JP5262102B2 - Optical measuring device - Google Patents
Optical measuring device Download PDFInfo
- Publication number
- JP5262102B2 JP5262102B2 JP2007328166A JP2007328166A JP5262102B2 JP 5262102 B2 JP5262102 B2 JP 5262102B2 JP 2007328166 A JP2007328166 A JP 2007328166A JP 2007328166 A JP2007328166 A JP 2007328166A JP 5262102 B2 JP5262102 B2 JP 5262102B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- probe
- reception
- amount information
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本発明は、光を用いて非侵襲で生体内部を計測する光計測装置に関し、特に、脳内各部の血流の経時変化や酸素供給の経時変化を計測することにより、生体の組織が正常であるか否かを診断するための酸素モニタや循環器系障害診断装置等として使用することができる光計測装置に関する。 The present invention relates to an optical measurement apparatus that non-invasively measures the inside of a living body using light, and in particular, by measuring a temporal change in blood flow in each part of the brain and a temporal change in oxygen supply, the living tissue is normal. The present invention relates to an optical measurement device that can be used as an oxygen monitor for diagnosing whether or not there is a cardiovascular system failure diagnosis device or the like.
ヘモグロビンは、血液中で酸素を運搬する役割を果たしている。血液中に含まれるヘモグロビン濃度は、血管の拡張・収縮に応じて増減するため、ヘモグロビン濃度を測定することによって、血管の拡張・収縮を検出することが知られている。
そこで、ヘモグロビン濃度が生体内部の酸素代謝機能に対応することを利用することにより、光を用いて生体内部を簡便に無侵襲で計測する生体計測方法が知られている。ヘモグロビン濃度は、可視光から近赤外領域までの波長の光を生体に照射することにより、生体を透過して得られる光の量から求められる。
Hemoglobin plays a role in carrying oxygen in the blood. Since the hemoglobin concentration contained in the blood increases or decreases according to the expansion / contraction of the blood vessel, it is known to detect the expansion / contraction of the blood vessel by measuring the hemoglobin concentration.
In view of this, there has been known a living body measuring method that uses light to measure the inside of a living body simply and non-invasively by utilizing the fact that the hemoglobin concentration corresponds to the oxygen metabolism function inside the living body. The hemoglobin concentration is determined from the amount of light obtained through the living body by irradiating the living body with light having a wavelength from visible light to the near infrared region.
さらに、ヘモグロビンは、酸素と結合してオキシヘモグロビンとなり、一方、酸素と離れてデオキシヘモグロビンとなる。脳内では、血流再配分作用によって活性化している部位には酸素供給が行われ、酸素と結合したオキシヘモグロビン濃度が増加することも知られている。よって、オキシヘモグロビン濃度を計測することにより、脳活動の観察に応用することができる。オキシヘモグロビンとデオキシヘモグロビンとは、可視光から近赤外領域にかけて異なる分光吸収スペクトル特性を有しているので、異なる2波長(例えば、780nmと850nm)の近赤外光を用いてオキシヘモグロビン濃度及びデオキシヘモグロビン濃度をそれぞれ求めることができる。 Furthermore, hemoglobin binds to oxygen to become oxyhemoglobin, while away from oxygen to deoxyhemoglobin. It is also known that in the brain, oxygen is supplied to a site activated by blood flow redistribution, and the concentration of oxyhemoglobin combined with oxygen increases. Therefore, it can be applied to the observation of brain activity by measuring the oxyhemoglobin concentration. Since oxyhemoglobin and deoxyhemoglobin have different spectral absorption spectral characteristics from visible light to the near infrared region, oxyhemoglobin concentration and near-infrared light using two different wavelengths (for example, 780 nm and 850 nm) are used. Each deoxyhemoglobin concentration can be determined.
そこで、簡便に非侵襲で脳活動を計測するために、送光プローブと受光プローブとを備える光計測装置が開発されている。光計測装置では、被検体の頭皮表面上に配置した送光プローブにより、脳に近赤外光を照射するとともに、頭皮表面上に配置した受光プローブにより、脳から放出された近赤外光の光量を検出する。このようにして送光プローブと受光プローブとを用いることにより、脳の測定部位のオキシヘモグロビン濃度、デオキシヘモグロビン濃度、さらにはこれらから算出される全ヘモグロビン濃度を求める。 Therefore, in order to easily and non-invasively measure brain activity, an optical measuring device including a light transmitting probe and a light receiving probe has been developed. In the optical measurement device, near infrared light is irradiated to the brain by a light transmission probe arranged on the scalp surface of the subject, and near infrared light emitted from the brain is emitted by a light receiving probe arranged on the scalp surface. Detect the amount of light. By using the light transmitting probe and the light receiving probe in this manner, the oxyhemoglobin concentration and deoxyhemoglobin concentration at the measurement site of the brain, and the total hemoglobin concentration calculated from these are obtained.
ここで、送光プローブと受光プローブとのプローブ間隔(チャンネル)と、脳の測定部位との関係について説明する。図6(a)は、一対の送光プローブ及び受光プローブと、脳の測定部位との関係を示す断面図であり、図6(b)は、図6(a)の平面図である。
送光プローブ12が被検体の頭皮表面の送光点Tに押し当てられるとともに、受光プローブ13が被検体の頭皮表面の受光点Rに押し当てられる。そして、送光プローブ12から光を照射させるとともに、受光プローブ13に頭皮表面から放出される光を検出させる。このとき、光は、頭皮表面の送光点Tから照射された光のうちで、バナナ形状(測定領域)を通過した光が、頭皮表面の受光点Rに到達する。これにより、測定領域の中でも、特に送光点Tと受光点Rとを被検体の頭皮表面に沿って最短距離で結んだ線Lの中点Mから、送光点Tと受光点Rとを被検体の頭皮表面に沿って最短距離で結んだ線の距離の半分の深さL/2である被検体の部位Sの受光量情報(オキシヘモグロビン濃度、デオキシヘモグロビン濃度、さらにはこれらから算出される全ヘモグロビン濃度)が得られる。
Here, the relationship between the probe interval (channel) between the light transmitting probe and the light receiving probe and the measurement site of the brain will be described. FIG. 6A is a cross-sectional view showing the relationship between a pair of light-transmitting probes and light-receiving probes and the measurement site of the brain, and FIG. 6B is a plan view of FIG.
The light transmitting
また、運動や感覚や思考等の脳機能に関する脳の複数箇所の測定部位のヘモグロビン濃度等を計測することにより、脳機能診断や循環器系障害診断等の医療分野に適用される光計測装置が開発されている。
このような光計測装置では、例えば、複数個の送光プローブと、複数個の受光プローブとを有する送受光部が利用されている(例えば、特許文献1参照)。
送受光部においては、複数個の送光プローブと、複数個の受光プローブとを所定の配列で被検体の頭皮表面に密着させるために、ホルダが使用される。このようなホルダとしては、例えば、頭皮表面の形状に合わせて椀形状に成型された成型ホルダが使用されている。成型ホルダには貫通孔が複数個設けられ、送光プローブと受光プローブとがそれらの貫通孔に挿入されることによって、チャンネルが一定となり、頭皮表面から特定の深度となる複数箇所の部位から受光量情報が得られる。
In addition, by measuring the hemoglobin concentration, etc., at multiple measurement sites in the brain related to brain functions such as movement, sensation, and thinking, an optical measurement device applied in the medical field such as brain function diagnosis and cardiovascular system diagnosis Has been developed.
In such an optical measurement device, for example, a light transmission / reception unit having a plurality of light transmission probes and a plurality of light reception probes is used (see, for example, Patent Document 1).
In the light transmission / reception unit, a holder is used to bring a plurality of light transmission probes and a plurality of light reception probes into close contact with the scalp surface of the subject in a predetermined arrangement. As such a holder, for example, a molded holder that is molded into a scissors shape in accordance with the shape of the scalp surface is used. The molding holder is provided with a plurality of through-holes, and the light transmitting probe and the light-receiving probe are inserted into the through-holes, so that the channel is constant and light is received from a plurality of sites at specific depths from the scalp surface. Quantity information is obtained.
図2は、上述したような送受光部における13個の送光プローブと12個の受光プローブとの位置関係を示す平面図である。送光プローブと受光プローブとが行方向及び列方向に交互となるように正方格子状に配置されている。送受光部11は、頭皮から脳までの距離が考慮されて設計されているため、被検体が成人であれば、送光プローブ12と受光プローブ13との間の距離(チャンネル)を30mmとしたものが用いられている。チャンネルが30mmである場合には、上述したようにチャンネルの中点からの深度15mm〜20mmの受光量情報が得られると考えられている。すなわち、頭皮表面から深度15mm〜20mmの位置は脳表部位にほぼ対応し、脳活動に関した受光量情報が得られる。
なお、送光プローブ12a〜12mから照射された光は、隣接する受光プローブ13a〜13l以外の離れた受光プローブ13a〜13lでも検出されるが、ここでは説明を簡単にするため、隣接する受光プローブ13a〜13lのみで検出されることとする。よって、合計40箇所の脳表部位からの受光量情報が得られる。
そして、合計40箇所の脳表部位からの受光量情報の時間的な変化から脳活動を計測することにより、得られた脳活動データ(賦活データともいう)に平均化処理等の画像処理、マッピングを実行して画像化することも行われている。
The light emitted from the
Then, by measuring brain activity from temporal changes in received light amount information from a total of 40 brain surface regions, image processing such as averaging processing and mapping is performed on the obtained brain activity data (also called activation data). It is also performed to image by executing.
しかしながら、送光点Tと受光点Rとを被検体の頭皮表面に沿って最短距離で結んだ線の距離(チャンネル)を30mmとなるように配置しても、実際には、被検体の脳表部位にある脳血流による受光量情報だけでなく、送光点T近傍や受光点R近傍の被検体の頭皮部位にある皮膚血流による受光量情報も含まれるという問題があった。
そこで、本発明は、被検体の測定部位より浅い皮膚血流等の浅部による不要な受光量情報を除去した脳血流等の測定部位による受光量情報を得ることができる光計測装置を提供することを目的とする。
However, even if the distance (channel) connecting the light transmission point T and the light receiving point R along the scalp surface of the subject with the shortest distance is 30 mm, the brain of the subject is actually used. There is a problem that not only received light amount information due to cerebral blood flow in the front part but also received light amount information due to skin blood flow in the scalp part of the subject near the light transmitting point T or near the light receiving point R is included.
Therefore, the present invention provides an optical measurement device capable of obtaining received light amount information by a measurement site such as cerebral blood flow from which unnecessary received light amount information by a shallow portion such as skin blood flow shallower than the measurement site of a subject is removed. The purpose is to do.
上記課題を解決するためになされた本発明の光計測装置は、被検体の皮膚表面に光を照射する複数の送光プローブと、当該被検体の皮膚表面から放出される光を受光する複数の受光プローブとを有する第一送受光部と、前記第一送受光部に対して光の送受光を制御する制御部とを備え、前記第一送受光部は、前記送光プローブと受光プローブとが交互に第一設定間隔で並べられた格子状に形成されている光計測装置であって、前記第一送受光部と異なる位置に配置された第二送受光部を備え、前記第二送受光部は、前記被検体の皮膚表面に光を照射する送光プローブと、当該被検体の皮膚表面から放出される光を受光する受光プローブとを有し、かつ、前記送光プローブと受光プローブとの間の距離である第二設定間隔が、前記第一設定間隔より短くなるように形成されており、前記第二送受光部の被検体の皮膚表面に対する配置位置は、前記第一送受光部の被検体の皮膚表面に対する配置位置の近辺であり、前記制御部は、前記第一送受光部において、前記送光プローブから当該送光プローブと隣接する受光プローブへの光の第一受光量情報を取得するとともに、前記第二送受光部において、前記送光プローブから受光プローブへの光の第二受光量情報を取得し、前記第二受光量情報を用いて、前記被検体の測定部位より浅い浅部による受光量情報を第一受光量情報から除去することにより、当該測定部位の受光量情報を取得するようにしている。 An optical measuring device of the present invention made to solve the above problems includes a plurality of light-transmitting probes that irradiate light on the skin surface of a subject, and a plurality of lights that receive light emitted from the skin surface of the subject. A first light transmission / reception unit having a light reception probe; and a control unit that controls light transmission / reception with respect to the first light transmission / reception unit, wherein the first light transmission / reception unit includes the light transmission probe and the light reception probe; Is an optical measuring device formed in a lattice shape alternately arranged at a first set interval, and includes a second transmitter / receiver unit arranged at a position different from the first transmitter / receiver unit, and the second transmitter / receiver unit. The light receiving unit includes a light transmission probe that irradiates light on the skin surface of the subject, and a light reception probe that receives light emitted from the skin surface of the subject, and the light transmission probe and the light reception probe The second setting interval that is the distance between the first setting interval and the second setting interval The second transmission / reception unit with respect to the skin surface of the subject is in the vicinity of the first transmission / reception unit with respect to the subject's skin surface, and the control unit The first light transmission / reception unit obtains first light reception amount information of light from the light transmission probe to the light reception probe adjacent to the light transmission probe, and the second light transmission / reception unit receives the light transmission probe. The second received light amount information of light from the light receiving probe to the light receiving probe, and using the second received light amount information, the received light amount information by the shallow part shallower than the measurement site of the subject is removed from the first received light amount information. Thus, the received light amount information of the measurement site is acquired.
ここで、「第一送受光部の被検体の皮膚表面に対する配置位置の近辺」とは、第一送受光部を配置した被検体の浅部の部位とほぼ同一となる受光量情報が得られる位置のこといい、例えば、第一送受光部が被検体の頭皮表面の一部に配置されたときには、同じ頭皮表面の他の一部のことをいう。なお、被検体の皮膚血流による受光量情報は、被検体の広い範囲でほぼ同一となることがわかっているため、第二送受光部を第一送受光部の近辺の被検体の皮膚表面に配置すれば、第一送受光部を配置した被検体の部位にある皮膚血流による受光量情報が得られる。
本発明の光計測装置によれば、第一送受光部は、送光プローブと受光プローブとが交互に第一設定間隔(第一チャンネル)で並べられた格子状に形成されている。そして、第一送受光部は、被検体の皮膚表面に配置される。
また、第二送受光部は、送光プローブと受光プローブとの間の距離である第二設定間隔(第二チャンネル)が、第一設定間隔(第一チャンネル)より短くなるように形成されている。つまり、第二送受光部は、被検体の測定部位(例えば、脳血流等)による受光量情報を計測するのではなく、被検体の測定部位より浅い浅部にある皮膚血流等による受光量情報を計測することになる。そして、第二送受光部を第一送受光部の近辺の被検体の皮膚表面に配置する。
これにより、制御部は、第一送受光部において、送光プローブから送光プローブと隣接する受光プローブへの光の第一受光量情報を取得するとともに、第二送受光部において、送光プローブから受光プローブへの光の第二受光量情報を取得する。
そして、制御部は、第二受光量情報を用いて、被検体の測定部位より浅い浅部(例えば、皮膚血流等)による受光量情報を第一受光量情報から除去することにより、測定部位(例えば、脳血流等)の受光量情報を取得する。このとき、例えば、独立成分分析等の数学的信号分離法を用いて、測定部位と浅部との信号(情報成分)を分離し、測定部位の情報成分のみを抽出する。
Here, “the vicinity of the arrangement position of the first transmitter / receiver with respect to the skin surface of the subject” is obtained light amount information that is substantially the same as the shallow portion of the subject where the first transmitter / receiver is arranged. The position refers to, for example, the other part of the same scalp surface when the first transmitter / receiver is disposed on a part of the scalp surface of the subject. Since it is known that the received light amount information by the skin blood flow of the subject is substantially the same in a wide range of the subject, the second transmitter / receiver is connected to the skin surface of the subject in the vicinity of the first transmitter / receiver. If it arrange | positions, the received light quantity information by the skin blood flow in the site | part of the subject which has arrange | positioned the 1st light transmission / reception part is obtained.
According to the optical measurement device of the present invention, the first light transmission / reception unit is formed in a lattice shape in which light transmission probes and light reception probes are alternately arranged at a first set interval (first channel). And a 1st light transmission / reception part is arrange | positioned on the skin surface of a subject.
The second light transmitting / receiving unit is formed such that a second set interval (second channel) which is a distance between the light transmitting probe and the light receiving probe is shorter than the first set interval (first channel). Yes. That is, the second light transmitting / receiving unit does not measure the amount of light received by the measurement site (for example, cerebral blood flow) of the subject, but receives light by skin blood flow etc. in a shallow part shallower than the measurement site of the subject. Quantity information will be measured. And a 2nd light transmission / reception part is arrange | positioned on the skin surface of the subject of the vicinity of a 1st light transmission / reception part.
Thereby, the control unit acquires the first received light amount information of the light from the light transmitting probe to the light receiving probe adjacent to the light transmitting probe in the first light transmitting / receiving unit, and at the second light transmitting / receiving unit, the light transmitting probe. The second received light amount information of light from the light to the light receiving probe is acquired.
Then, the controller uses the second received light amount information to remove the received light amount information from the shallow portion (for example, skin blood flow) that is shallower than the measured region of the subject from the first received light amount information. Received light amount information (for example, cerebral blood flow) is acquired. At this time, for example, a signal (information component) between the measurement site and the shallow portion is separated using a mathematical signal separation method such as independent component analysis, and only the information component of the measurement site is extracted.
以上のように、本発明の光計測装置によれば、被検体の浅部による不要な受光量情報を除去した測定部位(例えば、脳血流等)による受光量情報を得ることができる。したがって、脳内各部等の血流の経時変化や酸素供給の経時変化を正確に観察することができる。 As described above, according to the optical measurement device of the present invention, it is possible to obtain light reception amount information from a measurement site (for example, cerebral blood flow) from which unnecessary light reception amount information from the shallow portion of the subject is removed. Accordingly, it is possible to accurately observe changes with time in blood flow in each part of the brain and the like and changes with time in oxygen supply.
(その他の課題を解決するための手段及び効果)
また、本発明の光計測装置は、前記第二送受光部は、前記送光プローブと受光プローブとが交互に第二設定間隔で並べられた格子状に形成されており、前記制御部は、前記第二送受光部において、前記送光プローブから当該送光プローブと隣接する受光プローブへの光の第二受光量情報を取得するようにしてもよい。
(Means and effects for solving other problems)
Further, in the optical measuring device of the present invention, the second light transmitting / receiving unit is formed in a lattice shape in which the light transmitting probe and the light receiving probe are alternately arranged at a second set interval, and the control unit includes: The second light transmission / reception unit may acquire second light reception amount information of light from the light transmission probe to a light reception probe adjacent to the light transmission probe.
以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment, It cannot be overemphasized that various aspects are included in the range which does not deviate from the meaning of this invention.
図1は、本発明の一実施形態である光計測装置の構成を示すブロック図である。また、図2は、第一送受光部の構成を示す平面図であり、図3は、第二送受光部の構成を示す平面図である。さらに、図4は、第一送受光部と第二送受光部とが被検者の頭皮表面に配置されたときの状態を示す平面図である。
光計測装置1は、第一送受光部11と、第二送受光部15と、発光部2と、光検出部3と、光計測装置1全体の制御を実行する制御部(コンピュータ)20とにより構成される。
FIG. 1 is a block diagram illustrating a configuration of an optical measurement device according to an embodiment of the present invention. FIG. 2 is a plan view showing the configuration of the first light transmitting / receiving unit, and FIG. 3 is a plan view showing the configuration of the second transmitting / receiving unit. Furthermore, FIG. 4 is a plan view showing a state when the first transmitter / receiver unit and the second transmitter / receiver unit are arranged on the scalp surface of the subject.
The optical measurement device 1 includes a first light transmission /
第一送受光部11は、図2に示すように、13個の送光プローブ12a〜12mと12個の受光プローブ13a〜13lとを有し、送光プローブ12a〜12mと受光プローブ13a〜13lとが行方向及び列方向に交互となるように正方格子状に配置されたものである。なお、送光プローブ12と受光プローブ13との間の距離(第一設定距離)は、30mmである。また、12個の送光プローブ12a〜12mは、光を出射するものであり、一方、12個の受光プローブ13a〜13lは、光の量を検出するものである。そして、第一送受光部11は、被検者Pの頭皮表面に装着されることになる。よって、第一送受光部11は、頭皮表面から深度15mm〜20mmの位置にある脳表部位(測定部位)に関した第一受光量情報が得られることになる。なお、第一受光量情報は、送光点近傍や受光点近傍の被検体Pの頭皮部位(浅部)にある皮膚血流による受光量情報も含んだ情報となる。
As shown in FIG. 2, the first light transmitting / receiving
第二送受光部15は、図3に示すように、5個の送光プローブ16a〜16eと4個の受光プローブ17a〜17dとを有し、送光プローブ16a〜16eと受光プローブ17a〜17dとが行方向及び列方向に交互となるように正方格子状に配置されたものである。なお、送光プローブ16と受光プローブ17との間の距離(第二設定距離)は、15mmである。また、5個の送光プローブ16a〜16eは、光を出射するものであり、一方、4個の受光プローブ17a〜17dは、光の量を検出するものである。
そして、図4に示すように、第二送受光部15は、第一送受光部11が配置された被検者Pの頭皮表面の近辺に装着されることになる。よって、第二送光部15は、頭皮部位(浅部)に関した第二受光量情報が得られることになる。
なお、図4に示すように第一送受光部11と第二送受光部15とは頭部において異なる(少し離れた)位置に配置されているが、頭表の皮膚血流は頭部全体に均一であると考えられているので、図4に示すような第一送受光部11と第二送受光部15との位置関係でも、第二送受光部15によって第一送受光部11を配置した被検者Pの皮膚血流と同等の皮膚血流信号(皮膚血流による受光量情報)が得られる。
As shown in FIG. 3, the second light transmitting / receiving
And as shown in FIG. 4, the 2nd light transmission /
As shown in FIG. 4, the first transmitter /
発光部2は、コンピュータ20から入力された駆動信号により、第一送受光部11における13個の送光プローブ12a〜12mのうちから選択される1個の送光プローブに光を送光することと併行して、第二送受光部15における5個の送光プローブ16a〜16eのうちから選択される1個の送光プローブに光を送光する。上記光としては、例えば、異なる2波長(例えば、780nmと850nm)の近赤外光等が用いられる。
なお、互いに光がほとんど干渉しない遠く離れた送光プローブ12、16どうしであれば、複数の送光プローブに同時に送光して、測定の能率を高めることもできるが、以下の説明では1つずつ送光するものとして説明する。
光検出部3は、第一送受光部11における12個の受光プローブ13a〜13lで受光した近赤外光を個別に検出することにより、12個の受光信号(第一受光量情報)をコンピュータ20に出力することと併行して、第二送受光部15における4個の受光プローブ17a〜17dで受光した近赤外光を個別に検出することにより、4個の受光信号(第二受光量情報)をコンピュータ20に出力する。
The
In addition, if the light transmitting probes 12 and 16 that are far away so that light hardly interferes with each other can be transmitted simultaneously to a plurality of light transmitting probes, the efficiency of measurement can be improved. It is assumed that the light is transmitted one by one.
The light detection unit 3 individually detects near-infrared light received by the 12 light receiving probes 13a to 13l in the first light transmitting / receiving
コンピュータ20においては、CPU21を備え、さらに、メモリ25と、モニタ画面23a等を有する表示装置23と、入力装置22であるキーボード22aやマウス22bとが連結されている。
また、CPU21が処理する機能をブロック化して説明すると、発光部2及び光検出部3を制御する送受光部制御部4と、第一受光量情報取得部31と、第二受光量情報取得部32と、脳活動受光量情報算出部33とを有する。
また、メモリ25は、受光信号(第一受光量情報)を記憶する第一受光量情報記憶部51と、受光信号(第二受光量情報)を記憶する第二受光量情報記憶部52とを有する。
The
Further, the functions processed by the
The
送受光部制御部4は、発光部2に駆動信号を出力する発光制御部42と、光検出部3からの受光信号(第一受光量情報及び第二受光量情報)を受けることにより受光信号をメモリ25に記憶させる光検出制御部43とを有する。
発光制御部42は、送光プローブ12に光を送光することと併行して、送光プローブ16にも光を送光する駆動信号を発光部2に出力する制御を行うものである。
例えば、まず、送光プローブ12aに780nmの光を0.15秒間送光させ、次に、送光プローブ12bに780nmの光を0.15秒間送光させるように、送光プローブ12aから送光プローブ12mまで順番に780nmの光を送光させる駆動信号を発光部2に出力する。さらに、送光プローブ12aから送光プローブ12mまで順番に780nmの光を送光させた後には、同様にして送光プローブ12aから送光プローブ12mまで順番に850nmの光を送光させる駆動信号を発光部2に出力する。
また、送光プローブ12aから送光プローブ12mまで光を送光させると同時に、まず、送光プローブ16aに780nmの光を0.15秒間送光させ、次に、送光プローブ16bに780nmの光を0.15秒間送光させるように、送光プローブ16aから送光プローブ16eまで順番に780nmの光を送光させる駆動信号を発光部2に出力する。さらに、送光プローブ16aから送光プローブ16eまで順番に780nmの光を送光させた後には、同様にして送光プローブ16aから送光プローブ16eまで順番に850nmの光を送光させる駆動信号を発光部2に出力する。
The light transmission / reception unit control unit 4 receives a light
The light
For example, first, the
Further, at the same time when light is transmitted from the
光検出制御部43は、光検出部3からの受光信号(第一受光量情報)を受けることにより受光信号(第一受光量情報)を第一受光量情報記憶部51に記憶させるとともに、受光信号(第二受光量情報)を受けることにより受光信号(第二受光量情報)を第二受光量情報記憶部52に記憶させる制御を行うものである。
例えば、送光プローブ12aから送光された780nmの光を受光プローブ13a〜13lで検出した受光信号(第一受光量情報)を受信し、次に、送光プローブ12bから送光された780nmの光を受光プローブ13a〜13lで検出した受光信号(第一受光量情報)を受信するように、13個の送光プローブ12a〜12mから送光した780nmの光を受光プローブ13a〜13lで検出した受光信号(第一受光量情報)を受信する。さらに、同様にして13個の送光プローブ12a〜12mから送光した850nmの光を受光プローブ13a〜13lで検出した受光信号(第一受光量情報)を受信する。
また、受光プローブ13a〜13lで検出した受光信号(第一受光量情報)を受信すると同時に、送光プローブ16aから送光された780nmの光を受光プローブ17a〜17dで検出した受光信号(第二受光量情報)を受信し、次に、送光プローブ16bから送光された780nmの光を受光プローブ17a〜17dで検出した受光信号(第二受光量情報)を受信するように、5個の送光プローブ16a〜16eから送光した780nmの光を受光プローブ17a〜17dで検出した受光信号(第二受光量情報)を受信する。さらに、同様にして5個の送光プローブ16a〜16eから送光した850nmの光を受光プローブ17a〜17dで検出した受光信号(第二受光量情報)を受信する。
The light
For example, a light reception signal (first received light amount information) obtained by detecting the light of 780 nm transmitted from the
At the same time that the light reception signals (first received light amount information) detected by the light reception probes 13a to 13l are received, the light reception signals (second light detection signals detected by the light reception probes 17a to 17d) are received (second light reception signals 17a to 17d). 5 light reception signals (second light reception amount information) are received so that light of 780 nm transmitted from the
第一受光量情報取得部31は、第一送受光部11において、送光プローブ12から、当該送光プローブ12と隣接する受光プローブ13で受光される光の第一受光量情報を取得する制御を行うものである。
具体的には、第一受光量情報記憶部51に記憶された受光信号の中から、送光プローブ12から、当該送光プローブ12と隣接する受光プローブ13で受光される受光信号を、深さ30/2mm(脳表部位)の第一受光量情報として取得する。
第二受光量情報取得部32は、第二送受光部11において、送光プローブ16から、当該送光プローブ16と隣接する受光プローブ17で受光される光の第二受光量情報を取得する制御を行うものである。
具体的には、第二受光量情報記憶部52に記憶された受光信号の中から、送光プローブ16から、当該送光プローブ16と隣接する受光プローブ17で受光される受光信号を、浅部(頭皮部位)の第二受光量情報として取得する。
The first received light amount
Specifically, the light reception signal received from the
The second received light amount
Specifically, the light reception signal received by the light reception probe 17 adjacent to the light transmission probe 16 from the light transmission probe 16 out of the light reception signals stored in the second light reception amount
脳活動受光量情報算出部33は、第二受光量情報を用いて、被検者Pの測定部位(脳表部位)より浅い浅部(頭皮部位)による受光量情報を第一受光量情報から除去することにより、測定部位の受光量情報を取得して、得られた脳活動データ(賦活データともいう)に平均化処理等の画像処理、マッピングを実行して画像化する制御を行うものである。
例えば、独立成分分析等の数学的信号分離法を用いて、測定部位(脳表部位)と浅部(頭皮部位)との信号(情報成分)を分離し、測定部位(脳表部位)の信号(情報成分)のみを抽出する。そして、得られた脳活動データに平均化処理等の画像処理、マッピングを実行して画像化する。
The brain activity received light amount
For example, the signal (information component) between the measurement site (brain surface region) and the shallow part (scalp region) is separated using a mathematical signal separation method such as independent component analysis, and the signal of the measurement site (brain surface region) Only (information component) is extracted. Then, the obtained brain activity data is imaged by executing image processing such as averaging processing and mapping.
次に、光計測装置1により、脳の測定部位の脳活動を計測する検査方法(生体計測方法)について説明する。図5は、光計測装置1による検査方法の一例について説明するためのフローチャートである。
まず、ステップS101の処理において、被検者Pの頭皮表面に第一送受光部11を配置する。
次に、ステップS102の処理において、第一送受光部11が配置された被検者Pの頭皮表面の近辺に第二送受光部15を配置する。つまり、第一送受光部11を配置した被検者Pの浅部の部位とほぼ同一となる受光量情報が得られる位置に、第二送受光部15を配置する(図4参照)。
Next, an inspection method (biological measurement method) for measuring the brain activity at the measurement site of the brain using the optical measurement device 1 will be described. FIG. 5 is a flowchart for explaining an example of the inspection method by the optical measurement device 1.
First, in the process of step S101, the first transmitter /
Next, in the process of step S102, the second transmitter /
次に、ステップS103の処理において、発光制御部42は、送光プローブ12に光を送光することと併行して、送光プローブ16にも光を送光する駆動信号を発光部2に出力する。
次に、ステップS104の処理において、光検出制御部43は、光検出部3からの受光信号(第一受光量情報)を受けることにより受光信号(第一受光量情報)を第一受光量情報記憶部51に記憶させる。
一方、ステップS105の処理において、光検出制御部43は、光検出部3からの受光信号(第二受光量情報)を受けることにより受光信号(第二受光量情報)を第二受光量情報記憶部52に記憶させる。
Next, in the process of step S <b> 103, the light
Next, in the process of step S104, the light
On the other hand, in the process of step S105, the light
ステップS104とステップS105との処理が終了すると、ステップS106の処理において、第一受光量情報取得部31は、第一送受光部11において、送光プローブ12から、送光プローブ12と隣接する受光プローブ13で受光される光の第一受光量情報を取得する。
次に、ステップS107の処理において、第二受光量情報取得部32は、第二送受光部11において、送光プローブ16から、送光プローブ16と隣接する受光プローブ17で受光される光の第二受光量情報を取得する。
次に、ステップS108の処理において、脳活動受光量情報算出部33は、第二受光量情報を用いて、被検者Pの測定部位(脳表部位)より浅い浅部(頭皮部位)による受光量情報を第一受光量情報から除去することにより、測定部位の受光量情報を取得して、得られた脳活動データに平均化処理等の画像処理、マッピングを実行して画像化する。
When the processes of step S104 and step S105 are completed, in the process of step S106, the first received light amount
Next, in the process of step S107, the second received light amount
Next, in the process of step S108, the brain activity light reception amount
以上のように、本発明の光計測装置1によれば、被検者Pの皮膚血流等による影響をほとんど含まない受光量情報を得ることができる。したがって、脳内各部の血流の経時変化や酸素供給の経時変化を正確に検査することができる。 As described above, according to the optical measurement device 1 of the present invention, it is possible to obtain received light amount information that hardly includes the influence of the skin blood flow or the like of the subject P. Therefore, it is possible to accurately inspect changes with time in blood flow in each part of the brain and changes in oxygen supply with time.
(他の実施形態)
(1)上述した光計測装置1では、13個の送光プローブ12a〜12mと12個の受光プローブ13a〜13lとを有する第一送受光部11を示したが、異なる数、例えば9個の送光プローブと9個の受光プローブとを有する第一送受光部としてもよい。また、5個の送光プローブ16a〜16eと4個の受光プローブ17a〜17dとを有する第二送受光部15を示したが、異なる数、例えば1個の送光プローブと1個の受光プローブとを有する第二送受光部としてもよい
(2)上述した光計測装置1では、第一送受光部11と第二送受光部15とを備える構成を示したが、さらに送光プローブと受光プローブとの間の距離である第三設定間隔が、第二設定間隔より短くなるように形成された第三送受光部を備えるような構成としてもよい。
(Other embodiments)
(1) In the optical measuring device 1 described above, the first light transmission /
本発明は、光を用いて非侵襲で生体内部を計測する光計測装置に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for an optical measurement device that measures the inside of a living body non-invasively using light.
1:光計測装置
11:第一送受光部
12、16:送光プローブ
13、17:受光プローブ
15:第二送受光部
20:制御部
P:被検者
T:送光点
R:受光点
M:中点
S:測定部位
1: Optical measuring device 11: First light transmission /
Claims (2)
前記第一送受光部に対して光の送受光を制御する制御部とを備え、
前記第一送受光部は、前記送光プローブと受光プローブとが交互に第一設定間隔で並べられた格子状に形成されている光計測装置であって、
前記第一送受光部と異なる位置に配置された第二送受光部を備え、
前記第二送受光部は、前記被検体の皮膚表面に光を照射する送光プローブと、当該被検体の皮膚表面から放出される光を受光する受光プローブとを有し、かつ、
前記送光プローブと受光プローブとの間の距離である第二設定間隔が、前記第一設定間隔より短くなるように形成されており、
前記第二送受光部の被検体の皮膚表面に対する配置位置は、前記第一送受光部の被検体の皮膚表面に対する配置位置の近辺であり、
前記制御部は、前記第一送受光部において、前記送光プローブから当該送光プローブと隣接する受光プローブへの光の第一受光量情報を取得するとともに、
前記第二送受光部において、前記送光プローブから受光プローブへの光の第二受光量情報を取得し、
前記第二受光量情報を用いて、前記被検体の測定部位より浅い浅部による受光量情報を第一受光量情報から除去することにより、当該測定部位の受光量情報を取得することを特徴とする光計測装置。 A first light transmitter / receiver having a plurality of light transmitting probes for irradiating light on the skin surface of the subject and a plurality of light receiving probes for receiving light emitted from the skin surface of the subject;
A controller for controlling light transmission / reception with respect to the first light transmission / reception unit;
The first light transmission / reception unit is an optical measurement device formed in a lattice shape in which the light transmission probe and the light reception probe are alternately arranged at a first set interval,
A second transmitter / receiver disposed at a different position from the first transmitter / receiver;
The second light transmitting / receiving unit has a light transmitting probe for irradiating light on the skin surface of the subject, a light receiving probe for receiving light emitted from the skin surface of the subject, and
The second setting interval, which is the distance between the light transmitting probe and the light receiving probe, is formed to be shorter than the first setting interval,
The arrangement position of the second transmitter / receiver unit with respect to the skin surface of the subject is near the arrangement position of the first transmitter / receiver unit with respect to the skin surface of the subject,
In the first light transmitting / receiving unit, the control unit acquires first light reception amount information of light from the light transmitting probe to the light receiving probe adjacent to the light transmitting probe,
In the second light transmission / reception unit, obtain second light reception amount information of light from the light transmission probe to the light reception probe,
Using the second received light amount information, the received light amount information of the measurement site is obtained by removing the received light amount information from the shallow portion shallower than the measurement site of the subject from the first received light amount information. An optical measuring device.
前記制御部は、前記第二送受光部において、前記送光プローブから当該送光プローブと隣接する受光プローブへの光の第二受光量情報を取得することを特徴とする請求項1に記載の光計測装置。 The second light transmission / reception unit is formed in a lattice shape in which the light transmission probe and the light reception probe are alternately arranged at a second set interval,
The said control part acquires the 2nd light reception amount information of the light from the said light transmission probe to the light reception probe adjacent to the said light transmission probe in said 2nd light transmission / reception part, The said light transmission / reception part is characterized by the above-mentioned. Optical measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007328166A JP5262102B2 (en) | 2007-12-20 | 2007-12-20 | Optical measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007328166A JP5262102B2 (en) | 2007-12-20 | 2007-12-20 | Optical measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009148388A JP2009148388A (en) | 2009-07-09 |
JP5262102B2 true JP5262102B2 (en) | 2013-08-14 |
Family
ID=40918286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007328166A Active JP5262102B2 (en) | 2007-12-20 | 2007-12-20 | Optical measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5262102B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5168247B2 (en) * | 2009-07-29 | 2013-03-21 | 株式会社島津製作所 | Optical measurement system |
EP2591732B8 (en) * | 2010-07-06 | 2016-12-21 | Hitachi, Ltd. | Biological photometric device and biological photometry method using same |
JP5747200B2 (en) * | 2011-02-25 | 2015-07-08 | 株式会社国際電気通信基礎技術研究所 | Brain activity information output device, brain activity information output method, and program |
WO2014170941A1 (en) * | 2013-04-15 | 2014-10-23 | 株式会社日立製作所 | Biooptical measurement data analysis device and method |
JP6245863B2 (en) * | 2013-07-01 | 2017-12-13 | キヤノン株式会社 | SUBJECT INFORMATION ACQUISITION DEVICE AND METHOD FOR CONTROLLING SUBJECT INFORMATION ACQUISITION DEVICE |
KR20190046368A (en) * | 2017-10-26 | 2019-05-07 | 와이에이치케이 주식회사 | Spectroscopy apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3016160U (en) * | 1995-03-23 | 1995-09-26 | 有限会社トステック | Near infrared non-invasive biometric device |
CA2346971C (en) * | 1998-10-13 | 2011-02-08 | Somanetics Corporation | Multi-channel non-invasive tissue oximeter |
JP3796086B2 (en) * | 1999-12-27 | 2006-07-12 | 株式会社日立製作所 | Biological light measurement device |
JP4136704B2 (en) * | 2003-02-19 | 2008-08-20 | 株式会社島津製作所 | Probe for optical measurement device and multichannel optical measurement device using the same |
-
2007
- 2007-12-20 JP JP2007328166A patent/JP5262102B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009148388A (en) | 2009-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896025B2 (en) | Optical biological measurement apparatus and analysis method using the same | |
JP5234186B2 (en) | Optical biometric device | |
JP5262102B2 (en) | Optical measuring device | |
CN103732198A (en) | Rehabilitation device | |
JP5248758B2 (en) | Optical measuring device | |
JP5347448B2 (en) | Biometric device | |
JP2010240298A (en) | Biological light measurement device and biological light measurement method | |
JP5370475B2 (en) | Optical biological measurement apparatus and analysis method | |
JP4136704B2 (en) | Probe for optical measurement device and multichannel optical measurement device using the same | |
JP5790877B2 (en) | Photobiological measurement system and method of using the same | |
JP2009095380A (en) | Optical biometric apparatus | |
JP5822444B2 (en) | Light measuring device | |
JP7536186B2 (en) | Breast cancer diagnosis system and method of operating the breast cancer diagnosis system | |
JP4978485B2 (en) | Optical biometric device | |
JP5509576B2 (en) | Holder and optical measuring device using the same | |
JP6011636B2 (en) | Optical biological measurement device | |
JP2010151616A (en) | Light measuring device | |
JP4259319B2 (en) | Optical measuring device | |
JP2009082595A (en) | Optical biometric device | |
JP6069885B2 (en) | Optical measurement system and method of using the same | |
JP6281628B2 (en) | Optical measurement system | |
JP2010148794A (en) | Optical measurement apparatus | |
JP5195026B2 (en) | Light measuring device | |
JP2006305120A (en) | Optical bioinstrumentation device | |
JP4561537B2 (en) | Optical measuring device and wiring method for transmitting / receiving probe thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090918 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130116 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130415 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5262102 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |