[go: up one dir, main page]

JP5258353B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5258353B2
JP5258353B2 JP2008092541A JP2008092541A JP5258353B2 JP 5258353 B2 JP5258353 B2 JP 5258353B2 JP 2008092541 A JP2008092541 A JP 2008092541A JP 2008092541 A JP2008092541 A JP 2008092541A JP 5258353 B2 JP5258353 B2 JP 5258353B2
Authority
JP
Japan
Prior art keywords
group
nonaqueous electrolyte
mass
battery
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008092541A
Other languages
Japanese (ja)
Other versions
JP2009245828A (en
Inventor
亘  幸洋
村井  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
GS Yuasa International Ltd
Original Assignee
Sanyo Electric Co Ltd
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, GS Yuasa International Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008092541A priority Critical patent/JP5258353B2/en
Publication of JP2009245828A publication Critical patent/JP2009245828A/en
Application granted granted Critical
Publication of JP5258353B2 publication Critical patent/JP5258353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、リチウムイオンを吸蔵及び放出する正極並びに負極と、非水電解質とを含み、主としてビデオカメラ,モバイルコンピュータ,携帯電話機等の携帯電子機器の電源として利用される充放電可能な非水電解質二次電池に関する。   The present invention includes a positive electrode and a negative electrode that occlude and release lithium ions, and a nonaqueous electrolyte, and is a chargeable / dischargeable nonaqueous electrolyte mainly used as a power source for portable electronic devices such as video cameras, mobile computers, and mobile phones. The present invention relates to a secondary battery.

近年、前記携帯電子機器の小型軽量化及び多様化に伴い、その電源である電池に対して、小型かつ軽量であり、高エネルギー密度を有し、貯蔵安定性等の信頼性も高く、長期間繰り返して充放電が可能である二次電池の開発が強く要求されている。
これらの要求を満たす二次電池として、非水電解質を含む非水電解質二次電池が挙げられる。
非水電解質二次電池の代表例として、リチウムイオン二次電池が挙げられる。リチウムイオン二次電池は、リチウムイオンの吸蔵・放出が可能である活物質からなる負極と、遷移金属酸化物、弗化黒鉛、及びリチウムと遷移金属との複合酸化物等からなる正極と、非水電解質とを有する。非水電解質は、非水溶媒としての非プロトン性有機溶媒にLiBF4 、LiPF6 、LiClO4 、LiAsF6 、LiCF3 SO3 、Li2 SiF6 等のリチウム塩を混合してなる。
In recent years, as the portable electronic devices have become smaller and lighter and more diversified, the battery as a power source is smaller and lighter, has a high energy density, has high reliability such as storage stability, and has a long period of time. There is a strong demand for the development of secondary batteries that can be repeatedly charged and discharged.
As a secondary battery that satisfies these requirements, a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte can be given.
A typical example of the non-aqueous electrolyte secondary battery is a lithium ion secondary battery. A lithium ion secondary battery includes a negative electrode made of an active material capable of occluding and releasing lithium ions, a positive electrode made of transition metal oxide, fluorinated graphite, a composite oxide of lithium and transition metal, and the like. A water electrolyte. The non-aqueous electrolyte is formed by mixing a lithium salt such as LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and Li 2 SiF 6 with an aprotic organic solvent as a non-aqueous solvent.

リチウムイオン二次電池等の非水電解質二次電池において、非水電解質は正極と負極との間のイオンの受け渡しを行う。電池の充放電性能を高めるためには正極と負極との間のイオンの受け渡し速度を出来るだけ速くする必要があり、非水電解質のイオン伝導度を高くしたり、非水電解質の粘度を低くしたりして、拡散による物質移動を起こりやすくする必要がある。また、非水電解質は、電池の保存性(高温放置性能等)、及び充放電を繰り返した場合のサイクル安定性を高めるために、化学的、電気化学的に反応性が高い正極及び負極に対して安定である必要がある。この要件を満たすために、種々の化合物を添加した非水電解質が開発されている。   In a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, the nonaqueous electrolyte transfers ions between a positive electrode and a negative electrode. In order to improve the charge / discharge performance of the battery, it is necessary to increase the ion transfer speed between the positive electrode and the negative electrode as much as possible. The ion conductivity of the non-aqueous electrolyte is increased, or the viscosity of the non-aqueous electrolyte is decreased. For example, it is necessary to facilitate mass transfer by diffusion. In addition, non-aqueous electrolytes are used for positive and negative electrodes, which are chemically and electrochemically reactive, in order to improve the storage stability of batteries (high temperature storage performance, etc.) and cycle stability when charging and discharging are repeated. Need to be stable. In order to satisfy this requirement, nonaqueous electrolytes to which various compounds are added have been developed.

特許文献1には、分子内に炭素炭素不飽和結合を有する環状炭酸エステルとホスファゼン誘導体とを添加剤として含む非水電解質の発明が開示されている。
特許文献2には、非水電解質に、リチウムビスオキサレートボレート(LiBOB)と不飽和スルトン化合物とを添加剤として含む非水電解質二次電池の発明が開示されている。
特許文献3には、非水電解質に、LiFOB又はLiBOBと、芳香族化合物とを添加剤として含む非水電解質二次電池の発明が開示されている。
特開2006−24380号公報 特開2007−179883号公報 特開2006−216378号公報
Patent Document 1 discloses an invention of a nonaqueous electrolyte containing a cyclic carbonate having a carbon-carbon unsaturated bond in a molecule and a phosphazene derivative as additives.
Patent Document 2 discloses an invention of a non-aqueous electrolyte secondary battery that includes lithium bisoxalate borate (LiBOB) and an unsaturated sultone compound as additives in a non-aqueous electrolyte.
Patent Document 3 discloses an invention of a nonaqueous electrolyte secondary battery that includes LiFOB or LiBOB and an aromatic compound as additives in a nonaqueous electrolyte.
JP 2006-24380 A JP 2007-179883 A JP 2006-216378 A

特許文献1によれば、非水電解質に環状ホスファゼン誘導体を添加することにより電池の安全性が向上することが記載されている。但し、高温放置時の電池の膨れ抑制効果については何ら示唆されていない。
特許文献2の電池は、LiBOBを含むので、高温時の充放電サイクル寿命性能が良好である。しかし、この電池は、高温放置した場合に著しく膨れるという問題がある。これは、高温下で放置された際に、ホウ素を含むリチウム塩が正極で酸化分解されて、CO2 ガスが発生することが原因と考えられる。
According to Patent Document 1, it is described that the safety of a battery is improved by adding a cyclic phosphazene derivative to a nonaqueous electrolyte. However, there is no suggestion about the effect of suppressing the swelling of the battery when left at high temperature.
Since the battery of Patent Document 2 contains LiBOB, the charge / discharge cycle life performance at high temperatures is good. However, this battery has a problem that it swells significantly when left at high temperature. This is presumably because the lithium salt containing boron is oxidized and decomposed at the positive electrode to generate CO 2 gas when left at high temperature.

特許文献3の電池は、酸化防止剤としての芳香族化合物を含むので、高温放置時の電池の膨れが抑制されているが、高温で充放電を繰り返した場合に芳香族化合物が分解し、正極表面及びセパレータに芳香族化合物の重合物が多量に付着して抵抗が高くなり、高温時のサイクル寿命性能が低下するという問題がある。   Since the battery of Patent Document 3 contains an aromatic compound as an antioxidant, swelling of the battery when left at high temperature is suppressed, but the aromatic compound decomposes when repeated charging and discharging at high temperature, and the positive electrode There is a problem that a large amount of a polymer of an aromatic compound adheres to the surface and the separator, resulting in an increase in resistance and a decrease in cycle life performance at high temperatures.

本発明は斯かる事情に鑑みてなされたものであり、正極及び負極に安定な保護皮膜が形成され、常温時及び高温時の充放電サイクル寿命性能が良好になるとともに、高温放置時に、前記イオン性金属錯体が正極上で分解し、多量のガスが発生して電池が膨れるのが抑制される非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and a stable protective film is formed on the positive electrode and the negative electrode, the charge / discharge cycle life performance at normal temperature and high temperature is improved, and when the ion is left at high temperature, An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the conductive metal complex is decomposed on the positive electrode and a large amount of gas is generated to prevent the battery from expanding.

本発明者は、鋭意検討の結果、下記イオン性金属錯体と所定量の環状のホスファゼン誘導体とを含有する非水電解質を用いて非水電解質二次電池を構成した場合、常温時及び高温時の充放電サイクル寿命性能が良好であり、高温放置時に前記電池が膨れるのが抑制されることを見出し、本発明を完成するに至った。
すなわち、第1発明に係る非水電解質二次電池は、底板部、該底板部に周設された4つの側板部、及び蓋板部を有する電池ケースと、リチウムイオンを吸蔵及び放出する板状の正極並びに負極をセパレータを介し巻回してなり、巻回軸が前記底板部に平行になる状態で前記電池ケースに収容される電極群と、前記電池ケースに注入される非水電解質とを有する非水電解質二次電池において、前記非水電解質は、下記化1で表されるイオン性金属錯体を含み、下記化2で表される環状のホスファゼン誘導体を非水電解質の総質量に対して、0.2質量%以上1質量%以下含むことを特徴とする。
As a result of intensive studies, the present inventor made a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing the following ionic metal complex and a predetermined amount of a cyclic phosphazene derivative. The present inventors have found that the charge / discharge cycle life performance is good and that the battery is prevented from being swollen when left at a high temperature, thereby completing the present invention.
That is, the nonaqueous electrolyte secondary battery according to the first invention includes a battery case having a bottom plate portion, four side plate portions provided around the bottom plate portion, and a lid plate portion, and a plate shape that occludes and releases lithium ions. The positive electrode and the negative electrode are wound through a separator, and the electrode group is housed in the battery case in a state where the winding shaft is parallel to the bottom plate portion, and the nonaqueous electrolyte is injected into the battery case. in the nonaqueous electrolyte secondary battery, the nonaqueous electrolyte includes an ionic metal complex represented by the following formula 1, the phosphazene derivative of the annular each represented by the following formula 2 with respect to the total mass of the nonaqueous electrolyte 0.2 mass% or more and 1 mass% or less.

Figure 0005258353
Figure 0005258353

但し、
MはB又はP、
mは0〜4、
nは0又は1、
pは1又は2、
1 はハロゲン基、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数4〜20のアリール基、炭素数4〜20のハロゲン化アリール基(これらのアルキル基、アリール基は、構造中に置換基、又はヘテロ原子を含み得る)、
2 は、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数4〜20のアリーレン基、又は炭素数4〜20のハロゲン化アリーレン基(これらのアルキレン基及びアリーレン基は、構造中に置換基、ヘテロ原子を含み得る)。
However,
M is B or P,
m is 0 to 4,
n is 0 or 1,
p is 1 or 2,
R 1 is a halogen group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 4 to 20 carbon atoms, or a halogenated aryl group having 4 to 20 carbon atoms (these alkyl groups). An aryl group may contain substituents or heteroatoms in the structure),
R 2 represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 4 to 20 carbon atoms, or a halogenated arylene group having 4 to 20 carbon atoms (these alkylene groups and The arylene group may contain a substituent and a hetero atom in the structure.

Figure 0005258353
Figure 0005258353

但し、
qは3〜5、
3、及びR4 は、アルキル基、アルコキシ基、アリール基、フェノキシ基、又はハロゲン基。これらのアルキル基、アルコキシ基、アリール基、フェノキシ基は、構造中にハロゲン基を置換基として含み得る。
However,
q is 3-5,
R 3 and R 4 are an alkyl group, an alkoxy group, an aryl group, a phenoxy group, or a halogen group. These alkyl group, alkoxy group, aryl group and phenoxy group may contain a halogen group as a substituent in the structure.

ここで、非水電解質とは、非水溶媒に支持塩を溶解した電解液、又は固体電解質に前記電解液を含有させたものをいう。
本発明においては、非水電解質に前記ホスファゼン誘導体を前記範囲内で添加しているので、高温放置時に、前記イオン性金属錯体が正極上で分解して、多量のガスが発生し、電池が膨れるのが抑制され、高温放置性能が良好である。詳細な理由は明らかでないが、これは、前記イオン性金属錯体より前記ホスファゼン誘導体が先に酸化分解し、正極に保護皮膜が形成されるので、正極表面における前記イオン性金属錯体の酸化分解が抑制され、該イオン性金属錯体の酸化分解に伴うガスの発生が抑制されためであると考えられる。また、ホスファゼン誘導体はフッ酸(HF)のトラップ剤として作用することが確認されており、このHFによる悪影響が抑制されたことにより、イオン性金属錯体の酸化分解が抑制されたと考えられる。
Here, the non-aqueous electrolyte means an electrolytic solution in which a supporting salt is dissolved in a non-aqueous solvent, or a solid electrolyte containing the electrolytic solution.
In the present invention, since the phosphazene derivative is added to the non-aqueous electrolyte within the above range, the ionic metal complex is decomposed on the positive electrode when left at a high temperature, and a large amount of gas is generated and the battery expands. Is suppressed, and the high-temperature storage performance is good. Although the detailed reason is not clear, this is because the phosphazene derivative is oxidized and decomposed earlier than the ionic metal complex, and a protective film is formed on the positive electrode, so that the oxidative decomposition of the ionic metal complex on the positive electrode surface is suppressed. This is considered to be because the generation of gas accompanying the oxidative decomposition of the ionic metal complex is suppressed. In addition, it has been confirmed that the phosphazene derivative acts as a trapping agent for hydrofluoric acid (HF), and it is considered that the oxidative decomposition of the ionic metal complex is suppressed by suppressing the adverse effects of HF.

前記ホスファゼン誘導体を非水電解質に単独で添加した場合には、高温放置時の電池の膨れは抑制されるが、負極表面の改質効果は奏されず、常温時及び高温時の充放電サイクル寿命性能はよくない。
イオン性金属錯体を非水電解質に単独で添加した場合には、負極表面に安定な保護皮膜が形成され、常温時及び高温時の充放電サイクル寿命性能が良好になるが、上述したように高温放置時に電池が膨れるという問題がある。
前記ホスファゼン誘導体とイオン性金属錯体とを併用することにより、イオン性金属錯体を単独で添加する場合と同様、良好な常温時及び高温時の充放電サイクル寿命性能が得られる。そして、高温放置時の電池の膨れが良好に抑制される。
When the phosphazene derivative is added alone to the non-aqueous electrolyte, the swelling of the battery when left at high temperature is suppressed, but the negative electrode surface modification effect is not achieved, and the charge / discharge cycle life at normal temperature and high temperature The performance is not good.
When the ionic metal complex is added alone to the non-aqueous electrolyte, a stable protective film is formed on the negative electrode surface, and the charge / discharge cycle life performance at room temperature and high temperature is improved. There is a problem that the battery swells when left unattended.
By using the phosphazene derivative and the ionic metal complex in combination, good charge / discharge cycle life performance at normal temperature and high temperature can be obtained as in the case of adding the ionic metal complex alone. And the swelling of the battery at the time of leaving high temperature is suppressed favorably.

前記ホスファゼン誘導体の含有量が0.2質量%以上1質量%以下である場合、高温放置時の電池の膨れが良好に抑制され、負極表面の皮膜改質により、常温時及び高温時の充放電サイクル寿命性能が良好になる。従って、前記含有量は0.2質量%以上1質量%以下とする。   When the content of the phosphazene derivative is 0.2% by mass or more and 1% by mass or less, swelling of the battery when left at high temperature is satisfactorily suppressed, and charge and discharge at normal temperature and high temperature are achieved by film modification on the negative electrode surface. Cycle life performance is improved. Therefore, the content is 0.2% by mass or more and 1% by mass or less.

第2発明に係る非水電解質二次電池は、第1発明において、前記イオン性金属錯体は、下記化3で表されるリチウムジフルオロオキサレートボレート(LiFOB)、下記化4で表されるリチウムビスオキサレートボレート(LiBOB)、及び下記化5で表されるリチウムテトラフルオロオキサレートホスフェート(LiFOP)のいずれかであることを特徴とする。 The non-aqueous electrolyte secondary battery according to the second invention, the lithium in the first invention, the ionic metal complex, lithium difluoro (oxalato) borate represented by the following formula 3 (LiFOB), represented by the hear 4 bis (oxalato) borate (LiBOB), and is characterized in that any one of lithium tetrafluoro oxalate phosphate represented by the following formula 5 (LiFOP).

Figure 0005258353
Figure 0005258353

Figure 0005258353
Figure 0005258353

Figure 0005258353
Figure 0005258353

第3発明に係る非水電解質二次電池は、第1又は第2発明において、前記ホスファゼン誘導体は、下記化6で表されるエトキシペンタフルオロシクロトリホスファゼン、化7で表されるフェノキシペンタフルオロシクロトリホスファゼン、及び下記化8で表されるジエトキシテトラフルオロシクロトリホスファゼンからなる群から選択される少なくとも1種であることを特徴とする。 The nonaqueous electrolyte secondary battery according to a third aspect of the present invention is the first or second aspect of the invention, wherein the phosphazene derivative is an ethoxypentafluorocyclotriphosphazene represented by the following chemical formula 6 or a phenoxy pentafluorocyclo represented by the chemical formula 7: It is at least one selected from the group consisting of triphosphazene and diethoxytetrafluorocyclotriphosphazene represented by the following chemical formula 8.

Figure 0005258353
Figure 0005258353

Figure 0005258353
Figure 0005258353

Figure 0005258353
Figure 0005258353

本発明の非水電解質二次電池によれば、前記イオン性金属錯体と所定量の前記ホスファゼン誘導体とを非水電解質に含有するので、高温放置時に、正極上で前記ホスファゼン誘導体が前記イオン性金属錯体より先に分解し、前記イオン性金属錯体の分解に起因して、電池が膨れるのが抑制される。
そして、負極に安定な保護皮膜が形成され、常温時及び高温時の充放電サイクル寿命性能が良好になる。
According to the non-aqueous electrolyte secondary battery of the present invention, since the ionic metal complex and a predetermined amount of the phosphazene derivative are contained in the non-aqueous electrolyte, the phosphazene derivative is formed on the positive electrode when left at a high temperature. It is decomposed prior to the complex, and the battery is prevented from expanding due to the decomposition of the ionic metal complex.
Then, a stable protective film is formed on the negative electrode, and the charge / discharge cycle life performance at normal temperature and high temperature is improved.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
本発明の非水電解質二次電池(以下、電池という)は、正極、負極、セパレータ及び非水電解質を有する。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
The nonaqueous electrolyte secondary battery (hereinafter referred to as battery) of the present invention has a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte.

(1)非水電解質
本発明に係る非水電解質は、前記化1で表されるイオン性金属錯体を含有する。
化1のR1 はハロゲン基、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数4〜20のアリール基、又は炭素数4〜20のハロゲン化アリール基から選択される。
これらの中でも、ハロゲン基が好ましく、フッ素が特に好ましい。R1 がフッ素の場合、その強い電子吸引性による電解質の解離度の向上とサイズが小さくなることによる移動度の向上の効果により、イオン伝導度が高くなる。
(1) Nonaqueous electrolyte The nonaqueous electrolyte which concerns on this invention contains the ionic metal complex represented by the said Chemical formula 1.
R 1 in Chemical Formula 1 is a halogen group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 4 to 20 carbon atoms, or a halogenated aryl group having 4 to 20 carbon atoms. Selected.
Among these, a halogen group is preferable and fluorine is particularly preferable. When R 1 is fluorine, the ion conductivity increases due to the effect of improving the dissociation of the electrolyte due to its strong electron-withdrawing property and the effect of improving the mobility by reducing the size.

化1のR2 は、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数4〜20のアリーレン基、又は炭素数4〜20のハロゲン化アリーレン基から選択される。
2 のアルキレン基及びアリーレン基は、構造中に置換基、又はヘテロ原子を含み得るが、具体的には、アルキレン基及びアリーレン基の水素が、ハロゲン基、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基と置換された構造、また、アルキレン基及びアリーレン基の炭素の代わりに、窒素、イオウ、酸素が導入された構造等を挙げることができる。
R 2 in Chemical Formula 1 is selected from an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 4 to 20 carbon atoms, or a halogenated arylene group having 4 to 20 carbon atoms. The
The alkylene group and arylene group of R 2 may contain a substituent or a hetero atom in the structure. Specifically, the hydrogen of the alkylene group and arylene group is a halogen group, a chain or cyclic alkyl group, aryl Group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl group, acyl group, amide group, structure substituted with hydroxyl group, and nitrogen instead of carbon of alkylene group and arylene group , Sulfur and oxygen introduced structures.

化1のMは、B又はPであるので、電気化学的安定性が良好である。
nは0又は1であるが、特に、0の場合は五員環になり、安定性が増すので好ましい。
Since M in Chemical Formula 1 is B or P, the electrochemical stability is good.
n is 0 or 1, but in particular, 0 is preferable because it becomes a five-membered ring and stability is increased.

前記イオン性金属錯体の具体例として、前記化3、化4、及び化5の他に、次の化9、及び化10が挙げられる。   Specific examples of the ionic metal complex include the following chemical formula 9 and chemical formula 10, in addition to the chemical formula 3, chemical formula 4, and chemical formula 5.

Figure 0005258353
Figure 0005258353

Figure 0005258353
Figure 0005258353

前記イオン性金属錯体の非水電解質中の含有量は、0.01質量%以上4質量%以下であるのが好ましい。
前記含有量が0.01質量%以上4質量%以下である場合、負極に、抵抗が上昇することなく、良好な厚みを有する保護皮膜が形成され、電池は、常温時及び高温時に、良好な充放電サイクル寿命性能を有する。
The content of the ionic metal complex in the non-aqueous electrolyte is preferably 0.01% by mass or more and 4% by mass or less.
When the content is 0.01% by mass or more and 4% by mass or less, a protective film having a good thickness is formed on the negative electrode without increasing the resistance, and the battery is good at room temperature and high temperature. Has charge / discharge cycle life performance.

本発明に係る非水電解質は、前記化2で表される環状のホスファゼン誘導体を含有する。
化2のR3 、及びR4 は、アルキル基、アルコキシ基、アリール基、フェノキシ基、又はハロゲン基から選択される。
アルキル基としては、飽和アルキル基、不飽和アルキル基のいずれであってもよいが、炭素数が1以上3以下であることが、難燃性が良好であるという観点からも好ましい。
アルコキシ基としては、メトキシ基、エトキシ基、又はプロポキシ基が好ましい。
ハロゲン基としては、F、Cl、又はBrが好ましい。
これらの中でも、アルコキシ基、又はハロゲン基が好ましい。アルコキシ基である場合、理由は明らかではないが、支持塩を比較的溶解しやすく、また、電気化学的な安定性も高くなる。ハロゲン基である場合、難燃効果が高く、また電気化学的安定性も高くなる。
The non-aqueous electrolyte according to the present invention contains a cyclic phosphazene derivative represented by the chemical formula 2.
R 3 and R 4 in Chemical Formula 2 are selected from an alkyl group, an alkoxy group, an aryl group, a phenoxy group, or a halogen group.
The alkyl group may be either a saturated alkyl group or an unsaturated alkyl group, but a carbon number of 1 or more and 3 or less is preferable from the viewpoint of good flame retardancy.
As an alkoxy group, a methoxy group, an ethoxy group, or a propoxy group is preferable.
As the halogen group, F, Cl, or Br is preferable.
Among these, an alkoxy group or a halogen group is preferable. In the case of an alkoxy group, the reason is not clear, but the supporting salt is relatively easily dissolved, and the electrochemical stability is increased. In the case of a halogen group, the flame retardant effect is high and the electrochemical stability is also high.

前記ホスファゼン誘導体は、単独で使用されてもよく、2種以上の誘導体が混合されていてもよい。
前記ホスファゼン誘導体としては、上記化6で表されるエトキシペンタフルオロシクロトリホスファゼン、上記化7で表されるフェノキシペンタフルオロシクロトリホスファゼン、上記化8で表されるジエトキシテトラフルオロシクロトリホスファゼン、メトキシペンタフルオロシクロトリホスファゼン、プロポキシペンタフルオロシクロトリホスファゼン、ブトキシペンタフルオロシクロトリホスファゼン等が挙げられる。アルコキシ基、又はフェノキシ基を有するホスファゼン誘導体は、酸化電位が低いので、非水電解質に添加して電池を作製した場合に、高温放置時に、正極上で酸化分解して良好な保護被膜を形成しやすく、イオン性金属錯体の分解がより抑制されるので、好ましい。
上述のホスファゼン誘導体の中でも、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼンが好ましい。これらの化合物は、電気化学的安定性が高く、使用時に分解することがなく、種々の性能が低下するという問題が生じることがない。また、ホスファゼンの粘性も比較的低いので、非水電解質に添加した場合に、粘度上昇及び伝導度低下等の問題が生じない。
The said phosphazene derivative may be used independently and 2 or more types of derivatives may be mixed.
Examples of the phosphazene derivative include ethoxypentafluorocyclotriphosphazene represented by Chemical Formula 6, phenoxypentafluorocyclotriphosphazene represented by Chemical Formula 7, diethoxytetrafluorocyclotriphosphazene represented by Chemical Formula 8, and methoxy. Examples thereof include pentafluorocyclotriphosphazene, propoxypentafluorocyclotriphosphazene, butoxypentafluorocyclotriphosphazene and the like. A phosphazene derivative having an alkoxy group or a phenoxy group has a low oxidation potential. Therefore, when a battery is produced by adding it to a non-aqueous electrolyte, a good protective film is formed by oxidative decomposition on the positive electrode when left at high temperature. It is preferable because it is easy and decomposition of the ionic metal complex is further suppressed.
Among the phosphazene derivatives described above, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and diethoxytetrafluorocyclotriphosphazene are preferable. These compounds have high electrochemical stability, do not decompose during use, and do not cause a problem that various performances are deteriorated. Moreover, since the viscosity of phosphazene is relatively low, problems such as an increase in viscosity and a decrease in conductivity do not occur when it is added to a non-aqueous electrolyte.

前記ホスファゼン誘導体の非水電解質中の含有量は、0.2質量%以上1質量%以下である。
前記含有量が前記範囲内である場合、高温放置時の電池の膨れが良好に抑制され、常温時及び高温時の充放電サイクル寿命性能が良好に向上する。
The content of the phosphazene derivative in the nonaqueous electrolyte is 0.2% by mass or more and 1% by mass or less.
When the content is within the above range, the swelling of the battery when left at high temperature is satisfactorily suppressed, and the charge / discharge cycle life performance at normal temperature and high temperature is improved.

本発明の非水電解質に用いられる非水溶媒としては、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート等が挙げられる。これらは、単独、又は混合して使用することができる。   Examples of the non-aqueous solvent used in the non-aqueous electrolyte of the present invention include ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-di- Ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methylpropyl And carbonate. These can be used alone or in combination.

本発明に係る非水電解質においては、本発明の目的を妨げない範囲で、非水溶媒中に、上記以外の他の化合物を添加剤として含んでもよく、他の化合物として具体的にはジメチルホルムアミド等のアミド類;メチル−N,N−ジメチルカーバメート等の鎖状カーバメート類;N−メチルピロリドン等の環状アミド類;N,N−ジメチルイミダゾリジノン等の環状ウレア類;ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリ(トリメチルシリル)等のホウ酸エステル類;リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリ(トリメチルシリル)等のリン酸エステル類;ビフェニル、フルオロビフェニル、o−ターフェニル、トルエン、エチルベンゼン、フルオロベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素;1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロパ−1−エンスルトン、1−メチル−1,3−プロパ−1−エンスルトン、亜硫酸エチレン、亜硫酸プロピレン、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ヘキセン、硫酸ビニレン、3−スルホレン、ジビニルスルホン、硫酸ジメチル、硫酸ジエチル等のイオウ系化合物;無水マレイン酸、ノルボルネンジカルボン酸無水物等の炭素炭素不飽和結合を有するカルボン酸無水物を挙げることができる。これらのうち、炭素炭素不飽和結合を有するカルボン酸無水物を含む場合には、負極における電解質の安定性がさらに高まり、かつ、電極の厚みの増加も大幅に抑制されるので望ましい。
また、ビニレンカーボネート、ジメチルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等の不飽和結合含有カーボネートを適宜添加してもよい。これにより、非水溶媒のエステル交換反応が抑制され、常温充放電のサイクル寿命性能が良好になる。
In the non-aqueous electrolyte according to the present invention, other compounds than the above may be included as additives in the non-aqueous solvent as long as the object of the present invention is not hindered. Amides such as: chain carbamates such as methyl-N, N-dimethylcarbamate; cyclic amides such as N-methylpyrrolidone; cyclic ureas such as N, N-dimethylimidazolidinone; trimethyl borate, boric acid Borate esters such as triethyl, tributyl borate, trioctyl borate, tri (trimethylsilyl) borate; phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tri (trimethylsilyl) phosphate Biphenyl, fluorobiphenyl, o-terphenyl, toluene, ethylbenzene, full Aromatic hydrocarbons such as lobenzene and cyclohexylbenzene; 1,3-propane sultone, 1,4-butane sultone, 1,3-prop-1-ene sultone, 1-methyl-1,3-prop-1-ene sultone, ethylene sulfite Sulfur compounds such as propylene sulfite, ethylene sulfate, propylene sulfate, butene sulfate, hexene sulfate, vinylene sulfate, 3-sulfolene, divinyl sulfone, dimethyl sulfate, diethyl sulfate; carbon carbon such as maleic anhydride, norbornene dicarboxylic acid anhydride, etc. Mention may be made of carboxylic anhydrides having an unsaturated bond. Of these, when a carboxylic acid anhydride having a carbon-carbon unsaturated bond is included, the stability of the electrolyte in the negative electrode is further enhanced, and an increase in the thickness of the electrode is greatly suppressed, which is desirable.
Further, unsaturated bond-containing carbonates such as vinylene carbonate, dimethyl vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate may be added as appropriate. Thereby, the transesterification reaction of a nonaqueous solvent is suppressed and the cycle life performance of normal temperature charge / discharge is improved.

本発明の非水電解質に使用される支持塩としては、通常の非水電解質に用いられているリチウム塩を使用することができる。
リチウム塩の具体例としては、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiCF3 CO2 、LiCF3 SO3 、LiCF3 CF2 SO3 、LiCF3 CF2 CF2 SO3 、LiN(SO2 CF3 2 、LiN(SO2 CF2 CF3 2 、LiN(COCF3 2 、LiN(COCF2 CF3 2 、LiPF3 (CF2 CF3 3 等の塩、もしくはこれらの混合物を使用することができる。
以上のリチウム塩は、好ましくは0.5〜2mol/Lの濃度で非水電解質中に含有される。
As the supporting salt used in the nonaqueous electrolyte of the present invention, a lithium salt used in a normal nonaqueous electrolyte can be used.
Specific examples of the lithium salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 A salt of CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 , or a mixture thereof. Can be used.
The above lithium salt is preferably contained in the nonaqueous electrolyte at a concentration of 0.5 to 2 mol / L.

(2)正極
本発明の電池に用いられる正極活物質としては、リチウムを吸蔵放出可能な化合物である、組成式Lix MO2 、又はLiy 2 4 (ただしMは遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物を用いることができる。その具体例としては、LiCoO2 、LiNiO2 、LiMn2 4 、Li2 Mn2 4 等がある。これらは混合して用いてもよい。また、粒状の活物質を用いる場合には、例えば、活物質粒子と導電助剤とバインダとからなる合剤をアルミニウム等の金属集電体上に形成して作製することができる。
(2) Positive Electrode As a positive electrode active material used in the battery of the present invention, a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ A composite oxide represented by x ≦ 1, 0 ≦ y ≦ 2), an oxide having a tunnel-like hole, or a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and Li 2 Mn 2 O 4 . These may be used as a mixture. Moreover, when using a granular active material, it can produce by forming the mixture which consists of an active material particle, a conductive support agent, and a binder on metal collectors, such as aluminum, for example.

(3)負極
本発明の電池に用いられる負極活物質としては、例えば、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe2 3 、WO2 、MoO2 等の遷移金属酸化物、グラファイト、カーボン等の炭素材料、Li3 (Li3 N)等の窒化リチウム、若しくは金属リチウム箔、又は、これらの混合物を用いることができる。また、粒状の炭素材料を用いる場合には、例えば、活物質粒子とバインダとからなる合剤を銅等の金属集電体上に形成することで作製することができる。前記炭素材料としては、天然黒鉛、人造黒鉛(MCMB又はMCF等のメソフェーズ系黒鉛)を用いることが好ましく、メソフェーズ系黒鉛(MCMB又はMCF)を用いることがさらに好ましい。また、天然黒鉛の表面の一部又は全部を、天然黒鉛よりも結晶性が低い低結晶性炭素で被覆したものを用いてもよい。
(3) Negative electrode Examples of the negative electrode active material used in the battery of the present invention include, for example, alloys of Al, Si, Pb, Sn, Zn, Cd, and the like with lithium, transitions such as LiFe 2 O 3 , WO 2 , and MoO 2. Metal materials such as metal oxide, graphite, and carbon, lithium nitride such as Li 3 (Li 3 N), metal lithium foil, or a mixture thereof can be used. Moreover, when using a granular carbon material, it can produce, for example by forming the mixture which consists of an active material particle and a binder on metal collectors, such as copper. As the carbon material, natural graphite or artificial graphite (mesophase graphite such as MCMB or MCF) is preferably used, and mesophase graphite (MCMB or MCF) is more preferably used. Moreover, you may use what coat | covered the part or all of the surface of natural graphite with the low crystalline carbon whose crystallinity is lower than natural graphite.

(4)セパレータ
本発明のセパレータとしては、多孔性ポリオレフィン膜、及び多孔性ポリ塩化ビニル膜等の多孔性ポリマー膜、又は、リチウムイオン若しくはイオン導電性ポリマー電解質膜を、単独、又は組み合わせて使用することができる。中でもポリエチレン及びポリプロピレン製の微多孔膜、又はこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚み、膜強度、膜抵抗等の面で好適に用いられる。
そして、高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。
さらに、合成樹脂微多孔膜と高分子固体電解質等とを組み合わせて使用してもよい。この場合、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに溶液状の電解質を含有させることにしてもよい。
(4) Separator As the separator of the present invention, a porous polymer film such as a porous polyolefin film and a porous polyvinyl chloride film, or a lithium ion or ion conductive polymer electrolyte film is used alone or in combination. be able to. Among these, a microporous membrane made of polyethylene and polypropylene, or a polyolefin microporous membrane such as a microporous membrane composed of these is preferably used in terms of thickness, membrane strength, membrane resistance, and the like.
And it can also serve as a separator by using solid electrolytes, such as a polymer solid electrolyte.
Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination. In this case, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and the polymer solid electrolyte may further contain a solution electrolyte.

本発明の電池の形状は特に限定されるものではなく、角形、長円筒形、コイン形、ボタン形、シート形、円筒型電池等の様々な形状の非水電解質二次電池に適用することが可能であるが、角形、長円筒形、コイン形、ボタン形、シート形等、電池ケースが変形しやすい電池において、効果が良好に発現される。   The shape of the battery of the present invention is not particularly limited, and can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, a long cylinder, a coin, a button, a sheet, and a cylindrical battery. Although it is possible, the effect is satisfactorily exhibited in a battery in which the battery case is easily deformed, such as a rectangular shape, a long cylindrical shape, a coin shape, a button shape, and a sheet shape.

以下、本発明を好適な実施例を用いて説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, the present invention will be described with reference to preferred embodiments. However, the present invention is not limited to the embodiments in any way, and can be implemented with appropriate modifications within a range not changing the gist thereof. .

(実施例1)
図1は、本発明に係る非水電解質二次電池1を示す断面図である。図1において、非水電解質二次電池1は角型の電池であり、電極群2、負極3、正極4、セパレータ5、電池ケース6、ケース蓋7、安全弁8、負極端子9、及び負極リード10を備える。電極群2は、負極3と正極4とをセパレータ5を介して扁平状に巻回して得られる。電極群2及び非水電解質は電池ケース6に収納され、電池ケース6の開口部は、安全弁8が設けられたケース蓋7をレーザー溶接することで密閉されている。負極端子9は負極リード10を介して負極3と接続され、正極4は電池ケース6の内面と接続されている。
Example 1
FIG. 1 is a cross-sectional view showing a nonaqueous electrolyte secondary battery 1 according to the present invention. In FIG. 1, a non-aqueous electrolyte secondary battery 1 is a rectangular battery, and includes an electrode group 2, a negative electrode 3, a positive electrode 4, a separator 5, a battery case 6, a case lid 7, a safety valve 8, a negative electrode terminal 9, and a negative electrode lead. 10 is provided. The electrode group 2 is obtained by winding the negative electrode 3 and the positive electrode 4 in a flat shape with the separator 5 interposed therebetween. The electrode group 2 and the nonaqueous electrolyte are accommodated in a battery case 6, and the opening of the battery case 6 is sealed by laser welding a case lid 7 provided with a safety valve 8. The negative electrode terminal 9 is connected to the negative electrode 3 via the negative electrode lead 10, and the positive electrode 4 is connected to the inner surface of the battery case 6.

正極4は、以下のようにして作製した。
まず、正極活物質としてのLiCoO2 94質量%と、導電助剤としてのアセチレンブラック3質量%と、バインダとしてのポリフッ化ビニリデン(PVDF)3質量%とを混合して正極合剤とし、これをN−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調整した。このペーストを厚み15μmのアルミニウム集電体に均一に塗布して乾燥させた後、正極合剤層の密度が3.6g/cm3 になるように、ロールプレスで圧縮成形して正極4を作製した。
The positive electrode 4 was produced as follows.
First, 94% by mass of LiCoO 2 as a positive electrode active material, 3% by mass of acetylene black as a conductive auxiliary agent, and 3% by mass of polyvinylidene fluoride (PVDF) as a binder are mixed to form a positive electrode mixture. The paste was prepared by dispersing in N-methyl-2-pyrrolidone (NMP). The paste was uniformly applied to an aluminum current collector having a thickness of 15 μm and dried, and then the positive electrode 4 was produced by compression molding with a roll press so that the density of the positive electrode mixture layer was 3.6 g / cm 3. did.

負極3は、以下のようにして作製した。
まず、負極活物質としての黒鉛97質量%と、バインダとしてのカルボキシメチルセルロース1.5質量%と、スチレンブタジエンゴム1.5質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調整した。この調整したスラリーを厚み10μmの銅集電体に均一に塗布して、100℃で5時間乾燥させた後、負極合剤層の密度が1.6g/cm3 となるように、ロールプレスで圧縮成形して負極3を作製した。
The negative electrode 3 was produced as follows.
First, 97% by mass of graphite as a negative electrode active material, 1.5% by mass of carboxymethyl cellulose as a binder, and 1.5% by mass of styrene butadiene rubber are mixed, and dispersed by adding distilled water as appropriate. did. This adjusted slurry was uniformly applied to a copper collector having a thickness of 10 μm, dried at 100 ° C. for 5 hours, and then roll-pressed so that the negative electrode mixture layer had a density of 1.6 g / cm 3. The negative electrode 3 was produced by compression molding.

セパレータ5としては、厚さ18μmの微多孔製ポリエチレンフィルムを用いた。非水電解質としては、ECとエチルメチルカーボネート(EMC)との体積比3:7の混合溶媒に、LiPF6 を1.1mol/Lの濃度で溶解させ、さらに非水電解質の総質量に対して、イオン性金属錯体として前記化3で表されるLiFOBを1.0質量%、ホスファゼン誘導体として前記化6で表されるエトキシペンタフルオロシクロトリホスファゼンを1質量%添加したものを用いた。非水電解質二次電池1のサイズは、幅34mm、厚さ略4.3mm、高さ50mmであり、容量は850mAhである。 As the separator 5, a microporous polyethylene film having a thickness of 18 μm was used. As a non-aqueous electrolyte, LiPF 6 was dissolved in a mixed solvent of EC and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 at a concentration of 1.1 mol / L, and further, with respect to the total mass of the non-aqueous electrolyte. As the ionic metal complex, 1.0% by mass of LiFOB represented by Chemical Formula 3 and 1% by mass of ethoxypentafluorocyclotriphosphazene represented by Chemical Formula 6 as a phosphazene derivative were used. The nonaqueous electrolyte secondary battery 1 has a width of 34 mm, a thickness of approximately 4.3 mm, a height of 50 mm, and a capacity of 850 mAh.

(実施例2)
非水電解質の総質量に対してエトキシペンタフルオロシクロトリホスファゼンを0.7質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例3)
非水電解質の総質量に対してエトキシペンタフルオロシクロトリホスファゼンを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例4)
非水電解質の総質量に対してエトキシペンタフルオロシクロトリホスファゼンを0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that 0.7% by mass of ethoxypentafluorocyclotriphosphazene was added to the total mass of the nonaqueous electrolyte.
(Example 3)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of ethoxypentafluorocyclotriphosphazene was added to the total mass of the nonaqueous electrolyte.
Example 4
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of ethoxypentafluorocyclotriphosphazene was added to the total mass of the nonaqueous electrolyte.

(実施例5)
非水電解質の総質量に対し、LiFOBを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 5)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of LiFOB was added to the total mass of the nonaqueous electrolyte.

(実施例6)
非水電解質の総質量に対し、ホスファゼン誘導体として前記化7で表されるフェノキシペンタフルオロシクロトリホスファゼンを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 6)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of phenoxypentafluorocyclotriphosphazene represented by Chemical Formula 7 was added as a phosphazene derivative with respect to the total mass of the nonaqueous electrolyte.

(実施例7)
非水電解質の総質量に対し、エトキシペンタフルオロシクロトリホスファゼンを0.5質量%と、フェノキシペンタフルオロシクロトリホスファゼンを0.5質量%とを添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 7)
In the same manner as in Example 1 except that 0.5% by mass of ethoxypentafluorocyclotriphosphazene and 0.5% by mass of phenoxypentafluorocyclotriphosphazene are added to the total mass of the nonaqueous electrolyte. A battery was produced.

(実施例8)
非水電解質の総質量に対し、イオン性金属錯体として前記化4で表されるLiBOBを0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 8)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of LiBOB represented by Chemical Formula 4 was added as an ionic metal complex with respect to the total mass of the nonaqueous electrolyte.

(実施例9)
非水電解質の総質量に対し、ホスファゼン誘導体として化8で表されるジエトキシテトラフルオロシクロトリホスファゼンを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
Example 9
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of diethoxytetrafluorocyclotriphosphazene represented by Chemical formula 8 was added as a phosphazene derivative with respect to the total mass of the nonaqueous electrolyte.

(比較例1)
非水電解質に、イオン性金属錯体及びホスファゼン誘導体は添加せず、それ以外は実施例1と同様にして電池を作製した。
(比較例2)
非水電解質の総質量に対して、LiFOBを1質量%添加し、ホスファゼン誘導体は添加せず、それ以外は比較例1と同様にして電池を作製した。
(比較例3)
非水電解質の総質量に対して、LiBOBを0.5質量%添加し、ホスファゼン誘導体は添加せず、それ以外は実施例1と同様にして電池を作製した。
(比較例4)
非水電解質の総質量に対して、LiBOBを1質量%添加し、ホスファゼン誘導体は添加せず、それ以外は実施例1と同様にして電池を作製した。
(比較例5)
非水電解質の総質量に対して、前記化5で表されるLiFOPを1質量%添加し、ホスファゼン誘導体は添加せず、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that the ionic metal complex and the phosphazene derivative were not added to the nonaqueous electrolyte.
(Comparative Example 2)
A battery was fabricated in the same manner as in Comparative Example 1 except that 1% by mass of LiFOB was added with respect to the total mass of the nonaqueous electrolyte, and no phosphazene derivative was added.
(Comparative Example 3)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of LiBOB was added to the total mass of the nonaqueous electrolyte and no phosphazene derivative was added.
(Comparative Example 4)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of LiBOB was added with respect to the total mass of the nonaqueous electrolyte, and no phosphazene derivative was added.
(Comparative Example 5)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of LiFOP represented by Chemical Formula 5 was added with respect to the total mass of the nonaqueous electrolyte, and the phosphazene derivative was not added.

(比較例6)
非水電解質の総質量に対して、イオン性金属錯体は添加せず、エトキシペンタフルオロシクロトリホスファゼンを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例7)
非水電解質の総質量に対して、イオン性金属錯体は添加せず、フェノキシペンタフルオロシクロトリホスファゼンを1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例8)
非水電解質の総質量に対して、エトキシペンタフルオロシクロトリホスファゼンを2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(比較例9)
非水電解質の総質量に対して、エトキシペンタフルオロシクロトリホスファゼンを0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 6)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of ethoxypentafluorocyclotriphosphazene was added without adding the ionic metal complex to the total mass of the nonaqueous electrolyte.
(Comparative Example 7)
A battery was fabricated in the same manner as in Example 1 except that 1% by mass of phenoxypentafluorocyclotriphosphazene was added without adding the ionic metal complex to the total mass of the nonaqueous electrolyte.
(Comparative Example 8)
A battery was fabricated in the same manner as in Example 1 except that 2% by mass of ethoxypentafluorocyclotriphosphazene was added to the total mass of the nonaqueous electrolyte.
(Comparative Example 9)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of ethoxypentafluorocyclotriphosphazene was added to the total mass of the nonaqueous electrolyte.

上述した各実施例及び比較例の電池に対して、以下の性能評価を行った。   The following performance evaluation was performed on the batteries of the above-described examples and comparative examples.

[高温放置時の電池厚みの増加量の算出]
各実施例及び比較例の電池を10セルずつ作製し、25℃の恒温槽中で850mAの電流で4.2Vまで3時間、定電流定電圧充電をして電池厚みを測定した後、80℃の恒温槽中で48時間放置して電池厚みを測定し、放置前後の電池厚みの差(膨れ)を算出した。
[Calculation of increase in battery thickness when left at high temperature]
10 cells of each example and comparative example were prepared, and the battery thickness was measured by constant current and constant voltage charging to 4.2 V at a current of 850 mA for 3 hours in a constant temperature bath at 25 ° C., and then 80 ° C. The battery thickness was measured by leaving it in a constant temperature bath for 48 hours, and the difference (swelling) in battery thickness before and after being left was calculated.

[25℃×500充放電サイクル試験(以下、25℃充放電サイクル試験という)後の容量保持率の算出]
各実施例及び比較例の電池を10セルずつ作製し、25℃の恒温槽中で、850mAの電流で4.2Vまで3時間、定電流定電圧充電をした後、850mAの電流で3.0Vまで放電を行い、初期放電容量を求める。初期放電容量の測定と同一の条件で、25℃の恒温槽中で充放電サイクルを500サイクル行う。サイクル試験後の電池を初期放電容量の測定と同様に25℃恒温槽中で、サイクル試験後の放電容量を求める。
25℃×500サイクル後の容量保持率の算出式を以下に示す。
容量保持率(%)=(サイクル試験後の25℃放電容量)÷(初期放電容量)×100
[Calculation of capacity retention after 25 ° C. × 500 charge / discharge cycle test (hereinafter referred to as 25 ° C. charge / discharge cycle test)]
10 cells of each Example and Comparative Example were prepared, and after constant current and constant voltage charging at a current of 850 mA to 4.2 V for 3 hours in a constant temperature bath at 25 ° C., 3.0 V at a current of 850 mA. Until the initial discharge capacity is obtained. Under the same conditions as the measurement of the initial discharge capacity, 500 charge / discharge cycles are performed in a constant temperature bath at 25 ° C. Similarly to the measurement of the initial discharge capacity, the battery after the cycle test is obtained in a constant temperature bath at 25 ° C. to determine the discharge capacity after the cycle test.
The formula for calculating the capacity retention after 25 ° C. × 500 cycles is shown below.
Capacity retention (%) = (25 ° C. discharge capacity after cycle test) / (initial discharge capacity) × 100

[45℃×500充放電サイクル試験(以下、45℃充放電サイクル試験という)後の容量保持率の算出]
各実施例及び比較例の電池を10セルずつ作製し、25℃の恒温槽中で、850mAの電流で4.2Vまで3時間、定電流定電圧充電をした後、850mAの電流で3.0Vまで放電を行い、初期放電容量を求める。初期放電容量の測定と同一の条件で、45℃の恒温槽中で充放電サイクルを500サイクル行う。サイクル試験後の電池を初期放電容量の測定と同様に25℃恒温槽中で、サイクル試験後の放電容量を求める。
45℃×500サイクル後の容量保持率の算出式を以下に示す。
容量保持率(%)=(サイクル試験後の25℃放電容量)÷(初期放電容量)×100
[Calculation of capacity retention after 45 ° C. × 500 charge / discharge cycle test (hereinafter referred to as 45 ° C. charge / discharge cycle test)]
10 cells of each Example and Comparative Example were prepared, and after constant current and constant voltage charging at a current of 850 mA to 4.2 V for 3 hours in a constant temperature bath at 25 ° C., 3.0 V at a current of 850 mA. Until the initial discharge capacity is obtained. Under the same conditions as the measurement of the initial discharge capacity, 500 charge / discharge cycles are performed in a 45 ° C. constant temperature bath. Similarly to the measurement of the initial discharge capacity, the battery after the cycle test is obtained in a constant temperature bath at 25 ° C. to determine the discharge capacity after the cycle test.
The formula for calculating the capacity retention after 45 ° C. × 500 cycles is shown below.
Capacity retention (%) = (25 ° C. discharge capacity after cycle test) / (initial discharge capacity) × 100

下記の表1に、電池の膨れ、及び容量保持率を算出した結果を示す。   Table 1 below shows the results of calculation of battery swelling and capacity retention.

Figure 0005258353
Figure 0005258353

表1より、イオン性金属錯体及びホスファゼン誘導体のいずれも添加しなかった比較例1の電池は、高温放置時の電池の膨れは大きな問題とはならない程度であるが、25℃充放電サイクル試験後、及び45℃充放電サイクル試験後の容量保持率がそれぞれ60%、10%と低いことが分かる。   According to Table 1, the battery of Comparative Example 1 in which neither the ionic metal complex nor the phosphazene derivative was added was such that swelling of the battery when left at high temperature was not a major problem, but after the 25 ° C. charge / discharge cycle test It can be seen that the capacity retention after the 45 ° C. charge / discharge cycle test is as low as 60% and 10%, respectively.

LiFOBを1質量%添加した比較例2の電池、LiBOBをそれぞれ0.5質量%、1質量%添加した比較例3、及び4の電池、並びにLiFOPを1質量%添加した比較例5の電池は、25℃充放電サイクル試験後の容量保持率は良好であるが、電池の膨れが0.8mmを超えており、高温放置性能が悪い。そして、比較例3の電池は、LiBOBの添加量が0.5質量%と少ないこともあり、45℃充放電サイクル試験後の容量保持率が58%と低下している。
エトキシペンタフルオロシクロトリホスファゼン、又はフェノキシペンタフルオロシクロトリホスファゼンを1質量%添加した比較例6及び7の電池は、電池の膨れは抑制されているが、25℃充放電サイクル試験後の容量保持率は58%であり、45℃充放電サイクル試験後の容量保持率はさらに低下しており、充放電サイクル寿命性能が悪い。
比較例2〜7より、非水電解質にイオン性金属錯体を単独で添加することにより容量保持率は概ね良好になるが、電池が膨れるという問題があり、ホスファゼン誘導体を単独で添加することにより電池の膨れは抑制されるが、容量保持率が低いという問題があることが確認された。
そして、イオン性金属錯体が添加されていない比較例1、6及び7は、負極上で非水電解質の分解反応が進行するので非水電解質の枯渇が生じやすく、充放電サイクル寿命性能は大幅に低下するが、この非水電解質の分解反応は、温度が高いほど生じやすいので、容量保持率は、45℃の場合、25℃の場合と比較してさらに低くなることが確認された。
The battery of Comparative Example 2 to which 1% by mass of LiFOB was added, the batteries of Comparative Examples 3 and 4 to which 0.5% by mass and 1% by mass of LiBOB were added, respectively, and the battery of Comparative Example 5 to which 1% by mass of LiFOP was added were The capacity retention after the 25 ° C. charge / discharge cycle test is good, but the swelling of the battery exceeds 0.8 mm, and the high temperature storage performance is poor. In the battery of Comparative Example 3, the amount of LiBOB added may be as small as 0.5% by mass, and the capacity retention after the 45 ° C. charge / discharge cycle test is reduced to 58%.
In the batteries of Comparative Examples 6 and 7 to which 1% by mass of ethoxypentafluorocyclotriphosphazene or phenoxypentafluorocyclotriphosphazene was added, the battery swelling was suppressed, but the capacity retention after the 25 ° C. charge / discharge cycle test Is 58%, the capacity retention after the 45 ° C. charge / discharge cycle test is further lowered, and the charge / discharge cycle life performance is poor.
From Comparative Examples 2 to 7, the capacity retention ratio is generally improved by adding the ionic metal complex alone to the nonaqueous electrolyte, but there is a problem that the battery swells, and the battery is obtained by adding the phosphazene derivative alone. It was confirmed that there was a problem that the capacity retention was low, although swelling of the ink was suppressed.
In Comparative Examples 1, 6 and 7 to which no ionic metal complex is added, the nonaqueous electrolyte decomposition reaction proceeds on the negative electrode, so that the nonaqueous electrolyte is easily depleted, and the charge / discharge cycle life performance is greatly improved. Although it is lowered, the decomposition reaction of the non-aqueous electrolyte is more likely to occur as the temperature is higher. Therefore, it was confirmed that the capacity retention rate was lower at 45 ° C. than at 25 ° C.

イオン性金属錯体及びホスファゼン誘導体のいずれも添加した実施例1〜9の電池は全て電池の膨れが0.60mm以下と良好であった。また、25℃、及び45℃の充放電サイクル試験の容量保持率もいずれも70%以上と良好であった。これらの結果より、イオン性金属錯体及びホスファゼン誘導体のいずれも添加した場合、高温放置性能、並びに常温時及び高温時の充放電サイクル寿命性能が良好であることが分かる。
実施例1〜9において、容量保持率が、45℃の場合、25℃の場合より高いのは、45℃の環境下では非水電解質の粘性が下がるので、25℃の場合よりも反応が極板の全体に亘って均一に生じ(電流分布が均一になる)、活物質が局所的に劣化することがないためであると考えられる。
また、45℃の環境下では、上述したように非水電解質の粘性が下がることにより、正極及び負極上における分解物が拡散しやすく、セパレータの目詰まりが生じにくいためであるとも考えられる。
The batteries of Examples 1 to 9 to which both the ionic metal complex and the phosphazene derivative were added all had good battery swelling of 0.60 mm or less. Moreover, the capacity | capacitance retention of the charging / discharging cycle test of 25 degreeC and 45 degreeC was all as favorable as 70% or more. From these results, it can be seen that when both the ionic metal complex and the phosphazene derivative are added, the high-temperature standing performance and the charge / discharge cycle life performance at normal temperature and high temperature are good.
In Examples 1 to 9, when the capacity retention rate is 45 ° C., the reaction rate is higher than in the case of 25 ° C. because the viscosity of the nonaqueous electrolyte decreases in the environment of 45 ° C. This is presumably because it occurs uniformly over the entire plate (the current distribution becomes uniform) and the active material does not deteriorate locally.
In addition, under the environment of 45 ° C., the viscosity of the non-aqueous electrolyte is lowered as described above, so that decomposition products on the positive electrode and the negative electrode are easily diffused and the separator is not easily clogged.

なお、イオン性金属錯体としてLiFOBを1質量%添加し、エトキシペンタフルオロシクロトリホスファゼンの添加量を変えた実施例1〜4、及び比較例8、9を比較することにより、前記添加量が0.2〜1質量%である実施例1〜4の場合、電池の膨れの抑制効果、及び容量保持率ともに良好であるが、前記添加量が2質量%である比較例8の場合、容量保持率が低下し、前記添加量が0.1質量%である比較例9の場合、電池の膨れが大きくなることが分かる。
従って、ホスファゼン誘導体の添加量は0.2質量%以上1質量%とされる。
In addition, by adding 1% by mass of LiFOB as an ionic metal complex and changing the addition amount of ethoxypentafluorocyclotriphosphazene, and comparing Comparative Examples 8 and 9, the addition amount was 0. In the case of Examples 1 to 4 which are 2 to 1% by mass, both the effect of suppressing the swelling of the battery and the capacity retention ratio are good, but in the case of Comparative Example 8 in which the addition amount is 2% by mass, the capacity is retained. In the case of Comparative Example 9 in which the rate decreases and the addition amount is 0.1% by mass, it can be seen that the swelling of the battery increases.
Therefore, the addition amount of the phosphazene derivative is 0.2 mass% or more and 1 mass%.

エトキシペンタフルオロシクロトリホスファゼンを1質量%添加する場合、LiFOBを1質量%添加した実施例1と、LiFOBを0.5質量%添加した実施例5とを比較することにより、LiFOBの添加量が多い実施例1の方が、25℃充放電サイクル試験後、及び45℃充放電サイクル試験後の容量保持率は向上しているが、電池の膨れは大きくなっていることが分かる。   When 1% by mass of ethoxypentafluorocyclotriphosphazene is added, the amount of LiFOB added is determined by comparing Example 1 in which 1% by mass of LiFOB is added with Example 5 in which 0.5% by mass of LiFOB is added. It can be seen that in Example 1, the capacity retention after the 25 ° C. charge / discharge cycle test and after the 45 ° C. charge / discharge cycle test is improved, but the swelling of the battery is increased.

イオン性金属錯体としてLiFOBを1質量%添加する場合、ホスファゼン誘導体としてエトキシペンタフルオロシクロトリホスファゼンを添加した実施例1、フェノキシペンタフルオロシクロトリホスファゼンを添加した実施例6、両方のホスファゼン誘導体を添加した実施例7、及びジエトキシテトラフルオロシクロトリホスファゼンを添加した実施例9のいずれも、高温放置性能、並びに常温時及び高温時の充放電サイクル寿命性能が良好であった。LiBOBを0.5質量%添加し、エトキシペンタフルオロシクロトリホスファゼンを1質量%添加した実施例8も同様に、高温放置性能、並びに常温時及び高温時の充放電サイクル寿命性能が良好であった。   When 1% by mass of LiFOB was added as the ionic metal complex, Example 1 was added with ethoxypentafluorocyclotriphosphazene as the phosphazene derivative, Example 6 was added with phenoxypentafluorocyclotriphosphazene, and both phosphazene derivatives were added. Both Example 7 and Example 9 to which diethoxytetrafluorocyclotriphosphazene was added had good high-temperature standing performance and charge / discharge cycle life performance at room temperature and high temperature. Similarly, in Example 8 in which 0.5% by mass of LiBOB and 1% by mass of ethoxypentafluorocyclotriphosphazene were added, the high-temperature storage performance and the charge / discharge cycle life performance at room temperature and high temperature were also good. .

以上より、前記化1で表されるイオン性金属錯体を含み、前記化2で表される環状のホスファゼン誘導体を該非水電解質の総質量に対して、0.2質量%以上1質量%以下含む本発明の非水電解質二次電池は、高温放置性能、並びに常温時及び高温時の充放電サイクル寿命性能が良好であることが分かる。   As described above, the ionic metal complex represented by the chemical formula 1 is included, and the cyclic phosphazene derivative represented by the chemical formula 2 is included in an amount of 0.2% by mass to 1% by mass with respect to the total mass of the nonaqueous electrolyte. It can be seen that the non-aqueous electrolyte secondary battery of the present invention has good high-temperature storage performance and charge / discharge cycle life performance at room temperature and high temperature.

本発明に係る非水電解質二次電池を示す断面図である。It is sectional drawing which shows the nonaqueous electrolyte secondary battery which concerns on this invention.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 ケース蓋
8 安全弁
9 負極端子
10 負極リード
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case 7 Case lid 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead

Claims (3)

底板部、該底板部に周設された4つの側板部、及び蓋板部を有する電池ケースと、
リチウムイオンを吸蔵及び放出する板状の正極並びに負極をセパレータを介し巻回してなり、巻回軸が前記底板部に平行になる状態で前記電池ケースに収容される電極群と、
前記電池ケースに注入される非水電解質と
を有する非水電解質二次電池において、
前記非水電解質は、
下記化1で表されるイオン性金属錯体を含み、
下記化2で表される環状のホスファゼン誘導体を該非水電解質の総質量に対して、0.2質量%以上1質量%以下含むことを特徴とする非水電解質二次電池。
Figure 0005258353
但し、
MはB又はP、
mは0〜4、
nは0又は1、
pは1又は2、
1 はハロゲン基、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数4〜20のアリール基、又は炭素数4〜20のハロゲン化アリール基(これらのアルキル基、アリール基は、構造中に置換基、又はヘテロ原子を含み得る)、
2 は、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数4〜20のアリーレン基、又は炭素数4〜20のハロゲン化アリーレン基(これらのアルキレン基及びアリーレン基は、構造中に置換基、又はヘテロ原子を含み得る)。
Figure 0005258353
但し、
qは3〜5、
3 、及びR4 は、アルキル基、アルコキシ基、アリール基、フェノキシ基、又はハロゲン基。これらのアルキル基、アルコキシ基、アリール基、フェノキシ基は、構造中にハロゲン基を置換基として含み得る。
A battery case having a bottom plate portion, four side plate portions provided around the bottom plate portion, and a lid plate portion;
A plate-like positive electrode and a negative electrode that occlude and release lithium ions are wound through a separator, and an electrode group that is housed in the battery case in a state in which a winding shaft is parallel to the bottom plate part ,
In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte injected into the battery case ,
The non-aqueous electrolyte is
Including an ionic metal complex represented by the following chemical formula 1,
A nonaqueous electrolyte secondary battery comprising a cyclic phosphazene derivative represented by the following chemical formula 2 in an amount of 0.2% by mass to 1% by mass with respect to the total mass of the nonaqueous electrolyte.
Figure 0005258353
However,
M is B or P,
m is 0 to 4,
n is 0 or 1,
p is 1 or 2,
R 1 represents a halogen group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 4 to 20 carbon atoms, or a halogenated aryl group having 4 to 20 carbon atoms (these alkyl groups). Group, aryl group may contain a substituent or a hetero atom in the structure),
R 2 represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 4 to 20 carbon atoms, or a halogenated arylene group having 4 to 20 carbon atoms (these alkylene groups and Arylene groups may include substituents or heteroatoms in the structure).
Figure 0005258353
However,
q is 3-5,
R 3 and R 4 are an alkyl group, an alkoxy group, an aryl group, a phenoxy group, or a halogen group. These alkyl group, alkoxy group, aryl group and phenoxy group may contain a halogen group as a substituent in the structure.
前記イオン性金属錯体は、下記化3で表されるリチウムジフルオロオキサレートボレート(LiFOB)、下記化4で表されるリチウムビスオキサレートボレート(LiBOB)、及び下記化5で表されるリチウムテトラフルオロオキサレートホスフェート(LiFOP)のいずれかである請求項1に記載の非水電解質二次電池。
Figure 0005258353
Figure 0005258353
Figure 0005258353
The ionic metal complex, lithium difluoro (oxalato) borate represented by the following formula 3 (LiFOB), lithium bis (oxalato) borate represented by the following formula 4 (LiBOB), and lithium tetrafluoro each represented by the following formula 5 The nonaqueous electrolyte secondary battery according to claim 1, which is any one of oxalate phosphate (LiFOP).
Figure 0005258353
Figure 0005258353
Figure 0005258353
前記ホスファゼン誘導体は、下記化6で表されるエトキシペンタフルオロシクロトリホスファゼン、化7で表されるフェノキシペンタフルオロシクロトリホスファゼン、及び下記化8で表されるジエトキシテトラフルオロシクロトリホスファゼンからなる群から選択される少なくとも1種である請求項1又は2に記載の非水電解質二次電池。
Figure 0005258353
Figure 0005258353
Figure 0005258353
The phosphazene derivative is a group consisting of ethoxypentafluorocyclotriphosphazene represented by the following chemical formula 6, phenoxypentafluorocyclotriphosphazene represented by the chemical formula 7, and diethoxytetrafluorocyclotriphosphazene represented by the chemical formula 8 below. The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is at least one selected from the group consisting of:
Figure 0005258353
Figure 0005258353
Figure 0005258353
JP2008092541A 2008-03-31 2008-03-31 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5258353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092541A JP5258353B2 (en) 2008-03-31 2008-03-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092541A JP5258353B2 (en) 2008-03-31 2008-03-31 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009245828A JP2009245828A (en) 2009-10-22
JP5258353B2 true JP5258353B2 (en) 2013-08-07

Family

ID=41307479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092541A Expired - Fee Related JP5258353B2 (en) 2008-03-31 2008-03-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5258353B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495796B1 (en) * 2009-10-28 2016-09-21 NEC Energy Devices, Ltd. Non-aqueous electrolyte solution and electrochemical device comprising the same
KR101117699B1 (en) * 2009-11-19 2012-02-24 삼성에스디아이 주식회사 Electrolytic solution for lithium battery and lithium battery employing the same
KR20120063163A (en) 2010-12-07 2012-06-15 삼성전자주식회사 Lithium air battery
US9123973B2 (en) * 2010-12-22 2015-09-01 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP5776422B2 (en) * 2011-08-02 2015-09-09 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5720325B2 (en) * 2011-03-11 2015-05-20 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5988134B2 (en) 2011-05-11 2016-09-07 株式会社Gsユアサ Electricity storage element
JP5884967B2 (en) * 2011-10-18 2016-03-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR101683197B1 (en) 2012-04-30 2016-12-06 삼성에스디아이 주식회사 Electrolyte and lithium secondary battery including the same
JP2014035951A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014035895A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9263765B2 (en) 2012-12-24 2016-02-16 Samsung Sdi Co., Ltd. Cyclotriphosphazene compound, method of preparing the same, electrolyte for lithium secondary battery including the cyclotriphosphazene compound, and lithium secondary battery including the electrolyte
JP6154145B2 (en) * 2013-01-28 2017-06-28 富士フイルム株式会社 Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP2014170689A (en) * 2013-03-04 2014-09-18 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery
EP3073499B1 (en) * 2013-11-19 2024-01-03 Asahi Kasei Kabushiki Kaisha Non-aqueous lithium-type power storage element
JP6270612B2 (en) 2014-04-24 2018-01-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and assembly thereof
CN105098236B (en) * 2014-05-14 2017-07-07 宁德时代新能源科技股份有限公司 Lithium ion battery and electrolyte thereof
KR102234380B1 (en) * 2014-10-28 2021-03-30 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP6007994B2 (en) * 2015-01-23 2016-10-19 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same
PL3246982T3 (en) * 2015-01-23 2020-09-07 Central Glass Co., Ltd. Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell
CN109873201B (en) * 2017-12-05 2021-04-09 深圳新宙邦科技股份有限公司 A kind of non-aqueous electrolyte and lithium ion battery
JP7417872B2 (en) * 2019-03-29 2024-01-19 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
CN110212243B (en) * 2019-05-31 2022-04-29 惠州市赛能电池有限公司 Non-aqueous electrolyte and application thereof in lithium battery
CN116615793A (en) 2020-11-24 2023-08-18 株式会社丰田自动织机 Power storage device
CN116031482A (en) * 2021-10-27 2023-04-28 华为终端有限公司 Secondary battery electrolyte, preparation method thereof, secondary battery and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403845B2 (en) * 2004-07-06 2014-01-29 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP4807072B2 (en) * 2005-12-28 2011-11-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2008282578A (en) * 2007-05-08 2008-11-20 Bridgestone Corp Nonaqueous electrolyte for battery and nonaqueous electrolyte battery including the same
JP5315674B2 (en) * 2007-11-19 2013-10-16 セントラル硝子株式会社 Non-aqueous battery electrolyte and non-aqueous battery using the same

Also Published As

Publication number Publication date
JP2009245828A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5258353B2 (en) Nonaqueous electrolyte secondary battery
JP4383782B2 (en) ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
CN101297433B (en) Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same
JP4012174B2 (en) Lithium battery with efficient performance
JP4395026B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP5112148B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery
JP2009176534A (en) Non-aqueous electrolyte secondary battery
KR101211127B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2004342585A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR20090063441A (en) Lithium secondary battery
JP2009272170A (en) Nonaqueous electrolyte secondary battery
JP2016048624A (en) Lithium secondary battery
KR100984134B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2004311442A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5012767B2 (en) Secondary battery
JP2006172721A (en) Electrolyte for secondary battery, and secondary battery using the same
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
JP4819409B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP5063448B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP5499359B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP2007173014A (en) Nonaqueous electrolyte secondary battery
KR101584850B1 (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP4355947B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees