6-hydroxychroman) internal standard solution (1 μg / ml) were added and mixed. Further, 0.04 ml of 60% KOH solution was added, capped and mixed, and then saponified for about 30 minutes with occasional shaking in a 70 ° C. water bath. After the tube was cooled in ice water, 0.9 ml of 1% NaCl solution and 0.6 ml of 10% ethyl acetate / n-hexane solution were added and mixed vigorously for 1 minute to extract α-tocopherol. The tube was cooled again in ice water for about 5 minutes, and then centrifuged (3,000 rpm × 5 min), and 0.4 ml of the upper layer (ethyl acetate / n-hexane layer) was separated into another tube.

その後、0.2mlの5%n−デカン溶液を加え、ヒートブロックで加温(40℃以下)しながらNを通気して少量のn−デカンを残して溶液を留去し、残ったn−デカンに0.04mlのn−ヘキサンを加えて溶解した。この溶液0.05mlを高速液体クロマトグラフィーに注入して、α−トコフェロールを検出した。この時の高速液体クロマトグラフィーの測定条件は、カラムがInertosil-5NH2(径4.6mm×長さ250mm)、カラム温度は30℃、移動相はn−ヘキサン/イソプロパノール(体積比98:2)、流速は1.5ml/分、検出器は蛍光検出器(励起波長297nm、蛍光波長327nm)で行った。 Thereafter, 0.2 ml of 5% n-decane solution was added, and N 2 was vented while heating with a heat block (40 ° C. or less) to leave a small amount of n-decane, and the solution was distilled off. -0.04 ml of n-hexane was added to decane and dissolved. 0.05 ml of this solution was injected into high performance liquid chromatography to detect α-tocopherol. The measurement conditions of the high performance liquid chromatography at this time were as follows. The column was Inertosil-5NH 2 (diameter 4.6 mm × length 250 mm), the column temperature was 30 ° C., the mobile phase was n-hexane / isopropanol (volume ratio 98: 2), The flow rate was 1.5 ml / min, and the detector was a fluorescence detector (excitation wavelength 297 nm, fluorescence wavelength 327 nm).

(c)酸化タンパク質(Carbonyl protein)濃度の測定
Levinらの方法(Levin RL et al., "Carbonyl assays for determination of oxidatively modified proteins", Methods Enzymol 233, p346-357, 1994)に従い、以下の手順で測定した。
15〜20mgの各筋組織サンプルをできるだけ細かく刻み、0.3mlのホモジナイズ用バッファ(50mM phosphate buffer, pH 7.4, 0.1% digitonin, 40 μg/ml phenylmethylsulfonyl fluoride, 5 μg/ml leupeptin, 7 μg/ml pepstatin, 5 μg/ml aprotonin, 1 mM EDTA)の入った1.5mlサンプルチューブに入れ、室温で15分間インキュベートした後、遠心分離(6,000 rpm×10 min)して不溶物を取り除いた。
(C) Measurement of oxidized protein (Carbonyl protein) concentration
According to the method of Levin et al. (Levin RL et al., “Carbonyl assays for determination of oxidatively modified proteins”, Methods Enzymol 233, p346-357, 1994), the measurement was carried out by the following procedure.
15-20 mg of each muscle tissue sample is minced as finely as possible and 0.3 ml of homogenizing buffer (50 mM phosphate buffer, pH 7.4, 0.1% digitonin, 40 μg / ml phenylmethylsulfonyl fluoride, 5 μg / ml leupeptin, 7 μg / ml pepstatin) , 5 μg / ml aprotonin, 1 mM EDTA) and incubated at room temperature for 15 minutes, and then centrifuged (6,000 rpm × 10 min) to remove insolubles.

核酸の有無を調べるために、上清の吸光比(280nm/260nm)を測定し、この吸光比が1.0以下の場合は核酸除去のために、0.03mlの10%ストレプトマイシンを添加して室温で15分間インキュベートした後に、遠心分離(6,000 rpm×10 min)した。この吸光比が1.0以上の場合は上記の操作を省略した。遠心分離の上清を0.1mlずつ2個の1.5mlサンプルチューブに分取し、そのうちの一本には0.4mlの10mM ジニトロフェニルヒドラジン(DNPH, in 2.5M HCl)を添加し、もう一本には同量の2.5M HClを添加した。チューブを遮光して室温で1時間インキュベートした。この間15分毎にチューブを振とうした。0.5mlの20%トリクロロ酢酸(TCA)を両チューブに添加し、10分間氷中で冷却し、遠心分離(1,000 rpm×5 min)して上清を除去した。   In order to examine the presence or absence of nucleic acid, the absorbance ratio (280 nm / 260 nm) of the supernatant was measured. If this absorbance ratio was 1.0 or less, 0.03 ml of 10% streptomycin was added to remove the nucleic acid. After 15 minutes of incubation at room temperature, centrifugation (6,000 rpm × 10 min) was performed. The above operation was omitted when the extinction ratio was 1.0 or more. Aliquot 0.1 ml of the centrifugation supernatant into two 1.5 ml sample tubes, and add 0.4 ml of 10 mM dinitrophenylhydrazine (DNPH, in 2.5M HCl) to one of them. The same amount of 2.5M HCl was added to one. The tube was protected from light and incubated at room temperature for 1 hour. During this time, the tube was shaken every 15 minutes. 0.5 ml of 20% trichloroacetic acid (TCA) was added to both tubes, cooled in ice for 10 minutes, and centrifuged (1,000 rpm × 5 min) to remove the supernatant.

新たに0.4mlの10%TCAを両チューブに添加し、ガラス棒でタンパク質の沈殿を砕き、遠心分離(1,000 rpm×5 min)して上清を除去した。遊離DNPHと脂質の混入を除去するために、沈殿に0.4mlのエタノール/酢酸エチル溶液(体積比1:1)を添加し、遠心分離(1,000 rpm×5 min)して上清を除去し、この洗浄操作を3回繰り返した。20mM リン酸カリウム(pH2.3)に溶解した6M 塩酸グアニジンを0.2ml添加して37℃で10分間インキュベートした後に、遠心分離(12,000 rpm×5 min)して不溶物を除去した。DNPH添加反応液と2.5M HCl添加反応液ともに吸光度(370nm)を測定した。酸化タンパク質濃度は、以下の式により計算した。
<計算式>
C(DNPH/ml)=Absorption(Abs)/ε=Abs(370nm)/2.2×10/10=Abs(370nm)×45.45 nmol/ml〔ε=22,000/M=22,000/106 nmol/ml〕
0.4 ml of 10% TCA was newly added to both tubes, the protein precipitate was crushed with a glass rod, and the supernatant was removed by centrifugation (1,000 rpm × 5 min). To remove free DNPH and lipid contamination, add 0.4 ml of ethanol / ethyl acetate solution (volume ratio 1: 1) to the precipitate and centrifuge (1,000 rpm x 5 min) to remove the supernatant. This washing operation was repeated three times. After adding 0.2 ml of 6M guanidine hydrochloride dissolved in 20 mM potassium phosphate (pH 2.3) and incubating at 37 ° C. for 10 minutes, the mixture was centrifuged (12,000 rpm × 5 min) to remove insoluble matters. Absorbance (370 nm) was measured for both the DNPH addition reaction solution and the 2.5 M HCl addition reaction solution. The oxidized protein concentration was calculated by the following formula.
<Calculation formula>
C (DNPH / ml) = Absorption (Abs) / ε = Abs (370nm) /2.2×10 4/10 6 = Abs (370nm) × 45.45 nmol / ml [ε = 22,000 / M = 22,000 / 10 (6 nmol / ml)

最終的に回収されたタンパク質量を測定するために、2.5M HCl添加後の吸光度(280nm)を測定した。同時にウシ血清アルブミン(BSA)を6M 塩酸グアニジン溶液に溶解させた各種濃度のBSA標準液(0.25-2.0 mg/ml)を調製し、これらの吸光度を測定して検量線を作成し、サンプルのタンパク質濃度を計算した。組織サンプルの酸化タンパク質量は、沈殿として回収されたタンパク質当たりの酸化タンパク質量(DNPH濃度)として計算した(表示単位はnmol/mg protein)。   In order to measure the amount of protein finally recovered, the absorbance (280 nm) after adding 2.5 M HCl was measured. At the same time, BSA standard solutions (0.25-2.0 mg / ml) with various concentrations of bovine serum albumin (BSA) dissolved in 6M guanidine hydrochloride were prepared, and the absorbance was measured to create a calibration curve. Concentration was calculated. The amount of oxidized protein in the tissue sample was calculated as the amount of oxidized protein (DNPH concentration) per protein collected as a precipitate (display unit is nmol / mg protein).

(d)過酸化脂質の測定
過酸化脂質測定キット(BIOXYTECH LPO-586;OXIS International社)を用いて測定を行った。各筋を、リン酸バッファ生理食塩水(PBS)でホモジナイズした後に遠心分離(6,500 rpm×10 min)して上清を回収し、これをサンプルとして用いた。測定は、キットに添付されたマニュアルに従って行い、Ultrospec Plus(Pharmacia International社)で586nmの吸光度を測定した。
(D) Measurement of lipid peroxide Measurement was performed using a lipid peroxide measurement kit (BIOXYTECH LPO-586; OXIS International). Each muscle was homogenized with phosphate buffered saline (PBS) and then centrifuged (6,500 rpm × 10 min) to recover the supernatant, which was used as a sample. The measurement was performed according to the manual attached to the kit, and the absorbance at 586 nm was measured with Ultrospec Plus (Pharmacia International).

(e)統計処理
得られたデータは、平均±標準誤差で表した。各測定項目の比較にはtwo-way ANOVAを用い、Fisher's PLSD post hoc testにより統計処理を行い、危険率が5%未満の場合を有意差ありとした。
(E) Statistical processing The obtained data were expressed as mean ± standard error. Two-way ANOVA was used for comparison of each measurement item, statistical processing was performed by Fisher's PLSD post hoc test, and the case where the risk rate was less than 5% was considered significant.

(3)実験結果
表1に、各群ごとに被験ラットの解剖時体重、筋湿重量、SOD活性、α−トコフェロール量、酸化タンパク質量、過酸化脂質量それぞれの平均値±標準誤差を示す。また、これらの測定値をグラフ化して図に示した。
(3) Experimental results Table 1 shows the mean value ± standard error of each test group's body weight at the time of dissection, muscle wet weight, SOD activity, α-tocopherol amount, oxidized protein amount, and lipid peroxide amount for each group. In addition, these measured values are shown in a graph.

Figure 0005275537
Figure 0005275537

(a)解剖時体重
図1は、解剖時のラット体重を示すグラフである。体重は、一週間のギプス拘束により各群とも有意な減少を示した。ギプス拘束によるストレスが、体重減少の原因と考えられる。
(A) Weight at the time of dissection FIG. 1 is a graph showing the weight of the rat at the time of dissection. Body weight showed a significant decrease in each group due to a one-week cast restriction. Stress due to cast restraint is thought to cause weight loss.

(b)筋湿重量
図2は、ヒラメ筋の筋湿重量を示すグラフである。O群のヒラメ筋湿重量は、非拘束であるC群の筋湿重量に最も近く、拘束による筋萎縮の影響が最も軽かった。また、O群のヒラメ筋湿重量は、他の拘束群であるE群及びW群との対比において、有意差(P<0.05)をもって筋萎縮の阻止に効果があるという結果が得られた。
図3は、非拘束であるC群と対比したW群の筋萎縮変化量を基準(抑制率0%)とした時の、O群とE群の筋萎縮抑制率を示すグラフである。すなわち、筋萎縮抑制率は次式により計算される。
<計算式>
筋萎縮抑制率(%)=100−筋萎縮変化率(%)
ここで、
筋萎縮変化率(%)=(C群の筋湿重量−O群又はE群の筋湿重量)÷(C群の筋湿重量−W群の筋湿重量)×100
O群及びE群は、ネガティブコントロールであるW群での筋萎縮と比べて筋萎縮の阻止が認められ、特にO群は、E群と比べて阻止効果が大きいことが認められた。
(B) Muscle wet weight FIG. 2 is a graph showing the muscle wet weight of the soleus muscle. The soleus muscle wet weight of group O was the closest to the muscle wet weight of group C, which was not restrained, and the effect of muscle atrophy due to restraint was the lightest. Further, the soleus muscle wet weight of the O group is effective in preventing muscle atrophy with a significant difference (P <0.05) in comparison with the other restraining groups E group and W group. It was.
FIG. 3 is a graph showing the muscle atrophy suppression rate of the O group and the E group when the change amount of the muscle atrophy of the W group compared with the unconstrained C group is used as a reference (suppression rate 0%). That is, the muscle atrophy suppression rate is calculated by the following equation.
<Calculation formula>
Muscle atrophy suppression rate (%) = 100-muscle atrophy change rate (%)
here,
Muscle atrophy change rate (%) = (Group muscle wet weight−Group O or group E muscle wet weight) ÷ (Group C muscle wet weight−Group W muscle wet weight) × 100
In the O group and the E group, inhibition of muscular atrophy was observed as compared with the muscular atrophy in the W group, which was a negative control. In particular, the O group was found to have a greater inhibitory effect than the E group.

(c)SOD活性値
図4a及び4bは、それぞれヒラメ筋及び足底筋のSOD活性値である。ヒラメ筋、足底筋ともに、O群は他の3群に対して有意な高値を示した。一方、C群、E群、W群の3群間には有意な差は見られなかった。
(C) SOD activity value FIGS. 4a and 4b are SOD activity values of the soleus and plantar muscles, respectively. In the soleus and plantar muscles, the O group showed significantly higher values than the other three groups. On the other hand, there was no significant difference between the three groups of Group C, Group E, and Group W.

(d)α−トコフェロール量
図5a及び5bは、それぞれヒラメ筋及び足底筋のα−トコフェロール量である。ヒラメ筋、足底筋ともに、E群は他の3群に対して有意な高値を示した。一方、C群、O群、W群の3群間には有意な差は見られなかった。
(D) α-Tocopherol Level FIGS. 5a and 5b are α-tocopherol levels of soleus and plantar muscles, respectively. In both the soleus and plantar muscles, the E group showed significantly higher values than the other 3 groups. On the other hand, there was no significant difference between the three groups of the C group, the O group, and the W group.

(e)酸化タンパク質量
図6a及び6bは、それぞれヒラメ筋及び足底筋の酸化タンパク質量である。図6aに示すヒラメ筋では、C群に対してE群とW群は有意な高値を示した。しかし、C群とO群の間には有意な差は見られなかった。また、ギプス拘束した3群間の比較では、O群がW群とE群に対して有意な低値を示した。
一方、図6bに示す足底筋では、ギプス拘束した3群(O群、E群、W群)は、C群に対して有意な高値を示した。また、ギプス拘束した3群間の比較では、O群はE群とW群に対して有意な低値を示した。
(E) Amount of oxidized protein FIGS. 6a and 6b are amounts of oxidized protein of soleus and plantar muscles, respectively. In the soleus shown in FIG. 6a, the E group and the W group showed significantly higher values than the C group. However, there was no significant difference between group C and group O. Moreover, in the comparison between the 3 groups restrained by the cast, the O group showed a significantly lower value than the W group and the E group.
On the other hand, in the plantar muscle shown in FIG. 6b, the 3 groups (O group, E group, W group) restrained by the cast showed a significantly higher value than the C group. Moreover, in the comparison between the three groups restrained by the cast, the O group showed a significantly lower value than the E group and the W group.

(f)過酸化脂質量
図7a及び7bは、それぞれヒラメ筋及び足底筋の過酸化脂質量である。図7aに示すヒラメ筋では、ギプス拘束した3群(O群、E群、W群)は、C群に対して有意な高値を示した。また、ギプス拘束した3群間の比較では、O群がW群に対して有意な低値を示した。
一方、図7bに示す足底筋でも、ヒラメ筋と同様に、ギプス拘束した3群(O群、E群、W群)は、C群に対して有意な高値を示した。また、ギプス拘束した3群間の比較では、O群がE群に対して有意な低値を示した。
(F) Lipid peroxide amount FIGS. 7a and 7b are lipid peroxide amounts of soleus and plantar muscles, respectively. In the soleus shown in FIG. 7a, the 3 groups (O group, E group, and W group) restrained by the cast showed significantly higher values than the C group. Further, in the comparison between the three groups restricted by the cast, the O group showed a significantly lower value than the W group.
On the other hand, in the plantar muscle shown in FIG. 7b, as in the soleus muscle, the 3 groups (O group, E group, and W group) restricted by the cast showed significantly higher values than the C group. Moreover, in the comparison between the 3 groups restrained by the cast, the O group showed a significantly lower value than the E group.

(g)結果のまとめ
筋湿重量の測定結果から、ギプス拘束しないコントロールであるC群と比べ、ギプス拘束し水を経口投与したネガティブコントロールであるW群は、廃用性筋萎縮が現れた。ギプス拘束しオキシカイン(SOD複合体)を経口投与した実施例であるO群と、ギプス拘束しビタミンEを経口投与した比較例であるE群は、W群と比べて筋湿重量の減少が抑制され、萎縮阻止の効果が認められた。
O群は、E群との比較でも筋萎縮抑制率が大きく、より大きな萎縮阻止の効果が認められた。この傾向は、ヒラメ筋、足底筋、腓腹筋いずれの比較においても認められたが、特にヒラメ筋の比較(図2及び図3を参照)においては有意差(P<0.05)をもって効果の差が認められた。
(G) Summary of results From the measurement results of muscle wet weight, disuse muscle atrophy appeared in group W, which was a negative control to which cast was restricted and water was orally administered, as compared to group C, which was a control that was not cast. The O group which is an example in which oxycaine (SOD complex) was orally administered after being cast, and the E group which is a comparative example in which vitamin E was orally administered after being restricted to the cast were suppressed in the decrease in muscle wet weight as compared with the W group. The effect of preventing atrophy was confirmed.
Compared with the E group, the O group had a large muscle atrophy suppression rate, and a greater atrophy prevention effect was observed. This tendency was observed in all comparisons of the soleus, plantar and gastrocnemius muscles, but especially in the comparison of the soleus muscle (see FIGS. 2 and 3), the effect was significantly different (P <0.05). Differences were noted.

酸化タンパク質量及び過酸化脂質量の測定結果から、筋萎縮阻止の効果が高いO群において、酸化ストレスの状態がより軽減されていることが認められた。すなわち、オキシカイン(SOD複合体)を経口投与した実施例であるO群における酸化タンパク質量は、比較例であるE群及びネガティブコントロールであるW群のそれと比べて有意に低い値であった(図6a及び図6bを参照)。特に、ヒラメ筋の比較(図6aを参照)においては、O群の酸化タンパク質量は、ギプス拘束しないコントロールであるC群との有意差が認められなかった。また、O群の過酸化脂質量は、ヒラメ筋の比較(図7aを参照)においてはネガティブコントロールであるW群と比べて有意に低い値であり、足底筋の比較(図7bを参照)においては比較例であるE群と比べて有意に低い値であった。   From the measurement results of the amount of oxidized protein and the amount of lipid peroxide, it was recognized that the state of oxidative stress was further reduced in group O, which has a high effect of preventing muscle atrophy. That is, the amount of oxidized protein in group O which is an example in which oxycaine (SOD complex) was orally administered was significantly lower than that in group E as a comparative example and group W as a negative control (FIG. 6a and FIG. 6b). In particular, in the comparison of soleus muscle (see FIG. 6a), the amount of oxidized protein in group O was not significantly different from that in group C, which was a control that was not cast-restrained. The amount of lipid peroxide in the O group is significantly lower in the soleus muscle comparison (see FIG. 7a) than in the negative control group W, and the plantar muscle comparison (see FIG. 7b). The value was significantly lower than that of the E group as a comparative example.

SOD活性値及びα−トコフェロール量の結果(図4a、図4b、図5a、図5b)から、実施例であるO群は、SOD複合体の経口投与によりSOD活性値を有意に高くする効果が認められた。一方、比較例であるE群では、ビタミンEの経口投与によりα−トコフェロール量が有意に大きくなったが、SOD活性値がそれほど高くならなかった。
また、今回の実験に用いたO群とE群の投与量は、O群でのSOD換算した投与量が1日1回、体重1kg当たり5mg〜6.25mgであったのに対して、E群でのビタミンE投与量が1日1回、体重1kg当たり30mg〜35mgであり、SODはビタミンEよりも少ない量で優れた筋萎縮阻止の効果が認められた。
これらの結果から、実施例であるO群ではSOD複合体の経口投与により体内のSOD活性を直接高め、酸化ストレス及び廃用性筋萎縮に対して優れた阻止効果を発揮することが認められた。その阻止効果は、比較例であるE群(SOD様作用物質であるビタミンEの経口投与)と比べて有意に優れていた。
From the results of the SOD activity value and the amount of α-tocopherol (FIGS. 4a, 4b, 5a, and 5b), the O group as an example has an effect of significantly increasing the SOD activity value by oral administration of the SOD complex. Admitted. On the other hand, in the E group as a comparative example, the amount of α-tocopherol was significantly increased by oral administration of vitamin E, but the SOD activity value was not so high.
In addition, the doses of the O group and the E group used in this experiment were 5 mg to 6.25 mg per kg of body weight once a day in terms of the SOD conversion in the O group. The dose of vitamin E in the group was 30 mg to 35 mg per kg of body weight once a day, and SOD was effective in preventing muscle atrophy with an amount smaller than vitamin E.
From these results, it was recognized that in the O group which is an example, SOD activity in the body was directly increased by oral administration of the SOD complex, and an excellent inhibitory effect against oxidative stress and disuse muscle atrophy was exhibited. . The inhibitory effect was significantly superior to that of the comparative group E (oral administration of vitamin E, which is an SOD-like substance).

被験ラットの解剖時体重を示すグラフである。It is a graph which shows the body weight at the time of dissection of a test rat. 被験ラットのヒラメ筋湿重量を示すグラフである。It is a graph which shows the soleus muscle wet weight of a test rat. 被験ラットのヒラメ筋湿重量について、W群の萎縮に対する筋萎縮抑制率を示すグラフである。It is a graph which shows the muscular-atrophy inhibitory rate with respect to the atrophy of W group about the soleus muscle wet weight of a test rat. 被験ラットのヒラメ筋及び足底筋のSOD活性値を示すグラフである。It is a graph which shows the SOD activity value of the soleus muscle and plantar muscle of a test rat. 被験ラットのヒラメ筋及び足底筋のα−トコフェロール量を示すグラフである。It is a graph which shows the alpha-tocopherol amount of the soleus muscle and plantar muscle of a test rat. 被験ラットのヒラメ筋及び足底筋の酸化タンパク質量を示すグラフである。It is a graph which shows the amount of oxidized proteins of the soleus and plantar muscles of a test rat. 被験ラットのヒラメ筋及び足底筋の過酸化脂質量を示すグラフである。It is a graph which shows the amount of lipid peroxide of the soleus muscle and plantar muscle of a test rat.

Claims (4)

メロン由来スーパーオキシドジスムターゼとプロラミンとの複合体を有効成分として含有し、経口摂取用に処方された筋肉の酸化ストレス由来疾患予防経口剤。 An oral muscular oxidative stress- preventing disease-preventing agent containing a complex of melon-derived superoxide dismutase and prolamin as an active ingredient and prescribed for oral consumption. 筋肉分解抑制剤である請求項1に記載の筋肉の酸化ストレス由来疾患予防経口剤。 The oral preparation for preventing oxidative stress- derived diseases of muscle according to claim 1, which is a muscle degradation inhibitor. 経口用筋萎縮阻止剤である請求項1又は2に記載の筋肉の酸化ストレス由来疾患予防経口剤。 Oxidative stress from disease prevention oral muscles according to claim 1 or 2, an oral muscle atrophy inhibitor. 経口用廃用性筋萎縮阻止剤である請求項1乃至3のいずれかに記載の筋肉の酸化ストレス由来疾患予防経口剤。 The oral agent for preventing oxidative stress- derived diseases of muscle according to any one of claims 1 to 3, which is an oral disuse muscle atrophy inhibitor.
JP2004244145A 2004-08-24 2004-08-24 Oral preparation for preventing muscle oxidative stress Expired - Lifetime JP5275537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244145A JP5275537B2 (en) 2004-08-24 2004-08-24 Oral preparation for preventing muscle oxidative stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244145A JP5275537B2 (en) 2004-08-24 2004-08-24 Oral preparation for preventing muscle oxidative stress

Publications (2)

Publication Number Publication Date
JP2006062976A JP2006062976A (en) 2006-03-09
JP5275537B2 true JP5275537B2 (en) 2013-08-28

Family

ID=36109764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244145A Expired - Lifetime JP5275537B2 (en) 2004-08-24 2004-08-24 Oral preparation for preventing muscle oxidative stress

Country Status (1)

Country Link
JP (1) JP5275537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962678B2 (en) 2006-07-05 2015-02-24 Kao Corporation Senescence inhibitor
WO2013058194A1 (en) * 2011-10-17 2013-04-25 花王株式会社 Srf signal activating agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070980B2 (en) * 1991-06-07 2000-07-31 株式会社エルティーティー研究所 Lecithinated superoxide dismutase and drug containing the same as active ingredient
FR2729296B1 (en) * 1995-01-12 1997-03-28 Europlanaire PHARMACEUTICAL COMPOSITIONS COMPRISING A SUPEROXIDE DISMUTASE
JPH08208511A (en) * 1995-01-31 1996-08-13 Samu Kenkyusho:Kk Anti-motoneuron disease medicine
JP3792487B2 (en) * 1999-06-24 2006-07-05 株式会社Lttバイオファーマ Pharmaceutical composition containing lecithinized superoxide dismutase
JP2001089387A (en) * 1999-09-17 2001-04-03 Otsuka Pharmaceut Co Ltd Muscular atropy inhibitory composition
JP2002338464A (en) * 2001-05-14 2002-11-27 Kikkoman Corp Muscular atrophy inhibitor
JP2004155707A (en) * 2002-11-06 2004-06-03 Combi Corp NK cell activator and CTL activator

Also Published As

Publication number Publication date
JP2006062976A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
Aondona et al. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions
Upasani et al. Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats
Onyema et al. Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats
Phull et al. A radical view of the stomach: the role of oxygen-derived free radicals and anti-oxidants in gastroduodenal disease
US5597585A (en) Vitamin/mineral composition
JP2005529938A (en) Methods of using artemisinin-like compounds for preventing or delaying the onset of cancer
JP4009642B2 (en) Composition for improving obesity
US20080182803A1 (en) Rubrofusarin glycoside-containing composition
Senthilkumar et al. Effect of glycine on oxidative stress in rats with alcohol induced liver injury
KR20120046795A (en) Method of treatment of neurodegenerative or neuro-muscular degenerative diseases and therapeutic agent to treat the same
JP5220415B2 (en) Amino acid composition for preventing or treating senile anemia
Verma et al. Emblica officinalis aqueous extract ameliorates ochratoxin-induced lipid peroxidation in the testis of mice
JP5275537B2 (en) Oral preparation for preventing muscle oxidative stress
Babizhayev New concept in nutrition for the maintenance of the aging eye redox regulation and therapeutic treatment of cataract disease; synergism of natural antioxidant imidazole-containing amino acid-based compounds, chaperone, and glutathione boosting agents: a systemic perspective on aging and longevity emerged from studies in humans
Gonzalez-Correa et al. Effects of silymarin MZ-80 on hepatic oxidative stress in rats with biliary obstruction
KR19990071183A (en) Honggyeongcheon Extract with Efficacy and Prevention of Circulatory Diseases
Nithiya et al. Protective effect of phloretin on hyperglycemia mediated oxidative stress in experimental diabetic rats
JPWO2006104153A1 (en) Composition for enhancing antioxidant activity in blood
Iranloye et al. Garlic and vitamin E provides antioxidant defence in tissues of female rats treated with nicotine
Zulaikhah et al. The impact of tender coconut water on preventing lipid peroxidation and increasing antioxidant enzymes in lead-induced rats
Bocci et al. A practical approach for restoring Homeostasis in diseases characterized by a Chronic oxidative stress
JP2006151843A (en) Cathepsin K inhibitor and food provided with the function
JP3441411B2 (en) Cholesterol-lowering peptide
JP2006256985A (en) Calcium salt crystallization-inhibiting protein obtained from seashell, method for producing the same, and use thereof
JPH06199694A (en) Agent for stabilizing blood pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term