[go: up one dir, main page]

JP5267938B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP5267938B2
JP5267938B2 JP2009018199A JP2009018199A JP5267938B2 JP 5267938 B2 JP5267938 B2 JP 5267938B2 JP 2009018199 A JP2009018199 A JP 2009018199A JP 2009018199 A JP2009018199 A JP 2009018199A JP 5267938 B2 JP5267938 B2 JP 5267938B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
soft magnetic
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009018199A
Other languages
Japanese (ja)
Other versions
JP2010176748A (en
Inventor
貞幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009018199A priority Critical patent/JP5267938B2/en
Publication of JP2010176748A publication Critical patent/JP2010176748A/en
Application granted granted Critical
Publication of JP5267938B2 publication Critical patent/JP5267938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium for which the characteristics of a soft magnetic backing layer suitable for thermal assist recording are improved. <P>SOLUTION: In the magnetic recording medium used in a magnetic recording device to conduct signal writing at temperature higher than that at which a signal is held and a signal is reproduced; and the magnetic recording medium is constructed by sequentially laminating at least a soft magnetic backing layer, an underlayer, a magnetic recording layer, and a protective layer on a non-magnetic substrate, wherein the soft magnetic backing layer is constituted of at least three layers of a first soft magnetic layer, a temperature characteristic control layer, and a second soft magnetic layer. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、磁気記録媒体に関する。この磁気記録媒体は各種磁気記録装置に搭載される。   The present invention relates to a magnetic recording medium. This magnetic recording medium is mounted on various magnetic recording devices.

磁気記録の高記録密度を実現する技術として、「垂直磁気記録方式」が、最近実用化されている。これは、記録磁化が記録媒体の面に対して垂直な方向に行われるもので、従来の記録磁化が面に対して平行であった長手磁気記録方式と置き換りつつある。   As a technique for realizing a high recording density of magnetic recording, a “perpendicular magnetic recording method” has recently been put into practical use. This is because the recording magnetization is performed in a direction perpendicular to the surface of the recording medium, which is replacing the conventional longitudinal magnetic recording method in which the recording magnetization is parallel to the surface.

この垂直磁気記録方式に用いられる垂直磁気記録媒体(略して垂直媒体)は主に、硬質磁性材料からなる磁気記録層と、磁気記録層の記録磁化を垂直方向に配向させるための下地層、磁気記録層の表面を保護する保護層、そしてこの記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料からなる裏打ち層から構成される。   The perpendicular magnetic recording medium (abbreviated perpendicular medium) used in this perpendicular magnetic recording system mainly includes a magnetic recording layer made of a hard magnetic material, an underlayer for orienting the recording magnetization of the magnetic recording layer in the vertical direction, and a magnetic layer. It comprises a protective layer for protecting the surface of the recording layer, and a backing layer made of a soft magnetic material that plays a role of concentrating the magnetic flux generated by the magnetic head used for recording on the recording layer.

垂直磁気記録の高密度化のための媒体設計の指針として、磁気記録層を構成する磁性粒子の磁気的な分離度を高め、磁化反転単位を小さくしていくことが一つとして挙げられる。基本的に、磁気記録層の膜厚は媒体面内方向に一様であるため、磁化反転単位を小さくしていくことは、磁化反転単位の高さが一定で断面積を小さくすることを意味する。その結果、それ自身に作用する反磁界が小さくなり、反転磁界は大きくなる。このように、磁化反転単位の形状で考えた場合、記録密度を高めることは、より大きな書き込み磁界を必要とする。   One guideline for medium design for increasing the density of perpendicular magnetic recording is to increase the magnetic separation of the magnetic particles constituting the magnetic recording layer and reduce the magnetization reversal unit. Basically, since the film thickness of the magnetic recording layer is uniform in the in-plane direction of the medium, reducing the magnetization reversal unit means that the height of the magnetization reversal unit is constant and the cross-sectional area is reduced. To do. As a result, the demagnetizing field acting on itself decreases and the reversal field increases. Thus, when considering the shape of the magnetization reversal unit, increasing the recording density requires a larger write magnetic field.

一方で、記録信号の長期安定性のためには、熱エネルギーkTに対する粒子のエネルギーKuVの値を十分に高める必要があることが知られている(ここで、kはボルツマン定数、Kは絶対温度、Kuは結晶磁気異方性、Vは活性化体積である)。先に述べた磁化反転単位サイズの低減は、Vの低下を意味し、この影響により信号不安定性、いわゆる”熱揺らぎ”の問題が生じる。これを回避するためにはKuを増大させる必要があるが、一般にKuと反転磁界は比例関係にあるため、これも書き込み磁界の増大を招く結果となる。   On the other hand, for long-term stability of the recording signal, it is known that the value of the particle energy KuV with respect to the thermal energy kT needs to be sufficiently increased (where k is the Boltzmann constant and K is the absolute temperature). , Ku is the magnetocrystalline anisotropy, and V is the activation volume). The reduction in the magnetization reversal unit size described above means a decrease in V, and this influence causes a problem of signal instability, so-called “thermal fluctuation”. In order to avoid this, it is necessary to increase Ku. However, since Ku and the switching magnetic field are generally in a proportional relationship, this also results in an increase in the write magnetic field.

このような書き込み能力の課題に対する新しいアプローチとして、熱アシスト記録という記録方式が提案されている(例えば、特許文献1参照。)。これは、磁性材料におけるKuの温度依存性、すなわち高温ほどKuが小さいという特性を利用したものである。つまり、磁気記録層を加熱して一時的にKu、すなわち反転磁界を低減させ、その間に書き込みを行うというものである。温度が戻った(下がった)後はKuが元の高い値に戻るため、安定して記録信号を保持できる。このような新しい記録方式を想定する場合、磁気記録媒体は、従来の指針に加え、熱の作用を考慮する必要が出てくる。   As a new approach to the problem of such writing ability, a recording method called heat-assisted recording has been proposed (for example, see Patent Document 1). This utilizes the temperature dependence of Ku in the magnetic material, that is, the characteristic that Ku becomes smaller as the temperature increases. That is, the magnetic recording layer is heated to temporarily reduce Ku, that is, the switching magnetic field, and writing is performed during that time. After the temperature has returned (decreased), Ku returns to the original high value, so that the recording signal can be held stably. When such a new recording method is assumed, the magnetic recording medium needs to consider the effect of heat in addition to the conventional guidelines.

一方で、現行の垂直磁気記録媒体の書き込み能力については、軟磁性裏打ち層も重要な役割を果たし、一般に、記録層に比して、膜厚が大きく、かつ飽和磁束密度(或いは飽和磁化)の大きい磁性材料が選択され、記録を補助する。   On the other hand, the soft magnetic backing layer also plays an important role in the writing capability of current perpendicular magnetic recording media, and generally has a larger film thickness and saturation magnetic flux density (or saturation magnetization) than the recording layer. Large magnetic material is selected to aid recording.

しかしながら、このような裏打ち層は、トータルの磁化量が大きいことを意味し、記録層に比して再生ヘッドからの距離は遠ざかるものの、再生時にはノイズ源として作用する。このようなトレードオフの中で最適化する方法としては、記録層−裏打ち層間に挿入する非磁性中間層の膜厚や、裏打ち層の膜厚・飽和磁化を制御する手法がある。この他には、反強磁性層を付与する方法、AFC結合を利用する方法も提案されている。ただし、これらも性質上、軟磁性裏打ち層の膜厚を増加させることによりその効果は弱まってしまう。   However, such a backing layer means that the total amount of magnetization is large, and acts as a noise source during reproduction, although the distance from the reproducing head is farther than that of the recording layer. As a method of optimization in such a trade-off, there is a method of controlling the film thickness of the nonmagnetic intermediate layer inserted between the recording layer and the backing layer, and the film thickness / saturation magnetization of the backing layer. In addition, a method for applying an antiferromagnetic layer and a method using AFC coupling have been proposed. However, these effects are also reduced in nature by increasing the thickness of the soft magnetic underlayer.

垂直磁気記録媒体の基本構成をそのままに熱アシスト記録媒体に転用する場合、前記した軟磁性裏打ち層も磁性材料からなるため、その磁気特性も温度による影響を受ける。例えば、現行用いられているFe、Co、Niを主成分とした合金では温度上昇により飽和磁化Msが低下することが考えられる。特許文献1では、基板上に従来の軟磁性材料からなる第1の軟磁性裏打ち層、フェリ磁性からなる第2の裏打ち層、誘電体層及び凹凸層を含む非磁性中間層、記録層、保護層がこの順に積層された熱アシスト磁気記録媒体が提案されている。   When diverting the basic configuration of the perpendicular magnetic recording medium to the heat-assisted recording medium as it is, the above-described soft magnetic underlayer is also made of a magnetic material, so that its magnetic characteristics are also affected by temperature. For example, it is conceivable that the saturation magnetization Ms decreases with increasing temperature in currently used alloys mainly composed of Fe, Co, and Ni. In Patent Document 1, a first soft magnetic backing layer made of a conventional soft magnetic material on a substrate, a second backing layer made of ferrimagnetic material, a nonmagnetic intermediate layer including a dielectric layer and an uneven layer, a recording layer, a protective layer A heat-assisted magnetic recording medium in which layers are stacked in this order has been proposed.

特許文献1における上記の構成では、第2の裏打ち層は、常温付近を補償温度(信号再生時の温度)に設定されている。このため、常温時は見かけ上非磁性材料として機能し、記録時には補償温度でないために、裏打ち層の一部として機能する。すなわち、記録時には再生時に比して磁気ヘッド−裏打ち層の距離が縮まるために書き込み能力に優れ、再生時には逆に距離が遠ざかるため、裏打ち層起因のスパイクノイズが抑制されるという効果を示す。   In the above configuration in Patent Document 1, the second backing layer is set to a compensation temperature (temperature at the time of signal reproduction) near normal temperature. Therefore, it apparently functions as a non-magnetic material at room temperature, and functions as part of the backing layer because it is not a compensation temperature during recording. That is, since the distance between the magnetic head and the backing layer is shortened at the time of recording compared to the time of reproduction, the writing ability is excellent. On the contrary, the distance is increased at the time of reproduction.

特開2006−164436号公報JP 2006-164436 A

従来の垂直記録媒体の考え方では、裏打ち層の膜厚は記録時の効果と再生時のノイズ源とのトレードオフの関係にある。また、熱アシスト記録においては、特許文献1に示すように、裏打ち層に起因するノイズ低減の利点があり、トレードオフの関係を打破する手段として有効である。しかし、特許文献1ではヘッドに近い側の裏打ち層としてフェリ磁性材料を用いているため、材料特性上、現行の裏打ち層材料に比して磁束密度が小さいという問題があった。すなわち、この構成ではヘッド磁束を集中しづらく、磁界勾配を急峻にできないという課題があった。   In the conventional perpendicular recording medium concept, the film thickness of the backing layer is in a trade-off relationship between the effect during recording and the noise source during reproduction. Further, as shown in Patent Document 1, thermal assist recording has an advantage of noise reduction caused by the backing layer, and is effective as a means for breaking the trade-off relationship. However, in Patent Document 1, since a ferrimagnetic material is used as the backing layer on the side close to the head, there is a problem that the magnetic flux density is smaller than the current backing layer material due to material characteristics. That is, in this configuration, there is a problem that it is difficult to concentrate the head magnetic flux and the magnetic field gradient cannot be made steep.

本発明は上述の問題に鑑み、なされたものであって、その目的とするところは、熱アシスト記録に適した軟磁性裏打ち層の特性を改善した磁気記録媒体を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a magnetic recording medium having improved characteristics of a soft magnetic backing layer suitable for heat-assisted recording.

上述の問題を解決するために、本発明の磁気記録媒体は、信号書き込みを信号保持時の温度よりも高い温度で行う磁気記録装置に用いる磁気記録媒体において、非磁性基体上に少なくとも軟磁性裏打ち層、下地層、磁気記録層及び保護層がこの順に積層されてなり、前記軟磁性裏打ち層が少なくとも第1の軟磁性層、温度特性制御層、第2の軟磁性層の3層からなることを特徴とする。   In order to solve the above problems, the magnetic recording medium of the present invention is a magnetic recording medium used in a magnetic recording apparatus in which signal writing is performed at a temperature higher than the temperature at which the signal is held, and at least a soft magnetic backing is provided on a nonmagnetic substrate. A layer, an underlayer, a magnetic recording layer, and a protective layer are laminated in this order, and the soft magnetic backing layer is composed of at least a first soft magnetic layer, a temperature characteristic control layer, and a second soft magnetic layer. It is characterized by.

本発明においては、前記温度特性制御層はフェリ磁性材料からなり、そのフェリ磁性材料の補償温度が再生温度(磁気記録を再生するときの温度、通常は常温付近である)近辺であることが好ましい。また、前記第2の軟磁性層の記録時における飽和磁束密度が温度特性制御層の飽和磁束密度よりも大きいことが好ましい。また、前記軟磁性裏打ち層を構成する層のうち前記3層が非磁性基体側から第1の軟磁性層、温度特性制御層、第2の軟磁性層の順に積層されてなり、前記第2の軟磁性層の膜厚が前記第1の軟磁性層の膜厚よりも薄いことが好ましい。   In the present invention, the temperature characteristic control layer is preferably made of a ferrimagnetic material, and the compensation temperature of the ferrimagnetic material is preferably near the reproduction temperature (the temperature when reproducing magnetic recording, usually around room temperature). . Further, it is preferable that the saturation magnetic flux density during recording of the second soft magnetic layer is larger than the saturation magnetic flux density of the temperature characteristic control layer. Of the layers constituting the soft magnetic backing layer, the three layers are laminated in order of the first soft magnetic layer, the temperature characteristic control layer, and the second soft magnetic layer from the non-magnetic substrate side. The thickness of the soft magnetic layer is preferably smaller than the thickness of the first soft magnetic layer.

熱アシスト信号記録時には、温度特性制御層も磁化され、第1の軟磁性層、温度特性制御層、第2の軟磁性層が一体となって磁化されるためヘッド磁束を集中して引き込むことができる。また、飽和磁化の大きな第2の軟磁性層が最もヘッドに近いことから、急峻な磁界勾配を実現することができる。一方、記録再生時の温度が補償温度近辺であると、再生時には温度特性制御層の磁化は見かけ上0となる。従って、ノイズ源となりうる磁化は第1の軟磁性層、第2の軟磁性層のみとなる。したがって、信号記録時にはヘッド磁束を集中でき、急峻な磁界勾配を実現することができ、再生時にはノイズを低減させた磁気記録媒体となる。   At the time of recording the heat assist signal, the temperature characteristic control layer is also magnetized, and the first soft magnetic layer, the temperature characteristic control layer, and the second soft magnetic layer are magnetized together, so that the head magnetic flux can be concentrated and drawn. it can. Further, since the second soft magnetic layer having a large saturation magnetization is closest to the head, a steep magnetic field gradient can be realized. On the other hand, if the temperature during recording / reproduction is near the compensation temperature, the magnetization of the temperature characteristic control layer is apparently zero during reproduction. Therefore, the magnetization that can be a noise source is only the first soft magnetic layer and the second soft magnetic layer. Therefore, the magnetic flux of the head can be concentrated during signal recording, a steep magnetic field gradient can be realized, and the magnetic recording medium can be reduced in noise during reproduction.

本発明の磁気記録媒体の1実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows one embodiment of the magnetic recording medium of this invention.

以下、図面を参照しながら本発明の実施の形態について説明する。
図1は、本発明の磁気記録媒体の構成例を説明するための図である。磁気記録媒体は、非磁性基体1上に、非磁性基体1側から第1の軟磁性層3と温度特性制御層4と第2の軟磁性層5がこの順に形成されてなる軟磁性裏打ち層2、下地層6、磁気記録層7、保護層8が順次積層される。なお、保護層8の上には潤滑剤層がさらに形成されていてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining a configuration example of a magnetic recording medium of the present invention. The magnetic recording medium includes a soft magnetic backing layer in which a first soft magnetic layer 3, a temperature characteristic control layer 4, and a second soft magnetic layer 5 are formed in this order on the nonmagnetic substrate 1 from the nonmagnetic substrate 1 side. 2, the underlayer 6, the magnetic recording layer 7, and the protective layer 8 are sequentially laminated. A lubricant layer may be further formed on the protective layer 8.

本発明の磁気記録媒体において、非磁性基体(非磁性基板)1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、或いは結晶化ガラス等を用いることができる。成膜時や記録時の基板温度を100℃程度以内に抑えることができる場合は、ポリカーボネイト、ポリオレフィン等の樹脂からなるプラスチック基板を用いることもできる。その他、Si基板も用いることもできる。   In the magnetic recording medium of the present invention, the nonmagnetic substrate (nonmagnetic substrate) 1 may be an Al alloy plated with NiP, tempered glass, or crystallized glass, which is used for ordinary magnetic recording media. . In the case where the substrate temperature during film formation or recording can be suppressed to about 100 ° C. or less, a plastic substrate made of a resin such as polycarbonate or polyolefin can also be used. In addition, a Si substrate can also be used.

軟磁性層裏打ち層2は、現行の垂直磁気記録方式と同様、磁気ヘッドからの磁束を制御して記録性能を向上することを目的として形成される。軟磁性層裏打ち層2を第1の軟磁性層3、温度特性制御層4、第2の軟磁性層5の3層構造とすることにより、熱アシスト記録時と再生時それぞれにおける3層トータルでの性能が変化するという特徴を有する。即ち、熱アシスト信号記録時には、第1の軟磁性層3、第2の軟磁性層5とともに温度特性制御層も磁化され、第1の軟磁性層、温度特性制御層、第2の軟磁性層が一体となって磁化されるためヘッド磁束を集中して引き込むことができる。   The soft magnetic layer backing layer 2 is formed for the purpose of improving the recording performance by controlling the magnetic flux from the magnetic head, as in the current perpendicular magnetic recording system. Since the soft magnetic backing layer 2 has a three-layer structure of the first soft magnetic layer 3, the temperature characteristic control layer 4, and the second soft magnetic layer 5, a total of three layers at the time of heat-assisted recording and at the time of reproduction are obtained. It has the characteristic that performance of changes. That is, at the time of recording the heat assist signal, the temperature characteristic control layer is magnetized together with the first soft magnetic layer 3 and the second soft magnetic layer 5, and the first soft magnetic layer, the temperature characteristic control layer, and the second soft magnetic layer are magnetized. Are magnetized as a unit, so that the head magnetic flux can be concentrated and drawn.

一方、再生時には温度特性制御層の磁化は見かけ上0となる。従って、ノイズ源となりうる磁化は第1の軟磁性層、第2の軟磁性層のみとなる。従って、信号記録時にはヘッド磁束を集中でき、急峻な磁界勾配を実現することができ、再生時にはノイズを低減させた磁気記録媒体となる。このような特徴を実現するために、第1の軟磁性層3及び第2の軟磁性層5は現行垂直磁気記録媒体における軟磁性層を構成する材料と同様の材料を用い、温度特性制御層3はフェリ磁性材料からなるものとし、再生時の温度が補償温度(正の磁化と負の磁化がちょうど相殺される温度)であるような温度特性を有するものとする。再生時の温度が補償温度であるような温度特性を有するフェリ磁性材料としては、TbFe、DyFe、TbCo、TbFeCoなどを例示でき、各々の組成比により補償温度と再生時の温度が等しくなるように制御することができる。   On the other hand, during reproduction, the magnetization of the temperature characteristic control layer is apparently zero. Therefore, the magnetization that can be a noise source is only the first soft magnetic layer and the second soft magnetic layer. Therefore, the magnetic flux of the head can be concentrated during signal recording, a steep magnetic field gradient can be realized, and the magnetic recording medium can be reduced in noise during reproduction. In order to realize such a feature, the first soft magnetic layer 3 and the second soft magnetic layer 5 are made of the same material as that constituting the soft magnetic layer in the current perpendicular magnetic recording medium, and the temperature characteristic control layer 3 is made of a ferrimagnetic material and has a temperature characteristic such that the temperature during reproduction is a compensation temperature (a temperature at which positive and negative magnetization are just canceled). Examples of ferrimagnetic materials having temperature characteristics such that the temperature during reproduction is the compensation temperature include TbFe, DyFe, TbCo, TbFeCo, etc., so that the compensation temperature and the temperature during reproduction are equal depending on the respective composition ratios. Can be controlled.

また、本発明においては、温度特性制御層4に比して第2の軟磁性層5の飽和磁化が大きいことが好ましい。軟磁性裏打ち層の中で最もヘッドに近い第2の軟磁性層5の飽和磁化が大きいと、急峻な磁界勾配を実現することができる。このような温度特性制御層4と第2の軟磁性層5の例としては、例えば、記録時の飽和磁化Msが400emu/cc未満であるTbFe、DyFe、TbCo、TbFeCoからなる温度特性制御層4と、例えば、記録時の飽和磁化が400emu/cc以上であるFeCo合金、FeNi合金、CoNi合金からなる第2の軟磁性層5の組み合わせを例示できる。   In the present invention, it is preferable that the saturation magnetization of the second soft magnetic layer 5 is larger than that of the temperature characteristic control layer 4. When the saturation magnetization of the second soft magnetic layer 5 closest to the head among the soft magnetic backing layers is large, a steep magnetic field gradient can be realized. Examples of such temperature characteristic control layer 4 and second soft magnetic layer 5 include, for example, temperature characteristic control layer 4 made of TbFe, DyFe, TbCo, and TbFeCo having a saturation magnetization Ms of less than 400 emu / cc during recording. For example, a combination of the second soft magnetic layer 5 made of FeCo alloy, FeNi alloy, or CoNi alloy whose saturation magnetization during recording is 400 emu / cc or more can be exemplified.

第1の軟磁性層3或いは第2の軟磁性層5としては、現行の垂直磁気記録媒体に用いられる材料を適用することができる。例えば、結晶質のNiFe合金、センダスト(FeSiAl)合金、CoFe合金等、微結晶質のFeTaC、CoFeNi、CoNiP等を用いることができる。記録能力を向上するためには、軟磁性層の飽和磁化は大きい方が好ましい。なお、軟磁性層の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造や特性によって変化するが、再生時のノイズを考慮すると、ヘッドに近い第2の軟磁性層5は膜厚を薄く設定することが好ましく、50nm以下、さらに好ましくは30nm以下とすることが好ましい。一方、膜厚増加による平坦性の悪化や、生産性との兼ね合いから総膜厚は100nm以下であることが望ましい。成膜方法としては、通常用いられるスパッタ法が用いられる。   As the first soft magnetic layer 3 or the second soft magnetic layer 5, a material used for the current perpendicular magnetic recording medium can be applied. For example, crystalline NiFe alloy, Sendust (FeSiAl) alloy, CoFe alloy, etc., microcrystalline FeTaC, CoFeNi, CoNiP, etc. can be used. In order to improve the recording ability, it is preferable that the soft magnetic layer has a larger saturation magnetization. Note that the optimum value of the thickness of the soft magnetic layer varies depending on the structure and characteristics of the magnetic head used for magnetic recording, but considering the noise during reproduction, the second soft magnetic layer 5 close to the head has a thickness. It is preferable to set it thin, and it is preferably 50 nm or less, more preferably 30 nm or less. On the other hand, the total film thickness is desirably 100 nm or less in view of the deterioration of flatness due to the increase in film thickness and the balance with productivity. As a film forming method, a commonly used sputtering method is used.

軟磁性層で膜厚がおよそ50nmを超えるような厚さとした場合、磁壁が形成され、さらに、記録層近傍の磁化が揺らぐなどして垂直成分の磁化を発生し、ノイズ源となる場合がある。これを抑制するために、軟磁性裏打ち層を単磁区化することが好ましく、反強磁性層或いは硬磁性層を付与することが可能である。付与するのは、軟磁性層直下、直上、中間のいずれも可能で、両層の積層も可能である。その他、軟磁性裏打ち層を、非磁性層と積層する構成を用いることも可能である。特に、非磁性層の膜厚を制御し、非磁性層を介しての反強磁性結合を用いるなどして垂直成分磁化を抑制することも可能である。   When the soft magnetic layer has a thickness exceeding about 50 nm, a domain wall is formed, and the magnetization in the vicinity of the recording layer fluctuates to generate perpendicular component magnetization, which may be a noise source. . In order to suppress this, the soft magnetic underlayer is preferably made into a single magnetic domain, and an antiferromagnetic layer or a hard magnetic layer can be provided. It is possible to apply any of the soft magnetic layer directly below, directly above, or in the middle, and the lamination of both layers is also possible. In addition, it is also possible to use a configuration in which a soft magnetic backing layer is laminated with a nonmagnetic layer. In particular, it is possible to suppress perpendicular component magnetization by controlling the film thickness of the nonmagnetic layer and using antiferromagnetic coupling via the nonmagnetic layer.

温度特性制御層3は、フェリ磁性を有する遷移−希土類金属を用いることができる。再生温度近辺で補償温度となるように組成を調整することが必要である。膜厚は用いるヘッドによって適宜最適化されるべきであるが、十分な温度特性を示すためには5nm以上とすることが好ましい。   The temperature characteristic control layer 3 can use a transition-rare earth metal having ferrimagnetism. It is necessary to adjust the composition so that the compensation temperature is near the regeneration temperature. The film thickness should be optimized as appropriate depending on the head to be used, but is preferably 5 nm or more in order to exhibit sufficient temperature characteristics.

下地層6は、1)その上に形成される磁気記録層7を構成する磁性材料の結晶粒子径や結晶配向を制御するため、また、2)軟磁性裏打ち層2と磁気記録層7の磁気的な結合を防ぐため、に用いられる層である。従って、非磁性であることが好ましく、結晶構造は磁気記録層の磁性材料に合わせて適宜選択することが必要であるが、非晶質構造でも用いることは可能である。例えば、直上の磁気記録層7に、六方最密充填(hcp)構造を取るCoを主体とした磁性材料を用いる場合は、同じhcp構造もしくは面心立方(fcc)構造をとる材料が好ましく用いられる。具体的には、Ru、Re、Rh、Pt、Pd、Ir、Ni、Co、Cu或いはこれらを含む合金材料が好ましく用いられる。膜厚は、薄いほど書き込み容易性は向上するが、1)、2)の指針を考慮すれば、ある程度の膜厚が必要で、3〜30nmの範囲内とすることが好ましい。   The underlayer 6 is used for 1) controlling the crystal grain size and crystal orientation of the magnetic material constituting the magnetic recording layer 7 formed thereon, and 2) magnetizing the soft magnetic backing layer 2 and the magnetic recording layer 7. This layer is used to prevent general bonding. Therefore, it is preferably nonmagnetic, and the crystal structure needs to be appropriately selected according to the magnetic material of the magnetic recording layer, but it can also be used with an amorphous structure. For example, when a magnetic material mainly composed of Co having a hexagonal close-packed (hcp) structure is used for the magnetic recording layer 7 immediately above, a material having the same hcp structure or face-centered cubic (fcc) structure is preferably used. . Specifically, Ru, Re, Rh, Pt, Pd, Ir, Ni, Co, Cu or an alloy material containing these is preferably used. The thinner the film thickness, the better the writeability. However, considering the guidelines 1) and 2), a certain film thickness is required, and it is preferably within the range of 3 to 30 nm.

磁気記録層7は、結晶系の磁性材料が好ましく用いられる。Co、Fe、Niなどの磁性元素を主体とした直径数nmの柱状の結晶粒子が、サブnm程度の厚さの非磁性体で隔てられた構造をとることが好ましい。例えば、磁性結晶粒としては、CoPt合金に、Cr、B、Ta、Wなどの金属を添加した材料、FePt合金にNi、Cuなどを添加した材料を用いることができる。非磁性体としてはSi、Cr、Co、Ti或いはTaの酸化物や窒化物などを添加したものが好ましく用いられる。成膜方法としては、例えばマグネトロンスパッタリング法などが挙げられる。好ましくは、前記下地層上の結晶部分に磁性結晶粒がエピタキシャル成長し、下地層の粒界部分に前記非磁性体が配するような、1対1の結晶成長をする構造が好ましい。   For the magnetic recording layer 7, a crystalline magnetic material is preferably used. It is preferable to take a structure in which columnar crystal particles having a diameter of several nanometers mainly composed of a magnetic element such as Co, Fe, and Ni are separated by a nonmagnetic material having a thickness of about sub-nm. For example, as the magnetic crystal grains, a material obtained by adding a metal such as Cr, B, Ta, or W to a CoPt alloy, or a material obtained by adding Ni, Cu, or the like to an FePt alloy can be used. As the nonmagnetic material, a material added with an oxide or nitride of Si, Cr, Co, Ti or Ta is preferably used. Examples of the film forming method include a magnetron sputtering method. Preferably, a structure in which one-to-one crystal growth is performed such that magnetic crystal grains are epitaxially grown on a crystal portion on the underlayer and the nonmagnetic material is arranged on a grain boundary portion of the underlayer.

磁気記録層7に含まれる磁性層のうち、少なくとも一層は結晶磁気異方性定数が大きい材料が好ましく、少なくとも5.0×106erg/cm3以上、さらに好ましくは1.0×107erg/cm3以上であることが好ましい。膜厚としては、20nm以下とすることが好ましい。また、二層を積層した構造とすることもできる。少なくとも一方を前述のような構造やKu値と持つものとし、もう一方は非磁性体で隔てられない構造とすることもでき、非晶質材料とすることもでき、Ku値も比較的小さくても可能である。 Of the magnetic layers included in the magnetic recording layer 7, at least one layer is preferably a material having a large magnetocrystalline anisotropy constant, at least 5.0 × 10 6 erg / cm 3 or more, more preferably 1.0 × 10 7 erg. / Cm 3 or more is preferable. The film thickness is preferably 20 nm or less. Moreover, it can also be set as the structure which laminated | stacked two layers. At least one has the structure or Ku value as described above, the other can be a structure not separated by a non-magnetic material, can be an amorphous material, and has a relatively low Ku value. Is also possible.

保護層8は、従来使用されている保護膜を用いることができ、例えば、カーボンを主体とする保護膜を用いることができる。単層ではなく、例えば異なる性質の二層カーボンや、金属膜とカーボン膜、酸化膜とカーボンの積層膜とすることもできる。   As the protective layer 8, a conventionally used protective film can be used. For example, a protective film mainly composed of carbon can be used. Instead of a single layer, for example, a double-layer carbon having different properties, a metal film and a carbon film, or a laminated film of an oxide film and carbon can be used.

以下に本発明の垂直磁気記録媒体を、実施例を用いて説明する。これらの実施例は、本発明の磁気記録媒体を好適に説明するための代表例に過ぎず、これらに限定されるものではない。   The perpendicular magnetic recording medium of the present invention will be described below using examples. These examples are merely representative examples for suitably explaining the magnetic recording medium of the present invention, and are not limited thereto.

<実施例1>
非磁性基体1として表面が平滑な円盤状のガラス基板を用い、これを洗浄後、スパッタリング装置内に導入し、Co86Nb5Zr9ターゲットを用いてArガス圧5mTorr下でCoNbZrをスパッタして、厚さ50nmのCoNbZrからなる第1の軟磁性層3を形成した。
<Example 1>
A disc-shaped glass substrate having a smooth surface is used as the non-magnetic substrate 1, which is cleaned, introduced into a sputtering apparatus, and CoNbZr is sputtered under a Ar gas pressure of 5 mTorr using a Co 86 Nb 5 Zr 9 target. A first soft magnetic layer 3 made of CoNbZr having a thickness of 50 nm was formed.

続いて、Tb24Fe50Co24ターゲットを用いArガス圧5mTorr下でスパッタして、TbFeCoからなる温度特性制御層4を膜厚30nmで成膜した。 Subsequently, the Tb 24 Fe 50 Co 24 target was sputtered under an Ar gas pressure of 5 mTorr to form a temperature characteristic control layer 4 made of TbFeCo with a film thickness of 30 nm.

続いて、Co86Nb5Zr9ターゲットを用いてArガス圧5mTorr下でスパッタしてCoNbZrを20nmの厚さで成膜し、CoNbZrからなる第2の軟磁性層5を形成した。 Subsequently, using a Co 86 Nb 5 Zr 9 target, sputtering was performed under an Ar gas pressure of 5 mTorr to form CoNbZr with a thickness of 20 nm, thereby forming a second soft magnetic layer 5 made of CoNbZr.

次に、Taターゲットを用いてArガス圧5mTorr下でスパッタしてTa層を5nm成膜し、引き続いてRuターゲットを用いてArガス圧60mTorr下でスパッタしてRu層を20nm成膜し、Ta/Ru下地層6を形成した。   Next, a Ta layer is formed by sputtering with an Ta target under an Ar gas pressure of 5 mTorr, and then a Ru layer is formed by sputtering with an Ar gas pressure of 60 mTorr to form a Ru layer with a thickness of 20 nm. / Ru underlayer 6 was formed.

続いて(Co73Pt2790(SiO210ターゲットを用いて、Arガス圧30mTorr下でスパッタしてCoPt−SiO2磁性層を15nm形成し磁気記録層7とした。 Subsequently, using a (Co 73 Pt 27 ) 90 (SiO 2 ) 10 target, sputtering was performed under an Ar gas pressure of 30 mTorr to form a CoPt—SiO 2 magnetic layer having a thickness of 15 nm, thereby forming a magnetic recording layer 7.

次に、CVD法によりカーボンからなる保護層8を4nm成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる厚さ2nmの液体潤滑材層をディップ法により形成し、磁気記録媒体とした。なお、スパッタリングにおいては、熱伝導防止層と磁気記録層の成膜にはRFマグネトロンスパッタリング、その他の層はDCマグネトロンスパッタリング法にて行った。   Next, the protective layer 8 made of carbon was formed with a thickness of 4 nm by the CVD method, and then taken out from the vacuum apparatus. Thereafter, a liquid lubricant layer made of perfluoropolyether and having a thickness of 2 nm was formed by a dipping method to obtain a magnetic recording medium. In the sputtering, RF magnetron sputtering was used for the formation of the heat conduction preventing layer and the magnetic recording layer, and the DC magnetron sputtering method was used for the other layers.

Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=14.8kOe、S=1.0であった。
また、XRD回折を評価したところ、実施例1においてはCoNbZr、TbFeCo、Taが非晶質構造であることがわかった。
When a hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using a Kerr effect measuring apparatus, the coercive force Hc = 14.8 kOe and S = 1.0.
Further, when XRD diffraction was evaluated, it was found that in Example 1, CoNbZr, TbFeCo, and Ta have an amorphous structure.

表1に、得られた磁気記録媒体の電磁変換特性の結果を示す。電磁変換特性評価は、垂直磁気記録用ヘッドにレーザースポット加熱機構を搭載した熱アシスト用ヘッドを用い、スピンスタンドテスターにて行った。レーザーパワーは記録層温度250℃となるように設定し、記録時或いは重ね書き時にレーザーパワーをONにし、読み出し時はレーザーパワーをOFFにして行った。ヘッドは、記録トラック幅120nm、再生トラック幅80nmのものを用いた。この表では、書き込み電流一定で行った数値を示した。   Table 1 shows the results of electromagnetic conversion characteristics of the obtained magnetic recording medium. The electromagnetic conversion characteristics were evaluated by a spin stand tester using a thermal assist head in which a laser spot heating mechanism was mounted on a perpendicular magnetic recording head. The laser power was set so that the recording layer temperature was 250 ° C., the laser power was turned on during recording or overwriting, and the laser power was turned off during reading. A head having a recording track width of 120 nm and a reproducing track width of 80 nm was used. In this table, numerical values performed at a constant write current are shown.

<比較例1>
TbFeCo温度特性制御層3を成膜しなかった以外は全て実施例1と同様にして磁気記録媒体を作製した。
Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=14.8kOe、S=1.0であり、かつループ形状も実施例1で得られたものと一致していた。
また、CoNbZr、TbFeCo、Taは実施例1と同様、非晶質構造であり、Cu、Ru、CoPtのピーク位置、強度は実施例1におけるそれぞれのピーク位置、強度と一致していた。
得られた磁気記録媒体の電磁変換特性の結果を実施例1の結果とともに表1に示す。
<Comparative Example 1>
A magnetic recording medium was manufactured in the same manner as in Example 1 except that the TbFeCo temperature characteristic control layer 3 was not formed.
When the hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using the Kerr effect measuring apparatus, the coercive force Hc = 14.8 kOe, S = 1.0, and the loop shape was also Example 1. It was consistent with that obtained in
Further, CoNbZr, TbFeCo, and Ta had an amorphous structure as in Example 1, and the peak positions and intensities of Cu, Ru, and CoPt coincided with the respective peak positions and intensities in Example 1.
Table 1 shows the results of electromagnetic conversion characteristics of the obtained magnetic recording medium together with the results of Example 1.

<比較例2>
TbFeCo温度特性制御層3に換えて、Co86Nb5Zr9ターゲットを用いてArガス圧5mTorr下でCoNbZrを30nm形成した以外は全て実施例1と同様にして磁気記録媒体を作製した。
Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=14.8kOe、S=1.0であり、かつループ形状も実施例1で得られたものと一致していた。
また、CoNbZr、TbFeCo、Taは実施例1と同様、非晶質構造であり、Cu、Ru、CoPtのピーク位置、強度は実施例1におけるそれぞれのピーク位置、強度と一致していた。
得られた磁気記録媒体の電磁変換特性の結果を実施例1、比較例1の結果とともに表1に示す。
<Comparative example 2>
A magnetic recording medium was manufactured in the same manner as in Example 1 except that instead of the TbFeCo temperature characteristic control layer 3, a Co 86 Nb 5 Zr 9 target was used to form CoNbZr with a thickness of 30 nm under an Ar gas pressure of 5 mTorr.
When the hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using the Kerr effect measuring apparatus, the coercive force Hc = 14.8 kOe, S = 1.0, and the loop shape was also Example 1. It was consistent with that obtained in
Further, CoNbZr, TbFeCo, and Ta had an amorphous structure as in Example 1, and the peak positions and intensities of Cu, Ru, and CoPt coincided with the respective peak positions and intensities in Example 1.
The results of electromagnetic conversion characteristics of the obtained magnetic recording medium are shown in Table 1 together with the results of Example 1 and Comparative Example 1.

<比較例3>
TbFeCo温度特性制御層3の膜厚を50nmとし、第2の軟磁性CoZrNb層を成膜しなかった以外は全て実施例1と同様にして磁気記録媒体を作製した。
Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=14.8kOe、S=1.0であり、かつループ形状も実施例1で得られたものと一致していた。
また、CoNbZr、TbFeCo、Taは実施例1と同様、非晶質構造であり、Cu、Ru、CoPtのピーク位置、強度は実施例1におけるそれぞれのピーク位置、強度と一致していた。
得られた磁気記録媒体の電磁変換特性の結果を実施例1、比較例1、2の結果とともに表1に示す。
<Comparative Example 3>
A magnetic recording medium was manufactured in the same manner as in Example 1 except that the thickness of the TbFeCo temperature characteristic control layer 3 was 50 nm and the second soft magnetic CoZrNb layer was not formed.
When the hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using the Kerr effect measuring apparatus, the coercive force Hc = 14.8 kOe, S = 1.0, and the loop shape was also Example 1. It was consistent with that obtained in
Further, CoNbZr, TbFeCo, and Ta had an amorphous structure as in Example 1, and the peak positions and intensities of Cu, Ru, and CoPt coincided with the respective peak positions and intensities in Example 1.
The results of electromagnetic conversion characteristics of the obtained magnetic recording medium are shown in Table 1 together with the results of Example 1 and Comparative Examples 1 and 2.

Figure 0005267938
Figure 0005267938

Kerr効果測定装置を用いた実施例1、比較例1、2の磁気記録媒体の記録層のヒステリシスループ及びXRD回折の検討結果から、軟磁性裏打ち層の構成を変更しても、記録層の結晶構造や微細構造に影響がないことがわかった。   From the results of studying the hysteresis loop and XRD diffraction of the recording layers of the magnetic recording media of Example 1 and Comparative Examples 1 and 2 using the Kerr effect measuring device, the structure of the soft magnetic backing layer can be changed even if the configuration of the soft magnetic backing layer is changed. It was found that the structure and microstructure were not affected.

表1から、実施例1で得られた磁気記録媒体は、比較例1、2で得られた磁気記録媒体に比して、記録密度の指標となるSNR値が最も高いことがわかる。また、今回用いたヘッドでは、OW値が35[−dB]以上であれば、媒体に十分な書き込み性能があると考えられるが、実施例1に磁気記録媒体はその値よりもさらに5[−dB]以上高い値を示しており、高い書き込み性能を示している。   From Table 1, it can be seen that the magnetic recording medium obtained in Example 1 has the highest SNR value as an index of recording density, compared with the magnetic recording media obtained in Comparative Examples 1 and 2. Further, in the head used this time, if the OW value is 35 [-dB] or more, it is considered that the medium has sufficient writing performance. However, in the first embodiment, the magnetic recording medium is further 5 [- dB] is a high value, indicating high write performance.

比較例1及び2では、OW特性は比較的良好で十分な書き込み性能を有するが、実施例1に対してSNRが大幅に劣る結果となっている。これは、再生時の裏打ち層からのノイズが大きいためである。これは、比較例1と2を比べた場合に、CoZrNb膜厚の厚い比較例2のSNRが劣ることからも裏付けられる。   In Comparative Examples 1 and 2, the OW characteristics are relatively good and sufficient writing performance is obtained, but the SNR is significantly inferior to Example 1. This is because the noise from the backing layer during reproduction is large. This is supported by the inferior SNR of Comparative Example 2 having a thick CoZrNb film when Comparative Examples 1 and 2 are compared.

比較例3は比較例1及び2に比してSNRは優れるが、OW特性に劣る。これは、記録時にヘッドに近い部分に磁束密度の低いTbFeCoが配置されているためにやや書き込み性能にやや劣る一方、再生時には裏打ち層起因のノイズが低減されるためにSNRが大きいと考えられる。この比較例3を実施例1と比べた場合、OW、SNR共に下回っている。OWは35[−dB]を上回っていることから、飽和記録はされており、SNRが小さいのはヘッドによる磁界勾配の差で生じていると考えられる。すなわち、磁束密度の大きな磁性材料が裏打ち層表面に薄く形成されている実施例1では、磁界勾配を急峻にして形成されるビット間の遷移ノイズを低減しつつ、薄膜のためにノイズ成分が小さく抑えられていると考えられる。   Comparative Example 3 is superior to Comparative Examples 1 and 2 in SNR, but inferior in OW characteristics. This is considered to be a little inferior in writing performance because TbFeCo having a low magnetic flux density is arranged in a portion close to the head during recording, but has a large SNR because noise due to the backing layer is reduced during reproduction. When this Comparative Example 3 is compared with Example 1, both OW and SNR are lower. Since OW exceeds 35 [−dB], saturation recording is performed, and it is considered that the small SNR is caused by a difference in magnetic field gradient due to the head. That is, in Example 1 in which a magnetic material having a high magnetic flux density is thinly formed on the surface of the backing layer, the noise component is small due to the thin film while reducing transition noise between bits formed with a steep magnetic field gradient. It is considered to be suppressed.

本発明によれば、良好な書き込み性能を示す磁気記録媒体を得ることができる。   According to the present invention, a magnetic recording medium showing good writing performance can be obtained.

1:非磁性基体
2:軟磁性裏打ち層
3:第1の軟磁性層
4:温度特性制御層
5:第2の軟磁性層
6:下地層
7:磁気記録層
8:保護層
1: Nonmagnetic substrate 2: Soft magnetic backing layer 3: First soft magnetic layer 4: Temperature characteristic control layer 5: Second soft magnetic layer 6: Underlayer 7: Magnetic recording layer 8: Protective layer

Claims (4)

記録時の信号書き込みを信号保持時、および信号再生時の温度よりも高い温度で行う磁気記録装置に用いる磁気記録媒体において、非磁性基体上に少なくとも軟磁性裏打ち層、下地層、磁気記録層及び保護層がこの順に積層されてなり、前記軟磁性裏打ち層が少なくとも第1の軟磁性層、温度特性制御層、第2の軟磁性層の3層からなり、前記温度特性制御層はフェリ磁性材料からなることを特徴とする磁気記録媒体。 In a magnetic recording medium used in a magnetic recording apparatus that performs signal writing during recording at a temperature higher than that during signal holding and signal reproduction, at least a soft magnetic backing layer, an underlayer, a magnetic recording layer, and a nonmagnetic substrate protective layer stacked in this order, the soft magnetic backing layer is at least a first soft magnetic layer, the temperature characteristic control layer, Ri Do three layers of the second soft magnetic layer, the temperature characteristic control layer ferrimagnetic the magnetic recording medium characterized Rukoto such material. 前記フェリ磁性材料の補償温度が再生時の温度近辺であることを特徴とする請求項1に記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein a compensation temperature of the ferrimagnetic material is around a temperature during reproduction. 記録時における前記第2の軟磁性層の飽和磁束密度が温度特性制御層の飽和磁束密度よりも大きいことを特徴とする請求項1または2に記載の磁気記録媒体。 3. The magnetic recording medium according to claim 1, wherein a saturation magnetic flux density of the second soft magnetic layer at the time of recording is larger than a saturation magnetic flux density of the temperature characteristic control layer. 前記軟磁性裏打ち層を構成する層のうち前記3層が非磁性基体側から第1の軟磁性層、温度特性制御層、第2の軟磁性層の順に積層されてなり、前記第2の軟磁性層の膜厚が前記第1の軟磁性層の膜厚よりも薄いことを特徴とする請求項1〜3のいずれか1項に記載の磁気記録媒体。   Of the layers constituting the soft magnetic backing layer, the three layers are laminated in the order of the first soft magnetic layer, the temperature characteristic control layer, and the second soft magnetic layer from the non-magnetic substrate side. The magnetic recording medium according to claim 1, wherein the magnetic layer has a thickness smaller than that of the first soft magnetic layer.
JP2009018199A 2009-01-29 2009-01-29 Magnetic recording medium Expired - Fee Related JP5267938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018199A JP5267938B2 (en) 2009-01-29 2009-01-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018199A JP5267938B2 (en) 2009-01-29 2009-01-29 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2010176748A JP2010176748A (en) 2010-08-12
JP5267938B2 true JP5267938B2 (en) 2013-08-21

Family

ID=42707566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018199A Expired - Fee Related JP5267938B2 (en) 2009-01-29 2009-01-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5267938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685983B2 (en) * 2011-02-23 2015-03-18 富士電機株式会社 Magnetic recording medium
US8599652B2 (en) 2011-07-14 2013-12-03 Tdk Corporation Thermally-assisted magnetic recording medium and magnetic recording/reproducing device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103550A (en) * 1992-09-18 1994-04-15 Fujitsu Ltd Perpendicular magnetic recording medium
JP2006164436A (en) * 2004-12-08 2006-06-22 Sharp Corp Information recording medium, method for manufacturing same and information storage device
JP4459930B2 (en) * 2006-07-04 2010-04-28 シャープ株式会社 Perpendicular magnetic recording type information recording medium

Also Published As

Publication number Publication date
JP2010176748A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5892213B2 (en) Magnetic recording method
JP4540557B2 (en) Perpendicular magnetic recording medium
JP5103097B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
Oikawa et al. High performance CoPtCrO single layered perpendicular media with no recording demagnetization
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
US20080075979A1 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording device
JP4034485B2 (en) Magnetic recording medium
JP5332676B2 (en) Magnetic recording medium
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP2008034060A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2009187652A (en) Perpendicular magnetic recording medium
JP5337451B2 (en) Perpendicular magnetic recording medium
JP4623594B2 (en) Perpendicular magnetic recording medium
JP5267938B2 (en) Magnetic recording medium
JP4367326B2 (en) Perpendicular magnetic recording medium
JP5294062B2 (en) Magnetic recording medium
JP2006004527A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP6451011B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2006286106A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2001148109A (en) Magnetic disk and magnetic disk device
JP2008251101A (en) Magnetic recording medium and manufacturing method of magnetic recording medium
JP2002109714A (en) Information recording medium and information recording device
JP2002008219A (en) Magnetic recording medium and magnetic recorder with the same
JP2002092844A (en) Magnetic recording medium and information recording device using the same
JP2002092840A (en) Magnetic recording medium and magnetic recording device provided with the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees