JP5264469B2 - Antenna device and adjustment method thereof - Google Patents
Antenna device and adjustment method thereof Download PDFInfo
- Publication number
- JP5264469B2 JP5264469B2 JP2008330106A JP2008330106A JP5264469B2 JP 5264469 B2 JP5264469 B2 JP 5264469B2 JP 2008330106 A JP2008330106 A JP 2008330106A JP 2008330106 A JP2008330106 A JP 2008330106A JP 5264469 B2 JP5264469 B2 JP 5264469B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation electrode
- antenna device
- resonance frequency
- dielectric substrate
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000005855 radiation Effects 0.000 claims abstract description 113
- 239000000758 substrate Substances 0.000 claims abstract description 77
- 239000000463 material Substances 0.000 claims description 55
- 239000004020 conductor Substances 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004904 shortening Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- DSEPKSLFXGYPIU-UHFFFAOYSA-N 8-(dipropylamino)-6,7,8,9-tetrahydro-3h-benzo[e]indole-1-carbaldehyde Chemical compound C1=C2NC=C(C=O)C2=C2CC(N(CCC)CCC)CCC2=C1 DSEPKSLFXGYPIU-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
Landscapes
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
Description
本発明は、導電体ベースの上に偏平な誘電体基材を配設し、その誘電体基材の上面に放射電極を配設した平面型のアンテナ装置に関するものである。また、そのアンテナ装置において、共振周波数の調整方法に関するものである。 The present invention relates to a planar antenna device in which a flat dielectric substrate is disposed on a conductor base, and a radiation electrode is disposed on the upper surface of the dielectric substrate. The present invention also relates to a method for adjusting the resonance frequency in the antenna device.
従来の平面型のアンテナ装置にあっては、図20に示すごとく、GND電極としての導電体ベース10の上に、中央部に空きスペースを設けるとともに偏平で上から見て外形が矩形の環状の誘電体基材12が配設され、その誘電体基材12の上面で支持するようにして放射電極14が配設され、給電端子16が放射電極14の適宜な位置に配設されて構成されたものがある。かかる技術が、特開2005−51576号公報等に示されている。また、図21に示すごとく、GND電極としての導電体ベース10の上に、中央部に空きスペースのない偏平で上から見て外形が矩形の誘電体基材13が配設され、その誘電体基材13の上面で支持するようにして放射電極14が配設され、給電端子16が放射電極14の適宜な位置で誘電体基材13に穿設された孔を貫通して配設されて構成されたものもある。
上記の特許文献1等で提案された図20に示す従来の技術にあっては、誘電体基材12は環状であり、その中央部に空きスペースが設けられているので、その分だけ誘電体の素材の量が少なくて足りる。しかるに、誘電体基材12の外形寸法は一定であり、異なる寸法のアンテナ装置に対しては異なる寸法の別の誘電体基材12が必要となる。また、図21に示す従来例にあっても、当然に、異なる寸法のアンテナ装置に対しては異なる寸法の別の誘電体基材13が必要となる。ここで、異なる寸法のアンテナ装置に対しても、同じ形状寸法の誘電体基材が使用できれば経済的である。また、誘電体基材は、製造ロット毎にその誘電率にバラツキを生じて共振周波数が変化する虞がある。そこで、従来にあっては、誘電体基材の誘電率のバラツキによる共振周波数の変化に対して、放射電極14に切り欠きを設けたり削ったりするなどして調整がなされている。この共振周波数の調整作業が繁雑であるとともに、放射電極14に切り欠きを設けまたは削ることで生ずる削りかすを確実に除去する作業も繁雑であった。 In the conventional technique shown in FIG. 20 proposed in the above-mentioned Patent Document 1 and the like, the dielectric base 12 is annular, and an empty space is provided in the center thereof. The amount of material is small. However, the outer dimensions of the dielectric substrate 12 are constant, and another antenna substrate 12 having a different size is required for an antenna device having a different size. Further, even in the conventional example shown in FIG. 21 , naturally, another dielectric substrate 13 having a different size is required for an antenna device having a different size. Here, it is economical if a dielectric base material having the same shape and dimension can be used for antenna apparatuses having different dimensions. In addition, the dielectric base material may vary in dielectric constant for each production lot, and the resonance frequency may change. Therefore, conventionally, adjustment is made by providing a notch in the radiation electrode 14 or by shaving it against a change in the resonance frequency due to variations in the dielectric constant of the dielectric substrate. The adjustment operation of the resonance frequency is complicated, and the operation of reliably removing the shavings generated by providing or cutting out the notches in the radiation electrode 14 is also complicated.
そこで、本発明は、上述のごとき事情に鑑みてなされたもので、異なる寸法のアンテナ装置に対しても、同じ形状寸法の誘電体基材が使用できるアンテナ装置を提供することを目的とする。また、誘電体基材の誘電率のバラツキによる共振周波数の変化に対して誘電体基材を配設する位置をずらして簡単に調整できるアンテナ装置の調整方法を提供することを目的とする Therefore, the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide an antenna device that can use dielectric substrates having the same shape and size even for antenna devices of different dimensions. Another object of the present invention is to provide an antenna device adjustment method that can be easily adjusted by shifting the position where the dielectric base material is disposed with respect to a change in the resonance frequency due to variations in the dielectric constant of the dielectric base material.
かかる目的を達成するために、本発明のアンテナ装置は、GND電極としての導電体ベースの上に偏平な誘電体基材を配設し、この誘電体基材の上面に放射電極を配設したアンテナ装置において、前記放射電極が1つの隅または対向する2つの隅が面取り状に僅かに切り落とされた略矩形であり、前記誘電体基材を、中央部に空きスペースを設けるとともに前記放射電極の4隅をそれぞれに支持するように上から見て4つに分割して4つの略L字状とし、前記放射電極の対角線方向が電流の励振方向となるように前記放射電極の中央位置より1つの辺側にずらして給電端子を設けて構成されている。 In order to achieve such an object, in the antenna device of the present invention, a flat dielectric substrate is disposed on a conductor base serving as a GND electrode, and a radiation electrode is disposed on the upper surface of the dielectric substrate. In the antenna device, the radiation electrode has a substantially rectangular shape in which one corner or two opposite corners are slightly cut off in a chamfered shape, and the dielectric substrate is provided with an empty space in a central portion and the radiation electrode. The four corners are each divided into four so as to support the four corners so as to form four substantially L-shapes, and the diagonal direction of the radiation electrode is set to 1 from the central position of the radiation electrode so as to be the current excitation direction. The power supply terminals are provided so as to be shifted to one side .
さらに、本発明のアンテナ装置の調整方法は、請求項1記載のアンテナ装置において、前記放射電極に対して前記誘電体基材の前記4つの略L字状の部材の全ての配設位置を内側に狭めて、共振周波数を低い方に調整することができる。 Furthermore, the antenna device adjustment method of the present invention is the antenna device according to claim 1 , wherein all the disposition positions of the four substantially L-shaped members of the dielectric base material are arranged on the inner side with respect to the radiation electrode. The resonance frequency can be adjusted to be lower.
また、請求項1記載のアンテナ装置において、前記放射電極に対して前記誘電体基材の前記4つの略L字状の部材の全ての配設位置を外側に拡大して、共振周波数を高い方に調整することができる。 The antenna device according to claim 1 , wherein all the disposition positions of the four substantially L-shaped members of the dielectric base material are expanded outward with respect to the radiation electrode to increase the resonance frequency. Can be adjusted.
また、請求項1記載のアンテナ装置において、前記放射電極に対して前記放射電極の隅が切り落とされていない長い対角線となる隅を支持する前記誘電体基材の前記略L字状の部材の1つまたは2つの配設位置を内側または外側にずらして、前記長い対角線方向を励振方向とする低い共振周波数を調整することができる。 2. The antenna device according to claim 1 , wherein one of the substantially L-shaped members of the dielectric base material that supports a corner having a long diagonal line where a corner of the radiation electrode is not cut off with respect to the radiation electrode. One or two arrangement positions can be shifted inward or outward to adjust the low resonance frequency with the long diagonal direction as the excitation direction.
また、請求項1記載のアンテナ装置において、前記放射電極に対して前記放射電極の隅が切り落とされた短い対角線となる隅を支持する前記誘電体基材の前記略L字状の部材の1つまたは2つの配設位置を内側または外側にずらして、前記短い対角線方向を励振方向とする高い共振周波数を調整することができる。 The antenna device according to claim 1 , wherein one of the substantially L-shaped members of the dielectric base material that supports a short diagonal corner where the corner of the radiation electrode is cut off with respect to the radiation electrode. Alternatively, the two arrangement positions can be shifted inward or outward to adjust the high resonance frequency with the short diagonal direction as the excitation direction.
また、請求項1記載のアンテナ装置において、前記放射電極に対して前記誘電体基材の前記4つの略L字状の部材の配設位置を、前記放射電極の中央と前記給電端子を通る方向で内側に狭めてまたは外側に拡大するようにずらして、共振周波数を調整することができる。 2. The antenna device according to claim 1 , wherein the four substantially L-shaped members of the dielectric base material are disposed with respect to the radiation electrode in a direction passing through the center of the radiation electrode and the feeding terminal. The resonance frequency can be adjusted by narrowing inwardly or shifting outwardly.
また、請求項1記載のアンテナ装置において、前記放射電極に対して前記誘電体基材の前記4つの略L字状の部材の配設位置を、前記放射電極の中央と前記給電端子を通る方向に対して直交方向で内側に狭めてまたは外側に拡大するようにずらして、共振周波数を調整することができる。 2. The antenna device according to claim 1 , wherein the four substantially L-shaped members of the dielectric base material are disposed with respect to the radiation electrode in a direction passing through the center of the radiation electrode and the feeding terminal. The resonance frequency can be adjusted by narrowing inward or expanding outward in the orthogonal direction.
請求項1記載のアンテナ装置にあっては、導電体ベースの上に配設される誘電体基材を、放射電極の4隅をそれぞれに支持するように上から見て4つに分割して4つの略L字状としたので、異なる寸法のアンテナ装置に対して、導電体ベースの上に配設する誘電体基材の位置を、内側に狭めまたは外側に拡げることで、対応することができる。もって、同じ形状寸法の誘電体基材を使用することができて経済的である。しかも、矩形の放射電極の4隅を、略L字状の誘電体基材でそれぞれに支持するので、放射電極の配設が簡単な構成で確実になし得る。さらに、矩形の放射電極の対角線を電流の励振方向としたアンテナにあっては、放射電極の4隅に電流が集中するが、その4隅が誘電体基材で確実に固定でき、GND電極としての導電体ベースに対する距離が振動等で変化することがなく、アンテナ特性が安定している。 In the antenna device according to claim 1, a dielectric substrate which is disposed on the conductor base, is divided into four when viewed from above so as to support the four corners of the radiation electrode, respectively Since it has four substantially L-shapes, it is possible to deal with antenna devices of different dimensions by narrowing the position of the dielectric base material disposed on the conductor base inward or expanding outward. it can. Therefore, it is economical that a dielectric substrate having the same shape and dimension can be used. In addition, since the four corners of the rectangular radiation electrode are respectively supported by the substantially L-shaped dielectric substrate, the radiation electrode can be reliably disposed with a simple configuration. Furthermore, in an antenna in which the diagonal line of the rectangular radiation electrode is the current excitation direction, the current concentrates at the four corners of the radiation electrode, but the four corners can be securely fixed by the dielectric substrate, and the GND electrode The distance from the conductor base does not change due to vibration or the like, and the antenna characteristics are stable.
請求項2記載のアンテナ装置の調整方法にあっては、請求項1記載のアンテナ装置において、誘電体基材の誘電率のバラツキにより、共振周波数が高い方にずれれば、誘電体基材の配設位置を内側に狭めることで、共振周波数を低くして所定の周波数に調整できる。誘電体基材の配設位置を内側に狭めることで共振周波数を所定の周波数に調整できるので、従来のごとく、放射電極を切り欠きまたは削る作業を必要とせず、さらには放射電極を切り欠きまたは削ることで生ずる削りかすが生じない。当然に、この削りかすを除去する手間も省ける。 In the antenna device adjustment method according to claim 2, in the antenna device according to claim 1 , if the resonance frequency shifts to a higher side due to variations in the dielectric constant of the dielectric substrate, the dielectric substrate By narrowing the arrangement position inward, the resonance frequency can be lowered and adjusted to a predetermined frequency. Since the resonance frequency can be adjusted to a predetermined frequency by narrowing the arrangement position of the dielectric base material, it is not necessary to cut or scrape the radiating electrode as in the past, and further, the radiating electrode is not cut or cut. There is no shavings caused by shaving. Naturally, the trouble of removing the shavings can be saved.
請求項3記載のアンテナ装置の調整方法にあっては、請求項1記載のアンテナ装置において、誘電体基材の誘電率のバラツキにより、共振周波数が低い方にずれれば、誘電体基材の配設位置を外側に拡大することで、共振周波数を高くして所定の周波数に調整できる。誘電体基材の配設位置を外側に拡大することで共振周波数を所定の周波数に調整できるので、従来のごとく、放射電極を切り欠きまたは削る作業を必要とせず、さらには放射電極を切り欠きまたは削ることで生ずる削りかすが生じない。当然に、この削りかすを除去する手間も省ける。 In the antenna device adjustment method according to claim 3, in the antenna device according to claim 1 , if the resonance frequency shifts to a lower side due to variations in the dielectric constant of the dielectric substrate, the dielectric substrate By enlarging the arrangement position to the outside, the resonance frequency can be increased and adjusted to a predetermined frequency. Since the resonance frequency can be adjusted to a predetermined frequency by expanding the position of the dielectric substrate to the outside, there is no need to cut or cut the radiation electrode as in the past, and the radiation electrode is notched. Or shavings generated by shaving do not occur. Naturally, the trouble of removing the shavings can be saved.
請求項4記載のアンテナ装置の調整方法にあっては、請求項1記載のアンテナ装置において、放射電極に対して前記放射電極の隅が切り落とされていない長い対角線となる隅を支持する誘電体基材の4つの略L字状の部材の1つまたは2つの配設位置を内側または外側にずらすことで、長い対角線方向を励振方向とする低い共振周波数を調整することができる。誘電体基材の誘電率のバラツキにより、2つの共振周波数の一方の低い共振周波数を調整するのに効果的である。 5. The antenna device adjustment method according to claim 4, wherein the antenna device according to claim 1 supports a corner having a long diagonal line where a corner of the radiation electrode is not cut off with respect to the radiation electrode. By shifting one or two arrangement positions of the four substantially L-shaped members of the material inward or outward, a low resonance frequency with the long diagonal direction as the excitation direction can be adjusted. Due to the variation in the dielectric constant of the dielectric substrate, it is effective to adjust the low resonance frequency of one of the two resonance frequencies.
請求項5記載のアンテナ装置の調整方法にあっては、請求項1記載のアンテナ装置において、放射電極に対して前記放射電極の隅が切り落とされた短い対角線となる隅を支持する誘電体基材の4つの略L字状の部材の1つまたは2つの配設位置を内側または外側にずらすことで、短い対角線方向を励振方向とする高い共振周波数を調整することができる。誘電体基材の誘電率のバラツキにより、2つの共振周波数の一方の高い共振周波数を調整するのに効果的である。 In the adjustment method of an antenna device according to claim 5, in the antenna device according to claim 1, a dielectric substrate for supporting the corner as a short diagonal, which cut off the corners of the radiation electrode to the radiation electrode By shifting one or two positions of the four substantially L-shaped members to the inside or the outside, a high resonance frequency with the short diagonal direction as the excitation direction can be adjusted. Due to variations in the dielectric constant of the dielectric substrate, it is effective to adjust one of the two resonance frequencies.
請求項6記載のアンテナ装置の調整方法にあっては、請求項1記載のアンテナ装置において、放射電極に対して誘電体基材の前記4つの略L字状の部材の配設位置を、放射電極の中央と給電端子を通過する方向で内側に狭めてまたは外側に拡大するようにずらすことで、放射電極と誘電体基材の接する面積を調整して、共振周波数全体を調整することができる。誘電体基材の誘電率のバラツキに対して、2つの共振周波数全体を調整するのに効果的である。 The antenna device adjustment method according to claim 6, wherein in the antenna device according to claim 1 , the disposition positions of the four substantially L-shaped members of the dielectric base material with respect to the radiation electrode are radiated. The entire resonance frequency can be adjusted by adjusting the area where the radiation electrode and the dielectric substrate are in contact with each other, by narrowing inward or expanding outward in the direction passing through the center of the electrode and the feeding terminal. . It is effective to adjust the entire two resonance frequencies with respect to variations in the dielectric constant of the dielectric substrate.
請求項7記載のアンテナ装置の調整方法にあっては、請求項1記載のアンテナ装置において、放射電極に対して誘電体基材の前記4つの略L字状の部材の配設位置を、放射電極の中央と給電端子を通過する方向に対して直交方向で内側に狭めてまたは外側に拡大するようにずらすことで、放射電極と誘電体基材の接する面積を調整して、共振周波数全体を調整することができる。誘電体基材の誘電率のバラツキに対して、2つの共振周波数全体を調整するのに効果的である。請求項8の調整方法とは、インピーダンスの変化が異なる。そこで、インピーダンスをいずれに調整するかに応じて、請求項6または請求項7のいずれかの調整方法を選択することができる。 In the antenna device adjustment method according to claim 7, in the antenna device according to claim 1 , the disposition positions of the four substantially L-shaped members of the dielectric base material with respect to the radiation electrode may be radiated. By adjusting the area where the radiation electrode and the dielectric substrate are in contact with each other by adjusting the area where the radiation electrode and the dielectric substrate are in contact with each other by narrowing inward or expanding outward in the direction orthogonal to the direction passing through the center of the electrode and the feeding terminal, Can be adjusted. It is effective to adjust the entire two resonance frequencies with respect to variations in the dielectric constant of the dielectric substrate. The change in impedance is different from the adjustment method according to the eighth aspect. Therefore, the adjustment method according to any one of claims 6 and 7 can be selected according to which impedance is adjusted.
以下、本発明の第1実施例を図1ないし図3を参照して説明する。図1は、本発明のアンテナ装置の第1実施例の分解斜視図である。図2は、図1に示す本発明のアンテナ装置の利得を示す図である。図3は、比較するために図21に示す従来のアンテナ装置の利得を示す図である。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an exploded perspective view of an antenna device according to a first embodiment of the present invention. FIG. 2 is a diagram showing the gain of the antenna device of the present invention shown in FIG. FIG. 3 is a diagram showing the gain of the conventional antenna apparatus shown in FIG. 21 for comparison.
図1に示す本発明のアンテナ装置の第1実施例にあっては、GND電極としての導電体ベース10の上に、中央部に空きスペースを設けるとともに偏平で上から見て外形が全体として略矩形の環状で4つに分割された誘電体基材22が配設される。この誘電体基材22は、4つの略L字状の部分からなる。そして、誘電体基材22の4つの略L字状の上面で4隅をそれぞれに支持するようにして放射電極14が配設される。さらに、放射電極14の中央位置より1つの辺側にずらして給電端子16が設けられて、放射電極14の対角線方向が電流の励振方向となるように構成されている。なお、放射電極14は、1つの対角線の対向する2つの隅が面取り状に僅かに切り落とされた略矩形である。 In the first embodiment of the antenna device according to the present invention shown in FIG. 1, an open space is provided in the central portion on the conductor base 10 as the GND electrode, and the outer shape is substantially flat as viewed from above. A dielectric base 22 divided into four in a rectangular ring shape is disposed. The dielectric substrate 22 is composed of four substantially L-shaped portions. And the radiation electrode 14 is arrange | positioned so that four corners may be supported by the four substantially L-shaped upper surfaces of the dielectric base material 22, respectively. Further, the power supply terminal 16 is provided so as to be shifted to one side from the center position of the radiation electrode 14, and the diagonal direction of the radiation electrode 14 is configured to be the current excitation direction. The radiation electrode 14 has a substantially rectangular shape in which two opposite corners of one diagonal line are slightly cut off in a chamfered shape.
図1に示す本発明のアンテナ装置にあっては、図2に示すごとく、天頂の0°で2.8dBicの利得で、平均で−1.6dBicの利得が得られた。そして、図21に示す従来のアンテナ装置にあっては、図3に示すごとく、天頂の0°で3.1dBicの利得で、平均で−1.7dBicの利得であった。なお、図2と図3に示すアンテナ特性において、誘電体基材12、22および放射電極14の外形寸法が同じもので比較している。実用的には、天頂の0°で、0dBic以上の利得があれば良く、本発明のアンテナ装置は実用上で何ら問題がない。また、本発明のアンテナ装置の軸比が2.2dBであるのに対して、従来のアンテナ装置の軸比は2.1dBであった。実用上で、本発明のアンテナ装置と従来のアンテナ装置は、同等のアンテナ特性が得られることが、確認された。 In the antenna apparatus of the present invention shown in FIG. 1, as shown in FIG. 2, a gain of 2.8 dBic was obtained at 0 ° of the zenith and an average gain of −1.6 dBic was obtained. In the conventional antenna device shown in FIG. 21 , as shown in FIG. 3, the gain was 3.1 dBic at 0 ° of the zenith, and the gain was -1.7 dBic on average. In the antenna characteristics shown in FIGS. 2 and 3, the outer dimensions of the dielectric base materials 12 and 22 and the radiation electrode 14 are the same and are compared. Practically, it is sufficient that the gain is 0 dBic or more at 0 ° of the zenith, and the antenna device of the present invention has no problem in practical use. In addition, the axial ratio of the antenna apparatus of the present invention is 2.2 dB, whereas the axial ratio of the conventional antenna apparatus is 2.1 dB. In practical use, it was confirmed that the antenna device of the present invention and the conventional antenna device can obtain equivalent antenna characteristics.
本発明のアンテナ装置にあっては、誘電体基材22は、上述のごとくき略L字状のものに限られない。図4に示すごとく、誘電体基材24は、中央部に空きスペースを設けるとともに偏平で上から見て外形が全体として略矩形の環状で4つに分割されていて4つの略L字状であるが、略L字状を形成する角部の内側に三角部分を設けたものであっても良い。さらに、図5に示すごとく、略L字状を形成する角部の内側に設けた三角部分を大きくして、誘電体基材26が、4つの略3角形としたものを中央部に空きスペースを設けるように配設したものであっても良い。 In the antenna device of the present invention, the dielectric base material 22 is not limited to the substantially L-shaped one as described above. As shown in FIG. 4, the dielectric base material 24 is provided with an empty space in the center and is flat and has a substantially rectangular annular shape when viewed from above, and is divided into four substantially four L-shapes. However, a triangular portion may be provided inside a corner portion that forms a substantially L shape. Further, as shown in FIG. 5, the triangular portion provided inside the corner portion that forms a substantially L-shape is enlarged, and the dielectric base material 26 has four substantially triangular shapes with an empty space in the center portion. It may be arranged so as to provide.
図1と図4および図5に示す誘電体基材22、24、26にあっては、略矩形の放射電極14の4隅をそれぞれに支持するのに好適である。ここで、放射電極14は、図6(a)に示すように、1つの対角線の2つの隅が面取り状に僅かに切り落とされており、その対角線の長さd1が、隅が切り落とされていない他方の対角線の長さd2より僅かに短く設定されている。短い対角線の長さd1方向に、高い周波数の共振周波数の電流が励振され、他方の長い対角線の長さd2方向に、低い周波数の共振周波数の電流が励振される。また、放射電極14は、図6(b)に示すように、1つの対角線の1つの隅が面取り状に僅かに切り落とされて、その対角線の長さd1が、隅が切り落とされていない他方の対角線の長さd2より僅かに短く設定されるようにしても良い。かかる構成では、矩形の放射電極の4隅を、誘電体基材22、24、26で確実に支持できるので、放射電極14の配設が簡単な構成で確実になし得るとともに、対角線を電流の励振方向とした共振周波数の電流が放射電極14の4隅に集中するが、その4隅が誘電体基材22、24、26で確実に固定できるので、GND電極としての導電体ベース10に対する距離が振動等で変化することがなく、アンテナ特性が安定している。 The dielectric base materials 22, 24, and 26 shown in FIGS. 1, 4 and 5 are suitable for supporting the four corners of the substantially rectangular radiation electrode 14, respectively. Here, in the radiation electrode 14, as shown in FIG. 6A, two corners of one diagonal line are slightly cut off in a chamfered shape, and the length d1 of the diagonal line is not cut off. It is set slightly shorter than the length d2 of the other diagonal line. A high frequency resonance frequency current is excited in the direction of the short diagonal length d1, and a low frequency resonance frequency current is excited in the direction of the other long diagonal length d2. In addition, as shown in FIG. 6B, the radiation electrode 14 has one corner of one diagonal line slightly cut off in a chamfered shape, and the length d1 of the diagonal line is the other side where the corner is not cut off. It may be set slightly shorter than the length d2 of the diagonal line. In such a configuration, the four corners of the rectangular radiating electrode can be reliably supported by the dielectric base materials 22, 24, and 26, so that the radiating electrode 14 can be reliably arranged with a simple configuration, and a diagonal line can be formed. The resonance frequency current in the excitation direction is concentrated at the four corners of the radiation electrode 14, but the four corners can be securely fixed by the dielectric base materials 22, 24, and 26, so that the distance to the conductor base 10 as the GND electrode is increased. Does not change due to vibration or the like, and the antenna characteristics are stable.
上述の図1に示す本発明のアンテナ装置にあっては、放射電極14に対する誘電体基材22の配設位置を調整することで、共振周波数の調整が容易にできる。これは、放射電極14に対する誘電体基材22の配設位置を調整することで、放射電極14と誘電体基材22の接する面積が調整され、誘電体基材22による波長短縮効果の大きさが相違し、放射電極14の大きさは一定であるので、共振周波数の変化が生ずる。すなわち、放射電極14と誘電体基材22の接する面積が大きくなれば、波長短縮効果が大となって共振周波数は低くなり、放射電極14と誘電体基材22の接する面積が小さくなれば、波長短縮効果が小となって共振周波数は高くなる。そこで、かかる作用効果は、誘電体基材22が製造ロット毎に誘電率にバラツキを生ずる虞があるが、これに起因して共振周波数が変化するのに対応して、共振周波数を調整するのに好適である。まず、図7(a)に示すごとく、放射電極14に対して誘電体基材22が配設されている。そして、かかる配設で、図7(b)に示すごときインピーダンスであるとともに図7(c)に示すごときVSWR特性であったとする。ここで、共振周波数全体を低い方向に調整するには、図8(a)に示すごとく、放射電極14に対して誘電体基材22の4つの部材を、放射電極14の中央と給電端子16を通る方向(図8で、縦方向)で互いに内側に狭まるように配設位置をずらせば良い。すると、図8(b)に示すごとくインピーダンスは右回りに変動し、図8(c)に示すごとくVSWR特性は全体として低い周波数方向に変動する。また、共振周波数全体を高い方向に調整するには、図9(a)に示すごとく、放射電極14に対して誘電体基材22の4つの部材を、放射電極14の中央と給電端子16を通る方向(図9で、縦方向)で互いに外側に拡大するように配設位置をずらせば良い。すると、図9(b)に示すごとくインピーダンスは左回りに変動し、図9(c)に示すごとくVSWR特性は全体として高い周波数方向に変動する。さらに、共振周波数全体を低い方向に調整する別の方法としては、図10(a)に示すごとく、放射電極14に対して誘電体基材22の4つの部材を、放射電極14の中央から給電端子16が設けられた方向と直交する方向(図10で、横方向)で互いに内側に狭まるように配設位置をずらせば良い。すると、図10(b)に示すごとくインピーダンスは左回りに変動し、図10(c)に示すごとくVSWR特性は全体として低い周波数方向に変動する。また、共振周波数全体を高い方向に調整する別の方法としては、図11(a)に示すごとく、放射電極14に対して誘電体基材22の4つの部材を、放射電極14の中央から給電端子16が設けられた方向と直交する方向(図11で、横方向)で互いに外側に広がり拡大するように配設位置をずらせば良い。すると、図11(b)に示すごとくインピーダンスは右回りに変動し、図11(c)に示すごとくVSWR特性は全体として高い周波数方向に変動する。図8と図9に示す調整方法と、図10と図11に示す調整方法にあっては、共振周波数の変動に伴うインピーダンスの変動方向が相違し、所望のインピーダンスに応じていずれかの調整方法を選択することができる。 In the antenna device of the present invention shown in FIG. 1 described above, the resonance frequency can be easily adjusted by adjusting the arrangement position of the dielectric base material 22 with respect to the radiation electrode 14. This is because the area of contact between the radiation electrode 14 and the dielectric base material 22 is adjusted by adjusting the position of the dielectric base material 22 with respect to the radiation electrode 14, and the magnitude of the wavelength shortening effect of the dielectric base material 22 is large. However, since the size of the radiation electrode 14 is constant, a change in the resonance frequency occurs. That is, if the area where the radiation electrode 14 and the dielectric base material 22 are in contact with each other is increased, the wavelength shortening effect is increased and the resonance frequency is lowered. If the area where the radiation electrode 14 is in contact with the dielectric base material 22 is reduced, The wavelength shortening effect is reduced and the resonance frequency is increased. Therefore, such a function effect may cause the dielectric base material 22 to vary in the dielectric constant for each production lot, but the resonance frequency is adjusted in response to the change in the resonance frequency due to this. It is suitable for. First, as shown in FIG. 7A, the dielectric base material 22 is disposed with respect to the radiation electrode 14. Then, in such arrangement, the such was VSWR characteristic shown in FIG. 7 (c) with an impedance such shown in FIG. 7 (b). Here, in order to adjust the whole resonance frequency in the lower direction, as shown in FIG. 8A , four members of the dielectric base material 22 are arranged with respect to the radiation electrode 14, and the center of the radiation electrode 14 and the feeding terminal 16 The arrangement positions may be shifted so as to narrow toward each other in the direction passing through (vertical direction in FIG. 8 ). Then, the impedance as shown in FIG. 8 (b) varies clockwise, VSWR characteristic as shown in FIG. 8 (c) varies a lower frequency direction as a whole. Further, in order to adjust the overall resonance frequency in the higher direction, as shown in FIG. 9A , the four members of the dielectric base material 22 with respect to the radiation electrode 14, the center of the radiation electrode 14 and the feeding terminal 16 are connected. What is necessary is just to shift the arrangement | positioning position so that it may mutually expand outside in the passing direction (vertical direction in FIG. 9 ). Then, as shown in FIG. 9B, the impedance fluctuates counterclockwise, and as shown in FIG. 9C, the VSWR characteristic fluctuates in the high frequency direction as a whole. Furthermore, as another method of adjusting the whole resonance frequency in a low direction, as shown in FIG. 10A , four members of the dielectric base material 22 are fed from the center of the radiation electrode 14 to the radiation electrode 14. The arrangement positions may be shifted so as to narrow toward each other in the direction orthogonal to the direction in which the terminals 16 are provided (lateral direction in FIG. 10 ). Then, as shown in FIG. 10B, the impedance fluctuates counterclockwise, and as shown in FIG. 10C, the VSWR characteristic fluctuates in the lower frequency direction as a whole. Further, as another method for adjusting the entire resonance frequency in the high direction, as shown in FIG. 11A , four members of the dielectric base material 22 are fed from the center of the radiation electrode 14 to the radiation electrode 14. What is necessary is just to shift the arrangement | positioning position so that it may spread outside each other and may be expanded in the direction orthogonal to the direction in which the terminal 16 was provided (horizontal direction in FIG. 11 ). Then, the impedance as shown in FIG. 11 (b) varies clockwise, VSWR characteristic as shown in FIG. 11 (c) varies to a higher frequency direction as a whole. The adjustment method shown in FIGS . 8 and 9 and the adjustment method shown in FIGS. 10 and 11 are different in the direction of impedance variation accompanying the variation of the resonance frequency, and any one of the adjustment methods depending on the desired impedance. Can be selected.
また、共振周波数全体を低い方向に調整するには、図12(a)に示すごとく、放射電極14に対して誘電体基材22の4つの略L字状の部材の全てを、対角線方向に内側に狭めてずらして配設しても良い。すると、図12(b)に示すごとくインピーダンスは大きな変動がなく、図12(c)に示すごとくVSWR特性は全体として低い周波数方向に変動する。共振周波数全体を高い方向に調整するには、図13(a)に示すごとく、放射電極14に対して誘電体基材22の4つの略L字状の部材の全てを、対角線方向に外側に拡大してずらして配設しても良い。すると、図13(b)に示すごとくインピーダンスは大きな変動がなく、図13(c)に示すごとくVSWR特性は全体として高い周波数方向に変動する。この図12と図13に示す調整方法にあっては、インピーダンスの変動なしに、共振周波数全体を調整するのに好適である。 Further, in order to adjust the overall resonance frequency in the lower direction, as shown in FIG. 12A , all four substantially L-shaped members of the dielectric base material 22 are diagonally aligned with respect to the radiation electrode 14. You may arrange | position by narrowing inside and shifting. Then, as shown in FIG. 12B, the impedance does not change greatly, and as shown in FIG. 12C, the VSWR characteristic changes in the lower frequency direction as a whole. In order to adjust the overall resonance frequency in the high direction, as shown in FIG. 13A , all of the four substantially L-shaped members of the dielectric substrate 22 with respect to the radiation electrode 14 are placed diagonally outward. You may arrange | position by expanding and shifting. Then, as shown in FIG. 13B, the impedance does not change greatly, and as shown in FIG. 13C, the VSWR characteristic changes in the high frequency direction as a whole. The adjustment methods shown in FIGS . 12 and 13 are suitable for adjusting the entire resonance frequency without fluctuations in impedance.
さらに、放射電極14の2つの共振周波数を、1つずつ調整できれば、所望のアンテナ特性を得るのにより好適である。そこで、2つの共振周波数の一方の高い共振周波数を調整する方法を以下に説明する。まず、図14(a)に示すごとく、短い対角線d1となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と反対方向で外側(図14で、縦方向上側)に向けて配設位置をずらす。すると、図14(d)に示すごときVSWR特性のものが、図14(e)に示すVSWR特性のごとく、高い共振周波数がより高い方向にずれる。さらに、誘電体基板22の1つの配設位置をより大きく外側にずらせば、図14(f)に示すVSWR特性のごとく、高い共振周波数がより高い方向にずれる。低い共振周波数の変動は、ほとんど認められない。そこで、高い共振周波数の変動は、図14(g)に示すように、短い対角線d1となる1つの隅の誘電体基板22の1つの配設位置を外側にずらすほど、高い方に変動する。ここで、短い対角線d1となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と反対方向で内側(図14で、縦方向下側)に向けて配設位置をずらすと、図14(c)に示すVSWR特性のごとく、共振周波数が少し低い方向にずれる。しかも、高い共振周波数と低い共振周波数を区分できない状態となる。さらに、誘電体基板22の1つの配設位置をより大きく内側にずらせば、図14(b)に示すVSWR特性のごとく、共振周波数がより低い方向にずれる。なお、図14(g)において、fHは高い共振周波数を示し、fLは低い共振周波数を示し、f0は平均の共振周波数を示す。また、図15(a)に示すごとく、短い対角線d1となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と直交する方向で外側(図15で、横方向右側)に向けて配設位置をずらす。すると、図15(d)に示すごときVSWR特性のものが、図15(e)に示すVSWR特性のごとく、高い共振周波数がより高い方向にずれ、誘電体基板22の1つの配設位置をより大きくずらせば、図15(f)に示すごとく、高い共振周波数がさらに高い方向にずれる。そして、高い共振周波数の変動は、図15(g)に示すように、短い対角線d1となる1つの隅の誘電体基板22の1つの配設位置を外側にずらすほど、高い方に変動する。ここで、短い対角線d1となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と直交する方向で内側(図15で、横方向左側)に向けて配設位置をずらすと、図15(c)に示すVSWR特性のごとく、共振周波数が少し低い方向にずれる。しかも、高い共振周波数と低い共振周波数を区分できない状態となる。さらに、誘電体基板22の1つの配設位置をより大きく内側にずらせば、図15(b)に示すVSWR特性のごとく、共振周波数がより低い方向にずれる。なお、図15(g)において、fHは高い共振周波数を示し、fLは低い共振周波数を示し、f0は平均の共振周波数を示す。さらに、図16(a)に示すごとく、短い対角線d1となる1つの隅の誘電体基板22の1つを、対角線の方向で外側(図16で、斜め右上側)に向けて配設位置をずらす。すると、図16(d)に示すごときVSWR特性のものが、図16(e)に示すVSWR特性のごとく、高い共振周波数がより高い方向にずれ、誘電体基板22の1つの配設位置をより大きくずらせば、図16(f)に示すごとく、高い共振周波数がさらに高い方向にずれる。そして、高い共振周波数の変動は、図16(f)に示すように、短い対角線d1となる1つの隅の誘電体基板22の1つの配設位置を、短い対角線d1の方向で外側にずらすほど、高い方向に変動する。ここで、短い対角線d1となる1つの隅の誘電体基板22の1つを、対角線の方向で内側(図16で、斜め左下側)に向けて配設位置をずらすと、図16(c)に示すVSWR特性のごとく、共振周波数が少し低い方向にずれる。しかも、高い共振周波数と低い共振周波数を区分できない状態となる。さらに、誘電体基板22の1つの配設位置をより大きく斜め左下側にずらせば、図16(b)に示すVSWR特性のごとく、共振周波数がより低い方向にずれる。なお、図16(g)において、fHは高い共振周波数を示し、fLは低い共振周波数を示し、f0は平均の共振周波数を示す。なお、2つの共振周波数の一方の高い共振周波数を調整する方法として、図14、図15、図16で示した方法は、短い対角線d1となる1つの隅の誘電体基板22の1つの配設位置をずらしたものであるが、短い対角線d1となる2つの隅の誘電体基板22の2つの配設位置をともに点対称となるようにずらしても良い。 Furthermore, if the two resonance frequencies of the radiation electrode 14 can be adjusted one by one, it is more preferable to obtain desired antenna characteristics. Therefore, a method for adjusting the high resonance frequency of one of the two resonance frequencies will be described below. First, as shown in FIG. 14 (a), one of the dielectric substrates 22 at one corner, which is a short diagonal line d1, is placed outward from the center of the radiation electrode 14 in the direction opposite to the direction in which the feeding terminal 16 is provided (see FIG. 14 , the arrangement position is shifted toward the upper side in the vertical direction. Then, as shown in FIG. 14D, the high resonance frequency shifts in the higher direction in the VSWR characteristic as shown in FIG. 14D, as in the VSWR characteristic shown in FIG . Further, if one arrangement position of the dielectric substrate 22 is shifted further outward, the high resonance frequency is shifted in the higher direction as in the VSWR characteristic shown in FIG . Little variation in the resonant frequency is observed. Accordingly, as shown in FIG. 14G, the fluctuation of the high resonance frequency fluctuates higher as one arrangement position of the dielectric substrate 22 at one corner that becomes the short diagonal line d1 is shifted outward. Here, one of the dielectric substrates 22 at one corner, which is a short diagonal line d1, is placed inward from the center of the radiation electrode 14 in the direction opposite to the direction in which the power supply terminal 16 is provided (lower side in the vertical direction in FIG. 14 ). When the arrangement position is shifted toward, the resonance frequency shifts in a slightly lower direction as shown in the VSWR characteristic shown in FIG . Moreover, the high resonance frequency and the low resonance frequency cannot be distinguished. Furthermore, if one arrangement position of the dielectric substrate 22 is shifted more inward, the resonance frequency is shifted in a lower direction as in the VSWR characteristic shown in FIG . In FIG. 14G, fH represents a high resonance frequency, fL represents a low resonance frequency, and f0 represents an average resonance frequency. Further, as shown in FIG. 15A, one of the dielectric substrates 22 at one corner, which is a short diagonal line d1, is placed outside (in the direction perpendicular to the direction in which the feed terminal 16 is provided from the center of the radiation electrode 14). In FIG. 15 , the arrangement position is shifted toward the right side in the horizontal direction. Then, as shown in FIG. 15D, the VSWR characteristic shown in FIG. 15D has a higher resonance frequency shifted in the higher direction as shown in FIG. If it is greatly shifted, as shown in FIG. 15 (f), the high resonance frequency shifts further in the higher direction. Then, as shown in FIG. 15G, the fluctuation of the high resonance frequency fluctuates higher as one arrangement position of the dielectric substrate 22 at one corner that becomes the short diagonal line d1 is shifted outward. Here, one of the dielectric substrates 22 at one corner, which is a short diagonal line d1, is placed inward in the direction orthogonal to the direction in which the feeding terminal 16 is provided from the center of the radiation electrode 14 (laterally left side in FIG. 15 ). When the arrangement position is shifted toward, the resonance frequency is shifted slightly lower as shown in the VSWR characteristic shown in FIG . Moreover, the high resonance frequency and the low resonance frequency cannot be distinguished. Furthermore, if one arrangement position of the dielectric substrate 22 is shifted more inward, the resonance frequency is shifted in a lower direction as in the VSWR characteristic shown in FIG . In FIG. 15G, fH indicates a high resonance frequency, fL indicates a low resonance frequency, and f0 indicates an average resonance frequency. Further, as shown in FIG. 16 (a), one of the dielectric substrates 22 at one corner that becomes the short diagonal line d1 is disposed in the diagonal direction toward the outside (slant upper right side in FIG. 16 ). Shift. Then, more ones of VSWR characteristics such shown in FIG. 16 (d) is, as the VSWR characteristic shown in FIG. 16 (e), the deviation in the higher direction is high resonant frequencies, one arrangement position of the dielectric substrate 22 If it is greatly shifted, as shown in FIG. 16 (f), the high resonance frequency is shifted in a higher direction. As shown in FIG. 16 (f), the fluctuation of the high resonance frequency is such that one arrangement position of the dielectric substrate 22 at one corner that becomes the short diagonal line d1 is shifted outward in the direction of the short diagonal line d1. Fluctuate higher. Here, when one of the dielectric substrates 22 at one corner that becomes the short diagonal line d1 is shifted in the diagonal direction toward the inner side (diagonally lower left side in FIG. 16 ), the arrangement position in FIG. As shown in VSWR characteristics, the resonance frequency is shifted slightly lower. Moreover, the high resonance frequency and the low resonance frequency cannot be distinguished. Furthermore, if one arrangement position of the dielectric substrate 22 is shifted to the lower left side more largely, the resonance frequency is shifted in a lower direction as shown in the VSWR characteristic shown in FIG . In FIG. 16G, fH represents a high resonance frequency, fL represents a low resonance frequency, and f0 represents an average resonance frequency. As a method of adjusting one of the two resonance frequencies, the method shown in FIGS . 14 , 15 , and 16 is arranged as one arrangement of the dielectric substrate 22 at one corner that becomes a short diagonal line d1. Although the positions are shifted, the two arrangement positions of the dielectric substrate 22 at the two corners that are the short diagonal line d1 may be shifted so as to be both point-symmetric.
さらに、2つの共振周波数の他方の低い共振周波数を調整する方法を以下に説明する。まず、図17(a)に示すごとく、長い対角線d2となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と反対方向で内側(図17で、縦方向下側)に向けて配設位置をずらす。すると、図17(d)に示すごときVSWR特性のものが、図17(c)に示すVSWR特性のごとく、低い共振周波数がより低い方向にずれる。さらに、誘電体基板22の1つの配設位置をより大きく縦方向下側にずらせば、図17(b)に示すVSWR特性のごとく、低い共振周波数がより低い方向にずれる。高い共振周波数の変動は、ほとんど認められない。そして、低い共振周波数の変動は、図17(g)に示すように、長い対角線d2となる1つの隅の誘電体基板22の1つの配設位置を縦方向下側にずらすほど、低い方向に変動する。ここで、長い対角線d2となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と反対方向で外側(図17で、縦方向上側)に向けて配設位置をずらすと、図17(e)に示すVSWR特性のごとく、共振周波数が少し高い方向にずれる。しかも、高い共振周波数と低い共振周波数を区分できない状態となる。さらに、誘電体基板22の1つの配設位置をより大きく縦方向上側にずらせば、図17(f)に示すVSWR特性のごとく、共振周波数がより高い方向にずれる。なお、図17(g)において、fHは高い共振周波数を示し、fLは低い共振周波数を示し、f0は平均の共振周波数を示す。また、図18(a)に示すごとく、長い対角線d2となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と直交する方向で内側(図18で、横方向右側)に向けて配設位置をずらす。すると、図18(d)に示すごときVSWR特性のものが、図18(c)に示すVSWR特性のごとく、低い共振周波数がより低い方向にずれ、誘電体基板22の1つの配設位置をより大きく横方向右側にずらせば、図18(b)に示すごとく、低い共振周波数がさらに低い方向にずれる。そして、低い共振周波数の変動は、図18(g)に示すように、長い対角線d2となる1つの隅の誘電体基板22の1つの配設位置を横方向右側にずらすほど、低い方向に変動する。ここで、長い対角線d2となる1つの隅の誘電体基板22の1つを、放射電極14の中央から給電端子16が設けられた方向と反対方向で外側(図18で、横方向左側)に向けて配設位置をずらすと、図18(e)に示すVSWR特性のごとく、共振周波数が少し高い方向にずれる。しかも、高い共振周波数と低い共振周波数を区分できない状態となる。さらに、誘電体基板22の1つの配設位置をより大きく横方向左側にずらせば、図18(f)に示すVSWR特性のごとく、共振周波数がより高い方向にずれる。なお、図18(g)において、fHは高い共振周波数を示し、fLは低い共振周波数を示し、f0は平均の共振周波数を示す。さらに、図19(a)に示すごとく、長い対角線d2なる1つの隅の誘電体基板22の1つを、長い対角線d2の方向で内側(図19で、斜め右下側)に向けて配設位置をずらす。すると、図19(d)に示すごときVSWR特性のものが、図19(c)に示すVSWR特性のごとく、低い共振周波数がより低い方向にずれ、誘電体基板22の1つの配設位置をより大きく斜め右下側にずらせば、図19(b)に示すごとく、低い共振周波数がさらに低い方向にずれる。そして、低い共振周波数の変動は、図19(g)に示すように、長い対角線d2となる1つの隅の誘電体基板22の1つの配設位置を、長い対角線d2の方向で内側の斜め右下側にずらすほど、低い方向に変動する。ここで、長い対角線d2となる1つの隅の誘電体基板22の1つを、対角線の方向で外側(図19で、斜め左上側)に向けて配設位置をずらすと、図19(e)に示すVSWR特性のごとく、共振周波数が少し高い方向にずれる。しかも、高い共振周波数と低い共振周波数を区分できない状態となる。さらに、誘電体基板22の1つの配設位置をより大きく斜め左上側にずらせば、図19(f)に示すVSWR特性のごとく、共振周波数がより高い方向にずれる。なお、図19(g)において、fHは高い共振周波数を示し、fLは低い共振周波数を示し、f0は平均の共振周波数を示す。なお、2つの共振周波数の一方の低い共振周波数を調整する方法として、図17、図18、図19で示した方法は、長い対角線d2となる1つの隅の誘電体基板22の1つの配設位置をずらしたものであるが、長い対角線d2となる2つの隅の誘電体基板22の2つの配設位置をともに点対称となるようにずらしても良い。 Further, a method for adjusting the other low resonance frequency of the two resonance frequencies will be described below. First, as shown in FIG. 17 (a), one of the dielectric substrates 22 at one corner, which is a long diagonal line d2, is placed inward from the center of the radiation electrode 14 in the direction opposite to the direction in which the feed terminal 16 is provided (see FIG. 17 , the arrangement position is shifted toward the lower side in the vertical direction. Then, as shown in FIG. 17D, the VSWR characteristic as shown in FIG. 17D shifts the low resonance frequency in the lower direction as the VSWR characteristic shown in FIG . Furthermore, if one arrangement position of the dielectric substrate 22 is shifted to the lower side in the vertical direction, the low resonance frequency is shifted in the lower direction as in the VSWR characteristic shown in FIG . Almost no fluctuation of the high resonance frequency is observed. Then, as shown in FIG. 17 (g), the fluctuation of the low resonance frequency decreases in the lower direction as one arrangement position of the dielectric substrate 22 at one corner which becomes the long diagonal line d2 is shifted downward in the vertical direction. fluctuate. Here, one of the dielectric substrates 22 at one corner that becomes the long diagonal line d2 is placed outward (upward in the vertical direction in FIG. 17 ) from the center of the radiation electrode 14 in the direction opposite to the direction in which the feeding terminal 16 is provided . When the arrangement position is shifted, the resonance frequency is shifted slightly higher as shown in the VSWR characteristic shown in FIG . Moreover, the high resonance frequency and the low resonance frequency cannot be distinguished. Furthermore, if one arrangement position of the dielectric substrate 22 is largely shifted upward in the vertical direction, the resonance frequency is shifted in a higher direction as in the VSWR characteristic shown in FIG . In FIG. 17G, fH indicates a high resonance frequency, fL indicates a low resonance frequency, and f0 indicates an average resonance frequency. Further, as shown in FIG. 18A , one of the dielectric substrates 22 at one corner, which is a long diagonal line d2, is placed on the inside (in the direction orthogonal to the direction in which the feeding terminal 16 is provided from the center of the radiation electrode 14). In FIG. 18 , the arrangement position is shifted toward the right side in the horizontal direction. Then, as shown in FIG. 18D, the VSWR characteristic as shown in FIG. 18D shifts the lower resonance frequency in a lower direction as in the VSWR characteristic shown in FIG. If it is greatly shifted to the right in the lateral direction, the low resonance frequency is shifted further downward as shown in FIG . Then, as shown in FIG. 18G, the fluctuation of the low resonance frequency fluctuates in the lower direction as the position of one of the dielectric substrates 22 at one corner that becomes the long diagonal line d2 is shifted to the right in the horizontal direction. To do. Here, one of the dielectric substrates 22 at one corner that becomes the long diagonal line d2 is placed outward (in the horizontal direction in FIG. 18 ) from the center of the radiation electrode 14 in the direction opposite to the direction in which the power supply terminal 16 is provided . When the arrangement position is shifted, the resonance frequency is shifted slightly higher as shown in the VSWR characteristic shown in FIG . Moreover, the high resonance frequency and the low resonance frequency cannot be distinguished. Furthermore, if one arrangement position of the dielectric substrate 22 is greatly shifted to the left in the lateral direction, the resonance frequency is shifted in a higher direction as in the VSWR characteristic shown in FIG . In FIG. 18G, fH represents a high resonance frequency, fL represents a low resonance frequency, and f0 represents an average resonance frequency. Further, as shown in FIG. 19 (a), one of the dielectric substrates 22 at one corner of the long diagonal line d2 is disposed inwardly (in the diagonally lower right side in FIG. 19 ) in the direction of the long diagonal line d2 . Shift the position. Then, more ones of VSWR characteristics such shown in FIG. 19 (d) is, as the VSWR characteristic shown in FIG. 19 (c), shift to a lower direction is low resonance frequencies, one arrangement position of the dielectric substrate 22 If it is greatly shifted to the lower right side, as shown in FIG. 19B , the low resonance frequency shifts further in the lower direction. Then, as shown in FIG. 19 (g), the fluctuation of the low resonance frequency is caused by the fact that one arrangement position of the dielectric substrate 22 at one corner that becomes the long diagonal line d2 is inclined diagonally to the inside in the direction of the long diagonal line d2. The lower the value, the lower the value. Here, when one of the dielectric substrates 22 at one corner which becomes the long diagonal line d2 is shifted in the direction of the diagonal line toward the outside (slant left upper side in FIG. 19 ), the arrangement position of FIG. As shown in VSWR characteristics, the resonance frequency is shifted slightly higher. Moreover, the high resonance frequency and the low resonance frequency cannot be distinguished. Furthermore, if one arrangement position of the dielectric substrate 22 is shifted to the upper left side more largely, the resonance frequency is shifted in a higher direction as in the VSWR characteristic shown in FIG . In FIG. 19G, fH represents a high resonance frequency, fL represents a low resonance frequency, and f0 represents an average resonance frequency. As a method for adjusting one of the two resonance frequencies, the method shown in FIGS . 17 , 18 and 19 is arranged in one arrangement of the dielectric substrate 22 at one corner which becomes the long diagonal line d2. Although the positions are shifted, the two arrangement positions of the dielectric substrate 22 at the two corners which are the long diagonal line d2 may be shifted so as to be both point-symmetric.
10 導電体ベース
12、13、22、24、26 誘電体基材
14 放射電極
16 給電端子
DESCRIPTION OF SYMBOLS 10 Conductor base 12, 13, 22, 24, 26 Dielectric base material 14 Radiation electrode 16 Feed terminal
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330106A JP5264469B2 (en) | 2008-12-25 | 2008-12-25 | Antenna device and adjustment method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330106A JP5264469B2 (en) | 2008-12-25 | 2008-12-25 | Antenna device and adjustment method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010154215A JP2010154215A (en) | 2010-07-08 |
JP5264469B2 true JP5264469B2 (en) | 2013-08-14 |
Family
ID=42572771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008330106A Expired - Fee Related JP5264469B2 (en) | 2008-12-25 | 2008-12-25 | Antenna device and adjustment method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5264469B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5866860B2 (en) * | 2011-01-05 | 2016-02-24 | セイコーエプソン株式会社 | Clock with wireless function |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03192804A (en) * | 1989-12-22 | 1991-08-22 | Nippon Telegr & Teleph Corp <Ntt> | Antenna system |
JPH07162225A (en) * | 1993-12-07 | 1995-06-23 | Murata Mfg Co Ltd | Antenna |
JPH11136023A (en) * | 1997-10-27 | 1999-05-21 | Nec Corp | Micro strip antenna |
JP3685676B2 (en) * | 2000-02-18 | 2005-08-24 | アルプス電気株式会社 | Circularly polarized microstrip antenna |
JP2005051576A (en) * | 2003-07-30 | 2005-02-24 | Tdk Corp | Antenna device |
JP4611039B2 (en) * | 2005-01-25 | 2011-01-12 | 古野電気株式会社 | antenna |
-
2008
- 2008-12-25 JP JP2008330106A patent/JP5264469B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010154215A (en) | 2010-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050116875A1 (en) | Antenna device suitable for miniaturization | |
JP5723218B2 (en) | Loop antenna | |
WO2019107382A1 (en) | Antenna device | |
JP2010232820A (en) | Antenna device | |
US7046203B2 (en) | Antenna device having miniaturized radiating conductor plate | |
JP3992077B2 (en) | Antenna structure and wireless communication device including the same | |
JP5264469B2 (en) | Antenna device and adjustment method thereof | |
JP2005012743A (en) | Antenna and electronic equipment using it | |
WO2006000848A1 (en) | Method and device for loading planar antennas | |
KR20090110175A (en) | Circularly polarized patch antenna | |
JP2007208692A (en) | Patch antenna | |
JP2005203873A (en) | Patch antenna | |
JP2009055299A (en) | Antenna and radio apparatus | |
US20100033382A1 (en) | Circularly polarized antenna | |
JPWO2005117210A1 (en) | Circularly polarized microstrip antenna and wireless communication device including the same | |
Zhang et al. | The New C‐Shaped Parasitic Strip for the Single‐Feed Circularly Polarized (CP) Microstrip Antenna Design | |
JPH07307613A (en) | Circular polarized wave microstrip antenna | |
JP5153606B2 (en) | Adjustment method of antenna device | |
JP2006060384A (en) | Variable frequency type antenna and wireless communication device | |
JPH09326628A (en) | Antenna system | |
JP4336259B2 (en) | Circularly polarized microstrip antenna and multifrequency antenna | |
JP2015043504A (en) | Multi-resonant antenna | |
KR20140117855A (en) | Patch antenna for circle type array on mesh structure | |
JPH09116331A (en) | Surface mounting antenna and communication equipment using the same | |
JP2007159031A (en) | Patch antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130430 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130430 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |