[go: up one dir, main page]

JP5274085B2 - Laser processing apparatus, laser beam pitch variable method, and laser processing method - Google Patents

Laser processing apparatus, laser beam pitch variable method, and laser processing method Download PDF

Info

Publication number
JP5274085B2
JP5274085B2 JP2008101946A JP2008101946A JP5274085B2 JP 5274085 B2 JP5274085 B2 JP 5274085B2 JP 2008101946 A JP2008101946 A JP 2008101946A JP 2008101946 A JP2008101946 A JP 2008101946A JP 5274085 B2 JP5274085 B2 JP 5274085B2
Authority
JP
Japan
Prior art keywords
laser beam
beams
acoustooptic
incident
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008101946A
Other languages
Japanese (ja)
Other versions
JP2009248173A (en
Inventor
芳紀 大西
良明 山本
均 池田
孝一 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008101946A priority Critical patent/JP5274085B2/en
Publication of JP2009248173A publication Critical patent/JP2009248173A/en
Application granted granted Critical
Publication of JP5274085B2 publication Critical patent/JP5274085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、レーザー加工装置、レーザービームのピッチ可変方法、及びレーザー加工方法に関し、特に音響光学素子を備えたレーザー加工装置、音響光学素子を利用するレーザービームのピッチ可変方法、及びこのレーザー加工装置を用いたレーザー加工方法に関する。   The present invention relates to a laser processing apparatus, a laser beam pitch variable method, and a laser processing method, and more particularly, to a laser processing apparatus including an acoustooptic element, a laser beam pitch variable method using the acoustooptic element, and the laser processing apparatus. The present invention relates to a laser processing method using the.

従来、レーザービームにより被加工物表面にライン状加工を行う工程として、例えば、薄膜太陽電池パネル作製に当たり、電極膜形成のためにITO膜、アモルファスシリコン膜等にスクライビング(切り込み)加工を行う加工工程や、アモルファスシリコンをポリシリコンに改質するためにシリコン膜にレーザービームをライン状に施すレーザーアニール工程や、チップ抵抗のセラミック基板に対して、個別チップに分割するためのスクライビングラインを施すスクライビング工程等が知られている。   Conventionally, as a process of performing line-shaped processing on the surface of a workpiece with a laser beam, for example, a processing process of scribing (cutting) into an ITO film, an amorphous silicon film, etc. for forming an electrode film in the production of a thin film solar cell panel In addition, a laser annealing process that applies a laser beam to the silicon film in a line to modify amorphous silicon into polysilicon, and a scribing process that applies a scribing line to divide the chip resistance ceramic substrate into individual chips Etc. are known.

例えば、薄膜太陽電池パネルは、CVD法やスパッタ法で下地層を成膜したガラス基板上に、透明電極膜、シリコン膜、及びメタル膜等を形成してなる積層膜からなる。これらの積層膜が光に対して応答し、電池作用を引き起こす。この電池パネルの生産工程では、レーザーにより膜面をスクライビングして、電池を直列に接続する工程が必要になる。この工程で使われるレーザー装置を、通常、レーザースクライバーと称している。このスクライビング工程では、通常、波長1μm近傍や0.5μm近傍のレーザービーム発振器が多く使われている。他の波長でもスクライビングは可能であるが、装置のコストや入手難や安定性等に鑑みて、上記した波長のレーザービーム発振器が多く使われているのが現状である。   For example, a thin film solar cell panel is composed of a laminated film in which a transparent electrode film, a silicon film, a metal film, and the like are formed on a glass substrate on which a base layer is formed by CVD or sputtering. These laminated films respond to light and cause battery action. In the battery panel production process, a process of scribing the film surface with a laser and connecting the batteries in series is required. The laser device used in this process is usually called a laser scriber. In this scribing process, a laser beam oscillator with a wavelength of about 1 μm or about 0.5 μm is usually used. Although scribing is possible at other wavelengths, in view of the cost of the apparatus, difficulty in acquisition, stability, etc., the laser beam oscillators of the above wavelengths are currently used in many cases.

近年、上記スクライビング工程等において、単一のレーザービームを複数のビームに分岐し、この分岐された複数のビームを用いてライン状の加工を行うことが提案されている。例えば、回折格子を用いて単一のレーザービームを分岐することが知られている(例えば、特許文献1参照)。   In recent years, in the scribing process or the like, it has been proposed to branch a single laser beam into a plurality of beams and perform a line-like processing using the plurality of branched beams. For example, it is known to branch a single laser beam using a diffraction grating (see, for example, Patent Document 1).

スクライビング工程では、通常、レーザービームを分岐するだけではなく、分岐後のビーム間のピッチが可変であると共に、被加工物の加工目的に応じてピッチ間隔を調整できなければならない。しかし、回折格子により分岐されたビームは照射レンズへと向かい、照射レンズでは被加工物に対してなるべく垂直な方向からビームが到達するように設計されるが、外側のビームほど、斜めに照射されるという問題がある。そのため、ビームエネルギーの利用効率は低く、60%程度である。また、回折格子では、理想的なビーム分岐はできず、必ず回折条件の成立しない副次光が発生するという問題もあり、汎用的ではない。   In the scribing process, it is usually necessary not only to split the laser beam, but also to change the pitch between the beams after branching and to adjust the pitch interval according to the processing purpose of the workpiece. However, the beam branched by the diffraction grating is directed to the irradiation lens, and the irradiation lens is designed so that the beam reaches from the direction as perpendicular to the workpiece as possible, but the outer beam is irradiated obliquely. There is a problem that. Therefore, the utilization efficiency of beam energy is low, about 60%. In addition, the diffraction grating cannot be ideally beam-divided, and there is a problem that secondary light that does not always satisfy the diffraction condition is generated.

図1に回折格子を用いたビーム分岐の一例を示す。レーザービーム発振器1から発振される単一レーザービームは、エキスパンダー2を透過し、反射ミラー3で反射された後に回折格子4を透過して分岐される。この分岐されたビームは、0次から高次までの回折光となり、広がりながら照射レンズ5へと向かう。照射レンズ5を透過したビームは、遮光マスク6を経て被加工物7に対してなるべく垂直な方向から到達するように設計されているが、全てのビームを垂直方向から被加工物7へ照射することはできないという問題がある。回折格子を使用する場合、ビーム間のピッチは、ビームの光軸を中心にして、回折格子4、照射レンズ5及び遮光マスク6を回転することにより達成可能ではあるが、上記したような問題がある。   FIG. 1 shows an example of beam branching using a diffraction grating. A single laser beam oscillated from the laser beam oscillator 1 is transmitted through the expander 2, reflected by the reflection mirror 3, and then transmitted through the diffraction grating 4 and branched. The branched beam becomes diffracted light from the 0th order to the higher order, and travels toward the irradiation lens 5 while spreading. The beam transmitted through the irradiation lens 5 is designed so as to reach the workpiece 7 through the light shielding mask 6 from the vertical direction as much as possible. However, all the beams are irradiated to the workpiece 7 from the vertical direction. There is a problem that you can't. When the diffraction grating is used, the pitch between the beams can be achieved by rotating the diffraction grating 4, the irradiation lens 5, and the light shielding mask 6 around the optical axis of the beam. is there.

特開2004−268144号公報(特許請求の範囲等)JP 2004-268144 A (claims, etc.)

本発明の課題は、上述の従来技術の問題点を解決することにあり、理想的なビーム分岐ができ、被加工物に対してビームを垂直に照射でき、かつビーム間ピッチを任意に調整することができるレーザー加工装置、レーザービームのピッチ可変方法、及びこのレーザー加工装置を用いたレーザー加工方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, ideal beam branching can be performed, a beam can be irradiated perpendicularly to a workpiece, and a pitch between beams can be arbitrarily adjusted. An object of the present invention is to provide a laser processing apparatus, a laser beam pitch variable method, and a laser processing method using the laser processing apparatus.

本発明のレーザー加工装置は、レーザービーム発振器と音響光学素子とこの音響光学素子に接続したRF電源と集光レンズとを有し、レーザービーム発振器から発振される単一のレーザービームを音響光学素子に入射せしめる際に、音響光学素子にRFパワーを印加し、発生した疎密波の進行方向に対して垂直な軸に対し1〜2度の角度傾けて該単一のレーザービームを入射せしめ、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、このビーム間隔の調整された複数のビームを集光レンズを透過させ、被加工物表面に照射させてライン状の加工を行うために使用されることを特徴とする The laser processing apparatus of the present invention includes a laser beam oscillator, an acoustooptic device, an RF power source connected to the acoustooptic device, and a condenser lens, and a single laser beam oscillated from the laser beam oscillator is converted into an acoustooptic device. when allowed to enter the, RF power is applied to the acousto-optic device, it caused to incident said single laser beam inclined angle of 1-2 degrees with respect to an axis perpendicular to the traveling direction of the compressional wave that occurred, The beam is branched into a plurality of beams by Raman diffraction, and the pitch interval of the beams is adjusted. The plurality of beams having the adjusted beam intervals are transmitted through the condenser lens and irradiated onto the surface of the workpiece to perform the line-like processing. It is used for the purpose .

上記のように構成したレーザー加工装置によれば、理想的なビーム分岐ができ、被加工物に対して垂直に照射できると共に、ビーム間ピッチを任意に調整することができるようになる。   According to the laser processing apparatus configured as described above, ideal beam branching can be performed, the workpiece can be irradiated vertically, and the pitch between the beams can be arbitrarily adjusted.

本発明のレーザービームのピッチ可変方法は、レーザービーム発振器と音響光学素子とこの音響光学素子に接続したRF電源と集光レンズとを有するレーザー加工装置を用いて行う複数のビームのピッチ間隔を調整するレーザービームのピッチ可変方法であって、レーザービーム発振器から発振される単一のレーザービームを音響光学素子に入射せしめる際に、音響光学素子にRFパワーを印加し、発生した疎密波の進行方向に対して垂直な軸に対し1〜2度の角度傾けて該単一のレーザービームを入射せしめ、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、このビーム間隔の調整された複数のビームを集光レンズを透過させることを特徴とする The laser beam pitch variable method of the present invention adjusts the pitch interval of a plurality of beams using a laser processing apparatus having a laser beam oscillator, an acoustooptic element, an RF power source connected to the acoustooptic element, and a condenser lens. a laser beam variable pitch method for, when allowed to incident single laser beam oscillated from the laser beam oscillator to the acousto-optic device, the RF power is applied to the acousto-optic device, compressional wave progression that occurred The single laser beam is incident at an angle of 1 to 2 degrees with respect to an axis perpendicular to the direction , and the beam pitch interval is adjusted by branching to a plurality of beams by Ramanus diffraction. The plurality of beams are transmitted through a condenser lens .

このピッチ可変方法においては、音響光学素子に所定のRFパワーを印加することにより、被加工物に照射するビームを理想的な分岐ビームとすることできると共に、ビーム間ピッチを任意に調整し、可変することができる。また、理想的なビーム分岐ができ、被加工物に対してビームを垂直に照射できる。   In this pitch variable method, by applying a predetermined RF power to the acoustooptic device, the beam irradiated to the workpiece can be made an ideal branch beam, and the pitch between the beams can be arbitrarily adjusted to be variable. can do. Further, ideal beam branching can be performed, and the beam can be irradiated perpendicularly to the workpiece.

本発明のレーザー加工方法は、レーザービーム発振器と音響光学素子とこの音響光学素子に接続したRF電源と集光レンズとを有するレーザー加工装置を用いて行う被加工物の表面をライン状に加工する方法において、レーザービーム発振器から発振される単一のレーザービームを該音響光学素子に入射せしめる際に、音響光学素子にRFパワーを印加し、発生した疎密波の進行方向に対して垂直な軸に対し1〜2度の角度傾けて該単一のレーザービームを入射せしめ、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、このビーム間隔の調整された複数のビームを集光レンズを透過させて被加工物表面に照射してライン状の加工を行うことを特徴とする The laser processing method of the present invention processes the surface of a workpiece to be processed in a line shape using a laser processing apparatus having a laser beam oscillator, an acoustooptic element, an RF power source connected to the acoustooptic element, and a condenser lens. in the method, a single laser beam oscillated from the laser beam oscillator when allowed to enter the said acoustooptic device, the RF power is applied to the acousto-optic device, the axis perpendicular to the traveling direction of the compressional wave that occurred The single laser beam is incident at an angle of 1 to 2 degrees with respect to the angle, and is branched into a plurality of beams by Raman diffraction to adjust the beam pitch interval, and the plurality of beams having the adjusted beam interval are collected. A linear process is performed by irradiating the surface of the workpiece through the optical lens .

上記のように構成したプロセスによれば、音響光学素子に所定のRFパワーを印加することにより、被加工物に照射するビームを理想的な分岐ビームとして、被加工物に対して垂直に照射できると共に、ビーム間ピッチを任意に調整し、可変することができるので、被加工物を目的に応じて任意にライン状に加工することができる。   According to the process configured as described above, by applying a predetermined RF power to the acoustooptic device, the beam irradiated onto the workpiece can be irradiated perpendicularly to the workpiece as an ideal branch beam. At the same time, the pitch between the beams can be arbitrarily adjusted and varied, so that the workpiece can be arbitrarily processed into a line according to the purpose.

上記で用いられる音響光学素子は、水晶又はガラス等からなるものであることが好ましい。   The acousto-optic element used above is preferably made of quartz or glass.

本発明によれば、レーザービームの理想的な分岐ができ、加工物に対してビームを垂直に照射できると共に、ビーム間ピッチを任意に調整することができ、被加工物を目的に応じて任意にライン状に加工できるという効果を奏する。   According to the present invention, an ideal branch of a laser beam can be performed, the beam can be irradiated perpendicularly to the workpiece, the pitch between the beams can be arbitrarily adjusted, and the workpiece can be arbitrarily selected according to the purpose. There is an effect that it can be processed into a line shape.

本発明に係るレーザー加工装置の好ましい実施の形態によれば、レーザービーム発振器と音響光学素子である水晶とこの水晶に接続したRF電源と集光レンズとを有し、レーザービーム発振器から発振される単一のレーザービームを水晶結晶に対して、所定の傾きをもって入射せしめ、水晶に所定のRFパワーを印加し、この単一のレーザービームに音波振動を与え、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、この分岐されたビーム間隔の調整された複数のビームを集光レンズを透過させ、被加工物表面に照射させてライン状の加工を行うために使用されるレーザー加工装置が提供される。   According to a preferred embodiment of the laser processing apparatus of the present invention, a laser beam oscillator, a quartz crystal that is an acoustooptic device, an RF power source connected to the quartz crystal, and a condensing lens are oscillated from the laser beam oscillator. A single laser beam is made incident on the crystal crystal with a predetermined inclination, a predetermined RF power is applied to the crystal, sonic vibration is applied to the single laser beam, and it is branched into multiple beams by Ramanus diffraction. The laser is used to adjust the pitch interval of the beams, and to pass through the converging lens through the multiple beams with the branched beam intervals and irradiate the surface of the workpiece to perform line processing A processing apparatus is provided.

本発明によれば、光路途中に挿入した水晶のような音響光学素子に入射するレーザービームに対して、RFパワーにより音波振動を加えることにより所期の目的を達成することができる。そのため、本発明において用いるレーザーは、パルス信号を発するものでも、CW信号を発するものでも良い。また、レーザービームがパルスであった場合、音波信号は、必ずしもビームのパルスに同期する必要はない。これは、音響格子が成立している箇所へビームを入射せしめるからである。   According to the present invention, an intended purpose can be achieved by applying sound wave vibration with RF power to a laser beam incident on an acoustooptic device such as quartz inserted in the middle of an optical path. Therefore, the laser used in the present invention may emit a pulse signal or a CW signal. When the laser beam is a pulse, the sound wave signal does not necessarily need to be synchronized with the pulse of the beam. This is because the beam is incident on the portion where the acoustic grating is established.

音響光学素子である水晶にRF電源から所定のRF領域の音波(縦波)を付与すると、水晶結晶中に疎密波が発生し、ある瞬間に密度が高いところと低いところが交互に発生することから、RFパワーが与えられた水晶結晶は格子とみることができる。従って、RFパワーが定常的に与えられていれば、電極部分に対応する箇所(格子が有効に使える幅である総作用長:L)に定常的に格子が発生する。そのため、この格子部分にレーザービームを入射せしめると、このビームは回折され、ビーム分岐が生じる。この分岐数は、RFパワーに比例する。この場合、空冷により音響光学素子を用いた時には、RF出力(水晶へのRF印加パワー、周波数:40MHz)が20〜50Wの範囲であればビームの分岐数に変化はないが、RF出力が20Wより低いと水晶結晶内に生成していた格子が消滅してしまい、ビーム分岐は認められない。空冷の場合は、RF出力が50Wを超える音圧の歪が生じることがあるが、水冷により音響光学素子を用いれば、50Wよりも高いRF出力でも、上記と同様にビーム分岐は認められる。   When a sound wave (longitudinal wave) in a predetermined RF region is applied from an RF power source to quartz crystal, which is an acousto-optic device, dense waves are generated in the quartz crystal, and high density and low density are alternately generated at a certain moment. A quartz crystal to which RF power is applied can be regarded as a lattice. Therefore, if the RF power is constantly applied, a lattice is constantly generated at a position corresponding to the electrode portion (total working length: L which is a width in which the lattice can be effectively used). For this reason, when a laser beam is incident on the grating portion, the beam is diffracted and beam branching occurs. The number of branches is proportional to the RF power. In this case, when the acoustooptic element is used by air cooling, the number of beam branches does not change if the RF output (RF applied power to the crystal, frequency: 40 MHz) is in the range of 20 to 50 W, but the RF output is 20 W. If it is lower, the lattice generated in the quartz crystal disappears, and beam branching is not recognized. In the case of air cooling, distortion of sound pressure with an RF output exceeding 50 W may occur. However, if an acoustooptic device is used by water cooling, beam branching is recognized even at an RF output higher than 50 W as described above.

本発明で用いる音響光学素子は、レーザー装置内で強度変調やビーム位置の電気的制御(ビーム変調)のために広く使われる結晶であり、この素子では、レーザービーム周波数は、音響周波数と同じだけシフトする。音響光学素子内にレーザービームと音響波が存在するとき、その素子において音響光学効果が起こり、音響波が素子内に入ると、正弦グレーディングのように作用するある屈折率を持った波が生じる。レーザービームが、このグレーディングに入射されると、ラマンナス効果又はブラッグ効果によりいくつかのオーダーに回折される。   The acousto-optic element used in the present invention is a crystal widely used for intensity modulation and electrical control of beam position (beam modulation) in a laser apparatus. In this element, the laser beam frequency is the same as the acoustic frequency. shift. When a laser beam and an acoustic wave are present in the acousto-optic element, an acousto-optic effect occurs in the element, and when the acoustic wave enters the element, a wave having a refractive index acting like sine grading is generated. When a laser beam is incident on this grading, it is diffracted to several orders by the Ramanus effect or the Bragg effect.

次に、ラマンナス回折及びブラッグ回折について説明する。   Next, Ramanus diffraction and Bragg diffraction will be described.

音響光学素子は、結晶の構成により、下記の式(1)に従ってラマンナス効果又はブラッグ効果を生じる。   The acoustooptic device produces a Ramanus effect or a Bragg effect according to the following formula (1), depending on the crystal structure.

Q=(2πλL)/(nΛ) (1)
式(1)中で、Λ=ν/fであるので、
Q=(2πλLf )/(nν) (2)
式(1)及び(2)中、Qは性能指数、λは入射レーザービームの波長、Lは総作用幅(格子が有効に使える電極幅)、nはレーザー波長による材料の屈折率、Λは超音波の波長、fは超音波変調周波数、νは超音波媒質中の伝播速度を表す。
Q = (2πλL) / (nΛ 2 ) (1)
In formula (1), since it is Λ = ν / f c,
Q = (2πλLf c 2 ) / (nν 2 ) (2)
In equations (1) and (2), Q is a figure of merit, λ is the wavelength of the incident laser beam, L is the total action width (electrode width where the grating can be used effectively), n is the refractive index of the material depending on the laser wavelength, and Λ is wavelength of the ultrasonic wave, f c is the ultrasound modulation frequency, [nu denotes the propagation velocity of an ultrasonic medium.

Q<1の条件の時をラマンナス回折領域と言い、ラマンナス回折が生じ、図2に示すように、入射レーザービームが0次回折光を中心に±n次回折光が生じる。すなわち、音響光学素子内に生成された回折格子により、入射ビームは回折作用を受けるので、射出ビームは複数本に分岐され、扇状に射出される。これは、回折を受ける状態にもよるが、回折格子の格子条件に強く依存する。本発明者らの実験によれば、7〜8本の分岐の状態が確認されたが、RF電源(RFドライバー)の出力を増すにつれて、分岐ビーム本数が増えることが確認できている。また、RF出力を加減することで、極めて分岐幅の狭い領域の分岐ビームを得ることもできる。さらに、音響光学素子に対するレーザービームの入射角度は、分岐幅への依存性がある程度はあるものの、分岐幅よりもむしろ、光軸中心にビームを振動させる空間偏重的な効果を相乗させることができるという点にある。これは、ビーム変調の1つとして解釈される。   When the condition of Q <1 is called a Ramanus diffraction region, Ramanus diffraction occurs, and as shown in FIG. 2, an incident laser beam generates ± nth order diffracted light centering on 0th order diffracted light. That is, since the incident beam is diffracted by the diffraction grating generated in the acoustooptic device, the emitted beam is branched into a plurality of beams and emitted in a fan shape. This depends strongly on the grating conditions of the diffraction grating, although it depends on the state of diffraction. According to the experiments by the present inventors, the state of 7 to 8 branches has been confirmed, but it has been confirmed that the number of branched beams increases as the output of the RF power source (RF driver) increases. Further, by adjusting the RF output, it is possible to obtain a branched beam having a very narrow branch width. Furthermore, although the incident angle of the laser beam on the acousto-optic device has a certain degree of dependence on the branch width, it can synergize with the spatially deviating effect of vibrating the beam around the optical axis rather than the branch width. It is in that point. This is interpreted as one of the beam modulations.

上記式(2)のファクターを任意に選択してQ<1となるようにすれば、上記ラマンナス効果は生じる。例えば、λ=0.53μm、L=5mm、n=1.46(at 0.53μm)、f=41MHz、ν=5.96mm/μsecとし、上記式(1)に代入すれば、Q≒0.54となり、Q<1のラマンナス条件を満たす。本発明の実施例ではこの条件を用いて行った。 If the factor of the above formula (2) is arbitrarily selected so that Q <1, then the Ramanus effect will occur. For example, if λ = 0.53 μm, L = 5 mm, n = 1.46 (at 0.53 μm), f c = 41 MHz, ν = 5.96 mm / μsec, and substituting into the above equation (1), Q≈ 0.54, which satisfies the Ramanus condition of Q <1. In the Example of this invention, it carried out using this condition.

また、Q>1の条件の時をブラッグ回折領域と言い、ブラッグ回折が生じ、入射レーザービームは反射されて0次光及び+次光の回折が生じる。   The condition of Q> 1 is referred to as a Bragg diffraction region. Bragg diffraction occurs, and the incident laser beam is reflected to diffract 0th order light and + order light.

本発明は、上記したラマンナス回折を利用するものである。レーザービームを音響光学素子に入射せしめ、この素子を透過すると、ビームは扇状に広がって射出される。その結果、レーザービームは所望の数に分岐される。かくして、ビームのピッチ間隔が調整されて、このピッチ間隔の調整された複数のビームを用いて、被加工物表面をライン状に加工するためのレーザー加工装置が提供される。   The present invention utilizes the Ramanas diffraction described above. When a laser beam is incident on an acoustooptic device and passes through this device, the beam spreads in a fan shape and is emitted. As a result, the laser beam is branched into the desired number. Thus, there is provided a laser processing apparatus in which the pitch interval of the beam is adjusted, and the workpiece surface is processed into a line shape using the plurality of beams having the adjusted pitch interval.

