[go: up one dir, main page]

JP5273572B2 - Laying the superconducting cable - Google Patents

Laying the superconducting cable Download PDF

Info

Publication number
JP5273572B2
JP5273572B2 JP2011033153A JP2011033153A JP5273572B2 JP 5273572 B2 JP5273572 B2 JP 5273572B2 JP 2011033153 A JP2011033153 A JP 2011033153A JP 2011033153 A JP2011033153 A JP 2011033153A JP 5273572 B2 JP5273572 B2 JP 5273572B2
Authority
JP
Japan
Prior art keywords
superconducting cable
conductor
tubular member
superconducting
laying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011033153A
Other languages
Japanese (ja)
Other versions
JP2012175750A (en
Inventor
芳宏 稲垣
正幸 廣瀬
博史 広田
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011033153A priority Critical patent/JP5273572B2/en
Publication of JP2012175750A publication Critical patent/JP2012175750A/en
Application granted granted Critical
Publication of JP5273572B2 publication Critical patent/JP5273572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Electric Cable Installation (AREA)

Description

本発明は、管路などに超電導送電網を構築するための超電導ケーブルの布設方法に関するものである。   The present invention relates to a method for laying a superconducting cable for constructing a superconducting power transmission network in a pipeline or the like.

超電導ケーブルでは、一般にフォーマの外周上に超電導導体層を有する導体部を二重の金属管で構成される断熱管内に収納してなる構成を備える。このような超電導ケーブルにおいて、超電導ケーブルを外部から電気的に絶縁する構成には以下の二つが挙げられる。一つ目の構成は、フォーマの上に超電導導体層と電気絶縁層を備えたケーブルコアが上記断熱管に収納され、ケーブルコアに備わる当該電気絶縁層も冷媒により冷却される低温絶縁型の構成である(例えば、特許文献1)。二つ目の構成は、フォーマと超電導導体層を備える導体部が上記断熱管に収納され、かつその断熱管の上に電気絶縁層が形成されており、当該電気絶縁層が冷媒により冷却されない常温絶縁型の構成である(例えば、非特許文献1を参照)。特に、後者の常温絶縁型超電導ケーブルは、既存の常電導ケーブルの絶縁材料および構造が適用できるという利点がある。   In general, a superconducting cable has a configuration in which a conductor portion having a superconducting conductor layer on the outer periphery of a former is housed in a heat insulating tube made of a double metal tube. In such a superconducting cable, there are the following two configurations for electrically insulating the superconducting cable from the outside. The first configuration is a low-temperature insulating configuration in which a cable core having a superconducting conductor layer and an electrical insulation layer is housed in the heat insulating tube on the former, and the electrical insulation layer provided in the cable core is also cooled by a refrigerant. (For example, Patent Document 1). The second configuration is a room temperature in which a conductor portion including a former and a superconducting conductor layer is accommodated in the heat insulating tube, and an electric insulating layer is formed on the heat insulating tube, and the electric insulating layer is not cooled by the refrigerant. It is an insulation type structure (for example, refer nonpatent literature 1). In particular, the latter room-temperature insulated superconducting cable has an advantage that the insulation material and structure of an existing normal conducting cable can be applied.

特開2010−238427号公報JP 2010-238427 A

『Experimental 35kV/121MVA Superconducting Cable System Installed at Puji Substation in Southern China Power Grid』 Transactions on Electrical and Electronic Engineering 1巻1号8−13ページ"Experimental 35kV / 121MVA Superconducting Cable System Installed at Pujy Substituting in Southern China Power Grid 1 Transactions on Electric 13"

上述した超電導ケーブルは、少なくとも超電導導体層、断熱管、および電気絶縁層を備える単位長の超電導ケーブルとして工場で作製される。そして、その単位長の超電導ケーブルをドラムなどに巻回して布設現場に搬送して、布設現場でドラムから繰り出して布設する。しかし、その布設作業には、以下に示すように、単位長の超電導ケーブルの構成に起因する幾つかの問題点があった。   The above-described superconducting cable is manufactured in a factory as a unit length superconducting cable including at least a superconducting conductor layer, a heat insulating tube, and an electric insulating layer. Then, the superconducting cable of the unit length is wound around a drum or the like and conveyed to a laying site, and is unwound from the drum at the laying site. However, the laying operation has some problems due to the configuration of the unit length superconducting cable as shown below.

第1に、既に述べたように超電導ケーブルは、少なくとも超電導導体層、断熱管、および電気絶縁層といった多数の層が積層された構成を備えるため、それぞれの層が個別に挙動する。そのため、ドラムから超電導ケーブルを繰り出す際、それぞれの層の動きが干渉しあって超電導ケーブルが繰り出し難いし、各層の相対的な挙動によって各層が損傷する場合があるし、布設時の張力で超電導ケーブルが大きく変形(伸び)したりする恐れもある。   First, as already described, since the superconducting cable has a configuration in which a large number of layers such as at least a superconducting conductor layer, a heat insulating tube, and an electric insulating layer are laminated, each layer behaves individually. Therefore, when the superconducting cable is unwound from the drum, the movement of each layer interferes and it is difficult to unwind the superconducting cable, and each layer may be damaged due to the relative behavior of each layer. May be greatly deformed (elongated).

第2に、多数の層が積層された構成を備える超電導ケーブルは、主として2重管構造の断熱管を有しており、一般的に曲げ剛性が大きい。また、断熱管をコルゲート状とした場合、断熱管が伸び易いという問題もある。そのため、布設時の超電導ケーブルの曲り部にガイド等の配慮が必要であり、超電導導体層に過大な張力や応力履歴を与えないようにする必要がある。特に、超電導ケーブルは、既設の常電導ケーブルが布設される管路内に既存ケーブルと同様に布設、配置されることが検討されているため、曲げ剛性の大きい超電導ケーブルでは、超電導導体層に損傷を与えずに、より低張力で管路内に超電導ケーブルを引き込む方法が望まれている。   Secondly, a superconducting cable having a structure in which a large number of layers are laminated mainly has a double-ply structure heat insulating pipe and generally has a high bending rigidity. Moreover, when a heat insulation pipe | tube is made into a corrugated shape, there also exists a problem that a heat insulation pipe | tube tends to extend. Therefore, it is necessary to consider a guide or the like at the bent portion of the superconducting cable when laying, and it is necessary to prevent excessive tension and stress history from being applied to the superconducting conductor layer. In particular, since superconducting cables are being laid and placed in the same way as existing cables in pipes where existing normal conducting cables are laid, superconducting cables with large bending rigidity will damage the superconducting conductor layer. There is a demand for a method of drawing a superconducting cable into a pipe line with a lower tension without giving any stress.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、従来よりも超電導ケーブルの布設作業性を向上させることができる超電導ケーブルの布設方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a superconducting cable laying method capable of improving the laying workability of a superconducting cable as compared with the prior art.

本発明は、通常、工場で作製される超電導ケーブルを、敢えて工場において完成させずに、施工現場にて完成されるようにすることで上記目的を達成する。   The present invention usually achieves the above-mentioned object by allowing a superconducting cable manufactured at a factory to be completed at a construction site without being completed at the factory.

本発明は、超電導導体層と電気絶縁層とを備える超電導ケーブルの布設方法に係り、以下の工程α〜γを備えることを特徴とする。
(工程α)組み合わせることで超電導ケーブルとなる管状部材と長尺部材を個別に布設現場に用意する。ここで、管状部材の内部に長尺部材を配置することで、超電導ケーブルとなる。
(工程β)工程αで用意した管状部材を、布設現場に布設する。
(工程γ)工程αで用意した長尺部材を、上記工程βで布設された管状部材の内部に挿入する。
The present invention relates to a method for laying a superconducting cable including a superconducting conductor layer and an electrical insulating layer, and is characterized by comprising the following steps α to γ.
(Step α) A tubular member and a long member, which become superconducting cables by being combined, are individually prepared at the laying site. Here, it becomes a superconducting cable by arrange | positioning a elongate member inside a tubular member.
(Step β) The tubular member prepared in step α is laid at the laying site.
(Step γ) The long member prepared in step α is inserted into the tubular member laid in step β.

本発明超電導ケーブルの布設方法に示すように、超電導ケーブルを管状部材と長尺部材とに分けることで、管状部材と長尺部材におけるそれぞれの構成部材の積層数は、これら管状部材と長尺部材の組合体である超電導ケーブルの構成部材の積層数よりも少なくなる。そのため、管状部材も長尺部材も、超電導ケーブルに比べて曲げ剛性が低く、扱い易くなる。従って、本発明超電導ケーブルの布設方法によれば、超電導ケーブルをそのまま布設するよりも、容易に超電導ケーブルを布設することができる。   As shown in the laying method of the superconducting cable of the present invention, the superconducting cable is divided into a tubular member and a long member, so that the number of laminated members of the tubular member and the long member can be determined by the tubular member and the long member. This is less than the number of laminated members of the superconducting cable which is a combination of the above. For this reason, both the tubular member and the long member have lower bending rigidity than the superconducting cable and are easy to handle. Therefore, according to the laying method of the superconducting cable of the present invention, it is possible to lay the superconducting cable more easily than laying the superconducting cable as it is.

本発明超電導ケーブルの布設方法の一形態として、長尺部材は、管状部材よりも長いことが好ましい。   As one form of the laying method of the superconducting cable of the present invention, the long member is preferably longer than the tubular member.

管状部材よりも長い長尺部材を用いることで、布設された超電導ケーブルにおいて、管状部材の両端から長尺部材を露出させることができる。その結果、複数の超電導ケーブルを布設し、それらを繋げて超電導ケーブル線路を構築する際、超電導ケーブル同士を接続することが容易になる。   By using a long member longer than the tubular member, the long member can be exposed from both ends of the tubular member in the laid superconducting cable. As a result, when constructing a superconducting cable line by laying a plurality of superconducting cables and connecting them, it becomes easy to connect the superconducting cables.

また、長尺部材の長さを、複数の連なった管状部材の長さよりも長くすることが好ましい。   Moreover, it is preferable that the length of the long member is longer than the length of the plurality of continuous tubular members.

この場合、後述する実施形態2に示すように、長尺部材の接続回数を減らすことができ、超電導ケーブル線路を効率良く構築することができる。   In this case, as shown in Embodiment 2 to be described later, the number of connections of the long members can be reduced, and a superconducting cable line can be constructed efficiently.

本発明超電導ケーブルの布設方法の一形態として、使用する超電導ケーブルは、低温導電部と常温被覆部とを備える常温絶縁型超電導ケーブルとすることができる。当該低温導電部は、フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する。また、常温被覆部は、断熱管の外周を取り囲む電気絶縁層(以下、常温側電気絶縁層とする)を有する。なお、使用する超電導ケーブルは、後述する実施形態に示すように、低温絶縁型超電導ケーブルとすることもできる。   As one form of the laying method of the superconducting cable of the present invention, the superconducting cable to be used can be a room-temperature insulated superconducting cable having a low-temperature conductive part and a room-temperature covering part. The low-temperature conductive portion includes a conductor portion formed by forming a superconducting conductor layer on the outer periphery of the former, and a heat insulating tube that accommodates the conductor portion therein and maintains the conductor portion at an extremely low temperature. Moreover, the normal temperature coating | coated part has an electrical insulation layer (henceforth a normal temperature side electrical insulation layer) surrounding the outer periphery of a heat insulation pipe | tube. Note that the superconducting cable to be used can be a low-temperature insulated superconducting cable as shown in the embodiments described later.

ここで、常温絶縁型超電導ケーブルの構成は、低温導電部と常温被覆部とが独立した『分離型』の構成と、低温導電部の一部と常温被覆部とが一体化された『一部一体型』の構成とに分けることができる。『分離型』の構成はさらに、低温導電部を導体部と断熱管とに分けることができる。それぞれの場合で、超電導ケーブルのどの部分が、本発明超電導ケーブルの布設方法における管状部材と長尺部材となるかが異なる。そこで、『分離型』の構成と、『一部一体型』の構成について具体的に説明する。   Here, the configuration of the room-temperature insulated superconducting cable consists of a “separated type” configuration in which the low-temperature conductive portion and the normal-temperature coating portion are independent, and a part of the low-temperature conductive portion and the normal-temperature coating portion that are integrated. It can be divided into the “integrated” configuration. The “separated” configuration can further divide the low temperature conductive portion into a conductor portion and a heat insulating tube. In each case, which part of the superconducting cable becomes the tubular member and the long member in the superconducting cable laying method of the present invention is different. Therefore, the configuration of the “separated type” and the configuration of the “partially integrated type” will be specifically described.

<分離型の超電導ケーブルの布設方法>
まず、分離型の常温絶縁型超電導ケーブルを用いた本発明超電導ケーブルの布設方法を実施する場合、布設前の超電導ケーブルは、低温導電部と常温被覆部とに分けて用意しておく(工程α)。そして、用意した常温被覆部を管状部材として布設現場に布設し(工程β)、その後、低温導電部を管状部材に収納する長尺部材として常温被覆部に挿入する(工程γ)。
<Installation method of separated superconducting cable>
First, when carrying out the laying method of the superconducting cable of the present invention using a separate room temperature insulated superconducting cable, the superconducting cable before laying is prepared separately in a low temperature conductive part and a room temperature covering part (step α). ). And the prepared normal temperature coating | coated part is laid as a tubular member in the installation site (process (beta)), and a low-temperature conductive part is inserted in a normal temperature coating | coated part as an elongate member accommodated in a tubular member after that (process (gamma)).

なお、低温導電部を、さらに導体部と断熱管とに分けて用意していても良い。その場合、工程βで常温被覆部を管状部材として布設現場に布設し、工程γで断熱管を管状部材の常温被覆部に挿入し、さらに断熱管の内部に導体部を挿入する。   Note that the low-temperature conductive part may be further divided into a conductor part and a heat insulating tube. In that case, in step β, the room temperature coated portion is laid as a tubular member on the laying site, and in step γ, the heat insulating tube is inserted into the room temperature coated portion of the tubular member, and the conductor portion is further inserted inside the heat insulating tube.

分離型の常温絶縁型超電導ケーブルによれば、布設後の使用に伴い低温導電部が劣化した場合、低温導電部のみを交換することができる。   According to the separated type room temperature insulated superconducting cable, when the low temperature conductive part deteriorates with use after installation, only the low temperature conductive part can be replaced.

また、分離型の常温絶縁型超電導ケーブルを用いた布設方法において、常温被覆部、もしくは低温導電部はさらに、短絡電流に代表される過大な異常時電流を分担する分流導体を備えることが好ましい。前者の場合、分流導体は常温被覆部における常温側電気絶縁層の内側に形成すると良い。後者の場合、分流導体は、低温導電部の断熱管の外側に形成すると良い。   Moreover, in the laying method using the separated room-temperature insulated superconducting cable, it is preferable that the room-temperature coated part or the low-temperature conductive part further includes a shunt conductor that shares an excessive abnormal current typified by a short-circuit current. In the former case, the shunt conductor is preferably formed inside the room temperature side electric insulation layer in the room temperature coating. In the latter case, the shunt conductor is preferably formed outside the heat insulating tube of the low temperature conductive portion.

分流導体を設けることで、低温導電部に備わる超電導導体層が異常時電流により劣化することを抑制できる。また、当該分流導体は、常温被覆部もしくは低温導電部のいずれに設けるにしても、断熱管の外側に配置されるため、異常時電流により分流導体で発生したジュール熱が、断熱管の内部を流れる冷媒の温度を急激に上昇させることがない。その結果、異常時電流の発生から短時間で超電導ケーブル線路を通常運転に復帰させることができる。   By providing the shunt conductor, it is possible to suppress deterioration of the superconducting conductor layer provided in the low temperature conductive portion due to the abnormal current. In addition, since the shunt conductor is disposed outside the heat insulating tube, whether it is provided at the room temperature covering portion or the low temperature conductive portion, the Joule heat generated in the shunt conductor due to the abnormal current flows inside the heat insulating tube. There is no sudden rise in the temperature of the flowing refrigerant. As a result, the superconducting cable line can be returned to normal operation in a short time after the occurrence of an abnormal current.

<一部一体型の超電導ケーブルの布設方法>
一部一体型の常温絶縁型超電導ケーブルを用いて本発明超電導ケーブルの布設方法を実施する場合、布設前の超電導ケーブルは、導体部と、それ以外の構成(即ち、断熱管の外周に常温被覆部を一体に形成した被覆部付き断熱管)と、に分けて用意しておく(工程α)。そして、用意した被覆部付き断熱管を管状部材として布設現場に布設し(工程β)、その後、導体部を管状部材に挿入する長尺部材として被覆部付き断熱管に挿入する(工程γ)。
<How to install a partially integrated superconducting cable>
When the superconducting cable laying method of the present invention is carried out using a partially integrated room-temperature insulated superconducting cable, the superconducting cable before laying is composed of a conductor part and other configurations (that is, the outer periphery of the heat insulating tube is coated at room temperature) Insulating pipes with a covering part formed integrally with a cover part) (step α). Then, the prepared heat insulating tube with a covering portion is laid as a tubular member on the laying site (step β), and then the conductor portion is inserted into the heat insulating tube with a covering portion as a long member to be inserted into the tubular member (step γ).

一部一体型の超電導ケーブルによれば、布設後の使用に伴い導体部が劣化した場合、導体部のみを交換することができる。また、一部一体型の超電導ケーブルによれば、断熱管の上に直接常温被覆部が形成され、両者の間に隙間がないため、超電導ケーブルの外径寸法を小さくすることができる。   According to the partially integrated superconducting cable, when the conductor portion deteriorates with use after laying, only the conductor portion can be replaced. In addition, according to the partially integrated superconducting cable, the room temperature coating portion is formed directly on the heat insulating tube, and there is no gap between them, so that the outer diameter of the superconducting cable can be reduced.

また、一部一体型の常温絶縁型超電導ケーブルを用いた布設方法において、被覆部付き断熱管はさらに、分流導体を備えることが好ましい。この分流導体は、被覆部付き断熱管における断熱管の外側で、常温側電気絶縁層の内側に形成され、異常時電流を分担する。   Moreover, in the laying method using the partially integrated type room-temperature insulated superconducting cable, it is preferable that the heat insulating tube with a covering portion further includes a shunt conductor. The shunt conductor is formed outside the heat insulating tube in the heat insulating tube with the covering portion and inside the normal temperature side electric insulating layer, and shares the current during the abnormality.

一部一体型の常温絶縁型超電導ケーブルにおいて分流導体を設けることでも、分離型の常温絶縁型超電導ケーブルで分流導体を設けた場合と同様に、異常時電流による超電導導体層の劣化を抑制できるし、異常時電流の発生から通常運転に復帰するまでの時間を短くすることができる。   Even if a shunt conductor is provided in a partially integrated room-temperature insulated superconducting cable, the deterioration of the superconducting conductor layer due to an abnormal current can be suppressed in the same way as when a shunt conductor is provided in a separate room-temperature insulated superconducting cable. The time from the occurrence of an abnormal current to the return to normal operation can be shortened.

本発明超電導ケーブルの布設方法によれば、布設現場での超電導ケーブルの布設を容易にすることができる。   According to the laying method of the superconducting cable of the present invention, the laying of the superconducting cable at the laying site can be facilitated.

実施形態1に記載される本発明超電導ケーブルの布設方法の概略説明図であって、(A)には地中に埋設された管路内に管状部材を布設する様子が、(B)には管状部材の内部に、超電導導体層を有する長尺部材を挿入する様子が、(C)には管路内に超電導ケーブルを布設された状態が示されている。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic explanatory drawing of the installation method of the superconducting cable of this invention described in Embodiment 1, Comprising: (A) shows a mode that a tubular member is installed in the pipe line buried in the ground, (B) A state in which a long member having a superconducting conductor layer is inserted into the tubular member is shown in (C) where a superconducting cable is laid in the pipe. (A)は、分離型で、かつ分流導体が常温被覆部の側にある常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of a room-temperature insulated superconducting cable that is a separate type and has a shunt conductor on the side of the room-temperature covering portion, and (B) is a cross-sectional view showing a state before assembly. (A)は、分離型で、かつ分流導体が低温導電部の側にある常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of a room-temperature-insulated superconducting cable that is a separate type and has a shunt conductor on the low-temperature conductive part side, and (B) is a cross-sectional view showing a state before the assembly. (A)は、一部一体型の常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of a partially integrated room-temperature insulated superconducting cable, and (B) is a cross-sectional view showing a state before assembly. (A)は、低温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of a low-temperature insulated superconducting cable, and (B) is a cross-sectional view showing a state before the assembly. 実施形態2に記載される本発明超電導ケーブルの布設方法の概略説明図であって、(A)には地中に埋設された管路内に管状部材を布設する様子が、(B)には管状部材の内部に、超電導導体層を有する長尺部材を挿入する様子が、(C)には管路内に超電導ケーブルを布設された状態が示されている。It is a schematic explanatory drawing of the laying method of the superconducting cable of the present invention described in Embodiment 2, wherein (A) shows a state in which a tubular member is laid in a pipe line buried in the ground. A state in which a long member having a superconducting conductor layer is inserted into the tubular member is shown in (C) where a superconducting cable is laid in the pipe.

<実施形態1>
本実施形態では、図1に示すように、地中に埋設された管路8に超電導ケーブル1を布設する手順を説明する。この布設の手順は、工程α〜γからなるので、各工程を順次説明する。なお、この実施形態1を含む以降の説明において、共通の符号を付して説明する部材は、同一の構成を有する部材である。
<Embodiment 1>
In the present embodiment, as shown in FIG. 1, a procedure for laying the superconducting cable 1 in a pipe line 8 buried in the ground will be described. Since the laying procedure includes steps α to γ, each step will be described in turn. In the following description including Embodiment 1, members described with common reference numerals are members having the same configuration.

≪工程α≫
工程αでは、組み合わせることで超電導ケーブル1となる管状部材2と長尺部材3とを布設現場に用意する。用意した管状部材2の内部に長尺部材3を配置することで、超電導ケーブル1となる。ここで、超電導ケーブル1には、低温絶縁型超電導ケーブルと常温絶縁型超電導ケーブルとがあり、後者の常温絶縁型超電導ケーブルにはさらに、分離型と一部一体型とがある。これら『低温絶縁型』、『常温絶縁型で、かつ分離型』、および『常温絶縁型で、かつ一部一体型』のうち、どのタイプのものを超電導ケーブル1として採用するかによって、管状部材2と長尺部材3の構成も異なる。タイプに応じた超電導ケーブル1の具体的な構成と、そのときの管状部材2と長尺部材3の構成の説明は、工程の説明が終わった後に行う。
≪Process α≫
In the process α, the tubular member 2 and the long member 3 that are combined to form the superconducting cable 1 are prepared at the installation site. By arranging the long member 3 inside the prepared tubular member 2, the superconducting cable 1 is obtained. Here, the superconducting cable 1 includes a low temperature insulated superconducting cable and a room temperature insulated superconducting cable, and the latter room temperature insulated superconducting cable further includes a separation type and a partially integrated type. Of these “low temperature insulation type”, “room temperature insulation type and separation type”, and “room temperature insulation type and partially integrated type”, the tubular member depends on which type is adopted as the superconducting cable 1 2 and the structure of the elongate member 3 are also different. The specific configuration of the superconducting cable 1 according to the type, and the configuration of the tubular member 2 and the long member 3 at that time will be described after the description of the process.

≪工程β≫
まず、図1(A)に示すように、導入側のマンホール9の地上開口部から管状部材2を導入し、地中に埋設された管路8内に管状部材2を布設する。管状部材2の布設にあたっては、管状部材2に引込み用ワイヤーを直列に取り付け、その引込み用ワイヤーを到達側のマンホールの地上開口部から引き出し、その引込み用ワイヤーを図示しない巻き取り式の牽引装置で引っ張ることで、管路8内に管状部材2を引き込む。
≪Process β≫
First, as shown in FIG. 1A, the tubular member 2 is introduced from the ground opening portion of the manhole 9 on the introduction side, and the tubular member 2 is laid in a conduit 8 buried in the ground. In laying the tubular member 2, a retracting wire is attached in series to the tubular member 2, the retracting wire is pulled out from the ground opening of the reaching manhole, and the retracting wire is drawn by a winding-type traction device (not shown). By pulling, the tubular member 2 is drawn into the pipe line 8.

ここで、管状部材2は、超電導ケーブル1の一部であるため、超電導ケーブル1よりも可撓性に優れ、かつ超電導ケーブル1よりも軽量であり、扱い易い。軽量な管状部材2は、超電導ケーブル1をそのまま管路8内に引き込むよりも小さな牽引負荷で管路8に引き込むことができ、牽引装置にかかる負担が小さいし、引き込み時に管路8に激しく摩擦されて損傷する可能性も少ない。また、可撓性に優れる管状部材2は曲げ易く、マンホール9の開口部からマンホール9内に引き込み易いし、マンホール9から管路8にも引き込み易い。   Here, since the tubular member 2 is a part of the superconducting cable 1, it is more flexible than the superconducting cable 1, is lighter than the superconducting cable 1, and is easy to handle. The lightweight tubular member 2 can draw the superconducting cable 1 into the pipe line 8 with a smaller traction load than pulling the superconducting cable 1 into the pipe line 8 as it is. Is less likely to be damaged. Further, the tubular member 2 having excellent flexibility is easy to bend, and can be easily drawn into the manhole 9 from the opening of the manhole 9, and can be easily drawn into the duct 8 from the manhole 9.

≪工程γ≫
次に、図1(B)に示すように、マンホール9の地上開口部から長尺部材3を導入し、管路8内に布設された管状部材2の内部に長尺部材3を挿入する。長尺部材3の牽引も、管状部材2の牽引と同様に行うと良い。ここで、この長尺部材3も、上記管状部材2と同様に、超電導ケーブル1よりも可撓性に優れ、軽量であるため、小さな牽引負荷でマンホール9から管路8内に布設される管状部材2に容易に引き込むことができる。また、可撓性に優れ、軽量な長尺部材3は、管状部材2に激しく摩擦されることがなく、損傷し難い。
≪Process γ≫
Next, as shown in FIG. 1B, the long member 3 is introduced from the ground opening of the manhole 9, and the long member 3 is inserted into the tubular member 2 laid in the duct 8. The long member 3 may be pulled similarly to the pulling of the tubular member 2. Here, since the long member 3 is also more flexible and lighter than the superconducting cable 1, similarly to the tubular member 2, the long member 3 is a tubular laid in the pipe line 8 from the manhole 9 with a small traction load. It can be easily pulled into the member 2. Moreover, the elongate member 3 which is excellent in flexibility and lightweight is not violently rubbed by the tubular member 2, and is not easily damaged.

工程βが終了した時点で、図1(C)に示すように、管路8内に超電導ケーブル1が布設された状態となる。以降は、各マンホール9の位置で対向する超電導ケーブル1の長尺部材3同士を接続し、次いで管状部材2同士を接続することで超電導ケーブル線路を完成させる。   When the process β is completed, the superconducting cable 1 is laid in the conduit 8 as shown in FIG. Thereafter, the superconducting cable lines are completed by connecting the long members 3 of the superconducting cables 1 facing each other at the positions of the manholes 9 and then connecting the tubular members 2 to each other.

以上説明した本発明超電導ケーブルの布設方法によれば、超電導ケーブル1を管状部材2と長尺部材3とに分け、各部材2,3の扱いを容易にすることで、超電導ケーブル1の布設を容易にすることができる。なお、管状部材2に比べて長尺部材3の径が小さいことから、ドラムに巻き回せる長尺部材3の長さ(輸送長)を管状部材2よりも長くできる。   According to the laying method of the superconducting cable of the present invention described above, the superconducting cable 1 is divided into the tubular member 2 and the long member 3, and the handling of the members 2 and 3 is facilitated. Can be easily. Since the diameter of the long member 3 is smaller than that of the tubular member 2, the length (transport length) of the long member 3 that can be wound around the drum can be made longer than that of the tubular member 2.

≪1.分離型の常温絶縁型超電導ケーブル―その1≫
図2(A)に示す分離型の常温絶縁型超電導ケーブル100は、図2(B)に示すように、個別に作製された低温導電部30と、その低温導電部30を内部に収納するパイプ状の常温被覆部20と、を布設現場にて組み合わせることで形成される。このような構成の常温絶縁型超電導ケーブル100を用いる場合、常温被覆部20を管状部材2、低温導電部30を長尺部材3として、図1に示す手順に従って超電導ケーブル100を布設する。以下、常温絶縁型超電導ケーブル100の各構成を詳細に説明する。
<< 1. Separated room-temperature insulated superconducting cable-Part 1 >>
As shown in FIG. 2 (B), a separate room temperature insulated superconducting cable 100 shown in FIG. 2 (A) includes a separately manufactured low-temperature conductive portion 30 and a pipe that houses the low-temperature conductive portion 30 therein. It is formed by combining the room-temperature coating | coated part 20 in the installation site. When the room temperature insulated superconducting cable 100 having such a configuration is used, the superconducting cable 100 is laid according to the procedure shown in FIG. 1 with the room temperature covering portion 20 as the tubular member 2 and the low temperature conductive portion 30 as the long member 3. Hereinafter, each configuration of the room temperature insulated superconducting cable 100 will be described in detail.

{低温導電部}
低温導電部30は、断熱管13の内部に、導体部10が収納されてなる長尺体である。
{Low-temperature conductive part}
The low temperature conductive part 30 is a long body in which the conductor part 10 is accommodated inside the heat insulating tube 13.

[導体部]
導体部10は、代表的には、中心から順にフォーマ11、超電導導体層12、保護層(図示せず)を備える。フォーマ11は、超電導導体層12の支持体に利用される部材であり、例えば、図2に示すようなパイプ状の中空体をフォーマ11として利用できる。中空体のフォーマ11は、その内部を冷媒131の流路として利用することができる。フォーマ11の形状としては、中空体の他、中実体を利用することもできる。一方、フォーマ11の材質も特に限定されない。単に超電導導体層12の支持体としてフォーマ11を利用するのであれば、フォーマ11は樹脂などの非導電性材料から構成しても良いし、フォーマ11に異常時電流の分流路としての機能も持たせるのであれば、銅やアルミニウムなどの常電導の金属材料から構成しても良い。これらのことを考慮してフォーマ11の具体的な構成を例示すると、中空体のフォーマ11としては例えば、金属材料からなるパイプを挙げることができるし、中実体のフォーマ11としては例えば、エナメルなどの絶縁被覆を備える複数の金属線を撚り合わせたものを挙げることができる。
[Conductor]
The conductor 10 typically includes a former 11, a superconducting conductor layer 12, and a protective layer (not shown) in order from the center. The former 11 is a member used as a support for the superconducting conductor layer 12. For example, a pipe-shaped hollow body as shown in FIG. 2 can be used as the former 11. The hollow former 11 can use the inside as a flow path of the refrigerant 131. As the shape of the former 11, a solid body can be used in addition to the hollow body. On the other hand, the material of the former 11 is not particularly limited. If the former 11 is simply used as a support for the superconducting conductor layer 12, the former 11 may be made of a non-conductive material such as a resin, and the former 11 also has a function as a current shunt path for abnormal current. If it can be used, it may be made of a normal conducting metal material such as copper or aluminum. Taking the above into consideration, the concrete configuration of the former 11 is exemplified. For example, the hollow body former 11 may be a pipe made of a metal material, and the solid former 11 may be enamel, for example. The thing which twisted together the some metal wire provided with this insulation coating can be mentioned.

次に、超電導導体層12としては、例えば、酸化物超電導体を備えるテープ状線材が好適に利用できる。テープ状線材は、例えば、Bi2223系超電導テープ線(Ag−MnやAgなどの安定化金属中に酸化物超電導体からなるフィラメントが配されたシース線)、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gdなど。金属基板に酸化物超電導相が成膜された積層線材)が挙げられる。超電導導体層12は、上記テープ状線材を螺旋状に巻回して形成した単層構造又は多層構造が挙げられる。   Next, as the superconducting conductor layer 12, for example, a tape-like wire material including an oxide superconductor can be suitably used. Examples of the tape-shaped wire include Bi2223 superconducting tape wire (sheath wire in which a filament made of an oxide superconductor is arranged in a stabilizing metal such as Ag-Mn and Ag), RE123 thin film wire (RE: rare earth element, For example, Y, Ho, Nd, Sm, Gd, etc. (Laminated wire material in which an oxide superconducting phase is formed on a metal substrate). The superconducting conductor layer 12 includes a single layer structure or a multilayer structure formed by spirally winding the tape-shaped wire.

図示しない保護層は、上記超電導導体層12を保護すると共に、断熱管13と超電導導体層12との間を絶縁するためのものであり、クラフト紙などを巻回することで形成できる。   A protective layer (not shown) protects the superconducting conductor layer 12 and insulates between the heat insulating tube 13 and the superconducting conductor layer 12, and can be formed by winding kraft paper or the like.

[断熱管]
上記導体部10を収納する断熱管13は、導体部10を内部に収納する内管14と、内管14を内部に収納する外管15と、を備える。内管14は、その内部に、超電導導体層12を超電導状態に維持するための冷媒131(代表的には、液体窒素や液体ヘリウム、ヘリウムガスなど)が充填され、冷媒流路として機能する。この内管14と、内管14の外周に設けられる外管15とで断熱管13を構成することで、外部からの侵入熱などにより冷媒131の温度が上昇することを抑制する。内管14と外管15との間は真空引きされ、それによって真空断熱層が形成されている。その他、内管14と外管15との間にスーパーインシュレーションといった断熱材や、内管14と外管15とを離隔させるスペーサを配置すると、断熱管13の断熱性を高められる。なお、本実施形態では、断熱管として二重管構造の断熱管を利用しているが、三重管以上の断熱管を利用しても良い。
[Insulated pipe]
The heat insulating tube 13 that houses the conductor portion 10 includes an inner tube 14 that houses the conductor portion 10 therein, and an outer tube 15 that houses the inner tube 14 inside. The inner tube 14 is filled with a refrigerant 131 (typically liquid nitrogen, liquid helium, helium gas, etc.) for maintaining the superconducting conductor layer 12 in a superconducting state, and functions as a refrigerant flow path. By forming the heat insulating tube 13 with the inner tube 14 and the outer tube 15 provided on the outer periphery of the inner tube 14, it is possible to suppress the temperature of the refrigerant 131 from rising due to heat entering from the outside. A vacuum is drawn between the inner tube 14 and the outer tube 15 to form a vacuum heat insulating layer. In addition, if a heat insulating material such as super insulation or a spacer that separates the inner tube 14 and the outer tube 15 is disposed between the inner tube 14 and the outer tube 15, the heat insulating property of the heat insulating tube 13 can be improved. In addition, in this embodiment, although the heat insulation pipe | tube of a double pipe structure is utilized as a heat insulation pipe | tube, you may utilize the heat insulation pipe | tube more than a triple pipe.

内管14及び外管15の構成材料は、ステンレス鋼、アルミニウムやその合金などの金属が挙げられる。上記金属は、耐食性に優れることから、種々の流体の保持や輸送を行う断熱管13の構成材料に適する。両管14,15の材質を異ならせてもよい。また、両管14,15はいずれも、その全長に亘ってコルゲート加工が施されたコルゲート管としたり、アルミニウムやその合金などの比較的柔らかく可撓性を有する材質からなるストレート管としたりすることで屈曲可能となる。このように可撓性を有する断熱管13を採用することで、搬送時や布設時に超電導ケーブル100を曲げ易くすることができる。さらに、コルゲート管で断熱管13を形成することで、断熱管13が冷媒131に冷却されて熱収縮する際に変形することで熱応力を緩和できる。   Examples of the constituent material of the inner tube 14 and the outer tube 15 include metals such as stainless steel, aluminum, and alloys thereof. Since the metal is excellent in corrosion resistance, it is suitable as a constituent material of the heat insulating tube 13 for holding and transporting various fluids. The materials of both pipes 14 and 15 may be different. Both pipes 14 and 15 should be corrugated pipes that have been corrugated over their entire length, or straight pipes made of a relatively soft and flexible material such as aluminum or its alloys. Can be bent. By adopting the heat insulating tube 13 having flexibility in this way, the superconducting cable 100 can be easily bent at the time of transportation or laying. Furthermore, by forming the heat insulating tube 13 with a corrugated tube, the heat stress can be relieved by deformation when the heat insulating tube 13 is cooled by the refrigerant 131 and thermally contracts.

[その他の構成]
長尺部材3である低温導電部30は、低温導電部30を常温被覆部20に引込む際の牽引張力を分担するテンションメンバを備えていることが好ましい。テンションメンバは、牽引張力を分担することで、牽引張力に起因する低温導電部30の損傷を抑制するための部材である。但し、低温導電部30は軽量で可撓性に優れるため、テンションメンバを簡素化することができる。場合によってはテンションメンバを省略することも可能である。
[Other configurations]
It is preferable that the low-temperature conductive part 30 that is the long member 3 includes a tension member that shares the traction tension when the low-temperature conductive part 30 is pulled into the room temperature coating part 20. The tension member is a member for suppressing damage to the low temperature conductive portion 30 caused by the traction tension by sharing the traction tension. However, since the low-temperature conductive portion 30 is lightweight and excellent in flexibility, the tension member can be simplified. In some cases, the tension member can be omitted.

{常温被覆部}
図示する常温被覆部20は、パイプ状構造物21と、パイプ状構造物21の外周に形成される分流導体22と、分流導体22のさらに外周に形成される常温側電気絶縁層23と、を備える。これらの構成のうち、パイプ状構造物21または分流導体22は省略可能である。
{Room temperature coating}
The room temperature coating portion 20 shown in the figure includes a pipe-shaped structure 21, a shunt conductor 22 formed on the outer periphery of the pipe-shaped structure 21, and a normal-temperature side electric insulating layer 23 formed on the outer periphery of the shunt conductor 22. Prepare. Of these configurations, the pipe-like structure 21 or the shunt conductor 22 can be omitted.

[パイプ状構造物]
パイプ状構造物21は、その外周面に形成される分流導体22や常温側電気絶縁層23を保形する部材であって、最も重要な特性は高強度であることである。また、超電導ケーブル100に所定の可撓性を持たせるために、パイプ状構造物21も所定の可撓性を有することが求められる。これらの点を考慮して、パイプ状構造物21としては、アルミニウムのストレートパイプや、SUSのコルゲートパイプなどを利用することができる。その他、パイプ状構造物21は、樹脂などの非導電材料でできていても良い。ここで、このパイプ状構造物21が導電材料であれば、それ自身も分流導体22の機能の一部を分担できる。
[Pipe-like structure]
The pipe-like structure 21 is a member that retains the shunt conductor 22 and the room-temperature-side electrical insulating layer 23 formed on the outer peripheral surface thereof, and the most important characteristic is high strength. In order to give the superconducting cable 100 a predetermined flexibility, the pipe-like structure 21 is also required to have a predetermined flexibility. In consideration of these points, as the pipe-like structure 21, an aluminum straight pipe, a SUS corrugated pipe, or the like can be used. In addition, the pipe-like structure 21 may be made of a non-conductive material such as resin. Here, if the pipe-like structure 21 is a conductive material, it can also share a part of the function of the shunt conductor 22 itself.

[分流導体]
分流導体22は、異常時電流が生じたときに、その異常時電流を分担する常電導導体である。この分流導体22は、超電導ケーブル線路の長手方向の接続部(超電導ケーブル100の中間接続部や終端接続部など)で超電導導体層12に接続されることで、異常時電流を超電導導体層12と分担できるようになっている。
[Branch conductor]
The shunt conductor 22 is a normal conducting conductor that shares an abnormal current when an abnormal current is generated. The shunt conductor 22 is connected to the superconducting conductor layer 12 at a connecting portion in the longitudinal direction of the superconducting cable line (such as an intermediate connecting portion or a terminal connecting portion of the superconducting cable 100). Can be shared.

分流導体22を設けることで、異常時電流の発生時に、超電導導体層12やフォーマ11に過剰な電流が流れて、超電導導体層12が温度上昇により劣化することを回避できる。また、異常時電流を分担する分流導体22が、常温被覆部2に設けられていることから、分流導体22で生じるジュール熱により低温導電部30の冷媒131が熱せられることがない。そのため、冷媒131が熱せられてガス化することを抑制できるし、冷媒131を運用可能な温度まで冷却するための時間を短くすることもできるので、異常時電流の発生から短時間で超電導ケーブル線路を通常運転に復帰させることができる。   By providing the shunt conductor 22, it is possible to avoid deterioration of the superconducting conductor layer 12 due to a temperature rise due to excessive current flowing through the superconducting conductor layer 12 and the former 11 when an abnormal current is generated. In addition, since the shunt conductor 22 for sharing the abnormal current is provided in the room temperature coating portion 2, the refrigerant 131 of the low temperature conductive portion 30 is not heated by the Joule heat generated in the shunt conductor 22. Therefore, the refrigerant 131 can be prevented from being heated and gasified, and the time for cooling the refrigerant 131 to an operable temperature can be shortened. Can be returned to normal operation.

分流導体22は、異常時電流を分担する役割を担う観点から、パイプ状構造物21よりも高導電性の金属材料、つまり電気抵抗値が低い銅やアルミニウム、銀などの金属材料から構成される。特に、銅は、銀に次ぐ高い導電率を有し、銀よりも格段に安価である点で、分流導体22として好適である。   The shunt conductor 22 is composed of a metal material having a higher conductivity than that of the pipe-like structure 21, that is, a metal material such as copper, aluminum, or silver having a lower electric resistance value, from the viewpoint of sharing the current during an abnormality. . In particular, copper is suitable as the shunt conductor 22 in that it has the second highest conductivity after silver and is much cheaper than silver.

上記分流導体22は、銅撚り線で構成されるセグメント導体など既存常電導ケーブルの導体に準じた部材をパイプ状構造物21上に巻回することで形成することができる。   The said shunt conductor 22 can be formed by winding the member according to the conductor of the existing normal conducting cable, such as a segment conductor comprised with a copper strand wire, on the pipe-shaped structure 21. As shown in FIG.

上記分流導体22の断面積は、超電導ケーブル線路の運用上、どの程度の異常時電流が発生し得るか、その発生した異常時電流を分流導体22にどの程度負担させるかによって適宜選択すれば良い。例えば、上述した低温導電部30のフォーマ11を非導電性材料で構成する場合、異常時電流の大部分を分流導体22に流せるように分流導体22の断面積を決定し、分流導体22と超電導導体層12の金属成分とで異常時電流を分担させることで、超電導導体層12を保護する。また、当該フォーマ11を導電性材料とし、異常時電流を分流導体22と超電導導体層12の金属成分に分担させるだけでなく、フォーマ11にも分担させる構成であれば、分流導体22に十分な異常時電流を流せるように分流導体22の断面積を決定すれば良い。また、銅素線を素線絶縁線とすることで交流抵抗を低減した分流導体とすることも有効である。   The cross-sectional area of the shunt conductor 22 may be appropriately selected depending on how much abnormal current can be generated in the operation of the superconducting cable line and how much the generated abnormal current is borne by the shunt conductor 22. . For example, when the former 11 of the low-temperature conductive portion 30 described above is made of a non-conductive material, the cross-sectional area of the shunt conductor 22 is determined so that most of the abnormal current can flow through the shunt conductor 22, and the shunt conductor 22 and the superconductor The superconducting conductor layer 12 is protected by sharing an abnormal current with the metal component of the conductor layer 12. Further, if the former 11 is made of a conductive material and the abnormal current is not only shared by the metal components of the shunt conductor 22 and the superconducting conductor layer 12 but is also shared by the former 11, the shunt conductor 22 is sufficient. What is necessary is just to determine the cross-sectional area of the shunt conductor 22 so that the electric current at the time of abnormality can be sent. Moreover, it is also effective to make a shunt conductor with reduced AC resistance by using a copper insulated wire as the insulated wire.

[常温側電気絶縁層]
常温側電気絶縁層23は、超電導ケーブル100を外部環境から電気的に絶縁する層である。この常温側電気絶縁層23には、常電導ケーブルで実績がある電気絶縁強度に優れる材料、代表的にはCVケーブルに利用される架橋ポリエチレン(XLPE)などを利用できる。架橋ポリエチレンなどの絶縁性樹脂であれば、パイプ状構造物21に分流導体22を形成した管状部材の外周に絶縁性樹脂を押し出すだけで常温側電気絶縁層23を容易に形成できる。その他、常温側電気絶縁層23には、OFケーブルにおける絶縁層と同様の構成を採用することができる。例えば、分流導体22の外周にテープ状のクラフト紙や半合成紙を多層に巻回し、その絶縁層に合成油などの絶縁油を含浸させることで常温側電気絶縁層23を形成することができる。
[Room-temperature electrical insulation layer]
The room temperature side electrical insulation layer 23 is a layer that electrically insulates the superconducting cable 100 from the external environment. The room-temperature side electrical insulation layer 23 can be made of a material having an excellent electrical insulation strength that has been proven in ordinary conductive cables, typically, crosslinked polyethylene (XLPE) used for CV cables. If the insulating resin such as cross-linked polyethylene is used, the room-temperature-side electrical insulating layer 23 can be easily formed simply by extruding the insulating resin on the outer periphery of the tubular member in which the shunt conductor 22 is formed on the pipe-like structure 21. In addition, the room temperature side electrical insulation layer 23 can employ the same configuration as the insulation layer in the OF cable. For example, the room temperature side electrical insulation layer 23 can be formed by winding tape-like kraft paper or semi-synthetic paper around the outer periphery of the shunt conductor 22 in multiple layers and impregnating the insulation layer with insulation oil such as synthetic oil. .

[その他の構成]
常温側電気絶縁層23の外周には、代表的には、銅やアルミニウムなどの常電導材料から構成された外側遮蔽層(図示せず)が設けられる。外側遮蔽層は、絶縁層23の外側の電位を与えるもので、従来の電力ケーブルと同様に常電導材料を利用できる。そのため、超電導ケーブルの製造性100は製造性に優れる。また、外側遮蔽層の外周には、外側遮蔽層を保護すると共に、所定の絶縁特性を有する防食層(図示せず)が設けられている。
[Other configurations]
An outer shielding layer (not shown) made of a normal conducting material such as copper or aluminum is typically provided on the outer periphery of the room temperature side electrical insulating layer 23. The outer shielding layer provides a potential outside the insulating layer 23, and a normal conductive material can be used as in the case of a conventional power cable. Therefore, the manufacturability 100 of the superconducting cable is excellent in manufacturability. Further, on the outer periphery of the outer shielding layer, an anticorrosion layer (not shown) having a predetermined insulating characteristic is provided while protecting the outer shielding layer.

その他、常温被覆部20はテンションメンバを備えていることが好ましい。但し、常温被覆部20は軽量であるので、テンションメンバを、簡素化することができる。パイプ状構造物21や分流導体22を備える構成では、そもそもこれらパイプ状構造物21や分流導体22に牽引張力を分担させることができるので、テンションメンバを省略することも可能である。   In addition, it is preferable that the room temperature coating portion 20 includes a tension member. However, since the room temperature coating portion 20 is lightweight, the tension member can be simplified. In the configuration including the pipe-like structure 21 and the shunting conductor 22, traction tension can be shared by the pipe-like structure 21 and the shunting conductor 22 in the first place, so that the tension member can be omitted.

なお、以降に説明する『一部一体型の常温絶縁型超電導ケーブル』や『低温絶縁型超電導ケーブル』でも、管状部材2となる部分と、長尺部材3となる部分とにテンションメンバを設けることが好ましい。特に、いずれの構成の超電導ケーブルであっても、断熱管13をコルゲート管で構成した場合、そのコルゲート管を備える牽引対象にテンションメンバを設けることが好ましい。そうすることで、牽引されたコルゲート管の波付け形状が引き伸ばされることを抑制できる。但し、いずれの構成の超電導ケーブルでも、管状部材2および長尺部材3は、超電導ケーブルよりも軽量で高可撓性であるため、そのテンションメンバを簡素化、もしくは省略することが可能である。   It should be noted that tension members are provided in the portion that becomes the tubular member 2 and the portion that becomes the long member 3 in the “partially integrated type room temperature insulated superconducting cable” and “low temperature insulated superconducting cable” described below. Is preferred. In particular, in any configuration of the superconducting cable, when the heat insulating pipe 13 is formed of a corrugated pipe, it is preferable to provide a tension member on a towing target including the corrugated pipe. By doing so, it can suppress that the corrugated shape of the pulled corrugated pipe is stretched. However, in any configuration of the superconducting cable, the tubular member 2 and the long member 3 are lighter and more flexible than the superconducting cable, and therefore the tension member can be simplified or omitted.

≪2.分離型の常温絶縁型超電導ケーブル―その2≫
図3(A)に示す分離型の常温絶縁型超電導ケーブル101は、図3(B)に示すように、個別に作製された低温導電部30と、その低温導電部30を内部に収納するパイプ状の常温被覆部20と、を布設現場にて組み合わせることで形成される。この点は、図2を参照して説明した超電導ケーブル100と共通する。図3の超電導ケーブル101と図2の超電導ケーブル100の相違点は、分流導体22を設ける位置が、図2の超電導ケーブル100では常温被覆部20であるのに対して、図3の超電導ケーブル101では低温導電部30であることである。このような構成の常温絶縁型超電導ケーブル101を用いる場合、常温被覆部20を管状部材2、低温導電部30を長尺部材3として、図1に示す手順に従って超電導ケーブル100を布設する。以下、常温絶縁型超電導ケーブル101の各構成を詳細に説明する。
≪2. Separated room-temperature insulated superconducting cable-Part 2 >>
As shown in FIG. 3 (B), a separate room temperature insulated superconducting cable 101 shown in FIG. 3 (A) includes a separately manufactured low-temperature conductive portion 30 and a pipe that houses the low-temperature conductive portion 30 therein. It is formed by combining the room-temperature coating | coated part 20 in the installation site. This point is common to the superconducting cable 100 described with reference to FIG. The superconducting cable 101 in FIG. 3 differs from the superconducting cable 100 in FIG. 2 in that the position where the shunt conductor 22 is provided is the room temperature coating portion 20 in the superconducting cable 100 in FIG. Then, it is the low temperature conductive part 30. When the room-temperature insulated superconducting cable 101 having such a configuration is used, the superconducting cable 100 is laid according to the procedure shown in FIG. 1 with the room-temperature covering portion 20 as the tubular member 2 and the low-temperature conductive portion 30 as the long member 3. Hereinafter, each configuration of the room temperature insulated superconducting cable 101 will be described in detail.

{低温導電部}
図3の低温導電部30は、導体部10と、分流導体付き断熱管13´とからなる。分流導体付き断熱管13´は、断熱管13の外周に分流導体22を形成することで作製できる。
{Low-temperature conductive part}
The low temperature conductive part 30 in FIG. 3 includes a conductor part 10 and a heat insulating tube 13 ′ with a shunt conductor. The heat insulating tube 13 ′ with the diversion conductor can be produced by forming the diversion conductor 22 on the outer periphery of the heat insulation tube 13.

{常温被覆部}
図3の常温被覆部20は、パイプ状構造物21の外周に常温側電気絶縁層23を形成することで作製できる。
{Room temperature coating}
The room temperature coating portion 20 of FIG. 3 can be produced by forming a room temperature side electrical insulating layer 23 on the outer periphery of the pipe-like structure 21.

≪3.一部一体型の常温絶縁型超電導ケーブル≫
図4(A)に示す一部一体型の常温絶縁型超電導ケーブル200は、図4(B)に示すように、個別に作製された導体部10と、その導体部10を内部に収納するパイプ状の被覆部付き断熱管40と、を布設現場にて組み合わせることで形成される。このような構成の常温絶縁型超電導ケーブル200を用いる場合、被覆部付き断熱管40を管状部材2、導体部10を長尺部材3として、図1に示す手順に従って常温絶縁型超電導ケーブル200を布設する。以下、この超電導ケーブル200の各構成を詳細に説明する。
≪3. Partially integrated room-temperature insulated superconducting cable >>
As shown in FIG. 4B, a partially integrated room-temperature insulated superconducting cable 200 shown in FIG. 4A includes a conductor part 10 manufactured individually and a pipe that accommodates the conductor part 10 therein. It forms by combining the heat insulation pipe | tube 40 with a covering part at a construction site. When the room-temperature insulated superconducting cable 200 having such a configuration is used, the room-temperature insulated superconducting cable 200 is installed according to the procedure shown in FIG. To do. Hereinafter, each configuration of the superconducting cable 200 will be described in detail.

{導体部}
導体部10の構成は、図2を参照して説明した分離型の常温絶縁型超電導ケーブル100における導体部10と同じである。つまり、導体部10は、フォーマ11と超電導導体層12とを備える。また、導体部10の外周には、所定の絶縁特性を有し、超電導導体層12を摩擦などから保護する保護層(図示せず)を設けておくと良い。
{Conductor}
The configuration of the conductor portion 10 is the same as that of the conductor portion 10 in the separated room temperature insulated superconducting cable 100 described with reference to FIG. That is, the conductor portion 10 includes the former 11 and the superconducting conductor layer 12. Further, a protective layer (not shown) having a predetermined insulating characteristic and protecting the superconducting conductor layer 12 from friction or the like may be provided on the outer periphery of the conductor portion 10.

{被覆部付き断熱管}
被覆部付き断熱管40は、図4(B)に示すように、断熱管13の外周に常温被覆部20を一体化した部材である。この被覆部付き断熱管40を作製するには、まず断熱管13を用意し、その外周に分流導体22を形成する。そして、その分流導体22の外周に、例えば押出などにより絶縁性樹脂を被覆し、常温側電気絶縁層23を形成すると良い。
{Insulated pipe with cover}
As shown in FIG. 4B, the heat insulating tube 40 with the covering portion is a member in which the room temperature covering portion 20 is integrated with the outer periphery of the heat insulating tube 13. In order to produce the heat insulating tube 40 with the covering portion, first, the heat insulating tube 13 is prepared, and the shunt conductor 22 is formed on the outer periphery thereof. The outer periphery of the shunt conductor 22 is preferably covered with an insulating resin by, for example, extrusion to form the room temperature side electric insulation layer 23.

≪4.低温絶縁型超電導ケーブル≫
図5(A)に示す低温絶縁型超電導ケーブル300は、図5(B)に示すように、個別に作製されたケーブルコア50と、そのケーブルコア50を内部に収納する断熱管13と、を布設現場にて組み合わせることで形成される。このような構成の低温絶縁型超電導ケーブル300を用いる場合、断熱管13を管状部材2、ケーブルコア50を長尺部材3として、図1に示す手順に従って低温絶縁型超電導ケーブル300を布設する。以下、この超電導ケーブル300の各構成を詳細に説明する。
<< 4. Low-temperature insulated superconducting cable >>
As shown in FIG. 5 (B), the low-temperature insulated superconducting cable 300 shown in FIG. 5 (A) includes individually manufactured cable cores 50 and a heat insulating tube 13 that houses the cable cores 50 therein. It is formed by combining at the laying site. When the low-temperature insulated superconducting cable 300 having such a configuration is used, the low-temperature insulated superconducting cable 300 is laid according to the procedure shown in FIG. 1 with the heat insulating tube 13 as the tubular member 2 and the cable core 50 as the long member 3. Hereinafter, each configuration of the superconducting cable 300 will be described in detail.

{ケーブルコア}
ケーブルコア50は、フォーマ11の上に順次、超電導導体層12、電気絶縁層16、外側超電導導体層(または外側遮蔽層)17、保護層18を設けた構成を備える。これら11〜18のうち、電気絶縁層16は、上述した常温絶縁型超電導ケーブル100,200における常温側電気絶縁層23と同様の役割を担う層である。但し、常温側電気絶縁層23と異なり、電気絶縁層16は、後述する断熱管13内で超電導導体層12と共に極低温に冷却される。
{Cable core}
The cable core 50 has a configuration in which a superconducting conductor layer 12, an electrical insulating layer 16, an outer superconducting conductor layer (or outer shielding layer) 17, and a protective layer 18 are sequentially provided on the former 11. Among these 11-18, the electric insulation layer 16 is a layer which plays the role similar to the normal temperature side electric insulation layer 23 in the normal temperature insulation superconducting cables 100 and 200 mentioned above. However, unlike the normal temperature side electrical insulation layer 23, the electrical insulation layer 16 is cooled to a cryogenic temperature together with the superconducting conductor layer 12 in a heat insulating tube 13 described later.

ケーブルコア50に備わる外側超電導導体層(または外側遮蔽層)17を超電導導体から構成した場合、交流ケーブルでは電磁シールドとして機能し、直流ケーブルでは帰路電流用導体として機能する。また、保護層18は、所定の絶縁特性を有し、外側超電導導体層(または外側遮蔽層)17を機械的に保護する。保護層18の最外部を低摩擦係数の材料で構成することで、断熱管13にケーブルコア50を引き込み易くできる。   When the outer superconducting conductor layer (or outer shielding layer) 17 provided in the cable core 50 is composed of a superconducting conductor, the AC cable functions as an electromagnetic shield, and the DC cable functions as a return current conductor. Further, the protective layer 18 has a predetermined insulating characteristic and mechanically protects the outer superconducting conductor layer (or outer shielding layer) 17. By configuring the outermost portion of the protective layer 18 with a material having a low friction coefficient, the cable core 50 can be easily drawn into the heat insulating tube 13.

{断熱管}
低温絶縁型超電導ケーブル300における断熱管13は、常温絶縁型超電導ケーブルにおける断熱管と同様に、内管14と外管15とを備える。外管15の外周には、所定の絶縁特性を有し、外管15を衝撃や腐食から防護する防食層(図示せず)を形成することが好ましい。
{Insulated pipe}
The heat insulating tube 13 in the low-temperature insulated superconducting cable 300 includes an inner tube 14 and an outer tube 15, similarly to the heat insulating tube in the room temperature insulated superconducting cable. It is preferable to form an anticorrosion layer (not shown) having a predetermined insulating property and protecting the outer tube 15 from impact and corrosion on the outer periphery of the outer tube 15.

<実施形態2>
実施形態1では、管路に布設する管状部材の長さと長尺部材の長さとが概ね1対1であった。これに対して、本実施形態2では、長尺部材の長さを、連続して複数連なる管状部材の長さよりも長くすることで、管状部材の数に比べて長尺部材の数を少なくした本発明超電導ケーブルの布設方法を、図6に基づいて説明する。
<Embodiment 2>
In the first embodiment, the length of the tubular member laid in the pipe line and the length of the long member are approximately 1: 1. On the other hand, in this Embodiment 2, the number of elongate members was reduced compared with the number of tubular members by making the length of an elongate member longer than the length of the tubular member which continues in series. A method for laying the superconducting cable of the present invention will be described with reference to FIG.

この実施形態では、例えば、2つの管状部材2につき1つの長尺部材3を用いるものとする。その場合、まず図6(A)に示すように、マンホール9の開口部から複数の管状部材2を挿入し、管路8内において、複数の管状部材2が連なる状態とする。ここで、長尺部材3の外径は、管状部材2の内径よりも小さいため、一つのドラムに巻回できる長尺部材3の長さ(輸送長)は、管状部材2よりも長い。   In this embodiment, for example, one long member 3 is used for every two tubular members 2. In that case, as shown to FIG. 6 (A), the several tubular member 2 is first inserted from the opening part of the manhole 9, and it is set as the state with which the several tubular member 2 continues in the pipe line 8. FIG. Here, since the outer diameter of the long member 3 is smaller than the inner diameter of the tubular member 2, the length (transport length) of the long member 3 that can be wound around one drum is longer than that of the tubular member 2.

次いで、図6(B)に示すように、1本おきの管状部材2に長尺部材3を挿入する。その際、2本の管状部材2に引込み用ワイヤーを一気通貫させておき、その引込み用ワイヤーに長尺部材3を直列接続し、引込み用ワイヤーを牽引する。そうすることで、図6(C)に示すように、長尺部材3が、2本の管状部材2を貫くように配置される。以降は、実施形態1と同様に、管路8内で対向する長尺部材3同士を接続すると共に、管状部材2同士を接続し、超電導ケーブル線路を構築すれば良い。   Next, as shown in FIG. 6B, the long member 3 is inserted into every other tubular member 2. At that time, the drawing wire is passed through the two tubular members 2 at once, the long member 3 is connected in series to the drawing wire, and the drawing wire is pulled. By doing so, the elongate member 3 is arrange | positioned so that the two tubular members 2 may be penetrated, as shown in FIG.6 (C). Thereafter, similar to the first embodiment, the long members 3 facing each other in the pipe line 8 are connected to each other, and the tubular members 2 are connected to each other to construct a superconducting cable line.

以上説明した実施形態2の構成によれば、実施形態1の構成よりも長尺部材3の布設回数を低減できるし、長尺部材3同士を接続する回数も低減できるので、より効率的に超電導ケーブル線路を構築することができる。   According to the configuration of the second embodiment described above, the number of installations of the long members 3 can be reduced as compared to the configuration of the first embodiment, and the number of times of connecting the long members 3 can also be reduced. A cable track can be constructed.

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更することが可能である。例えば、超電導ケーブルの布設場所は、屋外など、管路以外の場所であっても良い。その他、実施形態2では、管状部材の数と長尺部材の数の比を2:1としたが、もっと大きくても良い(例えば、3:1、4:1)。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the laying place of the superconducting cable may be a place other than a pipe line such as outdoors. In addition, in the second embodiment, the ratio of the number of tubular members to the number of long members is 2: 1, but may be larger (for example, 3: 1, 4: 1).

本発明超電導ケーブルの布設方法は、大電流送電網の形成に好適に利用することができる。   The laying method of the superconducting cable of the present invention can be suitably used for forming a large current transmission network.

1 超電導ケーブル
2 管状部材
3 長尺部材
8 管路
9 マンホール
100,101,200 常温絶縁型超電導ケーブル
10 導体部
30 低温導電部
11 フォーマ 12 超電導導体層
13 断熱管 14 内管 15 外管 131 冷媒
13´ 分流導体付き断熱管
20 常温被覆部
21 パイプ状構造体
22 分流導体
23 常温側電気絶縁層
40 被覆部付き断熱管
300 低温絶縁型超電導ケーブル
50 ケーブルコア
16 電気絶縁層 17 外側超電導導体層 18 保護層
DESCRIPTION OF SYMBOLS 1 Superconducting cable 2 Tubular member 3 Long member 8 Pipe line 9 Manhole 100, 101, 200 Room temperature insulation superconducting cable 10 Conductor part 30 Low temperature conductive part 11 Former 12 Superconducting conductor layer 13 Heat insulation pipe 14 Inner pipe 15 Outer pipe 131 Refrigerant 13 ′ Heat insulation pipe with shunt conductor 20 Room temperature covering part 21 Pipe-shaped structure 22 Current shunt conductor 23 Room temperature side electric insulation layer 40 Heat insulation pipe with covering part 300 Low temperature insulation superconducting cable 50 Cable core 16 Electric insulation layer 17 Outer superconducting conductor layer 18 Protection layer

Claims (7)

超電導導体層と電気絶縁層とを備える超電導ケーブルの布設方法であって、
組み合わせることで前記超電導ケーブルとなる管状部材と長尺部材を個別に布設現場に用意する工程αと、
前記管状部材を、布設現場に布設する工程βと、
前記長尺部材を、前記工程βで布設された管状部材の内部に挿入する工程γと、
を備え
前記長尺部材の長さが、複数の連なった管状部材の長さよりも長い超電導ケーブルの布設方法。
A superconducting cable laying method comprising a superconducting conductor layer and an electrical insulating layer,
A process α for preparing a tubular member and a long member to be the superconducting cable by combining them individually at the laying site;
Step β for laying the tubular member on a laying site;
Step γ for inserting the elongated member into the tubular member laid in step β;
Equipped with a,
A superconducting cable laying method in which a length of the long member is longer than a length of a plurality of continuous tubular members.
前記超電導ケーブルは、The superconducting cable is
フォーマの外周に前記超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、A conductor part formed by forming the superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
前記断熱管の外周を取り囲むように配置される前記電気絶縁層を有する常温被覆部と、A room temperature coating portion having the electrical insulating layer disposed so as to surround the outer periphery of the heat insulating tube;
を備える常温絶縁型超電導ケーブルである請求項1に記載の超電導ケーブルの布設方法。  The method for laying a superconducting cable according to claim 1, wherein the superconducting cable is a room temperature insulated superconducting cable.
前記工程βで布設される管状部材は、前記断熱管の外周に前記常温被覆部を一体に形成した被覆部付き断熱管からなり、The tubular member laid in the step β is composed of a heat insulating tube with a covering portion integrally formed with the room temperature covering portion on the outer periphery of the heat insulating tube,
前記工程γで管状部材に挿入される長尺部材は、前記導体部からなる請求項2に記載の超電導ケーブルの布設方法。The superconducting cable laying method according to claim 2, wherein the long member inserted into the tubular member in the step γ includes the conductor portion.
超電導導体層と電気絶縁層とを備える超電導ケーブルの布設方法であって、A superconducting cable laying method comprising a superconducting conductor layer and an electrical insulating layer,
組み合わせることで前記超電導ケーブルとなる管状部材と長尺部材を個別に布設現場に用意する工程αと、A process α for preparing a tubular member and a long member to be the superconducting cable by combining them individually at the laying site;
前記管状部材を、布設現場に布設する工程βと、Step β for laying the tubular member on a laying site;
前記長尺部材を、前記工程βで布設された管状部材の内部に挿入する工程γとA step γ for inserting the elongated member into the tubular member laid in the step β;
を備え、With
前記長尺部材は、前記管状部材よりも長く、The elongate member is longer than the tubular member,
前記超電導ケーブルは、The superconducting cable is
フォーマの外周に前記超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、A conductor part formed by forming the superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
前記断熱管の外周を取り囲むように配置される前記電気絶縁層を有する常温被覆部と、A room temperature coating portion having the electrical insulating layer disposed so as to surround the outer periphery of the heat insulating tube;
を備える常温絶縁型超電導ケーブルであり、A room temperature insulated superconducting cable with
前記工程βで布設される管状部材は、前記常温被覆部からなり、The tubular member laid in the step β consists of the room temperature coating portion,
前記工程γで管状部材に挿入される長尺部材は、前記低温導電部からなる超電導ケーブルの布設方法。The long member inserted into the tubular member in the step γ is a method for laying a superconducting cable including the low temperature conductive portion.
前記常温被覆部はさらに、分流導体を備え、The room temperature coating portion further includes a shunt conductor,
この分流導体は、常温被覆部における電気絶縁層の内側に形成され、異常時電流を分担する請求項4に記載の超電導ケーブルの布設方法。The superconducting cable laying method according to claim 4, wherein the shunt conductor is formed inside the electrical insulating layer in the normal temperature coating portion and shares the current during the abnormality.
前記低温導電部はさらに、分流導体を備え、The low-temperature conductive part further includes a shunt conductor,
この分流導体は、低温導電部における断熱管の外側に形成され、異常時電流を分担する請求項4に記載の超電導ケーブルの布設方法。The superconducting cable laying method according to claim 4, wherein the shunt conductor is formed outside the heat insulating tube in the low-temperature conductive portion, and shares an abnormal current.
超電導導体層と電気絶縁層とを備える超電導ケーブルの布設方法であって、A superconducting cable laying method comprising a superconducting conductor layer and an electrical insulating layer,
組み合わせることで前記超電導ケーブルとなる管状部材と長尺部材を個別に布設現場に用意する工程αと、A process α for preparing a tubular member and a long member to be the superconducting cable by combining them individually at the laying site;
前記管状部材を、布設現場に布設する工程βと、Step β for laying the tubular member on a laying site;
前記長尺部材を、前記工程βで布設された管状部材の内部に挿入する工程γと、Step γ for inserting the elongated member into the tubular member laid in step β;
を備え、With
前記長尺部材は、前記管状部材よりも長く、The elongate member is longer than the tubular member,
前記超電導ケーブルは、The superconducting cable is
フォーマの外周に前記超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、A conductor part formed by forming the superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
前記断熱管の外周を取り囲むように配置される前記電気絶縁層を有する常温被覆部と、A room temperature coating portion having the electrical insulating layer disposed so as to surround the outer periphery of the heat insulating tube;
を備える常温絶縁型超電導ケーブルであり、A room temperature insulated superconducting cable with
前記工程βで布設される管状部材は、前記断熱管の外周に前記常温被覆部を一体に形成した被覆部付き断熱管からなり、The tubular member laid in the step β is composed of a heat insulating tube with a covering portion integrally formed with the room temperature covering portion on the outer periphery of the heat insulating tube,
前記工程γで管状部材に挿入される長尺部材は、前記導体部からなり、The long member inserted into the tubular member in the step γ consists of the conductor portion,
前記被覆部付き断熱管はさらに、分流導体を備え、  The insulated pipe with a covering portion further includes a shunt conductor,
この分流導体は、被覆部付き断熱管における断熱管の外側で、前記電気絶縁層の内側に形成され、異常時電流を分担する超電導ケーブルの布設方法。This shunt conductor is formed outside the heat insulation pipe in the heat insulation pipe with the covering portion, inside the electric insulation layer, and laying a superconducting cable for sharing an abnormal current.

JP2011033153A 2011-02-18 2011-02-18 Laying the superconducting cable Expired - Fee Related JP5273572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033153A JP5273572B2 (en) 2011-02-18 2011-02-18 Laying the superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033153A JP5273572B2 (en) 2011-02-18 2011-02-18 Laying the superconducting cable

Publications (2)

Publication Number Publication Date
JP2012175750A JP2012175750A (en) 2012-09-10
JP5273572B2 true JP5273572B2 (en) 2013-08-28

Family

ID=46978128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033153A Expired - Fee Related JP5273572B2 (en) 2011-02-18 2011-02-18 Laying the superconducting cable

Country Status (1)

Country Link
JP (1) JP5273572B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601332A (en) * 2020-11-26 2022-06-01 United Kingdom Atomic Energy Authority A method and passageway for a superconducting cable
CN113013790B (en) * 2021-04-15 2022-04-08 曹炳成 Intelligent laying construction method for 175mm wire diameter superconducting cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320564A (en) * 1994-05-25 1995-12-08 Sumitomo Electric Ind Ltd Superconducting cable
JP4689984B2 (en) * 2004-07-20 2011-06-01 株式会社ワイ・ワイ・エル DC superconducting power transmission cable and power transmission system
JP2006059695A (en) * 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd Superconductive cable

Also Published As

Publication number Publication date
JP2012175750A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP4399763B2 (en) DC superconducting cable line
WO2013157513A1 (en) Connection structure for superconducting cable
JP2023511488A (en) AC submarine power cable with reduced loss
JP5053466B2 (en) Terminal structure of superconducting cable conductor
US7498519B2 (en) Joint for superconducting cable
JP2007287388A (en) Superconducting cable core and superconducting cable
JP2018530853A (en) Superconducting wire
KR20070003897A (en) Termination Structure of Polyphase Superconducting Cable
JP5443835B2 (en) Superconducting cable line
KR101148574B1 (en) Superconducting cable
JP2007200783A (en) Multi-core superconducting cable
JP2006059695A (en) Superconductive cable
JP5273572B2 (en) Laying the superconducting cable
JP5252324B2 (en) Superconducting power transmission system
JP4956271B2 (en) Superconducting cable
JP6770459B2 (en) Superconducting cable
JP5246453B2 (en) Method for measuring critical current of superconducting cable
WO2014132765A1 (en) Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
RU2379777C2 (en) Superconducting cable
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP5003942B2 (en) Superconducting cable and superconducting cable connection
JP2013069585A (en) Superconducting cable manufacturing method
JP6697677B2 (en) Intermediate connection structure of superconducting cable
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
JP5305180B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees