[go: up one dir, main page]

JP5269222B1 - Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery - Google Patents

Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery Download PDF

Info

Publication number
JP5269222B1
JP5269222B1 JP2012044222A JP2012044222A JP5269222B1 JP 5269222 B1 JP5269222 B1 JP 5269222B1 JP 2012044222 A JP2012044222 A JP 2012044222A JP 2012044222 A JP2012044222 A JP 2012044222A JP 5269222 B1 JP5269222 B1 JP 5269222B1
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
current collector
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012044222A
Other languages
Japanese (ja)
Other versions
JP2013182709A (en
Inventor
陽介 山口
敬太郎 古賀
菜都美 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012044222A priority Critical patent/JP5269222B1/en
Application granted granted Critical
Publication of JP5269222B1 publication Critical patent/JP5269222B1/en
Publication of JP2013182709A publication Critical patent/JP2013182709A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】正極活物質と集電体の高い分離回収効率を低コストで達成できる従来技術とは異なる方法を提供する。
【解決手段】(A)集電体と正極活物質がバインダーにより接着している構成を有するリチウムイオン電池用正極材を準備する工程と、(B)当該リチウムイオン電池用正極材を粉砕媒体を用いて集電体と正極活物質に分離させる工程と、分離された正極材を篩別して、篩下に正極活物質を回収する工程を同時に行うこと、を含むリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法。
【選択図】なし
The present invention provides a method different from the prior art that can achieve high separation and recovery efficiency of a positive electrode active material and a current collector at low cost.
(A) a step of preparing a positive electrode material for a lithium ion battery having a configuration in which a current collector and a positive electrode active material are bonded with a binder; and (B) a pulverizing medium for the positive electrode material for a lithium ion battery. Using the current collector and the positive electrode active material, and separating the positive electrode material and collecting the positive electrode active material under the sieve at the same time. For separating and recovering the body and the positive electrode active material.
[Selection figure] None

Description

本発明は、リチウムイオン電池用正極材から正極活物質を分離回収する方法に関する。 The present invention relates to a method for separating and recovering a positive electrode active material from a positive electrode material for a lithium ion battery.

集電体と正極活物質を分離する技術の一つとして、正極材を湿式処理する方法が知られている特開平10−255862号公報(特許文献1)には、リチウムイオン二次電池の電極を酸性溶液、アルカリ金属の水酸化物溶液、アルカリ金属のアルコール溶液若しくは有機溶媒のうちのいずれかに浸漬し、前記電極を電極材と集電体とに分離する方法が記載されている。特開2005−327482号公報(特許文献2)には、正極基板と正極活物質とからなる正極板を切断し、pH0〜3の硫酸水溶液中で浸漬撹拌することより、正極基板と正活物質を固体のまま分離回収する方法が記載されている。また、正極材を燃焼処理する方法が知られている。特開平10−8150号公報(特許文献3)では、金属箔塗着廃材をシュレッダー等で適当な大きさ、例えば数mmから数十mm角の大きさに裁断処理した後、酸素含有ガス気流中で300〜600℃で燃焼処理することにより、金属箔塗着廃材の電極材料中に配合されているアセチレンブラックやカーボン等の導電剤とフッ素樹脂、フッ素ゴム等の結着剤とを選択的に分解させて除去する方法が開示されている。 As one of the techniques for separating the current collector from the positive electrode active material, a method of wet-treating the positive electrode material is known. Japanese Patent Laid-Open No. 10-255862 (Patent Document 1) discloses an electrode of a lithium ion secondary battery. Is immersed in any one of an acidic solution, an alkali metal hydroxide solution, an alkali metal alcohol solution, or an organic solvent to separate the electrode into an electrode material and a current collector. JP-A-2005-327482 (Patent Document 2) discloses a method of cutting a positive electrode plate composed of a positive electrode substrate and a positive electrode active material and immersing and stirring in a sulfuric acid aqueous solution having a pH of 0 to 3, whereby a positive electrode substrate and a positive active material are obtained. Is described as a method for separating and recovering a solid in the form of a solid. Moreover, a method of burning the positive electrode material is known. In Japanese Patent Application Laid-Open No. 10-8150 (Patent Document 3), a metal foil coating waste material is cut into a suitable size, for example, a size of several mm to several tens of mm square with a shredder and the like, and then in an oxygen-containing gas stream By conducting a combustion treatment at 300 to 600 ° C., a conductive agent such as acetylene black or carbon and a binder such as fluororesin or fluororubber mixed in the electrode material of the metal foil coating waste material are selectively used. A method of disassembly and removal is disclosed.

特開平10−255862号公報JP-A-10-255862 特開2005−327482号公報JP 2005-327482 A 特開平10−8150号公報Japanese Patent Laid-Open No. 10-8150

このように、集電体と正極活物質を分離する技術が知られているが、酸を利用する湿式処理では、回収物であるCo、Ni等の溶出によるロスや不純物であるAlの溶解、混入といった欠点がある。有機溶媒による分離方法では回収率は高いが、回収された正極材からの溶媒の除去や溶媒を取り扱う上での安全性の問題がある他、処理コストが高いという欠点がある。燃焼処理する方法では、結着剤(バインダー)である有機材料を焼却処理することにより正極材を回収する。しかし、正極材の剥離不良やAlの溶融による巻き込みなどにより回収率が低く、さらに、スクラップの状態によって処理条件が異なるなどの課題が残っている。   Thus, a technique for separating the current collector and the positive electrode active material is known, but in wet processing using an acid, loss due to elution of Co, Ni, etc., which is a recovered material, and dissolution of Al, which is an impurity, There are drawbacks such as contamination. In the separation method using an organic solvent, the recovery rate is high, but there are problems of removal of the solvent from the recovered positive electrode material and safety in handling the solvent, and a disadvantage of high processing cost. In the method of burning, the positive electrode material is recovered by incineration of an organic material that is a binder (binder). However, the recovery rate is low due to poor peeling of the positive electrode material or entrainment due to melting of Al, and further, there remain problems such as different processing conditions depending on the state of scrap.

そこで、本発明は、正極活物質と集電体の高い分離回収効率を低コストで達成できる従来技術とは異なる方法を提供することを課題とする。   Then, this invention makes it a subject to provide the method different from the prior art which can achieve the high isolation | separation collection efficiency of a positive electrode active material and a collector at low cost.

本発明者は、上記課題を解決するために鋭意検討した結果、粉砕媒体を用いた粉砕処理を篩上で行うことで、剪断処理や裁断処理などに比べて、正極材からの正極活物質の剥離・分離性が格段に向上し、集電体が篩上に、正極活物質が篩下に高い分離効率で回収できることを見出した。また、粉砕媒体を用いた粉砕処理を篩上で行うことで、作業効率が格段に上昇し、工業的な操業を行う上でコストメリットが非常に大きいことを見出した。   As a result of intensive studies to solve the above problems, the present inventor has performed a pulverization process using a pulverization medium on a sieve, so that the positive electrode active material from the positive electrode material can be compared with a shearing process or a cutting process. It has been found that the separation / separation property is remarkably improved, and the current collector can be recovered on the sieve and the positive electrode active material can be recovered with high separation efficiency on the sieve. Further, it has been found that by performing the pulverization process using the pulverization medium on the sieve, the working efficiency is remarkably increased, and the cost merit is very large in performing the industrial operation.

以上の知見を基礎として完成した本発明は一側面において、
(A)集電体と正極活物質がバインダーにより接着している構成を有するリチウムイオン電池用正極材を準備する工程と、
(B)当該リチウムイオン電池用正極材を粉砕媒体を用いて集電体と正極活物質に分離させる工程B−1と、分離された正極材を篩別して、篩下に正極活物質を回収する工程B−2を同時に行うこと、
を含むリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法である。
The present invention completed on the basis of the above knowledge, in one aspect,
(A) a step of preparing a positive electrode material for a lithium ion battery having a configuration in which a current collector and a positive electrode active material are bonded with a binder;
(B) Step B-1 for separating the positive electrode material for a lithium ion battery into a current collector and a positive electrode active material using a grinding medium, and separating the separated positive electrode material, and collecting the positive electrode active material under a sieve Performing step B-2 simultaneously;
Is a method for separating and collecting a current collector and a positive electrode active material from a positive electrode material for a lithium ion battery.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の一実施形態においては、工程B−2に使用する篩の目開きが0.1〜10mmである。   In one embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for a lithium ion battery according to the present invention, the sieve mesh used in Step B-2 is 0.1 to 10 mm.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の別の一実施形態においては、工程B−2に使用する篩が振動篩である。   In another embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for a lithium ion battery according to the present invention, the sieve used in Step B-2 is a vibrating sieve.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の更に別の一実施形態においては、振動篩が面内振動篩、三次元振動篩、超音波振動篩、又は強制撹拌篩である。   In yet another embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for lithium ion batteries according to the present invention, the vibrating sieve is an in-plane vibrating sieve, a three-dimensional vibrating sieve, an ultrasonic vibrating sieve. Or a forced stirring sieve.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の更に別の一実施形態においては、工程Bは、バインダーを熱分解するためにリチウムイオン電池用正極材を加熱処理した後に実施する。   In still another embodiment of the method for separating and recovering the current collector and the positive electrode active material from the positive electrode material for lithium ion batteries according to the present invention, the step B includes the positive electrode material for lithium ion batteries to thermally decompose the binder. After the heat treatment.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の更に別の一実施形態においては、工程Bによって得られた篩上に対してバインダーを熱分解するための加熱処理を行い、その後に、工程Bを繰り返す。   In yet another embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for a lithium ion battery according to the present invention, the binder is thermally decomposed on the sieve obtained in step B. After that, the process B is repeated.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の更に別の一実施形態においては、加熱処理は、300〜650℃で10〜240分間行われる。   In still another embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for lithium ion batteries according to the present invention, the heat treatment is performed at 300 to 650 ° C. for 10 to 240 minutes.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の更に別の一実施形態においては、加熱処理は、正極材の重量減少率が1〜12%となる範囲で実施する。   In still another embodiment of the method for separating and collecting the current collector and the positive electrode active material from the lithium ion battery positive electrode material according to the present invention, the heat treatment results in a weight reduction rate of the positive electrode material of 1 to 12%. Implement in scope.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の更に別の一実施形態においては、粉砕媒体は正極活物質に使用される金属を材料とする。   In still another embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for a lithium ion battery according to the present invention, the grinding medium is made of a metal used for the positive electrode active material.

本発明によれば、リチウムイオン電池用正極材から正極活物質及び集電体を高い分離効率で回収できるようになる。また、本発明に係る方法は、粉砕と篩別が同時に進行するため処理システムを簡単に構成することができることから低コスト化が可能であると共に、酸性やアルカリ性の水溶液や有機溶媒を使用することなく乾式で行えるので安全性の高い操業が可能となる。そのため、本発明は、リチウムイオン電池正極材から正極活物質を分離回収する工業的利用価値の極めて高い方法を提供することとなる。   According to the present invention, a positive electrode active material and a current collector can be recovered from a positive electrode material for a lithium ion battery with high separation efficiency. In addition, since the method according to the present invention allows the processing system to be easily configured because pulverization and sieving proceed simultaneously, it is possible to reduce the cost and to use an acidic or alkaline aqueous solution or organic solvent. It is possible to operate with high safety because it can be done dry. Therefore, the present invention provides a method with extremely high industrial utility value for separating and recovering the positive electrode active material from the lithium ion battery positive electrode material.

例2における加熱時間と重量減少率の関係を示すグラフである。It is a graph which shows the relationship between the heating time in Example 2, and a weight decreasing rate. 例2における加熱時間と回収物Al混入率の関係を示すグラフである。It is a graph which shows the relationship between the heating time in Example 2, and collection | recovery Al mixing rate.

本発明に係るリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法の一実施形態においては、
(A)集電体と正極活物質がバインダーにより接着している構成を有するリチウムイオン電池用正極材を準備する工程と、
(B)当該リチウムイオン電池用正極材を粉砕媒体を用いて集電体と正極活物質に分離させる工程B−1と、分離された正極材を篩別して、篩下に正極活物質を回収する工程B−2を同時に行うこと、
を含む。
In one embodiment of the method for separating and collecting the current collector and the positive electrode active material from the positive electrode material for a lithium ion battery according to the present invention,
(A) a step of preparing a positive electrode material for a lithium ion battery having a configuration in which a current collector and a positive electrode active material are bonded with a binder;
(B) Step B-1 for separating the positive electrode material for a lithium ion battery into a current collector and a positive electrode active material using a grinding medium, and separating the separated positive electrode material, and collecting the positive electrode active material under a sieve Performing step B-2 simultaneously;
including.

<工程(A)>
工程Aでは集電体と正極活物質がバインダーにより接着している構成を有するリチウムイオン電池用正極材を準備する。限定的ではないが、一般的な正極材では、正極活物質、バインダー並びに必要に応じて導電剤及び電解質等を含む電極材料を溶媒に分散して正極活物質スラリーを調製し、この正極活物質スラリーを集電体上に塗布して乾燥させた後にプレスすることにより、集電体の片面又は両面に正極活物質が接着されている。本発明に係る方法はとりわけ、使用済みのリチウムイオン電池から回収した正極材、製造過程等で発生した規格外(オフスペック)の正極材、品質管理上の抜取検査処理用の正極材、及び製造過程で発生した端材等を特に処理対象とすることができる。
<Process (A)>
In step A, a positive electrode material for a lithium ion battery having a configuration in which a current collector and a positive electrode active material are bonded with a binder is prepared. Although not limited, in a general positive electrode material, a positive electrode active material, a binder, and, if necessary, an electrode material containing a conductive agent and an electrolyte are dispersed in a solvent to prepare a positive electrode active material slurry. The positive electrode active material is adhered to one side or both sides of the current collector by applying the slurry onto the current collector and drying it, followed by pressing. The method according to the present invention includes, among other things, a positive electrode material recovered from a used lithium ion battery, a non-standard (off-spec) positive electrode material generated in the manufacturing process, a positive electrode material for sampling inspection processing for quality control, and manufacturing. The scraps generated in the process can be particularly treated.

集電体としては、限定的ではないが、アルミニウム、銅、ニッケル、銀、金、クロム、鉄、スズ、鉛、タングステン、モリブデン、亜鉛又はこれらを含む合金等の金属が使用されるのが通常であり、アルミニウムが多用されている。集電体は金属箔の形態で提供されるのが一般的である。本発明に係る方法は集電体としてアルミニウム又はアルミニウム合金を使用した正極材に特に好適に使用可能である。   The current collector is not limited, but metals such as aluminum, copper, nickel, silver, gold, chromium, iron, tin, lead, tungsten, molybdenum, zinc, or alloys containing these are usually used. Aluminum is often used. The current collector is generally provided in the form of a metal foil. The method according to the present invention can be particularly suitably used for a positive electrode material using aluminum or an aluminum alloy as a current collector.

正極活物質としてはリチウムイオン電池用の正極活物質として公知のものであれば特に制限はないが、一般的にはリチウムの他、コバルト、ニッケル、マンガン、チタン、バナジウム、鉄及び銅の何れか1種又は2種以上を含有する複合酸化物又は塩の形態として提供される。   The positive electrode active material is not particularly limited as long as it is a known positive electrode active material for a lithium ion battery, but generally any one of cobalt, nickel, manganese, titanium, vanadium, iron and copper in addition to lithium. It is provided in the form of a complex oxide or salt containing one or more.

バインダーとしては一般に樹脂が使用されており、限定的ではないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリイミド、ポリアミド、ポリ酢酸ビニル、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、エポキシ樹脂、ポリウレタン樹脂及びユリア樹脂等が挙げられる。典型的にはPVDFが使用される。   Resin is generally used as a binder, but it is not limited, but polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyimide, polyamide, polyvinyl acetate, polyvinyl chloride (PVC), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), epoxy resin, polyurethane resin, urea resin, etc. Is mentioned. Typically PVDF is used.

<工程B>
工程Bでは、リチウムイオン電池用正極材を粉砕媒体を用いて集電体と正極活物質に分離させる工程(B−1)と、分離された正極材を篩別して、篩下に正極活物質を回収する工程(B−2)が同時に実施される。
<Process B>
In Step B, the step (B-1) of separating the positive electrode material for a lithium ion battery into a current collector and a positive electrode active material using a grinding medium, and separating the separated positive electrode material, the positive electrode active material is placed under the sieve. The collecting step (B-2) is performed simultaneously.

工程B−1では、リチウムイオン電池用正極材を粉砕媒体を用いて集電体と正極活物質に分離する。シュレッダー、一軸破砕機、二軸破砕機等による剪断的な粉砕だと集電体まで粉々になり、後の篩分工程において篩下に集電体が移行しやすいところ、粉砕媒体を使用することにより、集電体があまり小さくならずに正極活物質が分離するので、集電体と正極活物質の分離効率が高いという理由による。粉砕媒体は一般に塊状であり、その中でもハンドリングや粉砕効率の理由によりボール状であることが好ましい。   In Step B-1, the positive electrode material for a lithium ion battery is separated into a current collector and a positive electrode active material using a grinding medium. Use shearing media where the current collector is shattered by shearing with a shredder, uniaxial crusher, biaxial crusher, etc., and the current collector tends to move under the sieve in the subsequent sieving process. Therefore, the current collector is not reduced so much that the positive electrode active material is separated. Therefore, the separation efficiency between the current collector and the positive electrode active material is high. The pulverizing medium is generally in the form of a lump, and among them, it is preferably a ball shape for reasons of handling and pulverization efficiency.

粉砕媒体の材料としては、正極材を粉砕できる限り特に制限はないが、正極材を粉砕するのに適した硬度を有する材料であることが好ましく、例えば、セラミック、アルミナ製の磁性ボール、正極活物質に使用される金属等が挙げられるが、粉砕媒体の成分が摩耗や破損などにより、次工程の篩分において篩下に移行しても、回収された正極活物質の純度に悪影響を与えないようにするために、正極活物質に使用される金属を材料とするのが好ましい。例えば、リチウム、コバルト、ニッケル、マンガン、チタン、バナジウム、鉄及び銅の何れか1種の金属又はこれらの2種以上を組み合わせた合金を使用したり、或いは、これら1種又は2種以上の金属成分から構成されるセラミックとしたりすることが好ましい。   The material of the grinding medium is not particularly limited as long as the positive electrode material can be pulverized, but is preferably a material having a hardness suitable for pulverizing the positive electrode material. For example, ceramic, magnetic balls made of alumina, positive electrode active material are preferable. Examples include metals used for materials, but the purity of the recovered positive electrode active material is not adversely affected even if the components of the grinding media are moved under the sieving in the next sieving due to wear or damage. Therefore, it is preferable to use a metal used for the positive electrode active material as a material. For example, any one metal of lithium, cobalt, nickel, manganese, titanium, vanadium, iron, and copper, or an alloy that combines two or more of these metals, or one or more of these metals is used. It is preferable to use a ceramic composed of components.

粉砕媒体の大きさは、特に制限はないが、大きくなりすぎると使用できる媒体の数が少量となり、リチウムイオン電池用正極材と接触する部分が少なくなるため分離効率が下がる一方で、小さくなりすぎてもリチウムイオン電池用正極材より下部でボールが振動することが多くなるため分離効率が下がる。そこで、例えばボール状の粉砕媒体を使用する場合は、直径5〜50mmとするのが好ましく、直径10〜30mmとするのがより好ましい。また、異なる直径のボールを併用しても良い。例えば、ボールの大きさを2グループに分け、第一グループのボールの直径を15〜30mmとして、第二グループのボールの直径を10〜15mmとすることができる。これにより第一グループのボールが大きいリチウムイオン電池用正極材を細かくし、第二グループのボールが効率的に剥離する効果が得られる。3つ以上のグループにボールの大きさを区分けすることも可能であるが、効果には限りがあるので過度に分ける必要はない。   The size of the grinding medium is not particularly limited, but if it becomes too large, the number of media that can be used will be small, and the number of parts that come into contact with the positive electrode material for the lithium ion battery will decrease, so the separation efficiency will decrease, but it will be too small. However, since the ball often vibrates below the positive electrode material for the lithium ion battery, the separation efficiency is lowered. Therefore, for example, when a ball-shaped grinding medium is used, the diameter is preferably 5 to 50 mm, and more preferably 10 to 30 mm. Further, balls having different diameters may be used in combination. For example, the size of the balls can be divided into two groups, the diameter of the balls of the first group can be 15-30 mm, and the diameter of the balls of the second group can be 10-15 mm. As a result, the positive electrode material for a lithium ion battery having a large first group of balls can be made fine, and the second group of balls can be effectively peeled off. It is possible to divide the size of the ball into three or more groups, but there is a limit to the effect, so there is no need to divide it excessively.

効率的な分離操作のためには、粉砕装置の大きさに応じて粉砕媒体は複数使用することが一般的である。例示的には、処理する正極材の重量(g)に対する粉砕媒体の数(個)は、0.001〜100とすることができ、典型的には0.01〜10とすることができる。   For efficient separation operation, it is common to use a plurality of grinding media depending on the size of the grinding device. Illustratively, the number (number) of grinding media relative to the weight (g) of the positive electrode material to be treated can be 0.001 to 100, and typically 0.01 to 10.

粉砕手段としては、粉砕媒体の運動エネルギーを正極材に伝達し、正極材を粉砕することができる限り、特に制限はないが、例えば振動篩が好ましい。振動篩としては、面内振動篩(例:ジャイロシフター、レシプロスクリーン、水平式又は傾斜式のバイブレーティングスクリーン)、三次元振動篩(例:円形スクリーン、ローテックススクリーン)、超音波振動篩、強制撹拌篩等が挙げられ、縦方向の振動が大きい理由により、三次元振動篩、超音波振動篩が好ましい。振動篩機の振動数としては、1〜100Hzの振動数であることが好ましく、20〜80Hzの振動数であることがより好ましい。また、排出口に篩の設置されたボールミルを使用することもできる。   The pulverizing means is not particularly limited as long as the kinetic energy of the pulverizing medium can be transmitted to the positive electrode material, and the positive electrode material can be pulverized. For example, a vibrating sieve is preferable. As vibration sieves, in-plane vibration sieves (eg gyro shifters, reciprocating screens, horizontal or tilting vibratory screens), three-dimensional vibrating sieves (eg round screens, rotex screens), ultrasonic vibrating sieves, forced For example, a three-dimensional vibration sieve or an ultrasonic vibration sieve is preferable because of the large vibration in the vertical direction. The frequency of the vibration sieve is preferably 1 to 100 Hz, and more preferably 20 to 80 Hz. It is also possible to use a ball mill in which a sieve is installed at the discharge port.

工程B−1の実施時間は、振動数や媒体の数にもよるが、短すぎると分離効率が悪くなる一方で、長すぎると処理コストが高くなると共に、集電体までが小さく粉砕されてしまうので、集電体と正極活物質の分離効率、集電体の混入率を考慮すると、10〜120分が好ましく、30〜60分がより好ましい。   The execution time of the step B-1 depends on the number of vibrations and the number of media, but if it is too short, the separation efficiency is deteriorated. On the other hand, if it is too long, the processing cost increases and the current collector is crushed small. Therefore, considering the separation efficiency of the current collector and the positive electrode active material and the mixing ratio of the current collector, 10 to 120 minutes are preferable, and 30 to 60 minutes are more preferable.

工程B−2では、集電体と正極活物質に分離された正極材を篩別して、篩下に正極活物質を回収する。通常、集電体から剥離した正極活物質は軟質であるために粉状になる一方で、集電体は比較的硬質であるために正極活物質ほどは小さくなりにくい。そのため、所定の目開きをもつ篩を使用することにより、集電体の混入を防ぎながら、高い回収率で正極活物質を回収することが可能となる。本発明者の知見によれば、工程B−2に使用する篩の目開きは0.1〜10mmとするのが好ましく、0.3〜3mmとするのがより好ましい。   In Step B-2, the positive electrode material separated into the current collector and the positive electrode active material is sieved, and the positive electrode active material is recovered under the sieve. Normally, the positive electrode active material peeled off from the current collector is soft and powdery, while the current collector is relatively hard and is less likely to be smaller than the positive electrode active material. Therefore, by using a sieve having a predetermined opening, it is possible to recover the positive electrode active material at a high recovery rate while preventing the current collector from being mixed. According to the knowledge of the present inventor, the mesh size of the sieve used in Step B-2 is preferably 0.1 to 10 mm, and more preferably 0.3 to 3 mm.

本発明においては、目開き寸法は一つ一つの篩目が形成する正方形の一辺の長さを指すことが原則である。しかしながら、本発明では篩目の形状は正方形に限られるものではなく、例えば長方形、菱形又は円形でもよい。従って、本発明においては目開き寸法をxmmと定義したときには、その篩がJIS Z8801−1:2006に従う目開き寸法xmmの篩と実質的に同等の篩分け特性を有する篩目を有することを指すものとする。   In the present invention, in principle, the aperture size indicates the length of one side of a square formed by each sieve mesh. However, in the present invention, the shape of the mesh is not limited to a square, and may be, for example, a rectangle, a diamond, or a circle. Therefore, in the present invention, when the opening dimension is defined as xmm, it means that the sieve has a sieve having substantially the same sieving characteristics as a sieve having an opening dimension xmm according to JIS Z8801-1: 2006. Shall.

工程B−2で使用可能な篩としては例えば、振動篩、撹拌篩等が挙げられるが、振動篩の構造を有する篩が好ましい。工程Bを篩上で実施することにより、工程B及び工程Bを同時に実施できるようになる。具体的には、上述したような、篩振とう機、振動篩機、ジャイロシフターや、排出口に篩分機の設置されたボールミルを使用することで工程B−1と工程B−2を同時に且つ連続的に実施することができる。この場合、工程B−1によって集電体から分離され、篩目を通過できる程度の大きさにまで粉砕された正極活物質は、すぐさま篩下に移行する。これにより、過度に小さくなる前に正極活物質が篩下に移行することができるので、正極活物質が過度に粉砕されて、微粉になるのを防ぐ。微粉になると、非常に舞いやすく環境面に対して悪影響を及ぼす。   Examples of the sieve that can be used in the step B-2 include a vibrating sieve and a stirring sieve. A sieve having a vibrating sieve structure is preferable. By performing the process B on a sieve, the process B and the process B can be performed simultaneously. Specifically, the process B-1 and the process B-2 are simultaneously performed by using a sieve shaker, a vibration sieve machine, a gyro shifter, or a ball mill in which a sieving machine is installed at the discharge port as described above. It can be carried out continuously. In this case, the positive electrode active material that has been separated from the current collector in step B-1 and pulverized to a size that can pass through the sieve mesh immediately moves under the sieve. Thereby, since the positive electrode active material can move under the sieve before it becomes excessively small, the positive electrode active material is prevented from being excessively pulverized to become fine powder. When it becomes fine powder, it is very easy to dance and adversely affects the environment.

工程Bを実施する前段において、装置の大きさの制約等に合わせて、正極材を処理しやすい大きさに切断しておくこともできる。例えば、0.5〜50cm、典型的には1〜20cmの正方形の篩目を通る程度の大きさにすることができる。これは、ハサミで行うこともできるが、裁断機、破砕機を使用してもよい。但し、上述したように、過度に小さくすると集電体の混入率が高くなるおそれがあるので、注意する必要がある。   In the previous stage of carrying out the process B, the positive electrode material can be cut into a size that can be easily processed in accordance with restrictions on the size of the apparatus. For example, it can be sized to pass a square mesh of 0.5 to 50 cm, typically 1 to 20 cm. This can be done with scissors, but a cutter or crusher may be used. However, as described above, it is necessary to be careful because excessively reducing the current collector may increase the mixing rate of the current collector.

<加熱処理>
正極材に使用されているバインダーはメーカ毎に微妙に異なり、種々のメーカの正極材が混合した状態で処理しなければならないことが多いため、実操業においては、特定のメーカの正極材にしか対応できないといった適応範囲の狭い分離回収方法よりも、汎用性のある分離回収方法が要求されることとなる。
<Heat treatment>
The binder used in the positive electrode material varies slightly from manufacturer to manufacturer, and it is often necessary to treat the cathode material from various manufacturers in a mixed state. A more versatile separation / recovery method is required than a separation / recovery method with a narrow adaptation range that cannot be applied.

上述した分離回収方法は多くの種類の正極材に対応可能であるが、中にはバインダー量が違うものや塗布方法の違うものや特殊なバインダーが使われているものもあり、正極活物質と集電体の分離が困難な正極材もある。そのような場合には、工程Bの前に、リチウムイオン電池用正極材を加熱処理してバインダーを熱分解するのが有効である。これにより、難剥離性の正極材であっても、高い分離効率で正極活物質と集電体を分離することができるようになる。   The separation and recovery methods described above can be applied to many types of positive electrode materials, but some of them have different binder amounts, different coating methods, and special binders. Some positive electrode materials are difficult to separate current collectors. In such a case, before the step B, it is effective to heat-treat the positive electrode material for a lithium ion battery and thermally decompose the binder. Thereby, even if it is a hard-to-peel positive electrode material, a positive electrode active material and an electrical power collector can be isolate | separated with high separation efficiency.

加熱処理は、加熱温度が低すぎると十分にバインダーが分解しない一方で、加熱温度が高すぎると集電体が酸化したり、溶融が起こったりして脆くなり、篩下への集電体の混入率が上昇しやすくなるため、300〜650℃に正極材を加熱することが好ましく、400〜600℃に正極材を加熱することがより好ましい。加熱時間は長い方がバインダーの分解が進行するが、長すぎるとやはり集電体が脆くなる傾向になるので、10〜240分が好ましく、20〜120分が好ましい。また、適切な加熱温度で加熱処理を行っていれば加熱時間はそれほど長くなくても十分な効果が得られる。よって、エネルギーの節約や時間短縮の観点も加味すれば、加熱時間は20〜80分が好ましく、20〜60分がより好ましい。   In the heat treatment, when the heating temperature is too low, the binder is not sufficiently decomposed, but when the heating temperature is too high, the current collector is oxidized or melted, and becomes brittle. Since the mixing rate is likely to increase, the positive electrode material is preferably heated to 300 to 650 ° C., and more preferably heated to 400 to 600 ° C. The longer the heating time, the more the binder is decomposed. However, if the heating time is too long, the current collector tends to become brittle, so 10 to 240 minutes is preferable, and 20 to 120 minutes is preferable. Further, if the heat treatment is performed at an appropriate heating temperature, a sufficient effect can be obtained even if the heating time is not so long. Therefore, considering the viewpoint of saving energy and shortening the time, the heating time is preferably 20 to 80 minutes, and more preferably 20 to 60 minutes.

加熱処理の程度は、正極材の重量減少率を目安にすることができる。バインダーの熱分解が進むにつれて正極材の重量減少量は大きくなる。重量減少量が適切な範囲となるように加熱処理を実施すれば、集電体の篩下への混入を防ぎながら正極活物質の高い回収率を達成することができる。これが過度になると集電体の篩下への混入が多くなる傾向にある。具体的には、リチウムイオン電池用正極材製造元のバインダー使用状況によるが加熱処理による正極材の重量減少量は1〜12%とするのが好ましく、3〜10%とするのがより好ましい。   The degree of the heat treatment can be based on the weight reduction rate of the positive electrode material. As the thermal decomposition of the binder proceeds, the weight reduction amount of the positive electrode material increases. If the heat treatment is performed so that the weight reduction amount falls within an appropriate range, a high recovery rate of the positive electrode active material can be achieved while preventing the current collector from being mixed under the sieve. When this is excessive, the current collector tends to be mixed under the sieve. Specifically, although the amount of decrease in the weight of the positive electrode material due to the heat treatment is preferably 1 to 12%, more preferably 3 to 10%, depending on the binder usage status of the lithium ion battery positive electrode material manufacturer.

前述したように、上述した分離回収方法は多くの種類の正極材に対応可能であるので、加熱処理を実施する必要のない正極材も多く存在する。加熱処理を実施するためには、そのためのコストがかかるので、加熱処理を行う正極材はできるだけ少ないことが好ましい。そこで、上述した分離回収方法では正極活物質と集電体を分離できなかった正極材に対してだけ加熱処理を行えば、不必要に加熱処理を実施することもなくなる。具体的には、工程Bによって得られた篩上に対してバインダーを熱分解するための加熱処理を行い、その後に、工程Bを繰り返すことで、必要最小限の正極材にのみ加熱処理を行うことができる。   As described above, since the separation and recovery method described above can be applied to many types of positive electrode materials, there are many positive electrode materials that do not require heat treatment. In order to carry out the heat treatment, it takes a cost, and therefore it is preferable that the number of positive electrode materials to be heat-treated is as small as possible. Therefore, if the heat treatment is performed only on the positive electrode material in which the positive electrode active material and the current collector cannot be separated by the separation and recovery method described above, the heat treatment is not unnecessarily performed. Specifically, the heat treatment for thermally decomposing the binder is performed on the sieve obtained in the process B, and then the heat treatment is performed only on the minimum necessary positive electrode material by repeating the process B. be able to.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

(例1)
種々のメーカの正極材をサンプル(A〜E)として準備した。これらの正極材において、集電体はアルミニウム箔であり、正極活物質の金属成分は、主にLi、Mn、Co及びNiである。表1に記載の重量の各サンプルをハサミで一辺が10〜20mmの正方形にカットした。次いで、正極材を磁性ボールと共に篩振とう機内に投入し、正極活物質及び集電体の分離及び篩別を連続的に行った。
(Example 1)
Positive electrode materials from various manufacturers were prepared as samples (A to E). In these positive electrode materials, the current collector is an aluminum foil, and the metal components of the positive electrode active material are mainly Li, Mn, Co, and Ni. Each sample of the weight described in Table 1 was cut into a square having a side of 10 to 20 mm with scissors. Subsequently, the positive electrode material was put into a sieve shaker together with the magnetic balls, and the positive electrode active material and the current collector were separated and sieved continuously.

<電磁式篩振とう機>
メーカ:Retsch社
型式:AS200
振幅:2.0mm
篩の目開き:0.5mm
振動方式:三次元運動
振動数:3,600回/min
<磁性ボール>
材質:アルミナ
投入個数:直径20mmが10個、直径14mmが10個
<Electromagnetic sieve shaker>
Manufacturer: Retsch Type: AS200
Amplitude: 2.0 mm
Sieve opening: 0.5 mm
Vibration method: 3D motion Frequency: 3,600 times / min
<Magnetic ball>
Material: Alumina Number of inputs: 10 20 mm diameter, 10 14 mm diameter

結果を表1に示す。表1より、サンプルA以外のサンプルは加熱処理せずとも、集電体の混入を防止しながら正極活物質の高い回収率が得られていることが分かる。表1中、正極活物質の回収率(%)は、篩上及び篩下のMn,Co,Ni,Liの合計金属重量を100%として以下の式により算出した。
正極活物質回収率=(篩下Mn,Co,Ni,Li量)/(篩上Mn,Co,Ni,Li量+篩下Mn,Co,Ni,Li量)
また、回収物Al混入率は、篩上及び篩下の合計Al重量を100%として以下の式により算出した。
回収物Al混入率=(篩下Al量)/(篩上Al量+篩下Al量)
なお、各金属の重量はサンプルを酸溶解してICPにて分析した結果より算定した。
The results are shown in Table 1. From Table 1, it can be seen that a high recovery rate of the positive electrode active material was obtained while the sample other than sample A was not heat-treated while preventing the current collector from being mixed. In Table 1, the recovery rate (%) of the positive electrode active material was calculated by the following formula, assuming that the total metal weight of Mn, Co, Ni, and Li under the sieve and under the sieve was 100%.
Positive electrode active material recovery rate = (amount of sieving Mn, Co, Ni, Li) / (amount of sieving Mn, Co, Ni, Li + amount of sieving Mn, Co, Ni, Li)
In addition, the Al content of the recovered product was calculated by the following formula with the total Al weight above and below the sieve being 100%.
Collected Al content = (Sieving Al amount) / (Sieving Al amount + Sieving Al amount)
In addition, the weight of each metal was calculated from the result of analyzing the sample by acid dissolving the ICP.

(例2)
例1において分離回収率の低かったサンプルAについて、加熱処理による効果を試験した。サンプルAの正極材をハサミで一辺が10〜20mmの正方形にカットした。次いで、この正極材を電気炉内で表2に記載の種々の加熱温度及び加熱時間で加熱処理した。その後、例1と同様の条件で、正極材を磁性ボールと共に篩振とう機内に投入し、正極活物質及び集電体の分離及び篩別を連続的に行った。振とう時間は30分とした。
(Example 2)
Sample A, which had a low separation recovery rate in Example 1, was tested for the effect of heat treatment. The positive electrode material of Sample A was cut into scissors square with a side of 10-20 mm. Subsequently, this positive electrode material was heat-treated at various heating temperatures and heating times shown in Table 2 in an electric furnace. Thereafter, under the same conditions as in Example 1, the positive electrode material and the magnetic balls were put into a sieve shaker, and the positive electrode active material and the current collector were separated and sieved continuously. The shaking time was 30 minutes.

結果を表2に示す。表2より、加熱処理によってサンプルAの正極材においても、集電体の混入を防止しながら正極活物質の高い回収率が得られていることが分かる。また、図1に、加熱時間と重量減少率の関係を示し、図2に、加熱時間と回収物Al混入率の関係を示した。   The results are shown in Table 2. From Table 2, it can be seen that a high recovery rate of the positive electrode active material is obtained in the positive electrode material of Sample A by heat treatment while preventing the current collector from being mixed. Further, FIG. 1 shows the relationship between the heating time and the weight reduction rate, and FIG. 2 shows the relationship between the heating time and the recovered material Al mixing rate.

(例3:比較)
サンプルCの正極材を準備し、この正極材25.0gをハサミで一辺が10〜20mmの正方形にカットした。次いで、正極材を以下の条件としてボールミルで粉砕して集電体と正極活物質の分離を行った後、正極材をボールミルから取り出して例1で使用した篩振とう機内に投入し、集電体と正極活物質の篩別を30分間行った。ボールミルに使用したボールの大きさ(直径;mm)と数は表3に記載の通りである。
(Example 3: comparison)
A positive electrode material of Sample C was prepared, and 25.0 g of this positive electrode material was cut into a square having a side of 10 to 20 mm with scissors. Next, after the positive electrode material was pulverized by a ball mill under the following conditions to separate the current collector and the positive electrode active material, the positive electrode material was taken out from the ball mill and put into the sieve shaker used in Example 1 to collect the current collector. The body and the positive electrode active material were sieved for 30 minutes. Table 3 shows the size (diameter: mm) and number of balls used in the ball mill.

<ボールミル>
メーカ:アサヒ理化製作所
型式:AV-1型
回転数:130rpm
回転時間:120分
ボール材質:アルミナ
<Ball mill>
Manufacturer: Asahi Rika Seisakusho Model: AV-1 type Rotation speed: 130rpm
Rotation time: 120 minutes Ball material: Alumina

(例4:比較)
サンプルCの正極材を準備し、この正極材25.0gをハサミで一辺が10〜20mmの正方形にカットした。次いで、この正極材を例1で使用した篩振とう機内に直接投入し、正極活物質及び集電体の分離及び篩別を30分間行った。しかしながら、篩下重量は0.1質量%未満であった。
(Example 4: comparison)
A positive electrode material of Sample C was prepared, and 25.0 g of this positive electrode material was cut into a square having a side of 10 to 20 mm with scissors. Subsequently, this positive electrode material was directly put into the sieve shaker used in Example 1, and the positive electrode active material and the current collector were separated and sieved for 30 minutes. However, the weight under the sieve was less than 0.1% by mass.

Claims (9)

(A)集電体と正極活物質がバインダーにより接着している構成を有するリチウムイオン電池用正極材を準備する工程と、
(B)当該リチウムイオン電池用正極材を塊状の粉砕媒体を用いて集電体と正極活物質に分離させる工程B−1と、分離された正極材を篩別して、篩下に正極活物質を回収する工程B−2を同時に行うこと、
を含むリチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法。
(A) a step of preparing a positive electrode material for a lithium ion battery having a configuration in which a current collector and a positive electrode active material are bonded with a binder;
(B) Step B-1 for separating the positive electrode material for a lithium ion battery into a current collector and a positive electrode active material using a massive grinding medium, and separating the separated positive electrode material; Performing the step B-2 to be recovered simultaneously;
A method for separating and collecting a current collector and a positive electrode active material from a positive electrode material for a lithium ion battery.
工程B−2に使用する篩の目開きが0.1〜10mmである請求項1に記載の方法。   The method according to claim 1, wherein the sieve aperture used in Step B-2 is 0.1 to 10 mm. 工程B−2に使用する篩が振動篩である請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the sieve used in Step B-2 is a vibrating sieve. 振動篩が面内振動篩、三次元振動篩、超音波振動篩、又は強制撹拌篩である請求項3に記載の方法。   The method according to claim 3, wherein the vibrating sieve is an in-plane vibrating sieve, a three-dimensional vibrating sieve, an ultrasonic vibrating sieve, or a forced stirring sieve. 工程Bは、バインダーを熱分解するためにリチウムイオン電池用正極材を加熱処理した後に実施する請求項1〜4の何れか一項に記載の方法。   The method as described in any one of Claims 1-4 implemented after heat-processing the positive electrode material for lithium ion batteries in order to thermally decompose a binder. 工程Bによって得られた篩上に対してバインダーを熱分解するための加熱処理を行い、その後に、工程Bを繰り返す請求項1〜5の何れか一項に記載の方法。   The method as described in any one of Claims 1-5 which performs the heat processing for thermally decomposing a binder with respect to the sieve obtained by the process B, and repeats the process B after that. 加熱処理は、300〜650℃で10〜240分間行われる請求項5又は6に記載の方法。   The method according to claim 5 or 6, wherein the heat treatment is performed at 300 to 650 ° C for 10 to 240 minutes. 加熱処理は、正極材の重量減少率が1〜12%となる範囲で実施する請求項5〜7の何れか一項に記載の方法。   The method according to any one of claims 5 to 7, wherein the heat treatment is performed in a range in which the weight reduction rate of the positive electrode material is 1 to 12%. 粉砕媒体は正極活物質に使用される金属を材料とする請求項1〜8の何れか一項に記載の方法。   The method according to claim 1, wherein the grinding medium is made of a metal used for the positive electrode active material.
JP2012044222A 2012-02-29 2012-02-29 Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery Active JP5269222B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044222A JP5269222B1 (en) 2012-02-29 2012-02-29 Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044222A JP5269222B1 (en) 2012-02-29 2012-02-29 Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP5269222B1 true JP5269222B1 (en) 2013-08-21
JP2013182709A JP2013182709A (en) 2013-09-12

Family

ID=49179134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044222A Active JP5269222B1 (en) 2012-02-29 2012-02-29 Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5269222B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216824A (en) * 2018-11-01 2019-01-15 江西优锂新材股份有限公司 A kind of processing reuse method of useless lithium-ion battery electrolytes
CN109904446A (en) * 2019-02-26 2019-06-18 广东邦普循环科技有限公司 A kind of regeneration positive electrode and preparation method thereof and the lithium ion battery comprising the regeneration positive electrode
CN111864294A (en) * 2020-08-03 2020-10-30 韶山润泽新能源科技有限公司 Battery negative plate regeneration treatment system and process
CN114204149A (en) * 2021-11-24 2022-03-18 华中科技大学 A method for separating electrode materials from decommissioned lithium battery pole pieces and its application
CN114361637A (en) * 2022-01-14 2022-04-15 中南大学 Method for separating electrode material and foil of lithium battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839295B2 (en) 2013-09-04 2016-01-06 株式会社デンソー Rotating electric machine stator
JP6587861B2 (en) * 2015-08-11 2019-10-09 学校法人早稲田大学 Lithium-ion battery processing method
KR101992715B1 (en) * 2017-01-25 2019-06-25 주식회사 엘지화학 Method for recovering positive electrode active material from lithium secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634927B2 (en) * 1996-09-11 2005-03-30 ソニー株式会社 Electrode manufacturing method
JP4491085B2 (en) * 1999-06-01 2010-06-30 多摩化学工業株式会社 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same
JP4202198B2 (en) * 2003-06-19 2008-12-24 カワサキプラントシステムズ株式会社 Method and apparatus for recycling lithium secondary battery electrode material
JP5535717B2 (en) * 2009-09-30 2014-07-02 Dowaエコシステム株式会社 Lithium recovery method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216824A (en) * 2018-11-01 2019-01-15 江西优锂新材股份有限公司 A kind of processing reuse method of useless lithium-ion battery electrolytes
CN109904446A (en) * 2019-02-26 2019-06-18 广东邦普循环科技有限公司 A kind of regeneration positive electrode and preparation method thereof and the lithium ion battery comprising the regeneration positive electrode
CN109904446B (en) * 2019-02-26 2022-05-17 广东邦普循环科技有限公司 Regenerated positive electrode material, preparation method thereof and lithium ion battery containing regenerated positive electrode material
CN111864294A (en) * 2020-08-03 2020-10-30 韶山润泽新能源科技有限公司 Battery negative plate regeneration treatment system and process
CN111864294B (en) * 2020-08-03 2021-03-16 韶山润泽新能源科技有限公司 Battery negative plate regeneration treatment system and process
CN114204149A (en) * 2021-11-24 2022-03-18 华中科技大学 A method for separating electrode materials from decommissioned lithium battery pole pieces and its application
CN114361637A (en) * 2022-01-14 2022-04-15 中南大学 Method for separating electrode material and foil of lithium battery

Also Published As

Publication number Publication date
JP2013182709A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5269228B1 (en) Method for separating and recovering positive electrode active material from positive electrode material for lithium ion battery
JP5269222B1 (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP5657730B2 (en) Method for recovering valuable materials from lithium-ion batteries
Wang et al. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
EP3329541B1 (en) Method for recycling lithium-ion battery
JP6378502B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6692196B2 (en) How to recover valuables from lithium-ion secondary batteries
JP2021147706A (en) Recovery method of valuable article
JP2017037807A (en) Processing method of lithium ion battery
US20230119544A1 (en) Method for concentrating valuable metal contained in lithium ion secondary battery
JP5667232B2 (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP2019130474A (en) Regenerated negative electrode active material recovered from discarded lithium ion battery containing lithium titanate and recovery method of the same
JP5247877B2 (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
US20210210806A1 (en) Method for recovering valuable material from lithium ion secondary battery
JP5706460B2 (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion battery
JP6100991B2 (en) Method for recovering valuable material from positive electrode of lithium ion secondary battery
JP6571123B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
TW202410536A (en) Method for recovering valuable materials from lithium ion secondary batteries
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
EP4468450A1 (en) Method for recovering valuable substance
US20240243381A1 (en) Method of separating valuable materials
Ji et al. Damage-Free Recovery of Cathode and Anode Materials from Spent Lithium Battery with Flotation and Magnetic Separation: A Review

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Ref document number: 5269222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350