JP5262902B2 - Method for producing surface-modified rare earth sintered magnet - Google Patents
Method for producing surface-modified rare earth sintered magnet Download PDFInfo
- Publication number
- JP5262902B2 JP5262902B2 JP2009077196A JP2009077196A JP5262902B2 JP 5262902 B2 JP5262902 B2 JP 5262902B2 JP 2009077196 A JP2009077196 A JP 2009077196A JP 2009077196 A JP2009077196 A JP 2009077196A JP 5262902 B2 JP5262902 B2 JP 5262902B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- rare earth
- mass
- modified
- partial pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 55
- 150000002910 rare earth metals Chemical class 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 72
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 32
- 239000001301 oxygen Substances 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 32
- 238000000227 grinding Methods 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000012298 atmosphere Substances 0.000 claims description 27
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000006467 substitution reaction Methods 0.000 claims description 19
- 229910052595 hematite Inorganic materials 0.000 claims description 15
- 239000011019 hematite Substances 0.000 claims description 15
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 15
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052789 astatine Inorganic materials 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 52
- 238000000034 method Methods 0.000 description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 32
- 239000000843 powder Substances 0.000 description 31
- 239000001257 hydrogen Substances 0.000 description 29
- 229910052739 hydrogen Inorganic materials 0.000 description 29
- 239000000956 alloy Substances 0.000 description 27
- 229910045601 alloy Inorganic materials 0.000 description 27
- 238000005260 corrosion Methods 0.000 description 24
- 230000007797 corrosion Effects 0.000 description 23
- 238000007254 oxidation reaction Methods 0.000 description 20
- 239000000203 mixture Substances 0.000 description 17
- 230000003647 oxidation Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 16
- 230000004048 modification Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 13
- 230000032683 aging Effects 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000010298 pulverizing process Methods 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 230000002411 adverse Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
本発明は、湿度管理がなされていない輸送環境や保管環境などの湿度が変動する環境においても十分な耐食性を有するとともに、優れた磁気特性を有する希土類系焼結磁石の製造方法に関する。 The present invention relates to a method for producing a rare earth sintered magnet having sufficient corrosion resistance and excellent magnetic properties even in an environment where humidity varies, such as a transportation environment and a storage environment where humidity control is not performed.
Nd−Fe−B系焼結磁石に代表されるR−Fe−B系焼結磁石などの希土類系焼結磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから今日様々な分野で使用されているが、反応性の高い希土類金属:Rを含むため、大気中で酸化腐食されやすいという特質を有する。従って、希土類系焼結磁石は、通常、その表面に金属被膜や樹脂被膜などの耐食性被膜を形成して実用に供されるが、IPM(Interior Permanent Magnet)モータなどのように磁石が部品に埋め込まれて使用される態様の場合には、必ずしもこのような耐食性被膜を磁石の表面に形成することは必要とされない。しかしながら、磁石が製造されてから部品に埋め込まれるまでの期間における磁石の耐食性の確保は当然に必要となる。そこで、このような期間における希土類系焼結磁石の耐食性を確保するための方法として、酸化性雰囲気下で熱処理を行うことによって磁石の表面を改質する方法が提案されており、この方法は、上記の目的を達成できるに足る簡易耐食性向上技術として注目されている。 Rare earth-based sintered magnets such as R-Fe-B-based sintered magnets typified by Nd-Fe-B-based sintered magnets are made of resource-rich and inexpensive materials and have high magnetic properties. However, since it contains a highly reactive rare earth metal: R, it has the property of being easily oxidized and corroded in the atmosphere. Accordingly, rare earth-based sintered magnets are usually put to practical use by forming a corrosion-resistant coating such as a metal coating or a resin coating on the surface, but the magnet is embedded in a component like an IPM (Interior Permanent Magnet) motor. In the case of the embodiment to be used, it is not always necessary to form such a corrosion-resistant film on the surface of the magnet. However, it is of course necessary to ensure the corrosion resistance of the magnet during the period from when the magnet is manufactured to when it is embedded in the part. Therefore, as a method for ensuring the corrosion resistance of the rare earth-based sintered magnet in such a period, a method for modifying the surface of the magnet by performing a heat treatment in an oxidizing atmosphere has been proposed. It attracts attention as a simple anti-corrosion technology that can achieve the above object.
酸化熱処理による希土類系焼結磁石の表面改質を行うために必要な酸化性雰囲気は、酸素を利用して形成される場合(例えば特許文献1や特許文献2を参照のこと)の他、水蒸気を利用して形成される場合もある。例えば、特許文献3〜特許文献6には、水蒸気を単独で利用して、或いは、水蒸気に酸素を組み合わせて酸化性雰囲気を形成する方法が記載されている。 The oxidizing atmosphere necessary for surface modification of the rare earth sintered magnet by oxidative heat treatment is formed using oxygen (see, for example, Patent Document 1 and Patent Document 2), and water vapor. It may be formed using For example, Patent Documents 3 to 6 describe a method of forming an oxidizing atmosphere using water vapor alone or combining water vapor with oxygen.
希土類系焼結磁石が製造されてから部品に埋め込まれるまでの期間における磁石の腐食は、磁石が置かれる環境の良し悪しに左右される。特に湿度の変動は、磁石の表面に微細な結露を繰り返し生じさせ、磁石の腐食を早めてしまう。本発明者は、上記の特許文献に記載された簡易耐食性向上技術の有用性を検証した結果、いずれの技術を採用した場合も、湿度の変動が激しい環境においては必ずしも十分な耐食性が得られないこと、特許文献3〜特許文献6においては、水蒸気分圧は10hPa(1000Pa)以上が好適とされているが、このような水蒸気分圧が高い雰囲気下で熱処理を行うと、磁石の表面で起こる酸化反応によって水素が副産物として大量に生成し、磁石が生成した水素を吸蔵して脆化することで磁気特性が低下してしまうことが判明した。
そこで本発明は、湿度が変動する環境においても十分な耐食性が酸化熱処理によって付与されているとともに、酸化熱処理による磁気特性の低下が抑制された希土類系焼結磁石の製造方法を提供することを目的とする。
Corrosion of the magnet in the period from when the rare earth sintered magnet is manufactured to when it is embedded in the part depends on the environment in which the magnet is placed. In particular, fluctuations in humidity repeatedly cause fine condensation on the surface of the magnet, which accelerates the corrosion of the magnet. As a result of verifying the usefulness of the simple corrosion resistance improvement technique described in the above-mentioned patent document, the present inventor does not always have sufficient corrosion resistance in an environment where the humidity fluctuates greatly even when any technique is adopted. In Patent Documents 3 to 6, the water vapor partial pressure is preferably 10 hPa (1000 Pa) or more. However, when heat treatment is performed in an atmosphere having such a high water vapor partial pressure, it occurs on the surface of the magnet. It has been clarified that magnetic properties are deteriorated when hydrogen is generated in large quantities as a by-product by the oxidation reaction, and the hydrogen generated by the magnet is occluded and embrittled.
Therefore, the present invention has an object to provide a method for producing a rare earth sintered magnet in which sufficient corrosion resistance is imparted by an oxidation heat treatment even in an environment where the humidity varies, and a decrease in magnetic properties due to the oxidation heat treatment is suppressed. And
本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、酸素分圧と、特許文献3〜特許文献6において不適とされている10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下、磁石のFeのCo置換量に基づいて適切な温度管理の下に熱処理を行うことによって表面改質された希土類系焼結磁石は、湿度が変動する環境においても十分な耐食性を有すること、熱処理による磁気特性の低下が抑制されていることを見出した。 As a result of intensive studies in view of the above points, the inventor of the present invention appropriately controlled an oxygen partial pressure and a water vapor partial pressure of less than 10 hPa, which is inappropriate in Patent Documents 3 to 6. The rare earth-based sintered magnet surface-modified by performing heat treatment under appropriate temperature control based on the amount of Co substitution of Fe in the magnet has sufficient corrosion resistance even in an environment where humidity varies, It was found that the deterioration of magnetic properties due to heat treatment was suppressed.
上記の知見に基づいて完成された本発明の表面改質された希土類系焼結磁石の製造方法は、請求項1記載の通り、希土類系焼結磁石が、25質量%〜40質量%の希土類元素:R、0.6質量%〜1.6質量%のB(但しその一部はCによって置換されていてもよい)、0質量%〜1.0質量%のAl、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga,Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択される少なくとも1種の添加元素:M、残部は、一部がCoによって置換されたFe、および不可避不純物からなる組成を有するものであり、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、磁石のFeのCo置換量が磁石全体の0.01質量%〜1.2質量%(但し1.2質量%を除く)の場合には200℃〜400℃(但し400℃を除く)で、磁石のFeのCo置換量が磁石全体の1.2質量%〜2.5質量%の場合には400℃〜600℃で熱処理を行う工程を含んでなることを特徴とする。
また、請求項2記載の表面改質された希土類系焼結磁石の製造方法は、請求項1記載の表面改質された希土類系焼結磁石の製造方法において、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)を1〜400とすることを特徴とする。
また、請求項3記載の表面改質された希土類系焼結磁石の製造方法は、請求項1または2記載の表面改質された希土類系焼結磁石の製造方法において、常温から熱処理を行う温度までの昇温を、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことを特徴とする。
また、請求項4記載の表面改質された希土類系焼結磁石の製造方法は、請求項1乃至3のいずれかに記載の表面改質された希土類系焼結磁石の製造方法において、磁石表面に対して平面研削加工を行ってから熱処理を行うことを特徴とする。
また、請求項5記載の表面改質された希土類系焼結磁石の製造方法は、請求項4記載の表面改質された希土類系焼結磁石の製造方法において、番手が♯60〜♯400の粒度を有する砥石を用いて平面研削加工を行うことを特徴とする。
また、本発明の表面改質された希土類系焼結磁石は、請求項6記載の通り、請求項1記載の表面改質された希土類系焼結磁石の製造方法にて製造されてなることを特徴とする。
また、請求項7記載の表面改質された希土類系焼結磁石は、請求項6記載の表面改質された希土類系焼結磁石において、表面改質された部分が、磁石の内側から順に、R、Fe、Bおよび酸素を含む主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイトを主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する表面改質層からなることを特徴とする。
The manufacturing method of the surface-modified rare earth sintered magnet of the present invention completed based on the above knowledge is as described in claim 1, wherein the rare earth sintered magnet is 25 mass% to 40 mass% rare earth. Element: R, 0.6 mass% to 1.6 mass% B (some of which may be replaced by C), 0 mass% to 1.0 mass% Al, Si, Ti, V At least one additive element selected from the group consisting of Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi: M The remainder has a composition consisting of Fe partially substituted by Co and unavoidable impurities, with an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 0.1 Pa to In an atmosphere of 1000 Pa (excluding 1000 Pa), the magnet Fe When the amount of Co substitution is 0.01% to 1.2% by mass (excluding 1.2% by mass) of the whole magnet, it is 200 ° C. to 400 ° C. (excluding 400 ° C.). When the amount of Co substitution is 1.2 mass% to 2.5 mass% of the whole magnet, it includes a step of performing heat treatment at 400 ° C. to 600 ° C.
The method for producing a surface-modified rare earth-based sintered magnet according to claim 2 is the method for producing a surface-modified rare earth-based sintered magnet according to claim 1, wherein the oxygen partial pressure and the water vapor partial pressure are The ratio (oxygen partial pressure / water vapor partial pressure) is 1 to 400.
The method for producing a surface-modified rare earth-based sintered magnet according to claim 3 is the method for producing a surface-modified rare earth-based sintered magnet according to claim 1 or 2, wherein the temperature at which heat treatment is performed from room temperature. Is performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa.
The method for producing a surface-modified rare earth-based sintered magnet according to claim 4 is the method for producing a surface-modified rare earth-based sintered magnet according to any one of claims 1 to 3, wherein: A heat treatment is performed after surface grinding is performed on the surface.
The method for producing a surface-modified rare earth-based sintered magnet according to claim 5 is the method for producing a surface-modified rare earth-based sintered magnet according to claim 4, wherein the number is # 60 to # 400. Surface grinding is performed using a grindstone having a grain size.
Moreover, the surface-modified rare earth-based sintered magnet of the present invention is manufactured by the method for manufacturing a surface-modified rare earth-based sintered magnet according to claim 1, as described in claim 6. Features.
The surface-modified rare earth-based sintered magnet according to claim 7 is the surface-modified rare earth-based sintered magnet according to claim 6, wherein the surface-modified portions are sequentially arranged from the inside of the magnet. From a surface modified layer having a main layer containing R, Fe, B and oxygen, an amorphous layer containing at least R, Fe and oxygen, and an outermost layer containing iron oxide mainly composed of hematite as a constituent component It is characterized by becoming .
本発明によれば、湿度が変動する環境においても十分な耐食性が酸化熱処理によって付与されているとともに、酸化熱処理による磁気特性の低下が抑制された希土類系焼結磁石の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a rare earth-based sintered magnet in which sufficient corrosion resistance is imparted by an oxidation heat treatment even in an environment where the humidity varies, and a decrease in magnetic properties due to the oxidation heat treatment is suppressed. it can.
本発明の表面改質された希土類系焼結磁石の製造方法は、希土類系焼結磁石が、25質量%〜40質量%の希土類元素:R、0.6質量%〜1.6質量%のB(但しその一部はCによって置換されていてもよい)、0質量%〜1.0質量%のAl、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga,Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択される少なくとも1種の添加元素:M、残部は、一部がCoによって置換されたFe、および不可避不純物からなる組成を有するものであり、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、磁石のFeのCo置換量が磁石全体の0.01質量%〜1.2質量%(但し1.2質量%を除く)の場合には200℃〜400℃(但し400℃を除く)で、磁石のFeのCo置換量が磁石全体の1.2質量%〜2.5質量%の場合には400℃〜600℃で熱処理を行う工程を含んでなることを特徴とするものである。酸素分圧と、10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下、磁石のFeのCo置換量が磁石全体の1.2質量%未満であるか1.2質量%以上であるかを指標にした適切な温度管理の下に熱処理を行うことで、優れた耐食性を発揮する表面改質を磁石に対して効果的に行うことができるとともに、過剰な水蒸気の存在によって引き起こされる水素の大量生成に伴う磁石の磁気特性の低下を抑制することができる。 In the method for producing a surface-modified rare earth sintered magnet according to the present invention, the rare earth sintered magnet comprises 25 mass% to 40 mass% of rare earth element: R, 0.6 mass% to 1.6 mass%. B (however, part thereof may be substituted by C), 0% by mass to 1.0% by mass of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb , Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi, at least one additive element selected from the group consisting of M, the balance being Fe partially substituted by Co, and unavoidable It has a composition composed of impurities, and has an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 0.1 Pa to 1000 Pa (however, excluding 1000 Pa). Replacement amount is 0.01% to 1.2% by weight of the entire magnet In the case of (except 1.2 mass%), the amount of Co substitution of Fe in the magnet is 1.2 mass% to 2.5 mass% of the whole magnet at 200 ° C to 400 ° C (excluding 400 ° C). In this case, the method includes a step of performing a heat treatment at 400 ° C. to 600 ° C. Whether the amount of Co substitution of Fe in the magnet is less than 1.2% by mass or 1.2% by mass or more of the whole magnet in an oxidizing atmosphere in which the oxygen partial pressure and the water vapor partial pressure of less than 10 hPa are appropriately controlled By performing heat treatment under appropriate temperature control using as an index, surface modification that exhibits excellent corrosion resistance can be effectively performed on the magnet, and hydrogen caused by the presence of excess water vapor It is possible to suppress a decrease in magnetic properties of the magnet that accompanies mass production.
希土類系焼結磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、酸素分圧は5×103Pa〜5×104Paが望ましく、1×104Pa〜4×104Paがより望ましい。水蒸気分圧は250Pa〜900Paが望ましく、400Pa〜700Paがより望ましい。また、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)は1〜400が望ましく、5〜100がより望ましい。処理室内の酸化性雰囲気は、例えば、これらの酸化性ガスを所定の分圧となるように個別に導入することによって形成してもよいし、これらの酸化性ガスが所定の分圧で含まれる露点を有する大気を導入することによって形成してもよい。また、処理室内には、窒素やアルゴンなどの不活性ガスを共存させてもよい。 In order to perform the desired modification on the surface of the rare earth sintered magnet more effectively and at low cost, the oxygen partial pressure is preferably 5 × 10 3 Pa to 5 × 10 4 Pa, and 1 × 10 4 Pa. -4 × 10 4 Pa is more desirable. The water vapor partial pressure is preferably 250 Pa to 900 Pa, and more preferably 400 Pa to 700 Pa. The ratio of oxygen partial pressure to water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) is preferably 1 to 400, and more preferably 5 to 100. The oxidizing atmosphere in the processing chamber may be formed, for example, by individually introducing these oxidizing gases so as to have a predetermined partial pressure, or these oxidizing gases are included at a predetermined partial pressure. You may form by introduce | transducing the atmosphere which has a dew point. Further, an inert gas such as nitrogen or argon may coexist in the processing chamber.
熱処理温度は、磁石のFeのCo置換量が磁石全体の1.2質量%未満の場合には200℃〜400℃(但し400℃を除く)を採用するが、250℃〜380℃が望ましく、300℃〜370℃がより望ましい。200℃未満の温度で処理を行うと希土類系焼結磁石の表面に対して所望する改質が行い難くなる恐れがある一方、400℃以上の温度で処理を行うと磁石の磁気特性に悪影響を及ぼす恐れや磁石表面の改質が過剰に行われてしまうことで形成された改質層が脱落したりする恐れがある。また、磁石のFeのCo置換量が磁石全体の1.2質量%以上の場合には400℃〜600℃を採用するが、405℃〜550℃が望ましく、410℃〜480℃がより望ましい。驚くべきことに、磁石のFeのCo置換量が磁石全体の1.2質量%以上の磁石に対し、磁石のFeのCo置換量が磁石全体の1.2質量%未満の磁石に対して採用する例えば300℃〜400℃(但し400℃を除く)で熱処理を行うと、磁石の磁気特性に悪影響を及ぼす一方、420℃〜480℃で熱処理を行うと、磁石の磁気特性は向上する傾向にある。しかしながら600℃を超える温度で処理を行うと磁石の磁気特性に悪影響を及ぼす恐れや磁石表面の改質が過剰に行われてしまうことで形成された改質層が脱落したりする恐れがある。なお、処理時間は1分〜3時間が望ましい。 The heat treatment temperature is 200 ° C. to 400 ° C. (excluding 400 ° C.) when the amount of Co substitution of Fe in the magnet is less than 1.2% by mass of the whole magnet, but preferably 250 ° C. to 380 ° C. 300 to 370 degreeC is more desirable. If the treatment is performed at a temperature of less than 200 ° C., the surface of the rare earth sintered magnet may be difficult to be modified. On the other hand, if the treatment is performed at a temperature of 400 ° C. or more, the magnetic properties of the magnet will be adversely affected. There is a risk that the modified layer formed may fall off due to excessive influence or modification of the magnet surface. Further, when the amount of Co substitution of Fe in the magnet is 1.2% by mass or more of the whole magnet, 400 ° C. to 600 ° C. is adopted, but 405 ° C. to 550 ° C. is desirable, and 410 ° C. to 480 ° C. is more desirable. Surprisingly, it is adopted for magnets whose amount of Co substitution of Fe in the magnet is 1.2% by mass or more of the whole magnet, and for magnets whose amount of Co substitution of Fe in the magnet is less than 1.2% by mass of the whole magnet. For example, if heat treatment is performed at 300 ° C. to 400 ° C. (excluding 400 ° C.), the magnetic properties of the magnet are adversely affected. However, if heat treatment is performed at 420 ° C. to 480 ° C., the magnetic properties of the magnet tend to be improved. is there. However, if the treatment is performed at a temperature exceeding 600 ° C., the magnetic properties of the magnet may be adversely affected, and the modified layer formed due to excessive modification of the magnet surface may fall off. The processing time is preferably 1 minute to 3 hours.
常温(例えば10℃〜30℃)から熱処理温度までの昇温は、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことが望ましい。昇温工程を雰囲気制御せずに例えば大気中で行うと、昇温時に大気中に含まれる水分による酸化反応が磁石の表面で起こることで、水素の大量発生に伴う磁石の磁気特性の低下を招く恐れがある。また、大気中に含まれる水分の量は季節によって変動するので、年間を通して安定した品質の表面改質を磁石に対して行えない恐れがある。これに対し、上記の雰囲気は、適度の酸素と水蒸気を含んでいるので、昇温工程自体が磁石の表面改質に好ましい影響を与え、磁石に対する優れた耐食性の付与と磁気特性の低下の抑制に寄与する。常温から熱処理温度までの昇温速度は100℃/時間〜1800℃/時間が望ましく、昇温時間は20分〜2時間が望ましい。磁石を熱処理温度まで昇温させた後は、すぐさま熱処理工程に移ってもよいし、昇温工程の雰囲気中で磁石をしばらく保持してから(例えば1分〜60分)熱処理工程に移ってもよい。 The temperature rise from room temperature (for example, 10 ° C. to 30 ° C.) to the heat treatment temperature is performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa. It is desirable to do. If the temperature raising step is performed in the air without controlling the atmosphere, for example, an oxidation reaction due to moisture contained in the air occurs at the time of temperature rising, and the magnetic characteristics of the magnet are reduced due to the large amount of hydrogen generated. There is a risk of inviting. In addition, since the amount of moisture contained in the atmosphere varies depending on the season, there is a risk that surface modification with stable quality throughout the year cannot be performed on the magnet. On the other hand, since the above atmosphere contains moderate oxygen and water vapor, the temperature raising process itself has a favorable effect on the surface modification of the magnet, and imparts excellent corrosion resistance to the magnet and suppresses deterioration of the magnetic properties. Contribute to. The rate of temperature increase from room temperature to the heat treatment temperature is preferably 100 ° C./hour to 1800 ° C./hour, and the temperature increase time is preferably 20 minutes to 2 hours. After the magnet is heated to the heat treatment temperature, it may be immediately transferred to the heat treatment step, or after the magnet is held for a while (for example, 1 to 60 minutes) in the atmosphere of the temperature increase step, the heat treatment step may be performed. Good.
熱処理を行った後の降温も、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で行うことが望ましい。このような雰囲気中で降温することにより、工程中に磁石の表面が結露して腐食の原因となることを防ぐことができる。 The temperature lowering after the heat treatment is also desirably performed in an atmosphere having an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 × 10 −3 Pa to 100 Pa. By lowering the temperature in such an atmosphere, it is possible to prevent the surface of the magnet from condensing and causing corrosion during the process.
昇温工程、熱処理工程、降温工程は、磁石が収容された処理室内の環境を順次変化させることで行ってもよいし、処理室内をそれぞれの環境に制御した領域に分割し、各領域に磁石を順次移動させることで行ってもよい。 The temperature raising process, the heat treatment process, and the temperature lowering process may be performed by sequentially changing the environment in the processing chamber in which the magnet is accommodated, or the processing chamber is divided into regions controlled by the respective environments, and the magnet is divided into each region. You may carry out by moving sequentially.
図1(a)は、昇温工程、熱処理工程、降温工程を、内部がそれぞれの環境に制御された領域に分割され、各領域に磁石を順次移動させることで行うことができる連続処理炉の一例の概略図(側面図)である。図1(a)に示す連続処理炉においては、ベルトコンベアなどの移動手段によって磁石を図の左から右に移動させながら各処理を施す。矢印は図略の給気手段と排気手段によって形成される各領域における雰囲気ガスの流れである。昇温領域の入口および降温領域の出口は、例えばエアカーテンで区画され、昇温領域と熱処理領域の境界および熱処理領域と降温領域の境界は、例えば矢印の雰囲気ガスの流れにより区画される(これらの区画は機械的にシャッターで行われてもよい)。図1(b)は、図1(a)に示す連続処理炉の内部を移動する磁石の温度変化を示す図である。このような連続処理炉を用いれば、大量の磁石に対して安定した品質の表面改質を連続的に行うことができる。 FIG. 1 (a) shows a continuous processing furnace in which the temperature raising process, the heat treatment process, and the temperature lowering process can be performed by dividing the interior into regions controlled by the respective environments and moving the magnets sequentially to each region. It is a schematic diagram (side view) of an example. In the continuous processing furnace shown in FIG. 1 (a), each processing is performed while moving the magnet from the left to the right in the drawing by moving means such as a belt conveyor. Arrows indicate the flow of the atmospheric gas in each region formed by an unillustrated air supply means and exhaust means. The inlet of the temperature rising region and the outlet of the temperature falling region are partitioned by, for example, an air curtain, and the boundary between the temperature rising region and the heat treatment region and the boundary between the heat treatment region and the temperature lowering region are partitioned by, for example, the flow of the atmospheric gas indicated by the arrows (these This may be done mechanically with a shutter). FIG.1 (b) is a figure which shows the temperature change of the magnet which moves the inside of the continuous processing furnace shown to Fig.1 (a). If such a continuous processing furnace is used, surface modification with stable quality can be continuously performed for a large number of magnets.
以上の工程によって希土類系焼結磁石の表面に形成される改質層は、磁石の内側から順に、R、Fe、Bおよび酸素を含む主層、少なくともR、Feおよび酸素を含む非晶質層、ヘマタイト(α−Fe2O3)を主体とする酸化鉄を構成成分として含む最表層の少なくとも3層を有する。表面改質層中の主層は、その組成を表面改質されていない磁石(素材)の組成と比較すると、Feの含量が減少し、酸素の含量が増加しており、酸素の含量は例えば2.5質量%〜15質量%である。表面改質層中の主層は、横方向に伸びる長さが0.5μm〜30μmで厚みが50nm〜400nmのR濃化層を有する場合がある。このR濃化層は、磁石に存在した加工歪部分にRが析出して形成されたものと推察され、脱粒などによる磁石の強度の低下を補強し、また、部品に埋め込む際の接着剤を介した部品との接着強度の向上に寄与すると考えられる。表面改質層中の最表層は、その構成成分として含まれる酸化鉄の90質量%以上がヘマタイトであることが望ましい。より望ましくは95質量%以上であり、さらに望ましくは98質量%以上である。酸化鉄がヘマタイトを高比率で含有し、マグネタイト(Fe3O4)をできる限り含まないことが、磁石の表面改質を行うことによる優れた耐食性の付与に寄与する。酸素分圧と、10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下で熱処理を行うことで、表面改質層中の最表層を、ヘマタイトを高比率で含有する酸化鉄から構成されるようにすることができる。これとは対照的に、特許文献3〜特許文献6に記載されているような水蒸気分圧が高い雰囲気下で熱処理を行うと、表面改質層中の最表層を構成する酸化鉄はマグネタイトを高比率で含有するようになる。このことが、これらの特許文献に記載の方法では、湿度の変動が激しい環境において十分な耐食性を発揮する表面改質を磁石に対して行うことができない原因であると考えられる。なお、最表層に構成成分として含まれる酸化鉄中のヘマタイトの比率は例えばラマン分析法で磁石表面から分析することにより求めることができる。表面改質層中の主層と最表層の間に位置する非晶質層は、磁石に含まれるRやFeが酸化反応によって酸化物に変換される際、安定な結晶形成がなされなかった部分であると考えられる。 The modified layer formed on the surface of the rare earth-based sintered magnet by the above steps is, in order from the inside of the magnet, a main layer containing R, Fe, B and oxygen, and an amorphous layer containing at least R, Fe and oxygen. And at least three outermost layers containing iron oxide mainly composed of hematite (α-Fe 2 O 3 ) as a constituent component. When the composition of the main layer in the surface-modified layer is compared with the composition of the magnet (material) that is not surface-modified, the Fe content is decreased and the oxygen content is increased. It is 2.5 mass%-15 mass%. The main layer in the surface modified layer may have an R-concentrated layer having a length extending in the lateral direction of 0.5 μm to 30 μm and a thickness of 50 nm to 400 nm. This R-concentrated layer is presumed to be formed by precipitation of R in the work strain part existing in the magnet, reinforcing the decrease in the strength of the magnet due to degranulation, etc. It is thought that it contributes to the improvement of the adhesive strength with the interposed parts. As for the outermost layer in the surface modified layer, it is desirable that 90% by mass or more of iron oxide contained as a constituent component is hematite. More preferably, it is 95 mass% or more, More preferably, it is 98 mass% or more. The fact that iron oxide contains hematite in a high ratio and does not contain magnetite (Fe 3 O 4 ) as much as possible contributes to imparting excellent corrosion resistance by performing surface modification of the magnet. By performing heat treatment in an oxidizing atmosphere in which the oxygen partial pressure and the water vapor partial pressure of less than 10 hPa are appropriately controlled, the outermost layer in the surface modified layer is composed of iron oxide containing hematite in a high ratio. Can be. In contrast, when heat treatment is performed in an atmosphere having a high water vapor partial pressure as described in Patent Documents 3 to 6, iron oxide constituting the outermost layer in the surface modified layer is magnetite. Contains at a high ratio. This is considered to be the reason why the methods described in these patent documents cannot perform surface modification that exhibits sufficient corrosion resistance in an environment where the humidity fluctuates greatly. The ratio of hematite in iron oxide contained as a constituent component in the outermost layer can be obtained by analyzing from the magnet surface by, for example, Raman analysis. The amorphous layer located between the main layer and the outermost layer in the surface modified layer is a portion where stable crystals were not formed when R or Fe contained in the magnet was converted into an oxide by an oxidation reaction. It is thought that.
なお、希土類系焼結磁石の表面に形成される表面改質層の厚みは0.5μm〜10μmが望ましい。厚みが薄すぎると十分な耐食性を発揮しない恐れがある一方、厚みが厚すぎると磁石の磁気特性に悪影響を及ぼす恐れがある。表面改質層中の主層の厚みは0.4μm〜9.9μmが望ましく、1μm〜7μmがより望ましい。非晶質層の厚みは100nm以下であることが望ましく、70nm以下がより望ましい(下限値は例えば10nmが望ましい)。最表層の厚みは10nm〜300nmであることが望ましく、50nm〜200nmがより望ましい。 The thickness of the surface modification layer formed on the surface of the rare earth sintered magnet is preferably 0.5 μm to 10 μm. If the thickness is too thin, sufficient corrosion resistance may not be exhibited. On the other hand, if the thickness is too thick, the magnetic properties of the magnet may be adversely affected. The thickness of the main layer in the surface modification layer is preferably 0.4 μm to 9.9 μm, and more preferably 1 μm to 7 μm. The thickness of the amorphous layer is preferably 100 nm or less, more preferably 70 nm or less (the lower limit is preferably 10 nm, for example). The thickness of the outermost layer is desirably 10 nm to 300 nm, and more desirably 50 nm to 200 nm.
また、酸化熱処理を行う前に磁石表面に対して平面研削加工を行ってもよい。かかる工程を付加することにより、磁石の表面組成が均一化され、これにより磁石の表面全体に均一な酸化熱処理を行うことが可能となり、最表層をヘマタイトによる表面被覆率が高い均一なものとすることができる。ヘマタイトによる表面被覆率は90%以上が望ましく95%以上がより望ましい。平面研削加工は、自体公知の平面研削盤や両頭研削盤を用いて行うことができる。使用する砥石は番手が♯60〜♯400の粒度を有するものが望ましい。番手が♯60未満であると(粒度が粗すぎると)、磁石表面が必要以上に研削されてしまうことによって磁石の寸法精度に無視できない悪影響を及ぼす恐れがある一方、番手が♯400を超えると(粒度が細かすぎると)、磁石の表面組成の均一化が不十分になる恐れがある。なお、砥石の回転数は600rpm〜2000rpmが望ましく、研削盤への磁石の送り込み速度は0.1m/分〜5m/分が望ましい。平面研削加工は、磁石の寸法調整のための研削を別の方法で行った後に行ってもよいが、磁石の寸法調整のための研削を平面研削加工によって行うことで、磁石の寸法調整と磁石の表面組成の均一化を同時に達成することができる。 Further, surface grinding may be performed on the magnet surface before performing the oxidation heat treatment. By adding such a step, the surface composition of the magnet is made uniform, thereby making it possible to perform uniform oxidation heat treatment on the entire surface of the magnet, and making the outermost layer uniform with a high surface coverage by hematite. be able to. The surface coverage by hematite is desirably 90% or more, and more desirably 95% or more. The surface grinding can be performed using a known surface grinding machine or a double-head grinding machine. It is desirable that the grindstone used has a grain size of # 60 to # 400. If the count is less than # 60 (if the grain size is too coarse), the magnet surface may be ground more than necessary, which may adversely affect the dimensional accuracy of the magnet. On the other hand, if the count exceeds # 400 (If the particle size is too fine), the surface composition of the magnet may become insufficiently uniform. The rotational speed of the grindstone is desirably 600 rpm to 2000 rpm, and the feeding speed of the magnet to the grinding machine is desirably 0.1 m / min to 5 m / min. The surface grinding process may be performed after the grinding for adjusting the size of the magnet is performed by another method. However, by performing the grinding for the dimension adjustment of the magnet by the surface grinding process, the size adjustment of the magnet and the magnet can be performed. The surface composition can be made uniform at the same time.
本発明が適用される希土類系焼結磁石としては、その組成に対応する合金から、例えば、下記の製造方法によって製造したR−Fe−B焼結磁石が挙げられる。
上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。
まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶解し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕処理前に例えば1〜10mmのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。
[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」や単に「水素処理」と称する場合がある)工程を行う。水素粉砕処理後の粗粉砕粉合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性の低下が抑制できるからである。
水素粉砕処理によって、希土類合金は、その平均粒径が500μm以下の大きさにまで粉砕される。水素粉砕処理後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすればよい。
[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度(典型的には平均粒径3〜5μm)の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で合金粉末粒子の表面を被覆する。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.5〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm3程度になるように設定される。
[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば、1000〜1200℃)で焼結を更に進める工程とを順次行うことが好ましい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石体が形成される。焼結工程の後、時効処理(400℃〜700℃)や寸法調整のための研削を行ってもよい。
The rare earth sintered magnet to which the present invention is applied includes, for example, an R—Fe—B sintered magnet manufactured from an alloy corresponding to the composition by the following manufacturing method.
The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy by a strip casting method will be described.
First, a raw material alloy having the above composition is melted by high-frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after holding this molten metal at about 1350 ° C., it is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy ingot having a thickness of about 0.3 mm. The alloy slab thus produced is pulverized into, for example, 1 to 10 mm flakes before the next hydrogen pulverization treatment. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement treatment process (hereinafter sometimes referred to as “hydrogen pulverization treatment” or simply “hydrogen treatment”) is performed inside the hydrogen furnace. When the coarsely pulverized powder alloy powder after the hydrogen pulverization treatment is taken out from the hydrogen furnace, the takeout operation is preferably performed in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. By doing so, it is possible to prevent the coarsely pulverized powder from oxidizing and generating heat, and to suppress the deterioration of the magnetic properties of the magnet.
By the hydrogen pulverization treatment, the rare earth alloy is pulverized to an average particle size of 500 μm or less. After the hydrogen pulverization treatment, the embrittled raw material alloy is preferably crushed more finely and cooled. When the raw material is taken out in a relatively high temperature state, the cooling process time may be relatively long.
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. In this way, a fine powder of about 0.1 to 20 μm (typically an average particle size of 3 to 5 μm) can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.
[Press molding]
In this embodiment, for example, 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant. Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a known press machine. The intensity of the applied magnetic field is, for example, 1.5 to 1.7 Tesla (T). The molding pressure is set so that the green density of the molded body is, for example, about 4 to 4.5 g / cm 3 .
[Sintering process]
With respect to said powder molded body, the step of holding at a temperature in the range of 650 to 1000 ° C. for 10 to 240 minutes, and then sintering at a temperature higher than the above holding temperature (for example, 1000 to 1200 ° C.). It is preferable to sequentially perform the further steps. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Then, sintering progresses and a sintered magnet body is formed. After the sintering step, aging treatment (400 ° C. to 700 ° C.) and grinding for dimension adjustment may be performed.
以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted.
(実施例1)磁石のFeのCo置換量が磁石全体の1.2質量%以上の希土類系焼結磁石(その1)
Nd:18.5、Pr:5.1、Dy:8.3、B:1.00、Co:2.0、Nb:0.13、Al:0.1、Ga:0.07、Cu:0.1、残部:Fe(単位は質量%)の組成を有する厚さ0.2〜0.3mmの合金薄片をストリップキャスト法により作製した。
次に、この合金薄片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.04wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、平均粉末粒径が約3μmの微粉末を作製した。
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1050℃で4時間の焼結工程を行い、焼結体ブロックを得た。
得られた焼結体ブロックの表面に対し、平面研削盤(大昌精機社製)を用いて平面研削加工を行い(砥石の番手:♯100、砥石の回転数:1500rpm、研削盤への磁石の送り込み速度:0.6m/分)、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。
磁石体試験片をアルコール洗浄した後、真空中にて460℃で8時間の時効処理を行った。この磁石体試験片の磁気特性を磁気測定装置(TPM−2−10:東英工業社製、以下同じ)を用いて測定した結果、固有保磁力は2050kA/mであった。
次に、時効処理を行った磁石体試験片に対し、露点0℃の大気(酸素分圧20000Pa,水蒸気分圧600Pa,酸素分圧/水蒸気分圧=33.3)の雰囲気下、410℃で2時間の熱処理を行うことで、表面改質された磁石体試験片を得た。なお、磁石体試験片の室温から熱処理温度までの昇温は、露点−40℃の大気(酸素分圧20000Pa,水蒸気分圧12.9Pa)の雰囲気下、約900℃/時間の昇温速度で行った(昇温時間は25分)。また、熱処理後の降温も、同様の雰囲気下で行った。この磁石体試験片を樹脂埋め研磨後、イオンビーム断面加工装置(SM09010:日本電子社製)を用いて試料作製し、電界放出型走査電子顕微鏡(S−4300:日立ハイテクノロジー社製)を用いて断面観察を行った結果を図2に示す。図2から明らかなように、この観察ポイントでは、磁石体試験片の表面に形成された改質層の厚みは約5.9μmであること、この改質層は複数の層からなり、少なくとも主層と、厚みが約170nmの最表層が存在することがわかった。さらに、改質層中には、厚みが約100nmで長さが約5μmのRからなる層状構造(Rの組成が85質量%以上のR濃化層)が水平方向(磁石体の表面と略平行方向)に形成されていることが確認できた。改質層中の主層の組成と素材(磁石体試験片)の組成をエネルギー分散型X線分析装置(Genesis2000:EDAX社製)を用いて分析した結果を表1に示す。表1から明らかなように、改質層中の主層は素材に比較してFeの含量が少ない反面、酸素の含量が非常に多いことがわかった。さらに、表面改質された磁石体試験片の表面付近の断面観察を、透過型電子顕微鏡(HF2100:日立ハイテクノロジー社製)を用いて行った結果、選択した観察ポイントでは、主層と厚みが約250nmの最表層の間には、厚みが約70nmの層が存在することがわかった。また、この層は非晶質であることがわかった(電子線回折分析による)。改質層中の非晶質層と最表層の組成を、エネルギー分散型X線分析装置(EDX:NORAN社製)を用いて分析した結果、改質層中の最表層はRがほとんど存在しない酸化鉄から構成されること、非晶質層はRとFeの複合酸化物から構成されることがわかった。また、表面改質された磁石体試験片の改質層中の最表層を、表面からX線回折装置(RINT2400:Rigaku社製)を用いて分析した結果を図3に示す。図3から明らかなように、改質層中の最表層はヘマタイトを主体とする層であることがわかった(図中の◆:ヘマタイトのピーク)。このヘマタイトを主体とする最表層は、熱処理によって素材の主相(R2Fe14B)の一部が分解されたことでFeが主相から流出するとともに酸化して形成されたものであると推測された。さらに、表面改質された磁石体試験片の改質層中の最表層を、表面からラマン分光分析装置(Holo Lab 5000R:KAISER OPTICAL SYSTEM社製)を用いて分析した結果、最表層に構成成分として含まれる酸化鉄のすべて(100質量%)がヘマタイトであること、ヘマタイトによる表面被覆率は96.2%であることがわかった。また、この表面改質された磁石体試験片の磁気特性を磁気測定装置を用いて測定した結果、固有保磁力は2052kA/mであり、酸化熱処理による磁気特性の劣化は認められなかった。
(Example 1) Rare earth sintered magnet in which the amount of Co substitution of Fe in the magnet is 1.2 mass% or more of the whole magnet (Part 1)
Nd: 18.5, Pr: 5.1, Dy: 8.3, B: 1.00, Co: 2.0, Nb: 0.13, Al: 0.1, Ga: 0.07, Cu: An alloy flake having a composition of 0.1, balance: Fe (unit: mass%) and having a thickness of 0.2 to 0.3 mm was produced by strip casting.
Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with hydrogen gas at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.
After adding 0.04 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the above hydrogen treatment and mixing, an average powder particle size of about 3 μm is obtained by performing a pulverization step with a jet mill device. A fine powder was prepared.
The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus, and a sintering process was performed at 1050 ° C. for 4 hours in a vacuum furnace to obtain a sintered body block.
The surface of the obtained sintered body block is subjected to surface grinding using a surface grinding machine (manufactured by Daisho Seiki Co., Ltd.) (grinding wheel count: # 100, grinding wheel rotation speed: 1500 rpm, magnet to grinding machine) A sintered magnet (hereinafter referred to as “magnet body test piece”) whose dimensions were adjusted to a thickness of 6 mm × length 7 mm × width 7 mm was obtained.
The magnet specimen was washed with alcohol and then subjected to an aging treatment at 460 ° C. for 8 hours in a vacuum. As a result of measuring the magnetic characteristics of this magnet body test piece using a magnetometer (TPM-2-10: manufactured by Toei Kogyo Co., Ltd., hereinafter the same), the intrinsic coercive force was 2050 kA / m.
Next, with respect to the magnet body test piece subjected to the aging treatment, at 410 ° C. in an atmosphere of dew point 0 ° C. in the atmosphere (oxygen partial pressure 20000 Pa, water vapor partial pressure 600 Pa, oxygen partial pressure / water vapor partial pressure = 33.3). By performing heat treatment for 2 hours, a surface-modified magnet body test piece was obtained. The temperature of the magnet specimen from room temperature to the heat treatment temperature is about 900 ° C./hour in an atmosphere with a dew point of −40 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 12.9 Pa). (The temperature rising time was 25 minutes). Further, the temperature drop after the heat treatment was performed in the same atmosphere. After this magnet body test piece is resin-filled and polished, a sample is prepared using an ion beam cross-section processing apparatus (SM09010: manufactured by JEOL Ltd.), and a field emission scanning electron microscope (S-4300: manufactured by Hitachi High-Technologies Corporation) is used. The results of cross-sectional observation are shown in FIG. As is apparent from FIG. 2, at this observation point, the thickness of the modified layer formed on the surface of the magnet test piece is about 5.9 μm, and this modified layer is composed of a plurality of layers, at least the main layer. It was found that there was a layer and an outermost layer having a thickness of about 170 nm. Further, in the modified layer, a layered structure composed of R having a thickness of about 100 nm and a length of about 5 μm (an R-concentrated layer having an R composition of 85% by mass or more) extends in the horizontal direction (approximately the same as the surface of the magnet body). It was confirmed that the film was formed in a parallel direction. Table 1 shows the results of analyzing the composition of the main layer in the modified layer and the composition of the material (magnet body test piece) using an energy dispersive X-ray analyzer (Genesis 2000: manufactured by EDAX). As is clear from Table 1, it was found that the main layer in the modified layer had a very high oxygen content while the Fe content was lower than that of the raw material. Furthermore, as a result of performing cross-sectional observation near the surface of the surface-modified magnetic body test piece using a transmission electron microscope (HF2100: manufactured by Hitachi High-Technology Corporation), the main layer and thickness are selected at the selected observation point. It was found that there was a layer with a thickness of about 70 nm between the outermost layers of about 250 nm. This layer was found to be amorphous (by electron diffraction analysis). As a result of analyzing the composition of the amorphous layer and the outermost layer in the modified layer using an energy dispersive X-ray analyzer (EDX: manufactured by NORAN), there is almost no R in the outermost layer in the modified layer. It was found that it was composed of iron oxide, and the amorphous layer was composed of a composite oxide of R and Fe. Moreover, the result of having analyzed the outermost layer in the modified layer of the surface-modified magnetic body test piece from the surface using an X-ray diffractometer (RINT2400: manufactured by Rigaku) is shown in FIG. As is apparent from FIG. 3, it was found that the outermost layer in the modified layer was a layer mainly composed of hematite (♦ in the figure: peak of hematite). The outermost layer mainly composed of hematite is formed by oxidizing part of the main phase (R 2 Fe 14 B) of the raw material by heat treatment, so that Fe flows out of the main phase and is oxidized. Was guessed. Furthermore, as a result of analyzing the outermost layer in the modified layer of the surface-modified magnetic body test piece from the surface using a Raman spectroscopic analyzer (manufactured by Holo Lab 5000R: KAISER OPTICAL SYSTEM), a constituent component is formed on the outermost layer. It was found that all of the iron oxide contained as (100% by mass) is hematite and the surface coverage by hematite is 96.2%. Further, as a result of measuring the magnetic properties of the surface-modified magnetic body specimen using a magnetometer, the intrinsic coercive force was 2052 kA / m, and no deterioration of the magnetic properties due to oxidation heat treatment was observed.
(実施例2)磁石のFeのCo置換量が磁石全体の1.2質量%以上の希土類系焼結磁石(その2)
実施例1と同じ方法で得た焼結体ブロックに対し、実施例1と同じ条件で時効処理を行った後、実施例1と同じ条件で平面研削加工を行い、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。この磁石体試験片の磁気特性を、アルコール洗浄した後、磁気測定装置を用いて測定した結果、固有保磁力は2047kA/mであった。この磁石体試験片をアルコール洗浄した後、熱処理時間を30分とすること以外は実施例1と同じ条件で熱処理を行うことで、表面改質された磁石体試験片を得た。この磁石体試験片について実施例1と同様の評価を行ったところ、磁石体試験片の表面に形成された改質層は、厚みが約1.7μmであり、その構成は実施例1で得た表面改質された磁石体試験片における改質層と同様であることがわかった(最表層の厚み:約70nm)。この表面改質された磁石体試験片の磁気特性を磁気測定装置を用いて測定した結果、固有保磁力は2045kA/mであり、酸化熱処理による磁気特性の劣化はほとんど認められなかった。
(Example 2) Rare earth-based sintered magnet in which the amount of Co substitution of Fe in the magnet is 1.2 mass% or more of the whole magnet (part 2)
The sintered body block obtained by the same method as in Example 1 was subjected to an aging treatment under the same conditions as in Example 1, and then surface grinding was performed under the same conditions as in Example 1 to obtain a thickness of 6 mm × length of 7 mm × A sintered magnet whose dimensions were adjusted to 7 mm in width (hereinafter referred to as “magnet body test piece”) was obtained. As a result of measuring the magnetic characteristics of this magnet body test piece with alcohol after washing with alcohol, the intrinsic coercive force was 2047 kA / m. After the magnet body test piece was washed with alcohol, heat treatment was performed under the same conditions as in Example 1 except that the heat treatment time was 30 minutes, thereby obtaining a surface-modified magnet body test piece. When this magnet body test piece was evaluated in the same manner as in Example 1, the modified layer formed on the surface of the magnet body test piece had a thickness of about 1.7 μm, and the configuration was obtained in Example 1. It was found that this was the same as the modified layer in the surface-modified magnetic body specimen (thickness of the outermost layer: about 70 nm). As a result of measuring the magnetic properties of the surface-modified magnetic body specimen using a magnetometer, the intrinsic coercive force was 2045 kA / m, and almost no deterioration of the magnetic properties due to oxidation heat treatment was observed.
(実施例3)磁石のFeのCo置換量が磁石全体の1.2質量%以上の希土類系焼結磁石(その3)
Nd:16.4、Pr:4.7、Dy:9.4、B:1.00、Co:2.0、Al:0.15、Ga:0.07、Cu:0.1、残部:Fe(単位は質量%)の組成を有する厚さ0.2〜0.3mmの合金薄片をストリップキャスト法により作製した。
次に、この合金薄片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.04wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、平均粉末粒径が約3μmの微粉末を作製し、酸化防止のために鉱物油中に回収した。
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により200℃で2時間の脱脂工程と1050℃で4時間の焼結工程を行い、焼結体ブロックを得た。
得られた焼結体ブロックに対し、実施例1と同じ条件で時効処理を行った後、実施例1と同じ条件で平面研削加工を行い、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。この磁石体試験片の磁気特性を、アルコール洗浄した後、磁気測定装置を用いて測定した結果、固有保磁力は2397kA/mであった。
次に、この磁石体試験片をアルコール洗浄した後、熱処理温度を420℃とし、熱処理時間を30分とすること以外は実施例1と同じ条件で熱処理を行うことで、表面改質された磁石体試験片を得た。この磁石体試験片について実施例1と同様の評価を行ったところ、磁石体試験片の表面に形成された改質層は、厚みが約2.3μmであり、その構成は実施例1で得た表面改質された磁石体試験片における改質層と同様であることがわかった(最表層の厚み:約85nm)。この表面改質された磁石体試験片の磁気特性を磁気測定装置を用いて測定した結果、固有保磁力は2395kA/mであり、酸化熱処理による磁気特性の劣化はほとんど認められなかった。
(Example 3) Rare earth sintered magnet in which the amount of Co substitution of Fe in the magnet is 1.2 mass% or more of the entire magnet (part 3)
Nd: 16.4, Pr: 4.7, Dy: 9.4, B: 1.00, Co: 2.0, Al: 0.15, Ga: 0.07, Cu: 0.1, balance: An alloy flake having a composition of Fe (unit: mass%) and having a thickness of 0.2 to 0.3 mm was produced by strip casting.
Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with hydrogen gas at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.
After adding 0.04 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the above hydrogen treatment and mixing, an average powder particle size of about 3 μm is obtained by performing a pulverization step with a jet mill device. A fine powder was made and recovered in mineral oil to prevent oxidation.
The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus, and a degreasing process at 200 ° C. for 2 hours and a sintering process at 1050 ° C. for 4 hours were performed in a vacuum furnace to obtain a sintered body block.
The obtained sintered body block was subjected to an aging treatment under the same conditions as in Example 1, and then subjected to surface grinding under the same conditions as in Example 1, and the dimensions were adjusted to 6 mm in thickness × 7 mm in length × 7 mm in width. A sintered magnet (hereinafter referred to as “magnet body specimen”) was obtained. As a result of measuring the magnetic properties of this magnet body test piece with alcohol after washing with alcohol, the intrinsic coercive force was 2397 kA / m.
Next, after the magnet body test piece was washed with alcohol, the surface-modified magnet was subjected to heat treatment under the same conditions as in Example 1 except that the heat treatment temperature was 420 ° C. and the heat treatment time was 30 minutes. A body specimen was obtained. When this magnet body test piece was evaluated in the same manner as in Example 1, the modified layer formed on the surface of the magnet body test piece had a thickness of about 2.3 μm, and the configuration was obtained in Example 1. It was found that this was the same as the modified layer in the surface-modified magnetic body specimen (the thickness of the outermost layer: about 85 nm). As a result of measuring the magnetic properties of this surface-modified magnetic body specimen using a magnetometer, the intrinsic coercive force was 2395 kA / m, and almost no deterioration of the magnetic properties due to oxidation heat treatment was observed.
(比較例1)磁石のFeのCo置換量が磁石全体の1.2質量%以上の希土類系焼結磁石
実施例1と同じ方法で得た焼結体ブロックに対し、実施例1と同じ条件で平面研削加工を行い、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。この磁石体試験片をアルコール洗浄した後、実施例1と同じ条件で時効処理を行った。この磁石体試験片の磁気特性を磁気測定装置を用いて測定した結果、固有保磁力は2050kA/mであった。次に、時効処理を行った磁石体試験片に対し、熱処理温度を350℃とすること以外は実施例1と同じ条件で熱処理を行うことで、表面改質された磁石体試験片を得た。この磁石体試験片について実施例1と同様の評価を行ったところ、磁石体試験片の表面に形成された改質層は、厚みが約1.6μmであり、その構成は実施例1で得た表面改質された磁石体試験片における改質層と同様であることがわかった(最表層の厚み:約60nm)。しかしながら、この表面改質された磁石体試験片の磁気特性を磁気測定装置を用いて測定した結果、固有保磁力は1961kA/mであり、酸化熱処理による磁気特性の大幅な劣化が認められた。
(Comparative example 1) Rare earth-based sintered magnet in which the amount of Co substitution of Fe in the magnet is 1.2 mass% or more of the whole magnet The same conditions as in Example 1 for the sintered body block obtained by the same method as in Example 1 A sintered magnet (hereinafter referred to as “magnet body test piece”) whose dimensions were adjusted to a thickness of 6 mm × length 7 mm × width 7 mm was obtained. After this magnet body test piece was washed with alcohol, an aging treatment was performed under the same conditions as in Example 1. As a result of measuring the magnetic properties of this magnet body test piece using a magnetometer, the intrinsic coercive force was 2050 kA / m. Next, the magnet body test piece subjected to the aging treatment was subjected to heat treatment under the same conditions as in Example 1 except that the heat treatment temperature was set to 350 ° C., thereby obtaining a surface-modified magnet body test piece. . When this magnet body test piece was evaluated in the same manner as in Example 1, the modified layer formed on the surface of the magnet body test piece had a thickness of about 1.6 μm, and the configuration was obtained in Example 1. It was found that this was the same as the modified layer in the surface-modified magnetic body test piece (the thickness of the outermost layer: about 60 nm). However, as a result of measuring the magnetic properties of the surface-modified magnetic body specimen using a magnetometer, the intrinsic coercive force was 1961 kA / m, and a significant deterioration in magnetic properties due to oxidation heat treatment was recognized.
乾燥・湿潤サイクル試験による評価:
JIS H8502−1999に基づく中性塩水噴霧サイクル試験方法を参考にし、塩水噴霧を除いた乾燥と湿潤だけのサイクル試験(サイクル数:3)を、実施例1〜実施例3、比較例1でそれぞれ得た表面改質された磁石体試験片に対して行い、試験後のレイティングナンバ評価(JIS H8502−1999に基づく腐食欠陥評価)を実施した。結果を表2に示す。また、表2には、実施例1と同じ方法で得た時効処理を行った磁石体試験片(熱処理前のもの)の評価結果をあわせて示す(参考例)。
Evaluation by dry / wet cycle test:
With reference to the neutral salt spray cycle test method based on JIS H8502-1999, a cycle test (cycle number: 3) only for drying and wetting without salt spray was performed in Examples 1 to 3 and Comparative Example 1, respectively. It performed with respect to the obtained magnetic body test piece by which surface modification was carried out, and the rating number evaluation (corrosion defect evaluation based on JISH8502-1999) after the test was implemented. The results are shown in Table 2. Table 2 also shows the evaluation results of magnet body test pieces (before heat treatment) subjected to the aging treatment obtained by the same method as in Example 1 (reference example).
表2から明らかなように、実施例1〜実施例3の本発明の方法によって表面改質を行った磁石体試験片は、上述した通り、優れた磁気特性を有するとともに、乾燥・湿潤サイクル試験後も十分な耐食性を有していた。一方、比較例1の方法によって表面改質を行った磁石体試験片は、乾燥・湿潤サイクル試験後も十分な耐食性を有していたが、上述した通り、酸化熱処理による磁気特性の大幅な劣化が認められた。以上の結果には、酸化熱処理を行う前に磁石表面に対して平面研削加工を行ったことで、磁石の表面組成が均一化され、これにより磁石の表面全体に均一な酸化熱処理を行うことが可能となり、優れた耐食性を発揮する、少なくとも酸素の含量が素材よりも多い主層と、RとFeの複合酸化物から構成される非晶質層と、安定なヘマタイトを主体とする酸化鉄を構成成分とする最表層を有する構成からなる改質層が、磁石の表面全体にわたって形成されたことが寄与していると考えられた。また、改質層中に確認されたRからなる層状構造は、熱処理によって素材の主相の一部が分解されたことで主相から流出したRや、熱処理によって液相化した粒界成分が、素材と改質層の熱膨張率の違いにより改質層中に僅かに発生したクラック部分に供給されて形成されたものであると推測されたが、このRからなる層状構造も、改質層の耐食性に寄与していることが考えられた。 As is apparent from Table 2, the magnet body test piece subjected to surface modification by the method of the present invention in Examples 1 to 3 has excellent magnetic properties as described above, and also has a dry / wet cycle test. Later, it had sufficient corrosion resistance. On the other hand, the magnet body test piece subjected to surface modification by the method of Comparative Example 1 had sufficient corrosion resistance even after the dry / wet cycle test, but as described above, the magnetic properties were greatly deteriorated by the oxidation heat treatment. Was recognized. The above results show that the surface composition of the magnet is made uniform by performing surface grinding on the surface of the magnet before performing the oxidation heat treatment, thereby performing a uniform oxidation heat treatment on the entire surface of the magnet. A main layer having at least an oxygen content higher than that of the material, an amorphous layer composed of a composite oxide of R and Fe, and iron oxide mainly composed of stable hematite. It was thought that it contributed that the modified layer which consists of the structure which has the outermost layer as a structural component was formed over the whole surface of a magnet. In addition, the layered structure consisting of R confirmed in the modified layer has R flowing out from the main phase due to the decomposition of a part of the main phase of the material by heat treatment, and the grain boundary components that have become liquid phase by heat treatment. It was speculated that it was formed by being supplied to the crack part slightly generated in the modified layer due to the difference in thermal expansion coefficient between the raw material and the modified layer. It was thought that it contributed to the corrosion resistance of the layer.
(実施例4)磁石のFeのCo置換量が磁石全体の1.2質量%未満の希土類系焼結磁石
Nd:18.6、Pr:5.5、Dy:7.1、B:1.00、Co:0.9、Al:0.2、Cu:0.1、残部:Fe(単位は質量%)の組成を有する厚さ0.2〜0.3mmの合金薄片をストリップキャスト法により作製した。
次に、この合金薄片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.04wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、平均粉末粒径が約3μmの微粉末を作製した。
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1050℃で4時間の焼結工程を行い、焼結体ブロックを得た。
得られた焼結体ブロックの表面に対し、実施例1と同じ条件で平面研削加工を行い、厚さ6mm×縦7mm×横7mmに寸法調整した焼結磁石(以下、「磁石体試験片」と称する)を得た。この磁石体試験片をアルコール洗浄した後、真空中にて490℃で2.5時間の時効処理を行った。この磁石体試験片の磁気特性を実施例1と同様にして測定した結果、固有保磁力は2092kA/mであった。次に、時効処理を行った磁石体試験片に対し、熱処理温度を350℃とすること以外は実施例1と同じ条件で熱処理を行うことで、表面改質された磁石体試験片を得た。この磁石体試験片について実施例1と同様の評価を行ったところ、磁石体試験片の表面に形成された改質層は、厚みが約1.9μmであり、その構成は実施例1で得た表面改質された磁石体試験片における改質層と同様であることがわかった(最表層の厚み:約80nm)。この表面改質された磁石体試験片の磁気特性を実施例1と同様にして測定した結果、固有保磁力は2085kA/mであり、酸化熱処理による磁気特性の劣化はほとんど認められなかった。
(Example 4) Rare earth-based sintered magnet in which the amount of Co substitution of Fe in the magnet is less than 1.2% by mass of the whole magnet Nd: 18.6, Pr: 5.5, Dy: 7.1, B: 1. An alloy flake having a composition of 00, Co: 0.9, Al: 0.2, Cu: 0.1, balance: Fe (unit: mass%) and having a thickness of 0.2 to 0.3 mm is obtained by strip casting. Produced.
Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with hydrogen gas at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.
After adding 0.04 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the above hydrogen treatment and mixing, an average powder particle size of about 3 μm is obtained by performing a pulverization step with a jet mill device. A fine powder was prepared.
The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus, and a sintering process was performed at 1050 ° C. for 4 hours in a vacuum furnace to obtain a sintered body block.
The surface of the obtained sintered block was subjected to surface grinding under the same conditions as in Example 1, and the sintered magnet (hereinafter referred to as “magnet test piece”) whose dimensions were adjusted to a thickness of 6 mm × length of 7 mm × width of 7 mm. Called). The magnet specimen was washed with alcohol, and then subjected to an aging treatment at 490 ° C. for 2.5 hours in a vacuum. As a result of measuring the magnetic properties of this magnet body test piece in the same manner as in Example 1, the intrinsic coercive force was 2092 kA / m. Next, the magnet body test piece subjected to the aging treatment was subjected to heat treatment under the same conditions as in Example 1 except that the heat treatment temperature was set to 350 ° C., thereby obtaining a surface-modified magnet body test piece. . When this magnet body test piece was evaluated in the same manner as in Example 1, the modified layer formed on the surface of the magnet body test piece had a thickness of about 1.9 μm, and the configuration was obtained in Example 1. It was found that this was the same as the modified layer in the surface-modified magnetic body specimen (thickness of the outermost layer: about 80 nm). As a result of measuring the magnetic properties of the surface-modified magnetic body test piece in the same manner as in Example 1, the intrinsic coercive force was 2085 kA / m, and almost no deterioration of the magnetic properties due to the oxidation heat treatment was observed.
(参考例1)磁石のFeのCo置換量と熱処理が及ぼす磁気特性への影響との関係の検討
実施例1と同じ方法で得た時効処理を行った磁石体試験片(以下、「磁石体試験片1」と称する)と、実施例4と同じ方法で得た時効処理を行った磁石体試験片(以下、「磁石体試験片2」と称する)のそれぞれについて、240℃〜460℃の範囲の任意の温度において真空中で2時間の熱処理を行った後の磁気特性を磁気測定装置(TPM−2−10:東英工業社製)を用いて測定し、熱処理を行う前の磁気特性と比較することで、熱処理が及ぼす磁気特性への影響を調べた。結果を図4に示す。なお、図4の縦軸は固有保持力の劣化率であり、下記の数式で求めたものである。
固有保磁力劣化率(%)=((A−B)/A)×100
A:熱処理前の固有保磁力,B:熱処理後の固有保磁力
図4から明らかなように、磁石体試験片1と磁石体試験片2とでは、熱処理が及ぼす磁気特性への影響が温度によって全く異なり、磁石体試験片1の磁気特性に悪影響を与えない温度範囲(400℃以上)での熱処理によって磁石体試験片2の磁気特性は劣化するのに対し、磁石体試験片2の磁気特性に悪影響を与えない温度範囲(400℃未満)での熱処理によって磁石体試験片1の磁気特性は劣化することがわかった。この知見を元にさらに詳細な検討を行った結果、磁石のFeのCo置換量が磁石全体の1.2質量%以上の場合において磁石体試験片1と同様の熱処理温度に依存した磁気特性の変化を示すことが判明したことから、磁石のFeのCo置換量が磁石全体の1.2質量%未満であるか1.2質量%以上であるかを指標に、熱処理の温度を400℃未満にするか400℃以上にするかを決定することで、磁気特性に悪影響を与えることなく熱処理が行えることがわかった。
(Reference Example 1) Examination of the relationship between the amount of Co substitution of Fe in a magnet and the effect on the magnetic properties of heat treatment A magnet specimen (hereinafter referred to as “magnet body”) subjected to an aging treatment obtained by the same method as in Example 1. Test piece 1 ”) and a magnet test piece (hereinafter referred to as“ magnet test piece 2 ”) subjected to the aging treatment obtained by the same method as in Example 4 to 240 ° C. to 460 ° C. Magnetic properties after heat treatment for 2 hours in vacuum at any temperature within the range are measured using a magnetometer (TPM-2-10: manufactured by Toei Kogyo Co., Ltd.), and the magnetic properties before heat treatment are performed. The effect of heat treatment on the magnetic properties was investigated. The results are shown in FIG. In addition, the vertical axis | shaft of FIG. 4 is a deterioration rate of intrinsic | native holding force, and was calculated | required with the following numerical formula.
Inherent coercive force deterioration rate (%) = ((A−B) / A) × 100
A: Intrinsic coercive force before heat treatment, B: Intrinsic coercivity after heat treatment As is apparent from FIG. 4, the magnetic body test piece 1 and the magnetic body test piece 2 affect the magnetic properties of the heat treatment depending on the temperature. The magnetic properties of the magnet specimen 2 are deteriorated by heat treatment in a temperature range (400 ° C. or higher) that does not adversely affect the magnetic characteristics of the magnet specimen 1, whereas the magnetic characteristics of the magnet specimen 2 are deteriorated. It was found that the magnetic properties of the magnet test piece 1 deteriorated by heat treatment in a temperature range (less than 400 ° C.) that does not adversely affect the magnetic field. As a result of further detailed examination based on this knowledge, when the amount of Co substitution of Fe of the magnet is 1.2% by mass or more of the whole magnet, the magnetic characteristics depending on the heat treatment temperature similar to the magnet specimen 1 are shown. Since it was found that the change was observed, the heat treatment temperature was less than 400 ° C., using as an index whether the Co substitution amount of Fe in the magnet was less than 1.2% by mass or 1.2% by mass or more of the whole magnet. It was found that the heat treatment can be performed without adversely affecting the magnetic properties by determining whether the temperature is 400 ° C. or higher.
本発明は、湿度が変動する環境においても十分な耐食性が酸化熱処理によって付与されているとともに、酸化熱処理による磁気特性の低下が抑制された希土類系焼結磁石の製造方法を提供することができる点において産業上の利用可能性を有する。
The present invention can provide a method for producing a rare earth-based sintered magnet in which sufficient corrosion resistance is imparted by an oxidation heat treatment even in an environment where the humidity varies, and a decrease in magnetic properties due to the oxidation heat treatment is suppressed. Has industrial applicability.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009077196A JP5262902B2 (en) | 2009-03-26 | 2009-03-26 | Method for producing surface-modified rare earth sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009077196A JP5262902B2 (en) | 2009-03-26 | 2009-03-26 | Method for producing surface-modified rare earth sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010232346A JP2010232346A (en) | 2010-10-14 |
JP5262902B2 true JP5262902B2 (en) | 2013-08-14 |
Family
ID=43047912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009077196A Active JP5262902B2 (en) | 2009-03-26 | 2009-03-26 | Method for producing surface-modified rare earth sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5262902B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5760400B2 (en) * | 2010-11-17 | 2015-08-12 | 日立金属株式会社 | Method for producing R-Fe-B sintered magnet |
JP5914974B2 (en) * | 2011-03-25 | 2016-05-11 | 日立金属株式会社 | Method for producing surface-modified R-Fe-B sintered magnet |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001160508A (en) * | 1999-09-24 | 2001-06-12 | Sumitomo Special Metals Co Ltd | R-Fe-B PERMANENT MAGNET AND ITS MANUFACTURING METHOD |
JP4029095B2 (en) * | 2004-03-31 | 2008-01-09 | Tdk株式会社 | Rare earth magnet and manufacturing method thereof |
JP2008063641A (en) * | 2006-09-11 | 2008-03-21 | Shin Etsu Chem Co Ltd | R-t-b-based rare earth permanent magnet and production method therefor |
JP5098390B2 (en) * | 2007-03-27 | 2012-12-12 | Tdk株式会社 | Rare earth magnets |
-
2009
- 2009-03-26 JP JP2009077196A patent/JP5262902B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010232346A (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4636207B2 (en) | Method for producing surface-modified rare earth sintered magnet and surface modified rare earth sintered magnet | |
EP3666419A1 (en) | CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD FOR PRODUCING SAME | |
JP5900335B2 (en) | Method for producing surface-modified rare earth sintered magnet | |
JP6037213B2 (en) | Method for producing surface-modified R-Fe-B sintered magnet | |
TWI778112B (en) | Fe-BASED ALLOY, CRYSTALLINE Fe-BASED ALLOY ATOMIZED POWDER, AND MAGNETIC CORE | |
JP5262903B2 (en) | Method for producing surface-modified rare earth sintered magnet | |
JP5786398B2 (en) | Surface-modified R-Fe-B based sintered magnet and method for producing the same | |
JP5691515B2 (en) | Method for producing corrosion-resistant R—Fe—B sintered magnet | |
JP5326746B2 (en) | Method for producing surface-modified R-Fe-B sintered magnet | |
JP7247670B2 (en) | RTB permanent magnet and manufacturing method thereof | |
JP5326747B2 (en) | Method for preventing degranulation of R-Fe-B sintered magnet | |
JP5262902B2 (en) | Method for producing surface-modified rare earth sintered magnet | |
JP5914974B2 (en) | Method for producing surface-modified R-Fe-B sintered magnet | |
CN114867572A (en) | Method for producing R-T-B sintered magnet and R-T-B sintered magnet | |
JP5609209B2 (en) | Method for producing surface-modified rare earth sintered magnet | |
JP5445125B2 (en) | Method for producing surface-modified R-Fe-B sintered magnet | |
JP7380369B2 (en) | Manufacturing method of RTB sintered magnet and alloy for diffusion | |
CN116917517A (en) | Iron-chromium-cobalt alloy magnet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130415 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5262902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |