[go: up one dir, main page]

JP5256661B2 - Gasification method and gasification system - Google Patents

Gasification method and gasification system Download PDF

Info

Publication number
JP5256661B2
JP5256661B2 JP2007207394A JP2007207394A JP5256661B2 JP 5256661 B2 JP5256661 B2 JP 5256661B2 JP 2007207394 A JP2007207394 A JP 2007207394A JP 2007207394 A JP2007207394 A JP 2007207394A JP 5256661 B2 JP5256661 B2 JP 5256661B2
Authority
JP
Japan
Prior art keywords
gasification
catalyst
gas
pressure
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007207394A
Other languages
Japanese (ja)
Other versions
JP2009040886A (en
Inventor
高広 村上
俊之 須田
さと子 青木
秀久 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007207394A priority Critical patent/JP5256661B2/en
Publication of JP2009040886A publication Critical patent/JP2009040886A/en
Application granted granted Critical
Publication of JP5256661B2 publication Critical patent/JP5256661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、ガス化システムにより触媒を用いて原料をガス化する際に、触媒の使用量を節減すると共に、ガス化ガス中の微粒子を安価に除去できるようにしたガス化方法及びガス化システムに関するものである。   The present invention relates to a gasification method and a gasification system capable of reducing the amount of catalyst used and gas particles in gasification gas at low cost when gasifying a raw material using a catalyst by a gasification system. It is about.

近年、石炭、バイオマス、廃棄物、石油残渣、重質油等の種々の有機物原料をガス化することにより高品位のガス化ガスを製造する技術が提案されるようになってきている。   In recent years, techniques for producing high-grade gasification gas by gasifying various organic raw materials such as coal, biomass, waste, petroleum residue, heavy oil and the like have been proposed.

ガス化システムの一例を示すものとしては特許文献1がある。特許文献1に示すガス化システムは、例えば800℃以上の高温を有する循環粒子(砂等)をガス化炉に供給すると共に、下部から水蒸気、空気、酸素、二酸化炭素等のガス化剤を供給して形成される流動層に原料を供給して流動加熱することによりガス化しガス化ガスを生成するようにしている。ガス化炉で生成したガス化ガスは、固形分及びタールが除去された後、発電設備の燃料として供給したり、合成ガス原料として供給したり、或いは圧縮機で圧縮して液化したガス製品として取り出すようにしている。   There exists patent document 1 as an example which shows a gasification system. The gasification system shown in Patent Document 1 supplies circulating particles (such as sand) having a high temperature of, for example, 800 ° C. or more to a gasification furnace, and supplies gasifying agents such as water vapor, air, oxygen, and carbon dioxide from the lower part. The gasified gas is generated by supplying the raw material to the fluidized bed formed in this way and fluidly heating it. The gasified gas generated in the gasification furnace is supplied as a fuel for power generation facilities after solids and tar are removed, or as a synthesis gas raw material, or as a gas product compressed and liquefied by a compressor I try to take it out.

又、特許文献1では、ガス化炉において原料をガス化する際に生成したチャーは、循環粒子と共に燃焼炉に供給し、燃焼炉において空気又は酸素等の酸化剤を供給してチャーを燃焼させることにより循環粒子を例えば900℃以上の温度に加熱するようにしている。そして、排気ガスと共に燃焼炉から導出される高温の循環粒子はサイクロン等の分離器に導かれて排気ガスから分離され、分離した循環粒子は前記ガス化炉に供給されて循環するようになっている。   In Patent Document 1, char generated when gasifying a raw material in a gasification furnace is supplied to a combustion furnace together with circulating particles, and the char is combusted by supplying an oxidizing agent such as air or oxygen in the combustion furnace. Thus, the circulating particles are heated to a temperature of, for example, 900 ° C. or higher. Then, the high-temperature circulating particles led out from the combustion furnace together with the exhaust gas are led to a separator such as a cyclone and separated from the exhaust gas, and the separated circulating particles are supplied to the gasification furnace and circulate. Yes.

一方、前記ガス化炉におけるガス化反応を高める(反応速度を高める)ために、ガス化炉にバイオマスとゼオライト等の触媒とを混合した移動層を形成するようにしたものが特許文献2に記載されている。
特開2005−41959号公報 特開平07−207284号公報
On the other hand, Patent Document 2 describes a moving bed in which biomass and a catalyst such as zeolite are mixed in the gasification furnace in order to increase the gasification reaction in the gasification furnace (increase the reaction rate). Has been.
JP 2005-41959 A Japanese Patent Application Laid-Open No. 07-207284

特許文献2に示されるゼオライト又は一般に用いられている石灰石等の触媒をガス化炉に供給すると、ガス化炉でのガス化反応が高められ、原料の処理量の増加、ガス化ガスの取り出し量の増加を図ることができる。しかし、触媒は一般にガス化炉での流動による衝突等によって粉化し易く、粉化した触媒は排気ガスと共に外部に排出されてしまうために、経時的にガス化炉内の触媒量は減少し、そのためにガス化反応が経時的に低下することになる。このため、従来は所定量の触媒を連続的に供給するようにしているが、ガス化炉を安定運転するのに必要な触媒の過不足が生じることがあり、このために通常では触媒が不足しないように余裕を持たせて多目に供給するようにしている。   When a catalyst such as zeolite shown in Patent Document 2 or a commonly used catalyst such as limestone is supplied to the gasification furnace, the gasification reaction in the gasification furnace is increased, the throughput of raw materials is increased, and the amount of gasification gas taken out Can be increased. However, the catalyst is generally easily pulverized due to collisions caused by flow in the gasification furnace, and the pulverized catalyst is discharged to the outside together with the exhaust gas. Therefore, the amount of catalyst in the gasification furnace decreases with time, As a result, the gasification reaction decreases with time. For this reason, conventionally, a predetermined amount of catalyst is continuously supplied, but there may be an excess or deficiency of the catalyst necessary for stable operation of the gasifier, which usually causes a shortage of catalyst. It is designed so that it can be supplied frequently with a margin so that it does not occur.

前記触媒は比較的安価ではあるが砂等の循環粒子と比較するとやはり高価(砂に対しては数倍程度の価格)であり、このために、従来のよう余裕を持たせた多目の触媒を供給する方式では、運転コストが増加してしまう問題を有していた。   Although the catalyst is relatively inexpensive, it is still expensive compared to circulating particles such as sand (several times the price for sand). However, the method of supplying the battery has a problem that the operation cost increases.

又、ガス化炉から取り出されるガス化ガスにはカドミウム、水銀等の重金属、ナトリウム、カリウム等のアルカリ金属等の微粒子が含まれていると共に、タールの微粒子が含有しており、これらの微粒子はガス化ガスから除去する必要があるが、金属類の微粒子を除去するための装置及びタールの微粒子を除去するための装置を夫々設ける必要があるために、設備費が増加してしまうという問題を有していた。   The gasification gas taken out from the gasification furnace contains fine particles of heavy metals such as cadmium and mercury, alkali metals such as sodium and potassium, and also contains fine particles of tar. Although it is necessary to remove from the gasification gas, it is necessary to provide a device for removing metal fine particles and a device for removing tar fine particles, respectively, which increases the equipment cost. Had.

本発明は、上記実情に鑑みてなしたもので、ガス化システムにより触媒を用いて原料をガス化する際に、触媒の使用量を節減すると共に、ガス化ガス中の微粒子を安価に除去できるようにしたガス化方法及びガス化システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and when gasifying a raw material using a catalyst by a gasification system, the amount of the catalyst used can be reduced and fine particles in the gasification gas can be removed at low cost. An object of the present invention is to provide a gasification method and a gasification system.

本発明は、循環粒子と触媒とガス化剤の存在下に原料を供給して原料を所定温度に加熱することにより所定量のガス化ガスを取り出すようにしているガス化炉と、ガス化炉でのガス化時に生成したチャーと循環粒子の混合物を供給管により導入してチャーを燃焼させることにより循環粒子を加熱する燃焼炉と、該燃焼炉からの排気ガスから循環粒子を分離し分離した循環粒子を前記ガス化炉に戻す分離器とを有する粒子循環手段と、を有するガス化システムのガス化方法であって、
前記ガス化炉に触媒を供給する触媒供給装置と、
前記ガス化炉の温度を検出する温度検出器と、前記燃焼炉からガス化炉への循環粒子の循環量を調節する循環量調節器とを有してガス化炉内の温度を所定温度に制御する温度制御手段と、
ガス化炉出口のガス濃度とガス流量を検出してガス化ガスの生成量を検出するガス生成量検出器と、
前記ガス化炉の圧力を検出する圧力検出器とを設け、
前記ガス化炉に供給する所定量の原料がガス化されて所定量のガス化ガスが生成されるように前記温度制御手段により循環粒子の循環量を調節してガス化炉の温度を制御し、このとき前記圧力検出器により検出したガス化炉の圧力を目標圧力とし、運転を継続して前記圧力検出器で検出したガス化炉の圧力が目標圧力より下回った際には粉化した触媒が外部に排出されてガス化炉内の触媒量が減少したとして、ガス化炉の圧力が目標圧力に回復するまで前記触媒供給装置により触媒をガス化炉に供給することを特徴とするガス化方法、に係るものである。
The present invention relates to a gasification furnace in which a raw material is supplied in the presence of circulating particles, a catalyst, and a gasifying agent, and the raw material is heated to a predetermined temperature to extract a predetermined amount of gasification gas, and a gasification furnace A combustion furnace that heats circulating particles by introducing a mixture of char and circulating particles generated during gasification at a supply pipe and burning the char, and separating and separating the circulating particles from the exhaust gas from the combustion furnace A gasification method for a gasification system comprising: a particle circulation means having a separator for returning circulating particles to the gasification furnace,
A catalyst supply device for supplying a catalyst to the gasification furnace;
A temperature detector for detecting the temperature of the gasification furnace; and a circulation amount regulator for adjusting a circulation amount of the circulating particles from the combustion furnace to the gasification furnace. Temperature control means to control;
A gas production amount detector for detecting the gas concentration and gas flow rate at the gasification furnace outlet to detect the production amount of the gasification gas;
A pressure detector for detecting the pressure of the gasifier,
The temperature control means adjusts the amount of circulating particles to control the temperature of the gasifier so that a predetermined amount of raw material supplied to the gasifier is gasified to generate a predetermined amount of gasified gas. , the pressure of the gasification furnace is detected by the pressure detector at this time and the target pressure, when the pressure of the gasification furnace detected by the pressure detector continues to operation falls below the target pressure was pulverized A gas characterized in that the catalyst is supplied to the gasifier by the catalyst supply device until the pressure of the gasifier is restored to the target pressure, assuming that the amount of the catalyst in the gasifier decreases as the catalyst is discharged to the outside. Is related to the conversion method.

上記ガス化方法において、前記目標圧力を得たときのガス化ガスの生成量を検出し、このガス化ガスの生成量に設定値を設定しておき、前記ガス化炉の圧力が目標圧力に回復してもガス化ガスの生成量が設定値より下回った際には触媒の劣化と判断し循環している循環粒子とともに触媒の一部を抜き出し、その後圧力が低下したガス化炉の圧力が目標圧力に回復するまで触媒をガス化炉に供給することは好ましい。 In the gasification method, the amount of gasification gas produced when the target pressure is obtained is detected , a set value is set for the amount of gasification gas production, and the pressure of the gasification furnace is set to the target pressure. when the amount of the gasification gas is also recovered is below than the set value, it is determined that deterioration of the catalyst, together with the circulating particles circulating extracting a portion of the catalyst, the subsequent gasification furnace pressure drops It is preferable to supply the catalyst to the gasifier until the pressure is restored to the target pressure.

又、上記ガス化方法において、前記ガス化システムから排出される排気ガス中の粉化触媒を分離し、分離した粉化触媒を微粒子ゲッターとして前記ガス化炉からのガス化ガスと接触させることによりガス化ガス中の微粒子を除去することは好ましい。   Further, in the above gasification method, by separating the pulverization catalyst in the exhaust gas discharged from the gasification system, the separated pulverization catalyst is brought into contact with the gasification gas from the gasification furnace as a fine particle getter. It is preferable to remove fine particles in the gasification gas.

本発明は、循環粒子と触媒とガス化剤の存在下に原料を供給して原料を所定温度に加熱することにより所定量のガス化ガスを取り出すガス化炉と、ガス化炉でのガス化時に生成したチャーと循環粒子の混合物を供給管により導入してチャーを燃焼させることにより循環粒子を加熱する燃焼炉と、燃焼炉からの排気ガスから循環粒子を分離し分離した循環粒子を前記ガス化炉に戻す分離器とを有する粒子循環手段と、
を有するガス化システムであって、
前記ガス化炉に触媒を供給する触媒供給装置と、
前記ガス化炉の温度を検出する温度検出器と、前記燃焼炉からガス化炉への循環粒子の循環量を調節する循環量調節器とを有してガス化炉内の温度を制御する温度制御手段と、
ガス化炉出口のガス濃度とガス流量を検出してガス化ガスの生成量を検出するガス生成量検出器と、
前記ガス化炉の圧力を検出する圧力検出器と、
前記ガス化炉に供給する所定量の原料がガス化されて所定量のガス化ガスが生成されるように前記温度制御手段により循環粒子の循環量を調節してガス化炉の温度を制御し、このとき前記圧力検出器により検出したガス化炉の圧力を目標圧力とし、運転を継続して前記圧力検出器により検出した圧力が目標圧力より下回った際には粉化した触媒が外部に排出されてガス化炉内の触媒量が減少したとして、前記圧力検出器により検出した圧力が目標圧力に回復するまで触媒をガス化炉に供給するように前記触媒供給装置を制御する触媒制御器と、
を備えたことを特徴とするガス化システム、に係るものである。
The present invention provides a gasification furnace that supplies a raw material in the presence of circulating particles, a catalyst, and a gasifying agent and heats the raw material to a predetermined temperature to extract a predetermined amount of gasification gas, and gasification in the gasification furnace A combustion furnace that heats the circulating particles by introducing a mixture of char and circulating particles generated through the supply pipe and burning the char, and the circulating particles separated and separated from the exhaust gas from the combustion furnace A particle circulation means having a separator to be returned to the conversion furnace;
A gasification system comprising:
A catalyst supply device for supplying a catalyst to the gasification furnace;
The temperature which controls the temperature in a gasification furnace which has the temperature detector which detects the temperature of the said gasification furnace, and the circulation amount regulator which adjusts the circulation amount of the circulation particle from the said combustion furnace to a gasification furnace Control means;
A gas production amount detector for detecting the gas concentration and gas flow rate at the gasification furnace outlet to detect the production amount of the gasification gas;
A pressure detector for detecting the pressure of the gasifier,
The temperature control means adjusts the amount of circulating particles to control the temperature of the gasifier so that a predetermined amount of raw material supplied to the gasifier is gasified to generate a predetermined amount of gasified gas. , the pressure of the gasification furnace is detected by the pressure detector at this time and the target pressure, the catalyst pressure detected by the pressure detector continues the operation was pulverized to when it falls below than the target pressure to the outside A catalyst controller that controls the catalyst supply device so that the catalyst is supplied to the gasification furnace until the pressure detected by the pressure detector recovers to the target pressure, assuming that the amount of catalyst in the gasification furnace is reduced . When,
The present invention relates to a gasification system comprising:

上記ガス化システムにおいて、前記目標圧力を得たときのガス化ガスの生成量が前記ガス生成量検出器により検出されて前記触媒制御器に入力され、この検出したガス化ガスの生成量には設定値が設定してあり、前記ガス化炉の圧力が目標圧力に回復してもガス化ガスの生成量が設定値より下回った際に触媒の劣化と判断して循環している循環粒子とともに触媒の一部を抜き出すように制御する抜出装置を備えることは好ましい。

In the gasification system, the amount of gasification gas generated when the target pressure is obtained is detected by the gas generation amount detector and input to the catalyst controller. A set value is set, and even if the gasifier pressure recovers to the target pressure, if the amount of gasified gas produced falls below the set value, it is judged that the catalyst has deteriorated, and the circulating cycle It is preferable to provide an extraction device that controls to extract a part of the catalyst together with the particles.

又、上記ガス化システムにおいて、前記分離器で循環粒子を分離した排気ガスから粉化触媒を分離する粉化触媒分離装置を備え、該粉化触媒分離装置で分離した粉化触媒を導入して該粉化触媒を微粒子ゲッターとして前記ガス化炉からのガス化ガスと接触させることによりガス化ガス中の微粒子を除去することは好ましい。   The gasification system further includes a pulverization catalyst separation device for separating the pulverization catalyst from the exhaust gas from which the circulating particles are separated by the separator, and the pulverization catalyst separated by the pulverization catalyst separation device is introduced. It is preferable to remove the fine particles in the gasification gas by bringing the powdered catalyst into contact with the gasification gas from the gasification furnace as a fine particle getter.

本発明のガス化方法及びガス化システムによれば、循環粒子と触媒とガス化剤の存在下に原料を供給して原料を所定温度に加熱することにより所定量のガス化ガスを取り出すガス化炉の圧力を検出し、検出したガス化炉の圧力が目標圧力より下回った際にガス化炉の圧力が目標圧力に回復するまで触媒をガス化炉に供給するようにしたので、触媒の粉化によってガス化炉内の実質的な触媒量が減量することによってガス化炉内の圧力が低下した場合に、ガス化炉のガス化反応が所定の状態に保持されるように必要量の触媒のみを自動供給することができ、よって供給する触媒コストを大幅に低減できる優れた効果を奏し得る。   According to the gasification method and gasification system of the present invention, gasification is performed by supplying a raw material in the presence of circulating particles, a catalyst, and a gasifying agent and heating the raw material to a predetermined temperature to extract a predetermined amount of gasification gas. The furnace pressure was detected, and when the detected gasifier pressure fell below the target pressure, the catalyst was supplied to the gasifier until the gasifier pressure returned to the target pressure. When the pressure in the gasification furnace is reduced by reducing the substantial amount of catalyst in the gasification furnace due to the gasification, the required amount of catalyst is maintained so that the gasification reaction of the gasification furnace is maintained in a predetermined state. Thus, it is possible to automatically supply only the catalyst, and therefore, it is possible to achieve an excellent effect of greatly reducing the cost of the catalyst to be supplied.

又、ガス化炉出口のガス濃度とガス流量とによりガス化ガスの生成量を検出し、前記ガス化炉の圧力が目標圧力に回復してもガス化ガスの生成量が設定値より下回った際には触媒の劣化と判断して循環している循環粒子とともに触媒の一部を抜き出し、その後圧力が低下したガス化炉の圧力が目標圧力に回復するまで触媒をガス化炉に供給するようにしたので、触媒が劣化した場合にもガス化炉のガス化反応が所定の状態に保持されるように制御することができる効果がある。   In addition, the amount of gasified gas produced is detected from the gas concentration and gas flow rate at the gasifier exit, and the amount of gasified gas produced falls below the set value even when the gasifier pressure recovers to the target pressure. In this case, it is determined that the catalyst is deteriorated, and a part of the catalyst is extracted together with the circulating particles circulating, and then the catalyst is supplied to the gasifier until the pressure of the gasifier whose pressure has decreased returns to the target pressure. Therefore, there is an effect that the gasification reaction of the gasification furnace can be controlled to be maintained in a predetermined state even when the catalyst is deteriorated.

また、前記ガス化システムから排出される排気ガス中の粉化触媒を分離し、分離した粉化触媒を微粒子ゲッターとして前記ガス化炉からのガス化ガスと接触させることによりガス化ガス中の微粒子を除去するようにしたので、粉化触媒を利用してガス化ガス中の微粒子を安価に除去できるという優れた効果を奏し得る。   In addition, the pulverization catalyst in the exhaust gas discharged from the gasification system is separated, and the separated pulverization catalyst is used as a fine particle getter to come into contact with the gasification gas from the gasification furnace. Therefore, it is possible to obtain an excellent effect that the fine particles in the gasification gas can be removed at low cost by using the pulverization catalyst.

以下、本発明の形態を添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明のガス化システムの一例を示す概略構成図である。図1中、1はガス化炉であり、該ガス化炉1には粒子循環手段2によって循環粒子3が循環供給されるようになっており、更にガス化炉1には、石灰石等の触媒4を供給する触媒供給装置5と、水蒸気、空気、酸素、二酸化炭素等のガス化剤6を分散装置6aにより供給して流動層7を形成するガス化剤供給装置8と、石炭、バイオマス、廃棄物、石油残渣、重質油等の原料9を流動層7に供給する原料供給装置10が設けられている。   FIG. 1 is a schematic configuration diagram showing an example of a gasification system of the present invention. In FIG. 1, reference numeral 1 denotes a gasification furnace. Circulating particles 3 are circulated and supplied to the gasification furnace 1 by particle circulation means 2, and a catalyst such as limestone is further supplied to the gasification furnace 1. 4, a gas supply agent 8 for forming a fluidized bed 7 by supplying a gasifying agent 6 such as water vapor, air, oxygen, carbon dioxide or the like by a dispersing device 6 a, coal, biomass, A raw material supply device 10 for supplying a raw material 9 such as waste, petroleum residue, heavy oil or the like to the fluidized bed 7 is provided.

前記粒子循環手段2は、ガス化炉1でガス化時に生成したチャーと循環粒子とを供給管11により導入して下部から分散装置12aにより供給される空気12(酸化剤)により燃焼することにより循環粒子を加熱する燃焼炉13と、該燃焼炉13での燃焼により加熱された循環粒子を含む排気ガス14を導入して循環粒子3と排気ガス14とに分離する分離器15と、該分離器15で分離した循環粒子3をガス化炉1に戻す降下管16とにより構成されている。即ち、図1では、ガス化炉1と燃焼炉13が並設された2塔式と称されるガス化システムを示している。図中17は、前記燃焼炉13における分散装置12aの上部位置に供給するようにしている二次空気(酸化剤)である。   The particle circulating means 2 introduces char and circulating particles generated during gasification in the gasification furnace 1 through a supply pipe 11 and burns with air 12 (oxidant) supplied from a lower part by a dispersing device 12a. A combustion furnace 13 for heating the circulating particles, a separator 15 for introducing the exhaust gas 14 containing the circulating particles heated by the combustion in the combustion furnace 13 and separating it into the circulating particles 3 and the exhaust gas 14, and the separation And a downcomer pipe 16 for returning the circulating particles 3 separated by the vessel 15 to the gasification furnace 1. That is, FIG. 1 shows a gasification system called a two-column type in which the gasification furnace 1 and the combustion furnace 13 are arranged in parallel. In the figure, reference numeral 17 denotes secondary air (oxidant) supplied to the upper position of the dispersion device 12a in the combustion furnace 13.

上記ガス化システムにおいては、ガス化炉1の温度を所定の温度に制御するようにした温度制御手段18を備えている。該温度制御手段18は、ガス化炉1の温度を流動層7内部及び流動層7上部のフリーボード部で検出する温度検出器19と、前記粒子循環手段2によって燃焼炉13からガス化炉1へ供給する循環粒子3の循環量を調節する循環量調節器20とにより構成されている。循環量調節器20は、燃焼炉13の下部から供給する流動用の空気12と前記二次空気17との供給割合を制御する調節器21a,21bによって燃焼炉13の空塔速度を変えることにより、燃焼炉13からガス化炉1へ供給する循環粒子3の循環量を調節するようになっている。ガス化炉1への循環粒子3の供給量が増加すると、ガス化炉1内の循環粒子が増加してガス化炉1の温度は高くなり、又、ガス化炉1への循環粒子3の供給量が減少すると、ガス化炉1内の循環粒子が減少してガス化炉1の温度は低くなる。従って、前記温度制御手段18の温度検出器19による検出温度に基づいて循環量調節器20による循環粒子3の循環量を制御することにより、ガス化炉1内は常に原料9のガス化に適した適正な温度に制御されて所定量のガス化ガス22が生成されるようになっている。   The gasification system includes temperature control means 18 that controls the temperature of the gasification furnace 1 to a predetermined temperature. The temperature control means 18 includes a temperature detector 19 for detecting the temperature of the gasification furnace 1 at the inside of the fluidized bed 7 and a free board part above the fluidized bed 7, and the gas circulation furnace 2 from the combustion furnace 13 by the particle circulation means 2. And a circulation amount regulator 20 that regulates the circulation amount of the circulating particles 3 to be supplied. The circulation amount regulator 20 changes the superficial velocity of the combustion furnace 13 by means of the regulators 21a and 21b that control the supply ratio of the flowing air 12 supplied from the lower part of the combustion furnace 13 and the secondary air 17. The circulation amount of the circulating particles 3 supplied from the combustion furnace 13 to the gasification furnace 1 is adjusted. When the supply amount of the circulating particles 3 to the gasification furnace 1 is increased, the circulating particles in the gasification furnace 1 are increased, the temperature of the gasification furnace 1 is increased, and the circulation particles 3 to the gasification furnace 1 are increased. When the supply amount decreases, the circulating particles in the gasification furnace 1 decrease and the temperature of the gasification furnace 1 decreases. Therefore, the inside of the gasification furnace 1 is always suitable for gasification of the raw material 9 by controlling the circulation amount of the circulating particles 3 by the circulation amount regulator 20 based on the temperature detected by the temperature detector 19 of the temperature control means 18. A predetermined amount of gasified gas 22 is generated by controlling the temperature appropriately.

前記ガス化炉1でのガス化によって生成したガス化ガス22は、固体分離器23に導かれて固体粒子24が分離され、更にタール除去装置25に導かれてタールが除去されることにより、清浄なガス化ガス22となって導かれる。   The gasification gas 22 generated by gasification in the gasification furnace 1 is guided to the solid separator 23 to separate the solid particles 24, and further to the tar removal device 25 to remove the tar, It is guided as clean gasification gas 22.

上記ガス化システムにおいて、ガス化炉1に、流動層7内部の圧力と流動層7上部のフリーボード部の圧力を検出する圧力検出器26と、ガス化ガス22のガス濃度とガス流量を検出し、検出したガス濃度とガス流量からガス化ガス22の生成量を検出するようにしたガス生成量検出器27を設け、前記圧力検出器26からのガス化炉1の圧力28と、ガス生成量検出器27からの生成量29を入力する触媒制御器30を設けている。   In the gasification system, the gasification furnace 1 detects the pressure inside the fluidized bed 7 and the pressure of the free board portion above the fluidized bed 7, and the gas concentration and gas flow rate of the gasification gas 22. And a gas generation amount detector 27 configured to detect the generation amount of the gasification gas 22 from the detected gas concentration and gas flow rate, the pressure 28 of the gasification furnace 1 from the pressure detector 26, and the gas generation A catalyst controller 30 for inputting the production amount 29 from the amount detector 27 is provided.

触媒制御器30は、前記圧力検出器26によって検出した圧力28に基づいて、ガス化炉1の圧力が目標圧力に保持されるように触媒供給装置5からの触媒4の供給を調節する触媒調節器31を制御するようにしている。ここで、目標圧力とは、ガス化炉1において原料4が適正にガス化されて所定量のガス化ガス22が生成されている状態の時のガス化炉1内圧力である。   Based on the pressure 28 detected by the pressure detector 26, the catalyst controller 30 adjusts the supply of the catalyst 4 from the catalyst supply device 5 so that the pressure of the gasifier 1 is maintained at the target pressure. The device 31 is controlled. Here, the target pressure is the pressure in the gasification furnace 1 when the raw material 4 is properly gasified in the gasification furnace 1 and a predetermined amount of gasification gas 22 is generated.

更に、触媒制御器30は、前記ガス生成量検出器27によって検出される生成量29に設定値を設けており、前記したようにガス化炉1の圧力28が目標圧力に回復しても、ガス化ガス22の生成量が設定値より下回った際には触媒が劣化したと判断して、ガス化炉1に備えた抜出装置32を作動してガス化炉1の循環粒子と触媒の一部を抜き出す制御を行うようにしている。循環粒子と触媒の抜き出しは経験に基づいて所定量を抜き出すようにする。   Further, the catalyst controller 30 provides a set value for the generation amount 29 detected by the gas generation amount detector 27. Even if the pressure 28 of the gasifier 1 recovers to the target pressure as described above, When the production amount of the gasification gas 22 falls below the set value, it is determined that the catalyst has deteriorated, and the extraction device 32 provided in the gasification furnace 1 is operated to operate the circulating particles and the catalyst of the gasification furnace 1. Control to extract a part is performed. As for the extraction of the circulating particles and the catalyst, a predetermined amount is extracted based on experience.

なお、図示例では、ガス化炉1に備えた抜出装置32で循環粒子と触媒の一部を抜き出す場合を示したが、ガス化炉1、燃焼炉13、降下管16(ダウンカマ)のいずれかひとつもしくは複数から取り出すようにしてもよい。   In the illustrated example, a case where a part of the circulating particles and the catalyst is extracted by the extraction device 32 provided in the gasification furnace 1 is shown, but any of the gasification furnace 1, the combustion furnace 13, and the downcomer 16 (downcomer) You may make it take out from one or more.

このとき、より好ましくは、チャーが全て燃焼してしまっている燃焼炉13、降下管16(ダウンカマ)のいずれかひとつもしくは両者から取り出すようにすることが望ましい。   At this time, it is more preferable that the char is taken out from one or both of the combustion furnace 13 and the downcomer 16 (downcomer) in which all the char has been burned.

上記形態例の作動を説明する。   The operation of the above embodiment will be described.

図1のガス化システムにおいては、ガス化炉1には粒子循環手段2によって所定量の循環粒子3が循環供給されていると共に、触媒供給装置5により所定量(連続投入ではない)の触媒4が供給され、更にガス化剤供給装置8によりガス化剤6が連続供給されて流動層7が形成されており、この状態において、原料供給装置10により所定量の原料9を供給するとガス化されてガス化ガス22を生成し、生成したガス化ガス22はガス化炉1から取り出される。この時、ガス化炉1内が原料9のガス化に適した適正温度になるように温度制御手段18によって循環粒子3の循環量が制御されており、これによりガス化炉1では所定量のガス化ガス22が生成される。   In the gasification system of FIG. 1, a predetermined amount of circulating particles 3 is circulated and supplied to the gasification furnace 1 by the particle circulating means 2, and a predetermined amount (not continuously charged) of the catalyst 4 by the catalyst supply device 5. Is further supplied, and the gasifying agent 6 is continuously supplied from the gasifying agent supply device 8 to form the fluidized bed 7. In this state, when a predetermined amount of the raw material 9 is supplied by the raw material supplying device 10, the gasifying agent 6 is gasified. The gasified gas 22 is generated, and the generated gasified gas 22 is taken out from the gasification furnace 1. At this time, the circulation amount of the circulating particles 3 is controlled by the temperature control means 18 so that the inside of the gasification furnace 1 has an appropriate temperature suitable for the gasification of the raw material 9. Gasified gas 22 is generated.

上記したガス化システムの運転を継続すると、循環粒子3と共にガス化炉1と燃焼炉13を循環する触媒は流動による衝突等によって粉化し、粉化した触媒は分離器15から排気ガス14と共に外部に排出され、又、ガス化ガス22と共に取り出されるために、ガス化炉1内の実質的な触媒量は経時的に減少し、ガス化反応が低下するためにガス化ガス22の生成量が低下し、ガス化炉1内の圧力は徐々に低下する。   When the operation of the gasification system described above is continued, the catalyst circulating in the gasification furnace 1 and the combustion furnace 13 together with the circulating particles 3 is pulverized by collision due to flow, etc. In addition, the substantial amount of the catalyst in the gasification furnace 1 decreases with time because the gas is removed together with the gasification gas 22, and the gasification reaction is lowered. The pressure in the gasification furnace 1 gradually decreases.

ここで、圧力検出器26により検出したガス化炉1の圧力28と、ガス生成量検出器27で検出したガス化ガス22の生成量29が触媒制御器30に入力されているので、触媒制御器30は、図2に示すように、検出したガス化炉1の圧力28が目標圧力より下回った際には、触媒調節器31に制御信号を送って触媒4の供給を開始し、ガス化炉1の圧力が目標圧力に回復するまで触媒4の供給を継続し、ガス化炉1の圧力が目標圧力に回復したら触媒4の供給を停止する。これにより、ガス化炉1のガス化性能は回復される。このように、触媒4の粉化によってガス化炉1内の実質的な触媒量が減量することによってガス化炉1内の圧力が低下した場合に、ガス化炉1のガス化反応が所定の状態に保持されるように必要量の触媒4のみを自動供給するようにしているので、供給する触媒コストを大幅に低減することができる。   Here, since the pressure 28 of the gasification furnace 1 detected by the pressure detector 26 and the generation amount 29 of the gasification gas 22 detected by the gas generation amount detector 27 are input to the catalyst controller 30, catalyst control is performed. As shown in FIG. 2, when the detected pressure 28 of the gasifier 1 falls below the target pressure, the vessel 30 sends a control signal to the catalyst regulator 31 to start supplying the catalyst 4 and gasifies it. The supply of the catalyst 4 is continued until the pressure in the furnace 1 recovers to the target pressure, and the supply of the catalyst 4 is stopped when the pressure in the gasification furnace 1 recovers to the target pressure. Thereby, the gasification performance of the gasification furnace 1 is recovered. Thus, when the pressure in the gasification furnace 1 is reduced by reducing the substantial amount of the catalyst in the gasification furnace 1 due to the pulverization of the catalyst 4, the gasification reaction of the gasification furnace 1 is predetermined. Since only the required amount of the catalyst 4 is automatically supplied so as to be maintained in the state, the cost of the supplied catalyst can be greatly reduced.

又、触媒制御器30には、ガス化炉1出口のガス濃度とガス流量とにより検出したガス化ガス22の生成量29が入力されているため、図2に示すように、前記ガス化炉1の圧力28が目標圧力に回復してもガス化ガス22の生成量29が目標圧力より下回った状態、即ちガス化炉1の性能が回復しない場合には、触媒制御器30は触媒4の劣化と判断して、抜出装置32に制御信号を送って循環している循環粒子とともに触媒の一部を抜き出すよう制御する。ガス化炉1から循環粒子と触媒の一部を抜き出した後、ガス化炉1の圧力が目標圧力に回復するまで触媒調節器31に制御信号を送って触媒4の供給を行う。これにより、ガス化炉1のガス化性能は回復される。このように、触媒4が劣化した場合には触媒4の入れ換えを自動的に行ってガス化炉1のガス化反応が所定の状態に保持されるように制御することができる。   Further, since the catalyst controller 30 is supplied with the generation amount 29 of the gasification gas 22 detected by the gas concentration and the gas flow rate at the outlet of the gasification furnace 1, as shown in FIG. When the pressure 28 of 1 is recovered to the target pressure, the production amount 29 of the gasification gas 22 is lower than the target pressure, that is, when the performance of the gasification furnace 1 is not recovered, the catalyst controller 30 It is judged that the catalyst is deteriorated, and a control signal is sent to the extraction device 32 to control to extract a part of the catalyst together with the circulating particles. After extracting the circulating particles and a part of the catalyst from the gasification furnace 1, a control signal is sent to the catalyst regulator 31 until the pressure of the gasification furnace 1 is restored to the target pressure, and the catalyst 4 is supplied. Thereby, the gasification performance of the gasification furnace 1 is recovered. As described above, when the catalyst 4 is deteriorated, the catalyst 4 is automatically replaced, and the gasification reaction of the gasification furnace 1 can be controlled to be maintained in a predetermined state.

図1には前記構成に加えて、ガス化ガス中の微粒子を除去する構成が備えられている。   In addition to the above configuration, FIG. 1 includes a configuration for removing fine particles in the gasification gas.

即ち、前記分離器15で循環粒子3を分離した排気ガス14から微細な固体粒子33を分離するようにしたサイクロン等の固体分離器34と、該固体分離器34で分離した固体粒子33を、風力を用いた比重分離器或いは多段サイクロン等によって粉化触媒35と灰分36とに分離するようにした粉化触媒分離装置37を備えている。そして、該粉化触媒分離装置37で分離した粉化触媒35を導入して該粉化触媒35を前記ガス化炉1からのガス化ガス22と接触させるようにした触媒塔38を設け、前記粉化触媒35を微粒子ゲッターとしてガス化ガス22中の微粒子を吸着除去するようにしている。微粒子を吸着した粉化触媒35'は、セメント等の原料として利用したり、或いは埋立て廃棄するようにしている。   That is, a solid separator 34 such as a cyclone that separates fine solid particles 33 from the exhaust gas 14 from which the circulating particles 3 have been separated by the separator 15, and the solid particles 33 separated by the solid separator 34, A pulverized catalyst separation device 37 is provided that separates the pulverized catalyst 35 and the ash 36 by a specific gravity separator using wind power or a multistage cyclone. A catalyst tower 38 is provided in which the pulverized catalyst 35 separated by the pulverized catalyst separation device 37 is introduced to bring the pulverized catalyst 35 into contact with the gasified gas 22 from the gasification furnace 1. By using the powdered catalyst 35 as a fine particle getter, the fine particles in the gasification gas 22 are adsorbed and removed. The powdered catalyst 35 ′ adsorbing the fine particles is used as a raw material for cement or the like, or disposed of in landfill.

また、ガス化炉1から取り出されるガス化ガス22が固体分離器23に導かれて分離される固体粒子24もその多くが粉化触媒と灰分からなっているので、この固体粒子24を粉化触媒分離装置39によって粉化触媒35と灰分36とに分離し、分離した粉化触媒35を微粒子ゲッターとして前記触媒塔38に供給するようにしている。   In addition, since the gas particles 22 taken out from the gasification furnace 1 are led to the solid separator 23 and separated, the solid particles 24 are mostly composed of a pulverization catalyst and ash, so that the solid particles 24 are pulverized. The catalyst separation device 39 separates the powdered catalyst 35 and the ash 36, and the separated powdered catalyst 35 is supplied to the catalyst tower 38 as a fine particle getter.

上記したように、ガス化システムから排出される排気ガス14から粉化触媒35を分離し、或いはガス化ガス22から粉化触媒35を分離し、分離した粉化触媒35を触媒塔38に導いて微粒子ゲッターとしてガス化炉1からのガス化ガス22と接触させることにより、ガス化ガス22中に含まれるカドミウム、水銀等の重金属、ナトリウム、カリウム等のアルカリ金属及びタール等の微粒子は吸着除去される。前記粉化触媒35は表面積が非常に大きくなっているため微粒子を効果的に吸着除去することができる。このように、粉化触媒35を利用することによりガス化ガス22中の微粒子を安価に除去することができる。   As described above, the pulverized catalyst 35 is separated from the exhaust gas 14 discharged from the gasification system, or the pulverized catalyst 35 is separated from the gasified gas 22, and the separated pulverized catalyst 35 is led to the catalyst tower 38. By contacting the gasification gas 22 from the gasification furnace 1 as a fine particle getter, heavy metals such as cadmium and mercury, alkali metals such as sodium and potassium, and fine particles such as tar contained in the gasification gas 22 are removed by adsorption. Is done. Since the powdered catalyst 35 has a very large surface area, fine particles can be effectively adsorbed and removed. Thus, by using the powdered catalyst 35, the fine particles in the gasified gas 22 can be removed at low cost.

尚、上記形態では2塔式のガス化システムに適用した場合について例示したが、従来から知られている固定層式ガス化炉、移動層式ガス化炉、流動層式ガス化炉等の種々のガス化炉に適用できること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, although the case where it applied to the two-column type gasification system was illustrated in the said form, various things, such as a conventionally known fixed bed type gasification furnace, a moving bed type gasification furnace, a fluidized bed type gasification furnace, etc. Needless to say, the present invention can be applied to other gasification furnaces and various modifications can be made without departing from the scope of the present invention.

本発明のガス化システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the gasification system of this invention. ガス化炉の制御方法を示すフローシートである。It is a flow sheet which shows the control method of a gasifier.

符号の説明Explanation of symbols

1 ガス化炉
2 粒子循環手段
3 循環粒子
4 触媒
5 触媒供給装置
6 ガス化剤
7 流動層
8 ガス化剤供給装置
9 原料
10 原料供給装置
11 供給管
13 燃焼炉
14 排気ガス
15 分離器
16 降下管(ダウンカマ)
18 温度制御手段
19 温度検出器
20 循環量調節器
22 ガス化ガス
26 圧力検出器
27 ガス生成量検出器
28 圧力
29 生成量
30 触媒制御器
32 抜出装置
35 粉化触媒
37 粉化触媒分離装置
38 触媒塔
39 粉化触媒分離装置
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Particle circulation means 3 Circulating particles 4 Catalyst 5 Catalyst supply device 6 Gasifying agent 7 Fluidized bed 8 Gasifying agent supply device 9 Raw material 10 Raw material supply device 11 Supply pipe 13 Combustion furnace 14 Exhaust gas 15 Separator 16 Drop Tube (Downcomb)
DESCRIPTION OF SYMBOLS 18 Temperature control means 19 Temperature detector 20 Circulation amount regulator 22 Gasification gas 26 Pressure detector 27 Gas production amount detector 28 Pressure 29 Production amount 30 Catalyst controller 32 Extraction device 35 Powdered catalyst 37 Powdered catalyst separation device 38 Catalyst tower 39 Powdered catalyst separator

Claims (6)

循環粒子と触媒とガス化剤の存在下に原料を供給して原料を所定温度に加熱することにより所定量のガス化ガスを取り出すようにしているガス化炉と、ガス化炉でのガス化時に生成したチャーと循環粒子の混合物を供給管により導入してチャーを燃焼させることにより循環粒子を加熱する燃焼炉と、該燃焼炉からの排気ガスから循環粒子を分離し分離した循環粒子を前記ガス化炉に戻す分離器とを有する粒子循環手段と、を有するガス化システムのガス化方法であって、
前記ガス化炉に触媒を供給する触媒供給装置と、
前記ガス化炉の温度を検出する温度検出器と、前記燃焼炉からガス化炉への循環粒子の循環量を調節する循環量調節器とを有してガス化炉内の温度を所定温度に制御する温度制御手段と、
ガス化炉出口のガス濃度とガス流量を検出してガス化ガスの生成量を検出するガス生成量検出器と、
前記ガス化炉の圧力を検出する圧力検出器とを設け、
前記ガス化炉に供給する所定量の原料がガス化されて所定量のガス化ガスが生成されるように前記温度制御手段により循環粒子の循環量を調節してガス化炉の温度を制御し、このとき前記圧力検出器により検出したガス化炉の圧力を目標圧力とし、運転を継続して前記圧力検出器で検出したガス化炉の圧力が目標圧力より下回った際には粉化した触媒が外部に排出されてガス化炉内の触媒量が減少したとして、ガス化炉の圧力が目標圧力に回復するまで前記触媒供給装置により触媒をガス化炉に供給することを特徴とするガス化方法。
Gasification furnace in which raw material is supplied in the presence of circulating particles, catalyst and gasifying agent and the raw material is heated to a predetermined temperature to extract a predetermined amount of gasification gas, and gasification in the gasification furnace A combustion furnace that heats the circulating particles by introducing a mixture of char and circulating particles generated through the supply pipe and burning the char, and circulating particles separated and separated from the exhaust gas from the combustion furnace A gasification method for a gasification system comprising: a particle circulation means having a separator for returning to a gasification furnace,
A catalyst supply device for supplying a catalyst to the gasification furnace;
A temperature detector for detecting the temperature of the gasification furnace; and a circulation amount regulator for adjusting a circulation amount of the circulating particles from the combustion furnace to the gasification furnace. Temperature control means to control;
A gas production amount detector for detecting the gas concentration and gas flow rate at the gasification furnace outlet to detect the production amount of the gasification gas;
A pressure detector for detecting the pressure of the gasifier,
The temperature control means adjusts the amount of circulating particles to control the temperature of the gasifier so that a predetermined amount of raw material supplied to the gasifier is gasified to generate a predetermined amount of gasified gas. , the pressure of the gasification furnace is detected by the pressure detector at this time and the target pressure, when the pressure of the gasification furnace detected by the pressure detector continues to operation falls below the target pressure was pulverized A gas characterized in that the catalyst is supplied to the gasifier by the catalyst supply device until the pressure of the gasifier is restored to the target pressure, assuming that the amount of the catalyst in the gasifier decreases as the catalyst is discharged to the outside. Method.
前記目標圧力を得たときのガス化ガスの生成量を検出し、このガス化ガスの生成量に設定値を設定しておき、前記ガス化炉の圧力が目標圧力に回復してもガス化ガスの生成量が設定値より下回った際には触媒の劣化と判断し循環している循環粒子とともに触媒の一部を抜き出し、その後圧力が低下したガス化炉の圧力が目標圧力に回復するまで触媒をガス化炉に供給する請求項1に記載のガス化方法。 The amount of gasification gas produced when the target pressure is obtained is detected , a set value is set for the amount of gasification gas production, and gasification is performed even if the pressure of the gasification furnace recovers to the target pressure. when the amount of gas falls below the set value, it is determined that deterioration of the catalyst, circulating extracting a portion of the catalyst with the circulating particles are, then the pressure of the gasifier pressure drops recovered to the target pressure The gasification method according to claim 1, wherein the catalyst is supplied to the gasification furnace until completion. 前記ガス化システムから排出される排気ガス中の粉化触媒を分離し、分離した粉化触媒を微粒子ゲッターとして前記ガス化炉からのガス化ガスと接触させることによりガス化ガス中の微粒子を除去する請求項1又は2に記載のガス化方法。   The pulverization catalyst in the exhaust gas discharged from the gasification system is separated, and the separated pulverization catalyst is used as a fine particle getter to contact the gasification gas from the gasification furnace to remove the fine particles in the gasification gas. The gasification method according to claim 1 or 2. 循環粒子と触媒とガス化剤の存在下に原料を供給して原料を所定温度に加熱することにより所定量のガス化ガスを取り出すガス化炉と、ガス化炉でのガス化時に生成したチャーと循環粒子の混合物を供給管により導入してチャーを燃焼させることにより循環粒子を加熱する燃焼炉と、燃焼炉からの排気ガスから循環粒子を分離し分離した循環粒子を前記ガス化炉に戻す分離器とを有する粒子循環手段と、
を有するガス化システムであって、
前記ガス化炉に触媒を供給する触媒供給装置と、
前記ガス化炉の温度を検出する温度検出器と、前記燃焼炉からガス化炉への循環粒子の循環量を調節する循環量調節器とを有してガス化炉内の温度を制御する温度制御手段と、
ガス化炉出口のガス濃度とガス流量を検出してガス化ガスの生成量を検出するガス生成量検出器と、
前記ガス化炉の圧力を検出する圧力検出器と、
前記ガス化炉に供給する所定量の原料がガス化されて所定量のガス化ガスが生成されるように前記温度制御手段により循環粒子の循環量を調節してガス化炉の温度を制御し、このとき前記圧力検出器により検出したガス化炉の圧力を目標圧力とし、運転を継続して前記圧力検出器により検出した圧力が目標圧力より下回った際には粉化した触媒が外部に排出されてガス化炉内の触媒量が減少したとして、前記圧力検出器により検出した圧力が目標圧力に回復するまで触媒をガス化炉に供給するように前記触媒供給装置を制御する触媒制御器と、
を備えたことを特徴とするガス化システム。
A gasification furnace for extracting a predetermined amount of gasification gas by supplying the raw material in the presence of circulating particles, a catalyst and a gasifying agent and heating the raw material to a predetermined temperature, and a char generated during gasification in the gasification furnace And a circulating furnace for heating the circulating particles by introducing a mixture of the circulating particles through a supply pipe and burning the char, and separating the circulating particles from the exhaust gas from the combustion furnace and returning the separated circulating particles to the gasifier A particle circulation means having a separator;
A gasification system comprising:
A catalyst supply device for supplying a catalyst to the gasification furnace;
The temperature which controls the temperature in a gasification furnace which has the temperature detector which detects the temperature of the said gasification furnace, and the circulation amount regulator which adjusts the circulation amount of the circulation particle from the said combustion furnace to a gasification furnace Control means;
A gas production amount detector for detecting the gas concentration and gas flow rate at the gasification furnace outlet to detect the production amount of the gasification gas;
A pressure detector for detecting the pressure of the gasifier,
The temperature control means adjusts the amount of circulating particles to control the temperature of the gasifier so that a predetermined amount of raw material supplied to the gasifier is gasified to generate a predetermined amount of gasified gas. , the pressure of the gasification furnace is detected by the pressure detector at this time and the target pressure, the catalyst pressure detected by the pressure detector continues the operation was pulverized to when it falls below than the target pressure to the outside A catalyst controller that controls the catalyst supply device so that the catalyst is supplied to the gasification furnace until the pressure detected by the pressure detector recovers to the target pressure, assuming that the amount of catalyst in the gasification furnace is reduced . When,
A gasification system comprising:
前記目標圧力を得たときのガス化ガスの生成量が前記ガス生成量検出器により検出されて前記触媒制御器に入力され、この検出したガス化ガスの生成量には設定値が設定してあり、前記ガス化炉の圧力が目標圧力に回復してもガス化ガスの生成量が設定値より下回った際に触媒の劣化と判断して循環している循環粒子とともに触媒の一部を抜き出すように制御する抜出装置を備えた請求項4に記載のガス化システム。 The amount of gasification gas produced when the target pressure is obtained is detected by the gas production amount detector and input to the catalyst controller, and a set value is set for the amount of gasification gas production detected. There, the when the pressure of the gasifier is the amount of the gasification gas be restored to the target pressure is below the set value, it is determined that the deterioration of the catalyst, a portion of the catalyst with the circulating particles circulating The gasification system of Claim 4 provided with the extraction apparatus controlled so that it may extract. 前記分離器で循環粒子を分離した排気ガスから粉化触媒を分離する粉化触媒分離装置を備え、該粉化触媒分離装置で分離した粉化触媒を導入して該粉化触媒を微粒子ゲッターとして前記ガス化炉からのガス化ガスと接触させることによりガス化ガス中の微粒子を除去する触媒塔を備えた請求項4又は5に記載のガス化システム。   A pulverization catalyst separation device for separating the pulverization catalyst from the exhaust gas from which the circulating particles have been separated by the separator is provided, and the pulverization catalyst separated by the pulverization catalyst separation device is introduced to make the pulverization catalyst a fine particle getter The gasification system of Claim 4 or 5 provided with the catalyst tower which removes the microparticles | fine-particles in gasification gas by making it contact with the gasification gas from the said gasification furnace.
JP2007207394A 2007-08-09 2007-08-09 Gasification method and gasification system Active JP5256661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207394A JP5256661B2 (en) 2007-08-09 2007-08-09 Gasification method and gasification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207394A JP5256661B2 (en) 2007-08-09 2007-08-09 Gasification method and gasification system

Publications (2)

Publication Number Publication Date
JP2009040886A JP2009040886A (en) 2009-02-26
JP5256661B2 true JP5256661B2 (en) 2013-08-07

Family

ID=40441985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207394A Active JP5256661B2 (en) 2007-08-09 2007-08-09 Gasification method and gasification system

Country Status (1)

Country Link
JP (1) JP5256661B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444847B2 (en) * 2009-05-26 2014-03-19 株式会社Ihi Gasifier
JP5699523B2 (en) * 2010-10-21 2015-04-15 株式会社Ihi Gas generation amount control method and gas generation amount control device
JP2012255114A (en) * 2011-06-10 2012-12-27 Ihi Corp System and method for producing gasified gas
JP7075574B2 (en) * 2017-05-29 2022-05-26 国立研究開発法人産業技術総合研究所 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303413A (en) * 2001-04-03 2002-10-18 Hitachi Zosen Corp Waste combustion method and combustion apparatus
JP4549918B2 (en) * 2005-04-14 2010-09-22 井上 斉 Biomass gasification method
JP2007024492A (en) * 2005-07-14 2007-02-01 Ebara Corp Fluidized bed gasification furnace, and pyrolizing gasification method
JP4622828B2 (en) * 2005-11-29 2011-02-02 株式会社Ihi Gasifier

Also Published As

Publication number Publication date
JP2009040886A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
Kim et al. Coal direct chemical looping combustion process: Design and operation of a 25-kWth sub-pilot unit
RU2467789C2 (en) Method and device for processing co2-bearing waste gases
US8038744B2 (en) Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
US9410095B2 (en) Method of gasification of biomass using gasification island
CA2721101C (en) Process for using a facility for combusting carbonaceous materials
CN103946633B (en) The burning chemistry chains method removed with ashes and particulate in reduced zone and the device using the method
CN108026459B (en) All-steam gasification with carbon capture
JP2008542481A (en) System for converting coal to gas of specific composition
CA2610806A1 (en) A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
US20200148963A1 (en) All-Steam Gasification for Supercritical CO2 Cycle System
JP5256661B2 (en) Gasification method and gasification system
US9079767B2 (en) Countercurrent gasification using synthesis gas as the working medium
EP2414288B1 (en) A process for generating an output selected from h2 syngas, steam and co2
CN110172362B (en) Catalytic coal gasification method
JP4601576B2 (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from combustible waste
JP6602174B2 (en) Gasification apparatus, combined gasification power generation facility, gasification facility, and removal method
CN104593086B (en) It is a kind of to carry the powder coal gasification furnace that nitrogen, vapor, synthesis gas drive material return mechanism
JP4051329B2 (en) Waste gasification and melting treatment method
RU2680135C1 (en) Device and method of plasma gasification of a carbon-containing material and unit for generation of thermal/electric energy in which the device is used
CN108368440B (en) Gasification device, control device and method for gasification device, and gasification combined power generation facility
EA028730B1 (en) Method and apparatus for sequestering carbon dioxide from a spent gas
KR101486874B1 (en) Gasification Apparatus For Tar Reduction
AU2010234845B2 (en) A hot solids process selectively operable based on the type of application that is involved
WO2010096278A2 (en) Carbon dioxide rich off-gas from a two stage gasification process
JPH10132234A (en) Gas turbine combined cycle method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5256661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250