例えば、図2に示すように、レーザービーム発振器21を音響光学素子22に対して所定の角度傾けて配置し、レーザービーム発振器21から発振される単一のレーザービームを、音響光学素子22に対して垂直から所定の角度の傾きをもって入射せしめ、音響光学素子22に対してRF電源23から所定のRFパワーを与えると、RF領域の音波により音響光学素子22の結晶中に疎密波が発生して回折格子となる。このため、入射されたレーザービームは、この回折格子によってラマンナス効果により回折され、回折光として音響光学素子22から扇状に広がって射出され、集光レンズ24及び25を透過して、0次回折光を中心に±n次回折光として射出され、所定の数の分岐ビームが得られる(図2では7本の分岐ビームを示してある)。かくして、ビームのピッチ間隔が調整され、このピッチ間隔の調整された複数のビームを用いて、被加工物表面をライン状に加工することができる。この場合、RFパワーを20〜50Wの範囲内で変化させると、ビームのピッチ間隔を調整することができると共に高い輝度が得られる。   For example, as shown in FIG. 2, the laser beam oscillator 21 is disposed at a predetermined angle with respect to the acoustooptic device 22, and a single laser beam oscillated from the laser beam oscillator 21 is transmitted to the acoustooptic device 22. When a predetermined RF power is applied from the RF power source 23 to the acousto-optic element 22 with a predetermined angle of inclination from the vertical, a dense wave is generated in the crystal of the acousto-optic element 22 by the sound wave in the RF region. It becomes a diffraction grating. For this reason, the incident laser beam is diffracted by this diffraction grating due to the Ramanus effect, spreads out as a diffracted light from the acoustooptic device 22 in a fan shape, passes through the condensing lenses 24 and 25, and produces zero-order diffracted light. A predetermined number of branched beams are obtained at the center as ± n-order diffracted light (seven branched beams are shown in FIG. 2). Thus, the pitch interval of the beams is adjusted, and the surface of the workpiece can be processed into a line shape by using the plurality of beams whose pitch intervals are adjusted. In this case, when the RF power is changed within a range of 20 to 50 W, the pitch interval of the beams can be adjusted and high luminance can be obtained.

上記したように、レーザービーム発振器21から発振される単一のレーザービームを、音響光学素子22に対して垂直から所定の角度の傾きをもって入射せしめると、入射ビームの分散がより可能となると共に、0次回折光に対する回折効率が低減し、高次光における回折成分に対する回折効率が上がる。   As described above, when a single laser beam oscillated from the laser beam oscillator 21 is incident on the acoustooptic device 22 at a predetermined angle from the vertical, the incident beam can be more dispersed, The diffraction efficiency with respect to the 0th-order diffracted light is reduced, and the diffraction efficiency with respect to the diffraction component in the higher-order light is increased.

上記したように、音響光学素子22に対するRFパワーを変えれば、ビームの分散角が変わり、その結果、射出するビームの扇状の形状が変わり、必然的にビームピッチが変わる。   As described above, changing the RF power to the acousto-optic element 22 changes the beam dispersion angle, resulting in a change in the fan-shaped shape of the emitted beam, which inevitably changes the beam pitch.

図3に示すように、レーザービーム発振器21から発振する単一のレーザービームを音響光学素子22の疎密波進行方向に垂直となる位置から入射せしめ、音響光学素子22に対してRF電源23から所定のRFパワーを与えると、RF領域の音波により音響光学素子22の結晶中に疎密波が発生して回折格子となって、入射されたレーザービームは縦波(音波)の回折光として音響光学素子22から射出される。   As shown in FIG. 3, a single laser beam oscillated from the laser beam oscillator 21 is incident from a position perpendicular to the traveling direction of the sparse wave of the acoustooptic element 22, and a predetermined power is supplied from the RF power source 23 to the acoustooptic element 22. When the RF power is applied, a dense wave is generated in the crystal of the acoustooptic device 22 by the sound wave in the RF region to form a diffraction grating, and the incident laser beam is converted into longitudinal wave (sound wave) diffracted light as the acoustooptic device. 22 is injected.

また、図4に示すように、レーザービーム発振器21から発振する単一のレーザービームを音響光学素子22疎密波進行方向に垂直となる位置から入射せしめ、音響光学素子22に対してRF電源23から所定のRFパワーを与えると、RF領域の音波が入射したレーザービームに対して垂直に当たり、音響光学素子22の結晶中に疎密波が発生して回折格子となって、入射されたレーザービームは縦波の回折光として音響光学素子22から射出され、スクリーン上に所定の幅を持ったライン状のレーザービームとして照射される。   As shown in FIG. 4, a single laser beam oscillated from the laser beam oscillator 21 is incident from a position perpendicular to the traveling direction of the sparse / dense wave of the acoustooptic element 22, and is supplied from the RF power source 23 to the acoustooptic element 22. When a predetermined RF power is applied, a sound wave in the RF region strikes perpendicularly to the incident laser beam, a dense wave is generated in the crystal of the acoustooptic device 22 to form a diffraction grating, and the incident laser beam is vertically Wave diffracted light is emitted from the acousto-optic device 22 and irradiated onto the screen as a linear laser beam having a predetermined width.

上記した音響光学素子としては、例えば、可視領域及び近赤外領域では、主に水晶単結晶、ガリウムリン単結晶、二酸化テルル単結晶、インジウムリン単結晶等、モリブデン酸鉛単結晶、ガラス等を使うことができ、赤外領域ではゲルマニウム単結晶を主に使うことができる。本発明で使用する音響光学素子としては、水晶単結晶等の水晶又はガラス等が好ましい。   As the above-described acoustooptic device, for example, in the visible region and the near infrared region, mainly crystal single crystal, gallium phosphide single crystal, tellurium dioxide single crystal, indium phosphide single crystal, lead molybdate single crystal, glass, etc. Germanium single crystal can be mainly used in the infrared region. As the acoustooptic device used in the present invention, quartz or glass such as quartz single crystal is preferable.

上記では、音響光学素子内へRFパワーを印加してビームのピッチ間隔が調整された分岐ビームを生成したが、このピッチ幅は、RFパワーを変化させること以外に、分岐されたビームを透過する集光レンズの倍率を変化させるか、又は音響光学素子と集光レンズとを一体物として、これを光軸中心に回転させることによっても、ビームのピッチは拡大、縮小するので、ピッチを調整し、可変することができる。   In the above, a branched beam in which the pitch interval of the beam is adjusted by applying RF power into the acoustooptic device is generated, but this pitch width transmits the branched beam in addition to changing the RF power. By changing the magnification of the condenser lens, or by rotating the acousto-optic element and the condenser lens as a single unit and rotating it around the optical axis, the beam pitch can be expanded or reduced. Can be variable.

本発明のレーザービームのピッチ可変方法の好ましい実施の形態によれば、レーザービーム発振器と音響光学素子としての水晶とこの水晶に接続したRF電源と集光レンズとを有するレーザー加工装置を用いて行う複数のビームのピッチ間隔を調整するレーザービームのピッチ可変法方法であって、レーザービーム発振器から発振される単一のレーザービームを水晶に入射せしめ、水晶にRFパワーを印加し、この単一のレーザービームに音波振動を与えて複数のビームに分岐してビームのピッチ間隔を調整し、この分岐されたビーム間隔の調整された複数のビームを集光レンズを透過させるピッチ可変方法が提供される。   According to a preferred embodiment of the laser beam pitch variable method of the present invention, the laser beam oscillator, a quartz crystal as an acoustooptic device, an RF power source connected to the quartz crystal, and a condensing lens are used. A laser beam pitch variable method for adjusting a pitch interval of a plurality of beams, wherein a single laser beam oscillated from a laser beam oscillator is incident on a crystal, and RF power is applied to the crystal. A pitch variable method is provided in which a laser beam is subjected to sound wave vibration to be branched into a plurality of beams to adjust the pitch interval of the beams, and the plurality of beams having the adjusted beam intervals are transmitted through a condenser lens. .

このピッチ可変方法における各構成要素については、前記したレーザー加工装置において説明した通りである。   Each component in the pitch variable method is as described in the laser processing apparatus.

本発明のレーザー加工方法の好ましい実施の形態によれば、レーザービーム発振器と水晶とこの水晶に接続したRF電源と集光レンズとを有するレーザー加工装置を用いて行う被加工物の表面をライン状に加工する方法において、レーザービーム発振器から発振される単一のレーザービームを水晶に入射せしめ、水晶にRFパワーを印加し、この単一のレーザービームに音波振動を与えて複数のビームに分岐してビームのピッチ間隔を調整し、この分岐されたビーム間隔の調整された複数のビームを集光レンズを透過させて被加工物表面に照射してライン状の加工を行うレーザー加工方法が提供される。   According to a preferred embodiment of the laser processing method of the present invention, the surface of a workpiece to be processed using a laser processing apparatus having a laser beam oscillator, a crystal, an RF power source connected to the crystal, and a condenser lens is formed in a line shape. In this method, a single laser beam oscillated from a laser beam oscillator is made incident on the crystal, RF power is applied to the crystal, and sound vibration is applied to the single laser beam to split it into multiple beams. A laser processing method is provided that adjusts the pitch interval of the beams and irradiates the surface of the workpiece with a plurality of beams having the adjusted beam intervals transmitted through the condensing lens. The

このレーザー加工方法における各構成要素については、前記したレーザー加工装置において説明した通りである。   Each component in the laser processing method is as described in the laser processing apparatus.

レーザービーム発振器と水晶とこの水晶に接続したRF電源(周波数:40MHz)と集光レンズとを有し、レーザービーム発振器から発振される単一のレーザービームを水晶内に入射せしめ、水晶に所定のRFパワーを印加して単一のレーザービームに音波振動を与えて複数のビームに分岐してビームのピッチ間隔を調整し、この分岐されたビーム間隔の調整された複数のビームを集光レンズを透過させ、被加工物表面に照射させてライン状の加工を行うために使用されるレーザー加工装置を用い、RFパワーを20〜50Wの範囲で、段階的に変化させて稼働し、得られたレーザースポットをスクリーンに投影させ、そのスポットを撮影した。この映像を図5(a)〜(d)に示す。このRFパワーを20Wより低下させて上記と同様にしてレーザービームを入射させたところ、水晶結晶内に生成していた格子が消滅し、ビーム分岐は認められなかった。   A laser beam oscillator, a crystal, an RF power source (frequency: 40 MHz) connected to the crystal, and a condenser lens are provided. A single laser beam oscillated from the laser beam oscillator is incident on the crystal, and a predetermined crystal is applied to the crystal. Applying RF power to apply sonic vibration to a single laser beam and branching it into multiple beams to adjust the pitch interval of the beams, and using the condensing lens It was obtained by using a laser processing apparatus that is used to perform transmission and irradiating the surface of the workpiece to perform line processing, and changing the RF power in a range of 20 to 50 W in a stepwise manner. A laser spot was projected onto the screen and the spot was photographed. This video is shown in FIGS. When this RF power was lowered below 20 W and a laser beam was incident in the same manner as described above, the lattice generated in the quartz crystal disappeared and no beam branching was observed.

図5(a)は、レーザービームを水晶結晶面に入射せしめた場合(RFパワー:50W
)における、射出ビームの状態を示すものであり、9ビームに分岐されている様子が肉
眼で観察できる。
FIG. 5A shows a case where a laser beam is incident on a crystal surface (RF power: 50 W).
), The state of the exit beam can be observed with the naked eye.

図5(b)は、RFパワーを20Wとした場合の結果を示すものであり、図5(a)と比べて、ビームの分岐数は変化しなかったが、輝度が異なっており、これは、回折効率がRFパワーの低下と共に、低下したためと考えられる。   FIG. 5 (b) shows the result when the RF power is 20 W. Compared with FIG. 5 (a), the number of beam branches does not change, but the brightness is different. This is considered to be because the diffraction efficiency decreased with the decrease in RF power.

図5(c)は、RFパワーを50Wとし、入射角度を垂直軸から1度程度傾けてビームを入射した場合の結果を示すものである。高次光と低次光との解析効率が均等に分配され、ビーム輝度が均一に近い状態になっていた。ビーム分岐数は、9本であり、図5(a)及び(b)と同じであった。但し、両端のビームの輝度は低かった。   FIG. 5C shows the result when the beam is incident with the RF power set to 50 W and the incident angle inclined by about 1 degree from the vertical axis. The analysis efficiency of the high-order light and the low-order light is evenly distributed, and the beam luminance is almost uniform. The number of beam branches was 9, which was the same as in FIGS. 5 (a) and 5 (b). However, the brightness of the beams at both ends was low.

図5(d)は、RFパワーを50Wとし、入射角度を垂直軸から2度程度傾けてビームを入射した場合の結果を示すものである。図5(c)と比べて、入射角度が大きくなると、ビームの分岐数が少なくなった。従って、ビーム分岐数を少なくしたい場合には、入射角度を2度以上傾けて、回折効率を低減することで達成できることが分かる。さらに、入射角度が大きい時には、RFパワーのビーム分岐に対する依存性が垂直入射に比べて敏感になるので、ビーム分岐数の増減が顕著になる。   FIG. 5D shows the result when the beam is incident with the RF power set to 50 W and the incident angle inclined by about 2 degrees from the vertical axis. Compared with FIG. 5C, the number of beam branches decreased as the incident angle increased. Therefore, it can be seen that when it is desired to reduce the number of beam branches, it can be achieved by tilting the incident angle by 2 degrees or more to reduce the diffraction efficiency. Further, when the incident angle is large, the dependency of the RF power on the beam branching becomes more sensitive than that of the normal incidence, so that the increase / decrease in the number of beam branches becomes remarkable.

本発明によれば、理想的なビーム分岐ができ、分岐ビームを被加工物に対して垂直に照射できると共に、ビーム間ピッチを任意に調整することができるので、例えば、薄膜太陽電池パネル作製に当たり、電極膜形成のためのスクライビング工程、アモルファスシリコンをポリシリコンに改質するためにシリコン膜にレーザービームをライン状に施すレーザーアニール工程や、チップ抵抗のセラミック基板に対して、個別チップに分割するためのスクライビングラインを施すスクライビング工程等を初めとして、レーザービームによる加工を行う技術分野で利用可能である。   According to the present invention, ideal beam branching can be performed, the branch beam can be irradiated perpendicularly to the workpiece, and the pitch between the beams can be arbitrarily adjusted. , A scribing process for electrode film formation, a laser annealing process in which a laser beam is applied to the silicon film in a line to modify amorphous silicon into polysilicon, and a chip resistor ceramic substrate is divided into individual chips. For example, a scribing process for applying a scribing line can be used in the technical field of processing with a laser beam.

回折格子を用いた従来技術のビーム分岐を説明するための模式的説明図。Schematic explanatory drawing for demonstrating the beam branch of the prior art using a diffraction grating. 本発明のレーザー加工装置におけるビームの光路を説明するための模式的説明図。The typical explanatory view for explaining the optical path of the beam in the laser processing device of the present invention. 本発明のレーザー加工装置におけるビームの光路を説明するための模式的説明図。The typical explanatory view for explaining the optical path of the beam in the laser processing device of the present invention. 本発明のレーザー加工装置におけるビームの光路を説明するための模式的説明図。The typical explanatory view for explaining the optical path of the beam in the laser processing device of the present invention. 実施例1において、RFパワーを変化させて得られたレーザースポットをスクリーンに投影させたレーザースポットの写真。In Example 1, the photograph of the laser spot which made the screen project the laser spot obtained by changing RF power.

符号の説明Explanation of symbols

1 レーザービーム発振器 2 エキスパンダー
3 反射ミラー 4 回折格子
5 照射レンズ 6 遮光マスク
7 被加工物 21 レーザービーム発振器
22 音響光学素子 23 RF電源
24、25 集光レンズ
DESCRIPTION OF SYMBOLS 1 Laser beam oscillator 2 Expander 3 Reflection mirror 4 Diffraction grating 5 Irradiation lens 6 Shading mask 7 Work piece 21 Laser beam oscillator 22 Acoustooptic element 23 RF power supply 24, 25 Condensing lens

Claims (6)

レーザービーム発振器と音響光学素子とこの音響光学素子に接続したRF電源と集光レンズとを有し、レーザービーム発振器から発振される単一のレーザービームを該音響光学素子に入射せしめる際に、該音響光学素子にRFパワーを印加し、発生した疎密波の進行方向に対して垂直な軸に対し1〜2度の角度傾けて該単一のレーザービームを入射せしめ、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、このビーム間隔の調整された複数のビームを集光レンズを透過させ、被加工物表面に照射させてライン状の加工を行うために使用されることを特徴とするレーザー加工装置。 A laser beam oscillator, an acoustooptic element, an RF power source connected to the acoustooptic element, and a condensing lens; and when a single laser beam oscillated from the laser beam oscillator is incident on the acoustooptic element, the RF power is applied to the acousto-optic device, it caused to incident said single laser beam inclined angle of 1-2 degrees with respect to an axis perpendicular to the traveling direction of the compressional wave that occurred, a plurality of beams by Raman'nasu diffraction It is used to adjust the pitch interval of the beam by branching, and to pass through the condenser lens and irradiate the surface of the workpiece with a plurality of beams with the adjusted beam interval to perform line processing Laser processing equipment characterized by 前記音響光学素子が、水晶又はガラスからなることを特徴とする請求項1記載のレーザー加工装置。 It said acoustic optical element, the laser processing apparatus according to claim 1, wherein Rukoto such a crystal or glass. レーザービーム発振器と音響光学素子とこの音響光学素子に接続したRF電源と集光レンズとを有するレーザー加工装置を用いて行う複数のビームのピッチ間隔を調整するレーザービームのピッチ可変方法であって、該レーザービーム発振器から発振される単一のレーザービームを該音響光学素子に入射せしめる際に、該音響光学素子にRFパワーを印加し、発生した疎密波の進行方向に対して垂直な軸に対し1〜2度の角度傾けて該単一のレーザービームを入射せしめ、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、このビーム間隔の調整された複数のビームを集光レンズを透過させることを特徴とするレーザービームのピッチ可変方法 A laser beam pitch variable method for adjusting a pitch interval of a plurality of beams using a laser processing apparatus having a laser beam oscillator, an acoustooptic element, an RF power source connected to the acoustooptic element, and a condenser lens, When a single laser beam oscillated from the laser beam oscillator is incident on the acoustooptic device, RF power is applied to the acoustooptic device, and the axis perpendicular to the traveling direction of the generated density wave is applied. The single laser beam is incident at an angle of 1 to 2 degrees, and is branched into a plurality of beams by Raman diffraction, and the pitch interval of the beams is adjusted. variable pitch method of the laser beam you wherein Rukoto not transmit. 前記音響光学素子が、水晶又はガラスからなることを特徴とする請求項3記載のレーザービームのピッチ可変方法。 The acousto-optic element, variable pitch method of the laser beam according to claim 3, wherein Rukoto such a crystal or glass. レーザービーム発振器と音響光学素子とこの音響光学素子に接続したRF電源と集光レンズとを有するレーザー加工装置を用いて行う被加工物の表面をライン状に加工する方法において、レーザービーム発振器から発振される単一のレーザービームを該音響光学素子に入射せしめる際に、該音響光学素子にRFパワーを印加し、発生した疎密波の進行方向に対して垂直な軸に対し1〜2度の角度傾けて該単一のレーザービームを入射せしめ、ラマンナス回折により複数のビームに分岐してビームのピッチ間隔を調整し、このビーム間隔の調整された複数のビームを集光レンズを透過させて被加工物表面に照射してライン状の加工を行うことを特徴とするレーザー加工方法。 A laser beam oscillator, an acoustooptic device, an RF power source connected to the acoustooptic device, and a laser processing apparatus having a condensing lens. When a single laser beam is incident on the acoustooptic device, an RF power is applied to the acoustooptic device, and an angle of 1 to 2 degrees with respect to an axis perpendicular to the traveling direction of the generated density wave The single laser beam is tilted and branched into a plurality of beams by Raman diffraction, and the pitch interval of the beams is adjusted. laser processing how to and performing processing line like by irradiating the object surface. 前記音響光学素子が、水晶又はガラスからなることを特徴とする請求項5記載のレーザー加工方法。 The laser processing method according to claim 5 , wherein the acoustooptic device is made of quartz or glass.
JP2008101946A 2008-04-09 2008-04-09 Laser processing apparatus, laser beam pitch variable method, and laser processing method Expired - Fee Related JP5274085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101946A JP5274085B2 (en) 2008-04-09 2008-04-09 Laser processing apparatus, laser beam pitch variable method, and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101946A JP5274085B2 (en) 2008-04-09 2008-04-09 Laser processing apparatus, laser beam pitch variable method, and laser processing method

Publications (2)

Publication Number Publication Date
JP2009248173A JP2009248173A (en) 2009-10-29
JP5274085B2 true JP5274085B2 (en) 2013-08-28

Family

ID=41309345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101946A Expired - Fee Related JP5274085B2 (en) 2008-04-09 2008-04-09 Laser processing apparatus, laser beam pitch variable method, and laser processing method

Country Status (1)

Country Link
JP (1) JP5274085B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US12180108B2 (en) 2017-12-19 2024-12-31 Corning Incorporated Methods for etching vias in glass-based articles employing positive charge organic molecules

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120003403A1 (en) * 2010-07-02 2012-01-05 Eastman Chemical Company Multilayer cellulose ester film having reversed optical dispersion
US8531751B2 (en) * 2011-08-19 2013-09-10 Orbotech Ltd. System and method for direct imaging
JP2015102796A (en) 2013-11-27 2015-06-04 セイコーエプソン株式会社 Optical branching device
CN106255567B (en) * 2014-05-22 2019-04-12 英特尔公司 The acousto-optic deflection device with multiple energy converters turned to for light beam
KR101586219B1 (en) * 2015-07-02 2016-01-19 대륭포장산업 주식회사 Apparatus for producing a breathable film using a UV laser
KR20170097425A (en) * 2016-02-18 2017-08-28 주식회사 이오테크닉스 Apparatus and method for laser processing
KR101912891B1 (en) * 2018-03-20 2018-10-29 주식회사 이오테크닉스 Apparatus and method for laser processing
WO2024121955A1 (en) * 2022-12-06 2024-06-13 ギガフォトン株式会社 Laser machining system, laser machining method, and method for manufacturing electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291922A (en) * 1985-10-18 1987-04-27 Fuji Electric Co Ltd Ultrasonic optical branching element
JPS62229890A (en) * 1986-03-29 1987-10-08 Nippon Telegr & Teleph Corp <Ntt> Variable-wavelength semiconductor light source
JPH06302491A (en) * 1993-04-15 1994-10-28 Nikon Corp Exposure quantity controller
JPH1050580A (en) * 1996-08-06 1998-02-20 Nikon Corp Position detecting device and aligner provided with it
JPH10239018A (en) * 1997-02-24 1998-09-11 Nikon Corp Four-light beam generating device and position detecting device using it
JPH11104877A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd High-speed weaving method of laser beam
US7642484B2 (en) * 2001-06-13 2010-01-05 Orbotech Ltd Multiple beam micro-machining system and method
JP2004268144A (en) * 2003-02-21 2004-09-30 Seishin Shoji Kk Laser beam machining device

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US12180108B2 (en) 2017-12-19 2024-12-31 Corning Incorporated Methods for etching vias in glass-based articles employing positive charge organic molecules
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness

Also Published As

Publication number Publication date
JP2009248173A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5274085B2 (en) Laser processing apparatus, laser beam pitch variable method, and laser processing method
CN102307699B (en) Workpiece cutting method
US10124439B2 (en) Laser machining device and laser machining method
TWI466748B (en) Laser processing apparatus
CN102725096B (en) Laser processing method
TWI595953B (en) Laser processing device and control method thereof, control method and adjustment method of laser device
US9902016B2 (en) Laser machining device and laser machining method
JP6224074B2 (en) Laser nano machining apparatus and method
US9914183B2 (en) Laser machining device and laser machining method
CN103071930B (en) System and method for preparing micro-pore array through femtosecond laser direct writing
US10322526B2 (en) Laser processing method
CN102741011B (en) Laser processing system
US9902017B2 (en) Laser machining device and laser machining method
JP2009021597A (en) Multi-beam laser apparatus
JP2003334683A (en) Apparatus and method for laser processing
CN218169060U (en) Wafer laser bonding-breaking system based on two-dimensional acousto-optic deflector
CN115319278A (en) Wafer laser de-bonding system and method based on two-dimensional acousto-optic deflector
TWI327498B (en) Laser processing apparatus using laser beam splitting
KR20170097425A (en) Apparatus and method for laser processing
KR101423497B1 (en) Laser processing device for wafer dicing and wafer dicing method using the same
JP2016107321A (en) Laser machining method and laser machining device
JP2007189168A (en) Laser irradiation optical system
JP2003154478A (en) Laser processing apparatus, laser processing method, and liquid crystal panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees