[go: up one dir, main page]

JP5271229B2 - Filtration system - Google Patents

Filtration system Download PDF

Info

Publication number
JP5271229B2
JP5271229B2 JP2009232044A JP2009232044A JP5271229B2 JP 5271229 B2 JP5271229 B2 JP 5271229B2 JP 2009232044 A JP2009232044 A JP 2009232044A JP 2009232044 A JP2009232044 A JP 2009232044A JP 5271229 B2 JP5271229 B2 JP 5271229B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fine particles
adsorbent
order
filtration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009232044A
Other languages
Japanese (ja)
Other versions
JP2011079181A (en
Inventor
靖雄 山口
俊明 山口
健太郎 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sangyo Co Ltd
Original Assignee
Daido Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sangyo Co Ltd filed Critical Daido Sangyo Co Ltd
Priority to JP2009232044A priority Critical patent/JP5271229B2/en
Publication of JP2011079181A publication Critical patent/JP2011079181A/en
Application granted granted Critical
Publication of JP5271229B2 publication Critical patent/JP5271229B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Presses (AREA)
  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、例えば不純物を含んだ湿し水を印刷に適した状態にクリアーにする濾過システムに関する。   The present invention relates to a filtration system that clears dampening water containing impurities, for example, into a state suitable for printing.

例えば、平版印刷では印刷の非画線部にインキが付着しないように版面を湿し水で湿らせて印刷を行う事が行われている。前記印刷を行う際、紙面に付着した粉末状のごみである紙粉が印刷時に版面やブランケットに付着すると、その紙粉が原因となって印刷部分が白点状にぬけるヒッキーの現象が生じる。したがって、湿し水に含まれる紙粉などの不純物を除去する必要がある。   For example, in lithographic printing, printing is performed by dampening the plate surface with dampening water so that ink does not adhere to non-image areas of printing. When the printing is performed, if paper dust, which is powdery dust attached to the paper surface, adheres to the printing plate or the blanket during printing, the paper powder causes the printed part to become white spots. Therefore, it is necessary to remove impurities such as paper dust contained in the fountain solution.

湿し水を浄化する技術として、特開2004−97968号公報(特許文献1)に開示されたものがある。この技術は、容器内に多孔質火山岩を複数収納し、汚れを含む機械水が流入口から流出口に至る間に、機械水中の乳化物や微粉などの汚れを多孔質火山岩中の孔に吸着することにより湿し水を浄化する構成のものである。   As a technique for purifying the fountain solution, there is one disclosed in Japanese Patent Application Laid-Open No. 2004-97968 (Patent Document 1). This technology accommodates multiple porous volcanic rocks in a container, and adsorbs dirt such as emulsions and fine powder in mechanical water to the pores in the porous volcanic rock while the mechanical water containing dirt reaches from the inlet to the outlet. By doing so, the fountain solution is purified.

前記特許文献1に開示された技術では、容器内に収納する多孔質火山岩の粒径を5cm〜15cmになるように多孔質火山岩を整粒している。そして、孔表面に汚れが付着した多孔質火山岩は、前記容器から取り出して加熱するか又は洗浄することによって再使用することが可能になっている。   In the technique disclosed in Patent Document 1, the porous volcanic rock is sized so that the particle diameter of the porous volcanic rock housed in the container is 5 cm to 15 cm. And the porous volcanic rock with dirt on the hole surface can be reused by taking it out of the container and heating or washing it.

特開2004−97968号公報JP 2004-97968 A

しかしながら、前記特許文献1では、多孔質火山岩の再使用を前提としているため、その多孔質火山岩の大きさが5cm〜15cmであるから、多孔質火山岩を容器に充填させた際に、多孔質火山岩同士の隙間が紙粉の粒径の大きさ以上になるため、紙粉がその隙間を擦り抜けてしまい、濾過効果を十分に発揮させることができないという課題がある。   However, in Patent Document 1, since the porous volcanic rock is assumed to be reused, the size of the porous volcanic rock is 5 cm to 15 cm. Therefore, when the container is filled with the porous volcanic rock, the porous volcanic rock is Since the gap between each other is equal to or larger than the particle size of the paper powder, there is a problem that the paper powder rubs through the gap and the filtering effect cannot be sufficiently exhibited.

また、静圧の下で紙粉を多孔質火山岩の表面に付着させることも可能であるが、容器内での多孔質火山岩間に紙粉の粒径以上の隙間が存在するため、紙粉が多孔質火山岩間を擦り抜けて容器の底部に滞留する可能性が大であり、濾過効果を十分に発揮することはできないという課題がある。   It is also possible to attach paper dust to the surface of the porous volcanic rock under static pressure, but there is a gap larger than the particle size of the paper powder between the porous volcanic rocks in the container. There is a high possibility that the porous volcanic rocks will scrub through the space between the porous volcanic rocks and stay at the bottom of the container, and the filtration effect cannot be fully exhibited.

さらに、印刷に使用する湿し水には、紙粉に加えてパウダーやインキや油分等の汚れも含まれている。パウダーやインキや油分等の汚れは、紙粉の大きさと比較してさらに小さい粒径であるから、これらの汚れを多孔質火山岩で捕捉することは難しいものとなる。   Further, the fountain solution used for printing contains not only paper dust but also dirt such as powder, ink and oil. Since dirt such as powder, ink, and oil has a smaller particle size than the size of paper powder, it is difficult to capture these dirt with porous volcanic rock.

また、吸着材として活性炭が用いられているが、その用法は原材料を砕いて微粒子化して用いるものであり、その微粒子の表面の凹凸構造或いは内部に形成されている連通孔に汚れを付着させるものであり、この活性炭を袋に充填して使用している。この場合、活性炭の表面が異質の袋に接触した状態で袋に充填されている。   Activated carbon is used as the adsorbent, but its usage is to pulverize the raw material to make fine particles, and to attach dirt to the irregular structure on the surface of the fine particles or to the communication holes formed inside. The activated carbon is used by filling a bag. In this case, the bag is filled with the activated carbon surface in contact with the foreign bag.

本発明者等は、種々の実験を繰り返して次のことを解明した。
すなわち、本発明者等は、
(1)汚水を流動させる際に水圧の変動等によって、袋に当てがわれている活性炭が袋と摩擦して、その摩耗粉が袋の網目を閉塞すること、
(2)袋に当てがわれた活性炭が摩耗すると、それが起因して活性炭同士の摩擦に発展し、大部分の活性炭の粒径を縮小させることとなり、短期間で濾過効果が低下すること、
(3)活性炭の用法が、微粒子状の粉砕した形態のみに止まり、その活性炭の表面に形成されている凹凸や連通孔の寸法に着目しておらず、活性炭の特性を十分に発揮させていないこと、
(4)活性炭の用法が、その活性炭のみによる濾過であって、大きさの異なる汚れに対して十分対処できていないこととを解明した。
The present inventors have clarified the following by repeating various experiments.
That is, the present inventors
(1) When flowing sewage, activated carbon applied to the bag rubs against the bag due to fluctuations in water pressure, etc., and the abrasion powder closes the bag mesh,
(2) When the activated carbon applied to the bag is worn, it develops to friction between the activated carbon due to it, and the particle size of most of the activated carbon is reduced, and the filtration effect decreases in a short period of time.
(3) The usage of activated carbon is limited to finely pulverized form, not paying attention to the unevenness and the size of the communication hole formed on the surface of the activated carbon, and the characteristics of activated carbon are not fully exhibited. about,
(4) It was clarified that the usage of activated carbon was filtration only with the activated carbon, and it was not able to cope with dirt of different sizes.

本発明の目的は、微粒子状の吸着材が摩耗するのを抑制し、且つμmオーダの凹凸及びnmオーダの連通孔と微粒子を用いることにより、長期間に渡っての使用を可能にした濾過システムを提供することにある。   An object of the present invention is to provide a filtration system that can be used for a long period of time by suppressing wear of a particulate adsorbent and using micrometer-order irregularities and nm-order communicating holes and fine particles. Is to provide.

前記目的を達成するため、本発明に係る濾過システムは、キャリアに含有する異物を濾過する濾過システムであって、μmオーダの凹凸及びnmオーダの連通孔を有する微粒子と、表面領域に撥水処理を施し且つ内部に繊維の積層によるフィルタ機能を有する内外二重構造であって、袋状に形成した不織布とを有し、前記不織布の撥水処理を施した内壁に前記微粒子の表面を当てがい、前記不織布で前記微粒子をブロック状に保形したことを特徴とする。   In order to achieve the above object, a filtration system according to the present invention is a filtration system for filtering foreign substances contained in a carrier, and has fine particles having irregularities in the order of μm and communicating holes in the order of nm, and a water-repellent treatment on the surface region. The inner and outer double structure having a filter function by laminating fibers inside, and having a nonwoven fabric formed in a bag shape, and applying the surface of the fine particles to the inner wall of the nonwoven fabric subjected to water repellent treatment The fine particles are retained in a block shape with the nonwoven fabric.

本発明は、不織布を内外二重構造とし、その表面領域で微粒子との馴染みを向上させて前記微粒子の鈍りを抑制するとともに、前記不織布が備えているフィルタ機能と、前記微粒子が備えているμmオーダの凹凸とnmオーダの連通孔とにより、キャリアに含まれている異物を捕捉することにより、濾過効果を向上させると共に、その濾過効果を長期間に亘って発揮させることができるものである。   In the present invention, the nonwoven fabric has an internal / external double structure, and improves the familiarity with the fine particles in the surface region to suppress the dullness of the fine particles, and the filter function provided by the non-woven fabric and the μm provided by the fine particles. By capturing foreign matter contained in the carrier by the irregularities of the order and the communication holes of the nm order, the filtration effect can be improved and the filtration effect can be exhibited over a long period of time.

本発明の実施形態に係る濾過システムを示す原理図である。1 is a principle diagram showing a filtration system according to an embodiment of the present invention. (a)は、本発明の実施形態に係る濾過システムを正面から撮影した写真、(b)は上面から撮影した写真である。(A) is the photograph which image | photographed the filtration system which concerns on embodiment of this invention from the front, (b) is the photograph image | photographed from the upper surface. 従来の用法に基づいて粉砕したままの珪藻土を走査電子顕微鏡(SEM)で観察した写真である。It is the photograph which observed the diatomaceous earth as grind | pulverized based on the conventional usage with the scanning electron microscope (SEM). (a)は、本発明の実施形態に係る濾過システムに用いる微粒子(吸着材)を走査電子顕微鏡(SEM)で観察した写真、(b)は(a)の微粒子(吸着材)を倍率を上げて走査電子顕微鏡(SEM)で観察した写真である。(A) is a photograph of fine particles (adsorbent) used in a filtration system according to an embodiment of the present invention observed with a scanning electron microscope (SEM), and (b) is a magnification of fine particles (adsorbent) of (a). And a photograph observed with a scanning electron microscope (SEM). (a)(b)は、本発明の実施形態に係る濾過システムに用いる微粒子(吸着材)を透過電子顕微鏡(TEM)で観察した写真である。(A) (b) is the photograph which observed the fine particle (adsorbent) used for the filtration system which concerns on embodiment of this invention with the transmission electron microscope (TEM). 本発明の実施形態に係る濾過システムに用いる微粒子を横断面方向から走査電子顕微鏡(SEM)で観察した写真である。It is the photograph which observed the microparticles | fine-particles used for the filtration system which concerns on embodiment of this invention with the scanning electron microscope (SEM) from the cross-sectional direction. 本発明の実施形態に係る濾過システムに用いる微粒子を透過電子顕微鏡(TEM)で観察した写真である。It is the photograph which observed the microparticles | fine-particles used for the filtration system which concerns on embodiment of this invention with the transmission electron microscope (TEM). (a)は、本発明の実施形態に係る濾過システムに用いる袋状不織布を走査電子顕微鏡(SEM)で観察した写真、(b)は、(a)に示す袋状不織布を高倍率で走査顕微鏡により撮影した写真である。(A) is the photograph which observed the bag-shaped nonwoven fabric used for the filtration system which concerns on embodiment of this invention with the scanning electron microscope (SEM), (b) is a scanning microscope with the high magnification of the bag-shaped nonwoven fabric shown to (a). It is a photograph taken by (a)は本発明の実施形態に係る濾過システムに用いる微粒子(吸着材)のnmサイズにおける状態を袋状不織布に充填してブロック状に保形した状態を模式化して示す平面図、(b)は本発明の実施形態に係る濾過システムに用いる微粒子(吸着材)の断面形態を模式化した図である。(A) is a plan view schematically showing a state in which a fine particle (adsorbent) used in a filtration system according to an embodiment of the present invention is filled with a bag-like nonwoven fabric in a nano-size state and retained in a block shape; ) Is a diagram schematically showing a cross-sectional form of fine particles (adsorbent) used in the filtration system according to the embodiment of the present invention. 本発明の実施形態に係る濾過システムを使って湿し水を濾過した実験の結果を示す写真である。It is a photograph which shows the result of the experiment which filtered dampening water using the filtration system concerning the embodiment of the present invention. (a)は本発明の実施形態に係る濾過システムに用いるμmオーダの凹凸及びnmオーダの連通孔に加工した吸着前の微粒子(吸着材)を示す写真、(b)は本発明の実施形態に係る濾過システムにより捕捉した異物(有機物等)を含んだ微粒子(吸着材)を示す写真である。(A) is the photograph which shows the microparticles | fine-particles (adsorbent) before adsorption | suction processed into the unevenness | corrugation of a micrometer order used for the filtration system which concerns on embodiment of this invention, and the communicating hole of nm order, (b) is embodiment of this invention. It is a photograph which shows the microparticles | fine-particles (adsorbent) containing the foreign material (organic substance etc.) capture | acquired with the said filtration system. 本発明の実施形態に係る濾過システムにより捕捉した異物(有機物、紙粉など)の残渣をEDS(エネルギー分散型X線分光)分析した結果の一例を示す図である。It is a figure which shows an example of the result of having analyzed the residue of the foreign material (organic substance, paper powder, etc.) captured by the filtration system which concerns on embodiment of this invention by EDS (energy dispersive X-ray spectroscopy).

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の実施形態に係る濾過システムは図1及び図2(a)(b)に示す様に、キャリア3に含有する異物(有機物,紙粉など)5a,5b、5c、5dを濾過する濾過システムであって、図4(a)(b)に示すμmオーダの凹凸1b及び図4(a)(b)及び図5(a)(b)に示すnmオーダの連通孔1c、1dを有する微粒子(吸着材)1と、図7(a)(b)に示す様に表面領域に撥水処理を施し且つ内部に繊維の積層によるフィルタ機能を有する内外二重構造であって、図2(a)(b)に示す様に袋状に形成した不織布2とを有し、図1のCに拡大したように前記不織布2の撥水処理を施した内壁2aに前記微粒子1の表面1aを当てがい、図2(a)(b)に示す様に前記不織布2で前記微粒子1をブロック状に保形したことを特徴とするものである。
また、前記袋状の不織布2には、図2(a)に示す様に前記キャリア3の取水口4が設けてある。以下の説明では、キャリア3として、印刷業界で用いられている湿し水を用いた例を説明するが、キャリア3としては前記湿し水に限定されるものではない。
As shown in FIGS. 1 and 2 (a) (b), the filtration system according to the embodiment of the present invention is a filter that filters foreign matters (organic matter, paper powder, etc.) 5a, 5b, 5c, 5d contained in the carrier 3. The system has an unevenness 1b of μm order shown in FIGS. 4A and 4B and communication holes 1c and 1d of nm order shown in FIGS. 4A, 4B, 5A, and 5B. A fine particle (adsorbent) 1 and an internal / external double structure in which a surface region is subjected to water repellency treatment as shown in FIGS. a) a non-woven fabric 2 formed in a bag shape as shown in (b), and the surface 1a of the fine particles 1 is formed on the inner wall 2a of the non-woven fabric 2 subjected to water repellent treatment as enlarged in FIG. As shown in FIGS. 2 (a) and 2 (b), the non-woven fabric 2 holds the fine particles 1 in a block shape. The one in which the features.
Further, the bag-like nonwoven fabric 2 is provided with a water intake 4 of the carrier 3 as shown in FIG. In the following description, an example in which dampening water used in the printing industry is used as the carrier 3 will be described, but the carrier 3 is not limited to the dampening water.

図1は、本発明の実施形態に係る濾過システムの原理を図示したものである。図1においては、袋状の不織布2と吸着材として用いた微粒子1との関係を示すために、Aで示す様に袋状の不織布2をシート状のものとして図示している。なお、以降の説明では、前記微粒子1を吸着材1として表記する。   FIG. 1 illustrates the principle of a filtration system according to an embodiment of the present invention. In FIG. 1, in order to show the relationship between the bag-shaped nonwoven fabric 2 and the fine particles 1 used as the adsorbent, the bag-shaped nonwoven fabric 2 is illustrated as a sheet as indicated by A. In the following description, the fine particles 1 are expressed as the adsorbent 1.

図2(a)の右側の写真に示す様に、本発明の実施形態は、不織布2を袋状に成形し、その袋状の不織布2内に吸着材をなす微粒子1を充填して、吸着材をなす微粒子1を袋状不織布2でブロック状に保形している。図2(a)の左側の写真は、内部に吸着材をなす微粒子1を充填した後の不織布2を示している。この状態では、袋状不織布2には取水口4が取り付けられていない。次に、本発明の実施形態では、図2(a)に示す袋状不織布2に取水口4を取り付けている。なお、使用前の袋状不織布2の取水口4はキャップ4aにより栓がされている。   As shown in the photograph on the right side of FIG. 2 (a), in the embodiment of the present invention, the non-woven fabric 2 is formed into a bag shape, and the bag-shaped non-woven fabric 2 is filled with the fine particles 1 forming the adsorbent and adsorbed. Fine particles 1 constituting the material are held in a block shape by a bag-like nonwoven fabric 2. The photograph on the left side of FIG. 2A shows the non-woven fabric 2 after being filled with the fine particles 1 forming the adsorbent. In this state, the water inlet 4 is not attached to the bag-like nonwoven fabric 2. Next, in the embodiment of the present invention, the water intake 4 is attached to the bag-like nonwoven fabric 2 shown in FIG. In addition, the water intake 4 of the bag-shaped nonwoven fabric 2 before use is plugged with a cap 4a.

本発明の実施形態では、前記吸着材1として、例えば珪藻土或いは活性炭を粉砕し且つ熱処理などを施した微粒子の単体或いはそれらの混合体を用いているが、吸着材としては、珪藻土や活性炭以外のものであってもよいものである。以下の説明では、吸着材1として珪藻土或いは活性炭の微粒子を単体で用いた例を説明する。   In the embodiment of the present invention, as the adsorbent 1, for example, diatomaceous earth or activated carbon fine particles obtained by pulverizing and heat-treating are used, or a mixture thereof, but the adsorbent is not diatomaceous earth or activated carbon. It may be a thing. In the following description, an example in which diatomaceous earth or activated carbon fine particles are used alone as the adsorbent 1 will be described.

本発明の実施形態では、珪藻土或いは活性炭の構造を変性させることにより、表面1aにμmオーダの凹凸1bを有し且つ内部にnmオーダの連通孔1cを有する微粒子に仕上げている。なお、前記微粒子の内、珪藻土の構造を変成させる方法としては、NOx雰囲気中で加熱処理を行う方法を採用することが可能である。また、活性炭の場合、その内部構造を変性させる方法としては、アルゴン+3%水素ガス雰囲気中で加熱する方法を採用することが可能である。これらの方法が有効であることは走査電子顕微鏡による写真及び透過電子顕微鏡による写真に基づいて実証する。なお、これら以外の方法により前記微粒子の構造を変性させてもよいものである。   In the embodiment of the present invention, by modifying the structure of diatomaceous earth or activated carbon, the surface 1a is finished into fine particles having a micrometer-order unevenness 1b and a nanometer-order communication hole 1c inside. As a method for modifying the structure of diatomaceous earth among the fine particles, a method of performing a heat treatment in a NOx atmosphere can be employed. In the case of activated carbon, a method of heating in an argon + 3% hydrogen gas atmosphere can be adopted as a method of modifying the internal structure. The effectiveness of these methods is demonstrated on the basis of photographs taken by scanning electron microscope and transmission electron microscope. Note that the structure of the fine particles may be modified by a method other than these.

次に、一般的な珪藻土を単に粉砕した微粒子と、本発明の実施形態のように内部構造の変性処理を施すことによりμmオーダの凹凸1bとnmオーダの連通孔1bを有する微粒子とを比較して、その違いについて考察する。   Next, the fine particles obtained by simply pulverizing general diatomaceous earth are compared with the fine particles having the irregularities 1b on the order of μm and the communication holes 1b on the order of nm by applying a modification treatment of the internal structure as in the embodiment of the present invention. Then, consider the difference.

一般的な珪藻土を単純に粉砕した場合、これをSEM観察すると、図3に示す様に表面6が平坦であり、しかも連通孔8はμmオーダの径を有している。これでは、湿し水3内に含まれる約3μmオーダの紙粉やnmオーダの有機物を捕捉することは不可能であることが走査顕微鏡による写真を用いた観察結果からして明らかである。   When general diatomaceous earth is simply pulverized and observed by SEM, the surface 6 is flat as shown in FIG. 3, and the communication hole 8 has a diameter on the order of μm. From this, it is apparent from the observation results using photographs taken with a scanning microscope that it is impossible to capture about 3 μm paper dust and nm order organic matter contained in the fountain solution 3.

これに対して、本発明の実施形態に用いる吸着材をなす微粒子1は図4(a)に示す様に、その表面1aには、μmオーダの凹凸1bが形成されている。更に、倍率を上げてSEM観察すると、図4(b)に示す様に、μmオーダの凹凸1bより小さな孔径をもつnmオーダの連通孔1cが形成されていることが分かる。また、連通孔1cの内壁には突起1dが形成されている。この突起1dの構造が有機物(インキ成分、パウダー、油脂)や紙粉などを捕捉するのに有効に寄与するものである。   On the other hand, as shown in FIG. 4A, the fine particles 1 constituting the adsorbent used in the embodiment of the present invention have irregularities 1b on the order of μm on the surface 1a. Further, when SEM observation is performed with the magnification increased, it can be seen that as shown in FIG. 4 (b), a communication hole 1c of the order of nm having a hole diameter smaller than the unevenness 1b of the order of μm is formed. A protrusion 1d is formed on the inner wall of the communication hole 1c. The structure of the protrusion 1d effectively contributes to capturing organic substances (ink components, powder, fats and oils), paper powder, and the like.

したがって、本発明の実施形態では、μmオーダの凹凸1bにより、図1に示す様に湿し水に含まれる約3μmの紙粉5aを捕捉することが可能であると共に、nmオーダの連通孔1cにより、湿し水3に含まれるnmオーダの有機物(パウダー5b,インキ成分5c,油分5d等)を捕捉することが可能であることが分かる。また、前記nmオーダの連通孔1cの内壁の突起1dによっても、前記有機物をさらに有効に捕捉することができる。   Therefore, in the embodiment of the present invention, it is possible to capture the paper powder 5a of about 3 μm contained in the fountain solution as shown in FIG. 1 by the unevenness 1b of the μm order, and the communication hole 1c of the nm order. Thus, it is understood that organic substances (powder 5b, ink component 5c, oil 5d, etc.) in the order of nm contained in the fountain solution 3 can be captured. In addition, the organic matter can be captured more effectively by the protrusion 1d on the inner wall of the communication hole 1c of the nm order.

さらに、本発明の実施形態において物質内部の構造を変性させた吸着材1をなす珪藻土を透過電子顕微鏡(TEM)により観察した結果を図5(a)(b)に基づいて説明する。図5(a)(b)に示す様に、微粒子1の内部に黒縞のコントラスト7が認められ、その幅が50〜100nmであって連通孔1cとしての形態に形成されている。この場合でも、連通孔1cはnmオーダである。   Furthermore, the result of observing the diatomaceous earth forming the adsorbent 1 in which the internal structure of the substance in the embodiment of the present invention is observed with a transmission electron microscope (TEM) will be described based on FIGS. 5 (a) and 5 (b). As shown in FIGS. 5 (a) and 5 (b), a black stripe contrast 7 is observed inside the fine particles 1, and the width thereof is 50 to 100 nm, which is formed as a communication hole 1c. Even in this case, the communication hole 1c is in the order of nm.

また、本発明の実施形態において物質内部の構造を変性させた吸着材1をなす活性炭を透過電子顕微鏡(TEM)により観察した結果を説明する。図7(a)(b)(c)は、図6に示すD領域を透過顕微鏡で観察したTEM写真である。図7(a)(b)(c)の写真からも連通孔1cの痕跡と思われる突起が観察された。図6に示す走査電子顕微鏡によるSEM観察からは平坦に見えた連通孔1cの側面にも、図7(a)(b)(c)に示す様に10〜100nmの突起1dがあり、この突起1dの構造が有機物(インキ成分、パウダー、油脂)や紙粉などを捕捉するのに有効に寄与するものである。   Moreover, the result of having observed the activated carbon which makes the adsorbent 1 which modified | denatured the structure inside a substance in embodiment of this invention with the transmission electron microscope (TEM) is demonstrated. 7A, 7B, and 7C are TEM photographs of the D region shown in FIG. 6 observed with a transmission microscope. From the photographs of FIGS. 7A, 7B, and 7C, protrusions that appear to be traces of the communication holes 1c were observed. As shown in FIGS. 7A, 7B, and 7C, a projection 1d having a thickness of 10 to 100 nm is formed on the side surface of the communication hole 1c that appears flat from the SEM observation by the scanning electron microscope shown in FIG. The 1d structure contributes effectively to capture organic substances (ink components, powder, fats and oils), paper powder, and the like.

以上のように走査電子顕微鏡及び透過電子顕微鏡を用いた微粒子の観察を考慮すると、本発明の実施形態では、微粒子1の表面1aにμmオーダの凹凸1bを形成させていると共に、nmオーダの連通孔1cを形成させているため、例えば湿し水3に含まれる有機物であるインキ成分,パウダー,油脂などをnmオーダの連通孔1cで捕捉し、約3μmの紙粉をμmオーダの凹凸1bで捕捉し、湿し水3の浄化に寄与させるものである。   In view of observation of fine particles using a scanning electron microscope and a transmission electron microscope as described above, in the embodiment of the present invention, the surface 1a of the fine particle 1 is formed with irregularities 1b on the order of μm, and communication in the order of nm. Since the holes 1c are formed, for example, ink components, powders, fats and oils that are organic substances contained in the fountain solution 3 are captured by the communication holes 1c of the nm order, and about 3 μm of paper dust is captured by the unevenness 1b of the order of μm. It captures and contributes to purification of the fountain solution 3.

さらに、本発明の実施形態では、図7(a)(b)(c)に示す様に、連通孔1cの内壁にさらにnmオーダの突起1dを形成させているため、この突起1dが連通孔1cによる有機物の捕捉に寄与することとなり、連通孔1c及びその内部の突起1dにより、有機物の有効な捕捉に寄与させるものである。   Furthermore, in the embodiment of the present invention, as shown in FIGS. 7A, 7B, and 7C, since the protrusion 1d of the order of nm is further formed on the inner wall of the communication hole 1c, the protrusion 1d is connected to the communication hole. This contributes to capture of the organic matter by 1c, and contributes to effective capture of the organic matter by the communication hole 1c and the protrusion 1d inside thereof.

さらに、本発明の実施形態では、不織布2の表面領域に撥水処理を施している。具体的に説明すると、本発明の実施形態では、例えば日華化学株式会社の製品名「アデッソWR−1」を用いて不織布2の繊維に撥水処理を施しており、表面領域に形成した撥水層2cと内部に繊維の積層によるフィルタ機能2dとを有する内外二重構造の不織布2に仕上げている。さらに、前記内外二重構造の不織布2を図2(a)(b)に示す様に袋状に形成している。   Furthermore, in the embodiment of the present invention, the surface region of the nonwoven fabric 2 is subjected to water repellent treatment. Specifically, in the embodiment of the present invention, for example, a product name “Adesso WR-1” manufactured by Nikka Chemical Co., Ltd. is used to perform water repellency treatment on the fibers of the non-woven fabric 2 to form a repellency formed on the surface region. The non-woven fabric 2 has an inner / outer double structure having a water layer 2c and a filter function 2d formed by stacking fibers inside. Further, the non-woven fabric 2 having the inner / outer double structure is formed in a bag shape as shown in FIGS.

さらに、本発明の実施形態では図1及び図2に示す様に、前記内外二重構造の不織布2を、その表面領域の撥水層2cを袋の内壁として、袋状に成形している。そして、前記袋状の不織布2内に吸着材1をなす微粒子1を充填して、それらの微粒子1を袋状の不織布2でブロック状に保形している。   Furthermore, in the embodiment of the present invention, as shown in FIGS. 1 and 2, the inner / outer double-structured nonwoven fabric 2 is formed into a bag shape with the water-repellent layer 2c in the surface region as the inner wall of the bag. And the fine particle 1 which makes the adsorbent 1 is filled in the said bag-shaped nonwoven fabric 2, and these fine particles 1 are shape-retained by the bag-shaped nonwoven fabric 2 at the block shape.

さらに、本発明の実施形態では、袋状の不織布2の内壁2aが撥水処理を施した撥水層2bであることを応用して、微粒子1と不織布2の内壁2aとの馴染みを向上させて、ブロック状の表層側に位置する微粒子1と不織布2の内壁2aとを密着させている。   Furthermore, in the embodiment of the present invention, the familiarity between the fine particles 1 and the inner wall 2a of the nonwoven fabric 2 is improved by applying that the inner wall 2a of the bag-shaped nonwoven fabric 2 is a water-repellent treatment 2b. Thus, the fine particles 1 located on the block-like surface layer side and the inner wall 2a of the nonwoven fabric 2 are brought into close contact with each other.

次に、本発明の実施形態に用いた不織布2を走査電子顕微鏡で観察した結果について説明する。   Next, the result of observing the nonwoven fabric 2 used in the embodiment of the present invention with a scanning electron microscope will be described.

撥水処理後の不織布2をSEM観察すると、図8(a)に示す様に、不織布2を形成している繊維2dの径が約15〜20μmであり、それらの繊維2dが積層されているためにフィルタ機能としては実質数μmと考えられる。また、図8(b)に示す様に、不織布2の表面領域に位置する繊維2dを観察するとその繊維2dの表面が光っており、不織布2の表面領域に撥水層2cが存在していることが分かる。
これらの走査電子顕微鏡による観察結果を考察すると、表面領域に形成した撥水層2cと内部に繊維の積層によるフィルタ機能2dとを有する内外二重構造の不織布2に形成させていることが分かる。これは、従来の不織布が繊維の積層によるフィルタ機能のみを備えているものと、本発明の実施形態に用いる内外二重構造の不織布2との違いが図7に示すSEM写真から明らかになった。
When the non-woven fabric 2 after the water-repellent treatment is observed with an SEM, the diameter of the fibers 2d forming the nonwoven fabric 2 is about 15 to 20 μm and the fibers 2d are laminated as shown in FIG. Therefore, the filter function is considered to be substantially several μm. Further, as shown in FIG. 8B, when the fiber 2d located in the surface region of the nonwoven fabric 2 is observed, the surface of the fiber 2d is shining, and the water repellent layer 2c is present in the surface region of the nonwoven fabric 2. I understand that.
Considering the observation results by these scanning electron microscopes, it can be seen that the non-woven fabric 2 having an inner / outer double structure having a water-repellent layer 2c formed in the surface region and a filter function 2d formed by laminating fibers therein is formed. This is clear from the SEM photograph shown in FIG. 7 that the conventional nonwoven fabric has only a filter function based on fiber lamination and the nonwoven fabric 2 having an internal / external double structure used in the embodiment of the present invention. .

本発明の実施形態に用いた不織布2は、慣性作用,衝突作用,分散作用,重力作用,静電作用などによって、有機物や紙粉等を捕捉する。図8(a)から分かるように、その不織布2が備えているフィルタ機能が実質数μmであるから、紙粉などを十分捕捉できることが分かる。   The nonwoven fabric 2 used in the embodiment of the present invention captures organic matter, paper powder, and the like by inertial action, collision action, dispersion action, gravity action, electrostatic action, and the like. As can be seen from FIG. 8A, the filter function of the non-woven fabric 2 is substantially several μm, so that it can be seen that paper dust and the like can be sufficiently captured.

また、本発明の実施形態に用いた不織布2は、その繊維2d特に表面領域の繊維b2dに撥水処理が施され、その不織布2の表面領域には撥水層2cを備えているため、不織布2と微粒子1との馴染みが改善され、微粒子1は不織布2の内壁2aに密着して当てがわれることとなる。
そのため、取水口4から供給される湿し水3が水圧の変動などにより吸着材をなす微粒子1が不織布2の内壁2aと摩擦することが抑制され、その結果、吸着材をなす微粒子1の表面1aの形状が鈍ることはない。したがって、吸着材をなす微粒子1による濾過効果が長期間維持されることとなる。
In addition, the nonwoven fabric 2 used in the embodiment of the present invention is provided with a water repellent treatment on the fibers 2d, particularly the fibers b2d in the surface region, and the surface region of the nonwoven fabric 2 has a water repellent layer 2c. Therefore, the familiarity between the fine particles 1 and the fine particles 1 is improved, and the fine particles 1 are applied in close contact with the inner wall 2 a of the nonwoven fabric 2.
For this reason, the dampening water 3 supplied from the water intake port 4 is suppressed from rubbing the fine particles 1 forming the adsorbent with the inner wall 2a of the nonwoven fabric 2 due to fluctuations in water pressure, and as a result, the surface of the fine particles 1 forming the adsorbent. The shape of 1a is not blunted. Therefore, the filtration effect by the fine particles 1 constituting the adsorbent is maintained for a long time.

次に、本発明の実施形態に係る濾過システムを用いて印刷業界で使用されている湿し水3を浄化する場合を説明する。   Next, the case where the fountain solution 3 used in the printing industry is purified using the filtration system according to the embodiment of the present invention will be described.

袋状の不織布2の取水口4から汚れた湿し水3を不織布2内のブロック状の吸着材をなす微粒子1に供給すると、前記送り込まれた湿し水3は図9(a)に太線で示す様に、前記微粒子1の表面1aに沿って流動し、その湿し水3内に含まれる紙粉5aが図1のBに拡大して示す様に、前記微粒子1の表面1aに図4(a)(b)に示す様なμmオーダの凹凸1bで捕捉される。前記ブロック状の外周面に位置する微粒子1は、図8(b)に示す不織布2の撥水層2cに密着したままで、その表面1aの凹凸1bで紙粉5aを捕捉している。   When the dirty dampening water 3 is supplied from the water intake 4 of the bag-like non-woven fabric 2 to the fine particles 1 constituting the block-shaped adsorbent in the non-woven fabric 2, the dampening water 3 fed in is shown by a thick line in FIG. As shown in FIG. 1, the paper powder 5a flowing along the surface 1a of the fine particle 1 and contained in the fountain solution 3 is enlarged on the surface 1a of the fine particle 1 as shown in FIG. 4 (a) and 4 (b) are captured by the unevenness 1b on the order of μm. The fine particles 1 located on the block-shaped outer peripheral surface are in close contact with the water-repellent layer 2c of the nonwoven fabric 2 shown in FIG. 8B, and the paper powder 5a is captured by the irregularities 1b of the surface 1a.

また、湿し水3は図9(a)に太線で示す様に微粒子の表面1aに沿って流動する及び内部浸透する際に、その内部に含まれる異物、具体的には有機物であるパウダー5b,インキ成分5c,油分5dが、模式化して示した図9(b)及び図4(b)並びに図5(a)(b)で示すnmオーダの連通孔1cを流動する際に、そのnmオーダの連通孔1cに捕捉される。この場合、図7(a)(b)(c)に示す様に連通孔1cの内壁に突起1dが形成されている場合には、前記有機物が前記連通孔1c内の突起1dによっても捕捉される。   Further, when the fountain solution 3 flows along the surface 1a of the fine particles and penetrates inside as shown by a thick line in FIG. 9A, the foreign matter contained in the inside, specifically, the powder 5b which is an organic substance. When the ink component 5c and the oil component 5d flow through the communicating holes 1c of the order of nm shown in FIGS. 9B, 4B and 5A and 5B, which are schematically shown, It is captured in the communication hole 1c of the order. In this case, as shown in FIGS. 7A, 7B, and 7C, when the protrusion 1d is formed on the inner wall of the communication hole 1c, the organic matter is also captured by the protrusion 1d in the communication hole 1c. The

また、本発明の実施形態では、図1のCに拡大して示す様に、微粒子1の表面1aが不織布2の内壁2aに密着しているため、不織布2のメッシュ2bが微粒子2によって閉塞される可能性があるが、不織布2の表面領域には撥水層2cが存在するため、浄化された湿し水3は不織布2の撥水層2cによって微粒子1の表面1aと不織布2の内壁2aとの間を擦り抜けて袋状不織布2の外部に排水される。   In the embodiment of the present invention, as shown in an enlarged view in FIG. 1C, the surface 1a of the fine particles 1 is in close contact with the inner wall 2a of the non-woven fabric 2, so that the mesh 2b of the non-woven fabric 2 is blocked by the fine particles 2. However, since the water repellent layer 2c exists in the surface region of the nonwoven fabric 2, the purified dampening water 3 is separated from the surface 1a of the fine particles 1 and the inner wall 2a of the nonwoven fabric 2 by the water repellent layer 2c of the nonwoven fabric 2. And is drained to the outside of the bag-like nonwoven fabric 2.

また、本発明の実施形態に用いた不織布2は図8(b)に示す様に表面領域に撥水層2cを有するが、図8(b)に示す様にその内部に繊維2dが積層して形成されるフィルタ機能を有しているため、湿し水3は図9(a)に示す微粒子1の表面1aに沿って流動することに加えて不織布2の繊維2d間を潜って流動し、不織布2の有するフィルタ機能によって不織布2に捕捉される。   Further, the nonwoven fabric 2 used in the embodiment of the present invention has a water-repellent layer 2c in the surface region as shown in FIG. 8 (b), but the fibers 2d are laminated inside as shown in FIG. 8 (b). In addition to flowing along the surface 1a of the fine particles 1 shown in FIG. 9 (a), the fountain solution 3 dives between the fibers 2d of the nonwoven fabric 2 and flows. The nonwoven fabric 2 captures the filter function of the nonwoven fabric 2.

以上のように、本発明の実施形態によれば、吸着材をなす微粒子1のμmオーダの凹凸1bとnmオーダの連通孔1c、連通孔1cの内壁に形成した凹凸1d及び不織布2の有するnmオーダのフィルタ機能に基づいて、キャリア3に含まれる異物を除去することができるものである。   As described above, according to the embodiment of the present invention, the fine particle 1 constituting the adsorbent 1 μm-order irregularities 1b and nm-order communicating holes 1c, the irregularities 1d formed on the inner walls of the communicating holes 1c, and the non-woven fabric 2 have nm. The foreign matter contained in the carrier 3 can be removed based on the filter function of the order.

次に、本発明の実施形態に係る濾過システムを用いて平版印刷に用いられた湿し水を濾過した結果を説明する。この実験は、連続吸水の湿し水装置(容量100リットル)の湿し水3を毎分15リットルで12ヶ月間、本発明の実施形態に係る濾過システムに循環することにより、紙粉や有機物の捕捉を検証したものである。   Next, the result of filtering the fountain solution used for lithographic printing using the filtration system according to the embodiment of the present invention will be described. This experiment was conducted by circulating dampening water 3 of a continuous water dampening device (capacity 100 liters) at a rate of 15 liters per minute for 12 months to the filtration system according to the embodiment of the present invention. This is a verification of the capture.

図10の右側に示したビーカ内の湿し水が濾過前のものであり、左側に示したビーカ内の湿し水が濾過したものである。図10の比較結果から明らかなように、湿し水が濾過されて透明度が増していることが分かる。この実験結果からして、本発明の実施形態は、キャリアに含まれる紙粉や有機物を濾過する事に効果があることが分かる。更に、本発明の実施形態では、連続吸水の湿し水装置(容量100リットル)の湿し水3を毎分15リットルで12ヶ月間浄化しても濾過効果が維持されていた。   The dampening water in the beaker shown on the right side of FIG. 10 is before filtration, and the dampening water in the beaker shown on the left side is filtered. As is clear from the comparison results of FIG. 10, it can be seen that the fountain solution is filtered and the transparency is increased. From this experimental result, it can be seen that the embodiment of the present invention is effective in filtering paper powder and organic matter contained in the carrier. Furthermore, in the embodiment of the present invention, the filtration effect was maintained even when the dampening water 3 of the continuous water dampening device (capacity 100 liters) was purified at 15 liters per minute for 12 months.

これに対して、従来の濾過システムでは、数週間毎のメンテナンスの都度、湿し水を廃棄し、湿し水を貯留するタンク内を清掃した後、新たな湿し水に交換していた。
このことからしても、本発明の実施形態に係る濾過システムでは、吸着材1及び不織布2のみを交換することにより、湿し水を交換することが不要となる。そして、実験の結果からして、本発明の実施形態における吸着材1及び不織布2の交換時期は、吸着材1の充填量を調整することにより、数ヶ月ないし数年の期間に延長させることができる。
On the other hand, in the conventional filtration system, the dampening water is discarded every time maintenance is performed every several weeks, and after the inside of the tank storing dampening water is cleaned, it is replaced with new dampening water.
Even from this, in the filtration system according to the embodiment of the present invention, it is not necessary to replace the dampening water by exchanging only the adsorbent 1 and the nonwoven fabric 2. And from the results of the experiment, the replacement time of the adsorbent 1 and the nonwoven fabric 2 in the embodiment of the present invention can be extended to a period of several months to several years by adjusting the filling amount of the adsorbent 1. it can.

図10に示す実験結果を、吸着材をなす微粒子1の粒径を種々変更しながら行った。その結果によれば、吸着材1をなす微粒子1の粒径を15μm〜30μmの範囲に設定し、前記不織布として、前記粒径の吸着材1を袋の内部に坦持するのに必要な透過用隙間をもつ不織布を用いることにより、最も効率的且つ長期間に亘って汚れを浄化できることが分かっている。したがって、不織布2の繊維間に形成される隙間が、吸着材として15μmの微粒子1を用いる場合には約10μm〜14μmのものを用い、吸着材として30μmの微粒子1を用いる場合には約15μm〜28μmのものを用いることが最適であるとの結果が出ている。   The experimental results shown in FIG. 10 were performed while variously changing the particle size of the fine particles 1 constituting the adsorbent. According to the result, the particle size of the fine particles 1 constituting the adsorbent 1 is set in the range of 15 μm to 30 μm, and the permeation necessary for carrying the adsorbent 1 having the particle size as the nonwoven fabric inside the bag. It has been found that the use of a non-woven fabric having a gap for use can most effectively purify dirt over a long period of time. Accordingly, the gap formed between the fibers of the nonwoven fabric 2 is about 10 μm to 14 μm when 15 μm fine particles 1 are used as the adsorbent, and about 15 μm when 30 μm fine particles 1 are used as the adsorbent. The result shows that it is optimal to use a 28-micrometer thing.

また、本発明の実施形態に係る濾過システムに用いたμmオーダの凹凸及びnmオーダの連通孔に加工した吸着材をなす微粒子であって、吸着前の微粒子1を図11(a)に、吸着後の紙粉や有機物を含む吸着材をなす微粒子1を図11(b)に示す。   Further, the fine particles 1 forming the adsorbent processed into the irregularities of the μm order and the communicating holes of the nm order used in the filtration system according to the embodiment of the present invention, and the fine particles 1 before the adsorption are shown in FIG. The fine particles 1 constituting the adsorbent containing paper powder and organic matter later are shown in FIG.

次に、本発明の実施形態において、図11(b)に示す吸着後の吸着材をなす微粒子1の珪藻土をEDS分析した結果を表1および表2に示す。主体はSiO(二酸化珪素)であるが、わずかにAl(アルミナ)などが分析された。

Figure 0005271229

Figure 0005271229
Next, Tables 1 and 2 show the results of EDS analysis of the diatomaceous earth of the fine particles 1 constituting the adsorbent after adsorption shown in FIG. 11B in the embodiment of the present invention. The main component was SiO 2 (silicon dioxide), but a little Al 2 O 3 (alumina) and the like were analyzed.
Figure 0005271229

Figure 0005271229

次に、本発明の実施形態に係る濾過システムによって図11(a)(b)に示す様に捕捉した有機物(残渣)を分析した。
図11(a)(b)に示す捕捉した有機物(残渣)をEDS分析した結果を表3〜表5に示す。印刷インキの主体はプロピレングリコール(CH3CH(OH)CH2OH)やクエン酸(C6H8O7)と言われているが、これらに該当する有機物の詳細な組成は不明である。環境対応型平版インキの生産比率はUVインキ4.3%、大豆油インキ74.2%、ノンVOCインキ0.9%であり、湿し水のうち、インキ成分が占める割合が79.4%であることから、インキ成分は有機系の組成であると考えられる。特に、酸素(O)、炭素(C)、窒素(N)、硫黄(S)、ナトリウム(Na)、カリウム(K)などの有機物合成に不可欠な成分などが主体である。また、光沢成分としてマグネシウム(Mg)、アルミニウム(Al)、コバルト(Co)なども含まれている。一部に塩素(Cl)なども捕捉していることが判明した。

Figure 0005271229

Figure 0005271229

Figure 0005271229
Next, organic substances (residues) captured as shown in FIGS. 11A and 11B were analyzed by the filtration system according to the embodiment of the present invention.
Tables 3 to 5 show the results of EDS analysis of the captured organic substances (residues) shown in FIGS. The main components of printing ink are said to be propylene glycol (CH 3 CH (OH) CH 2 OH) and citric acid (C 6 H 8 O 7 ), but the detailed composition of organic substances corresponding to these is unknown. The production ratio of environmentally friendly lithographic ink is 4.3% for UV ink, 74.2% for soybean oil ink, and 0.9% for non-VOC ink. The proportion of ink component in dampening water is 79.4%. Therefore, it is considered that the ink component has an organic composition. In particular, it is mainly composed of components essential for organic synthesis such as oxygen (O), carbon (C), nitrogen (N), sulfur (S), sodium (Na), potassium (K). Further, magnesium (Mg), aluminum (Al), cobalt (Co) and the like are also included as gloss components. It became clear that some chlorine (Cl) was captured.
Figure 0005271229

Figure 0005271229

Figure 0005271229

図12は捕捉有機物残渣(3)のEDSスペクトルである。このスペクトルから吸着材1及び不織布2上には、かなり多くの有機物質が捕捉されていることが明らかになった。   FIG. 12 is an EDS spectrum of the trapped organic residue (3). From this spectrum, it became clear that quite a lot of organic substances were captured on the adsorbent 1 and the nonwoven fabric 2.

以上の結果に基づいて、本発明の実施形態に係る濾過システムを考察すると、不織布に撥水処理を施すことにより、不織布と微粒子状の吸着材との馴染みを向上させるとともに、不織布のキャリアに対する流動抵抗を低下させることにより、不織布と吸着材との摩耗を抑制して、濾過効果を長期間に亘って発揮させることができる。   Based on the above results, the filtration system according to the embodiment of the present invention is considered. By applying a water repellent treatment to the nonwoven fabric, the familiarity between the nonwoven fabric and the particulate adsorbent is improved, and the flow of the nonwoven fabric to the carrier is improved. By reducing the resistance, wear of the nonwoven fabric and the adsorbent can be suppressed, and the filtration effect can be exhibited over a long period of time.

さらに、μmオーダの凹凸及びnmオーダの連通孔を有する微粒子状の吸着材と、撥水処理を施して袋状に成形した不織布とを用いるため、例えば湿し水の汚れの大きさに対処することができ、吸着材と不織布とのいずれか或いは双方を用いて確実に汚れを浄化することができる。   Furthermore, since a fine particle adsorbent having irregularities in the order of μm and communicating holes in the order of nm and a non-woven fabric formed into a bag shape by performing a water repellent treatment are used, for example, the size of the dampening water is dealt with. It is possible to clean the dirt reliably using either or both of the adsorbent and the nonwoven fabric.

さらに、不織布の撥水処理を施した内壁に前記微粒状の吸着材の表面を当てがい、前記不織布で前記微粒子状の吸着材をブロック状に保形することにより、上述した様に不織布と吸着材との摩擦が抑制でき、微粒子状の吸着材全体に発展する摩擦現象を抑制することができる。   Furthermore, the surface of the particulate adsorbent is applied to the inner wall of the nonwoven fabric that has been subjected to a water repellent treatment, and the particulate adsorbent is retained in a block shape by the nonwoven fabric, thereby adsorbing the nonwoven fabric as described above. Friction with the material can be suppressed, and the friction phenomenon that develops in the entire fine particle adsorbent can be suppressed.

本発明は、平版印刷の湿し水の浄化ばかりでなく、nmオーダの汚れを含むキャリアを浄化するのに適しており、食品業界などの浄化処理にも適用でき、しかも熱を使わないため、環境に負担をかけることがない濾過方式を提供できる。   The present invention is suitable not only for purification of dampening water for lithographic printing, but also for purifying carriers containing dirt on the order of nm, and can also be applied to purification processing in the food industry and the like, and does not use heat. It is possible to provide a filtration method that does not place a burden on the environment.

1 吸着材をなす微粒子
1b 凹凸
1c 連通孔
1d 突起
2 不織布
2a 不織布の内壁
2c 撥水層
DESCRIPTION OF SYMBOLS 1 Fine particle 1b which makes adsorbent Irregularity 1c Communication hole 1d Protrusion 2 Nonwoven fabric 2a Nonwoven fabric inner wall 2c Water repellent layer

Claims (2)

キャリアに含有する異物を濾過する濾過システムであって、
μmオーダの凹凸及びnmオーダの連通孔を有する微粒子と、
表面領域に撥水処理を施し且つ内部に繊維の積層によるフィルタ機能を有する内外二重構造であって、袋状に形成した不織布とを有し、
前記不織布の撥水処理を施した内壁に前記微粒子の表面を当てがい、前記不織布で前記微粒子をブロック状に保形したことを特徴とすることを特徴とする濾過システム。
A filtration system for filtering foreign matter contained in a carrier,
microparticles having irregularities on the order of μm and communicating holes on the order of nm,
A water-repellent treatment is applied to the surface region, and the inside and outside double structure has a filter function by laminating fibers inside, and has a nonwoven fabric formed in a bag shape,
A filtration system, wherein a surface of the fine particles is applied to an inner wall of the nonwoven fabric that has been subjected to a water repellent treatment, and the fine particles are retained in a block shape by the nonwoven fabric.
前記連通孔の内壁に突起を有する請求項1に記載の濾過システム。   The filtration system according to claim 1, wherein a projection is provided on an inner wall of the communication hole.
JP2009232044A 2009-10-05 2009-10-05 Filtration system Expired - Fee Related JP5271229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232044A JP5271229B2 (en) 2009-10-05 2009-10-05 Filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232044A JP5271229B2 (en) 2009-10-05 2009-10-05 Filtration system

Publications (2)

Publication Number Publication Date
JP2011079181A JP2011079181A (en) 2011-04-21
JP5271229B2 true JP5271229B2 (en) 2013-08-21

Family

ID=44073755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232044A Expired - Fee Related JP5271229B2 (en) 2009-10-05 2009-10-05 Filtration system

Country Status (1)

Country Link
JP (1) JP5271229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975275B2 (en) 1999-12-22 2015-03-10 Bayer Innovation Gmbh Use of chemotherapeutic agents

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728324B2 (en) * 2011-08-02 2015-06-03 株式会社鷺宮製作所 Temperature expansion valve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175284A (en) * 1996-12-19 1998-06-30 The Inctec Inc Damping water filtering apparatus
JP2001260310A (en) * 2000-03-22 2001-09-25 Efutekku Giken:Kk Dampening water filtering device
US20030096703A1 (en) * 2001-08-23 2003-05-22 The Procter & Gamble Company Processes for manufacturing water filters
JP3809648B2 (en) * 2002-01-31 2006-08-16 株式会社石垣 Moving filter filter
JP2006326405A (en) * 2005-05-23 2006-12-07 Toyo Giken Kk Water purifying filter
JP2007275841A (en) * 2006-04-11 2007-10-25 Toyobo Engineering Kk Car washing wastewater treatment apparatus
WO2009054063A1 (en) * 2007-10-26 2009-04-30 Minowa Machinery Co., Ltd. Water circulation apparatus and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975275B2 (en) 1999-12-22 2015-03-10 Bayer Innovation Gmbh Use of chemotherapeutic agents

Also Published As

Publication number Publication date
JP2011079181A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
Bao et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation
Zong et al. Bifunctional NiAlFe LDH-coated membrane for oil-in-water emulsion separation and photocatalytic degradation of antibiotic
Huang et al. Fabrication of fibrous MXene nanoribbons (MNRs) membrane with efficient performance for oil-water separation
Ghaemi A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles
Fard et al. Novel hybrid ceramic/carbon membrane for oil removal
Yu et al. High‐performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment
Peng et al. Fabrication of eco-friendly Cu/Co-LDHs-based superhydrophobic sponge and efficiently synchronous removal of microplastic, dyestuff, and oil
US20120037560A1 (en) Porous block nanofiber composite filters
Zhang et al. Nanofibrous Janus membrane with improved self-cleaning property for efficient oil-in-water and water-in-oil emulsions separation
JP5271229B2 (en) Filtration system
Ahmaruzzaman MXene-based novel nanomaterials for remediation of aqueous environmental pollutants
Ma et al. A self-cleaning hierarchical carbon nitride-based membrane for highly efficient oily wastewater purification
JP6726520B2 (en) Activated carbon molding and water purification cartridge
JP2010179262A (en) Filter
Mofulatsi et al. Preparation of manganese oxide coated coal fly ash adsorbent for the removal of lead and reuse for latent fingerprint detection
JP6519934B2 (en) Metal material aggregation promoting layer, and water treatment apparatus using the same
Qin et al. Reversal of wettability of carbon cloth by microwave-assisted modification technology for efficient oil-water separation application
Turk et al. A simple and green preparation of red mud-coated membrane for efficient separation of oil-in-water emulsions
Wang et al. Fabrication of nitrogen-doped graphene quantum dots hybrid membranes and its sorption for Cu (II), Co (II) and Pb (II) in mixed polymetallic solution
Bansal et al. Aluminium terephthalate (Al-BDC) based metal organic framework decorated carboxymethylated filter cloth for defluoridation application
JP2001157892A (en) Liquid cleaning apparatus
CN207545996U (en) A kind of micro- pottery heavy metal filtering composite filter element of polypropylene
BRPI0508689A (en) carbon block filter media for use in gravity fed filters, water filter for use in gravity fed water filtration equipment, and process for preparing a carbon block filter media and for purification of water
WO2013073421A1 (en) Dampening-water cleaning device and cleaning method for offset printing press
CN101298006B (en) Intensive filtration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5271229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees