JP5240959B2 - Drug and production method - Google Patents
Drug and production method Download PDFInfo
- Publication number
- JP5240959B2 JP5240959B2 JP2005331239A JP2005331239A JP5240959B2 JP 5240959 B2 JP5240959 B2 JP 5240959B2 JP 2005331239 A JP2005331239 A JP 2005331239A JP 2005331239 A JP2005331239 A JP 2005331239A JP 5240959 B2 JP5240959 B2 JP 5240959B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- drug
- substance
- magnetic fine
- magnetically responsive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Description
本発明は、磁気感応物質を用いた薬剤とその製造方法に関するものである。さらに詳しくは、磁性微粒子表面に共有結合した有機薄膜を介して機能物質が結合固定されている磁石を用いて混合物から標的化合物の分離に使用される磁気感応物質を用いた、必要に応じて必要な時間に必要な部位で作用させるための薬物システム(すなわち、ドラッグデリバリーシステム(DDS)用の薬剤)に使用できる磁気応答性の薬剤に関するものである。 The present invention relates to a drug using a magnetically sensitive substance and a method for producing the same. More specifically, it is necessary if necessary using a magnetically sensitive substance that is used to separate a target compound from a mixture using a magnet in which a functional substance is bonded and fixed through an organic thin film covalently bonded to the surface of the magnetic fine particle. The present invention relates to a magnetically responsive drug that can be used in a drug system (that is, a drug for a drug delivery system (DDS)) for acting at a necessary site at a necessary time.
本発明において、「DDS用の磁気応答性薬剤」には、タンパク質や、アミノ酸、酵素、抗体、抗生物質、抗菌物質、あるいは造影剤など、物質内にイミノ基を含む薬物を磁性微粒子表面に固定した薬剤が含まれる。 In the present invention, a “magnetically responsive drug for DDS” is a drug, amino acid, enzyme, antibody, antibiotic, antibacterial substance, or contrast agent, which contains an imino group drug on the surface of magnetic fine particles. Drugs included.
現在、薬剤の副作用を和らげたり、低減させたりする目的で、必要な時間に必要な部位で作用させるための薬物システムが数々研究開発されている。
しかしながら、混合物から磁力を用いて分離可能な磁気感応物質及びその製造方法、さらには磁力を用いて必要な部位に薬剤を集中させるというシステムに用いる薬剤及びその製造方法は、未だ開発、提供されていない。 However , a magnetically sensitive substance that can be separated from a mixture using magnetic force and a method for producing the same, and a drug used in a system that concentrates the drug on a necessary site using magnetic force and a method for producing the same have not yet been developed and provided. Absent.
本発明は、磁力を用いて分離あるいは集積が可能な磁気感応物質を製造し、触媒等に用いた物質の分離を高能率に行うことを目的とする。また、磁力を用いて生体内の必要部位に集中させることができ、且つ、投薬量が極めて少なくて済むDDS用の薬剤を製造し、薬剤による副作用を和らげたり、薬剤の使用量を低減させたりすることを目的とする。 The present invention is to produce a magnetically sensitive material which can be separated or integrated with a magnetic, as intended for the separation of substances used in the catalyst or the like at a high efficiency. In addition, it is possible to concentrate the necessary part in the living body using magnetic force and produce a drug for DDS that requires very little dosage, to reduce side effects caused by the drug, and to reduce the amount of drug used. The purpose is to do.
(削除)(Delete)
(削除)(Delete)
(削除)(Delete)
前記課題を解決するための手段として提供される第一の発明は、必要に応じて必要な時間に必要な部位で作用させるための薬物システムに使用できる磁気応答性の薬剤であって、磁性微粒子表面に共有結合し、一端にエポキシ基を含み他端でSiを介して磁性粒子表面に共有結合する分子で構成されている有機薄膜に、−CH2−N−結合を介してイミノ基を有していた、抗ガン物質、抗生物質、抗菌物質、および造影剤のいずれかである薬物が結合固定されている磁気応答性の薬剤である。 A first invention provided as a means for solving the above-described problems is a magnetic responsive drug that can be used in a drug system for acting at a necessary site at a required time as required. An organic thin film composed of molecules covalently bonded to the surface and having an epoxy group at one end and covalently bonded to the surface of the magnetic particle via Si at the other end has an imino group via a —CH 2 —N— bond. It is a magnetically responsive drug to which a drug that is one of an anti-cancer substance, antibiotic, antibacterial substance, and contrast agent is bound and fixed.
第二の発明は、第一の発明に於いて、有機薄膜が単分子膜である磁気応答性の薬剤である。 The second invention is the magnetically responsive drug according to the first invention, wherein the organic thin film is a monomolecular film.
第三の発明は、磁性微粒子を少なくともエポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程と、微粒子表面を有機溶剤で洗浄して余分なアルコキシシラン化合物を除去して磁性微粒子表面に共有結合したエポキシ基を含む単分子膜を形成する工程と、イミノ基を有し、抗ガン物質、抗生物質、抗菌物質、および造影剤のいずれかである薬物を反応させて磁性微粒子表面に該薬物を固定する工程を含むことを特徴とする磁気応答性の薬剤の製造方法である。 According to a third aspect of the invention, magnetic particles are dispersed in a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the magnetic particles. a step of, forming a monomolecular film containing an epoxy group covalently bonded by washing the surface of the fine particles in an organic solvent to remove excess alkoxysilane compound magnetic particle surface, have a imino group, anticancer A method for producing a magnetically responsive drug, comprising a step of reacting a drug that is one of a substance, an antibiotic, an antibacterial substance, and a contrast agent to fix the drug on the surface of a magnetic fine particle.
(削除)(Delete)
(削除)(Delete)
(削除)(Delete)
第三の発明は、磁性微粒子を少なくともエポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程と、微粒子表面を有機溶剤で洗浄して余分なアルコキシシラン化合物を除去して磁性微粒子表面に共有結合したエポキシ基を含む単分子膜を形成する工程と、イミノ基を有する薬物を反応させて磁性微粒子表面に該薬物を固定する工程を含む磁気応答性の薬剤の製造方法である。 According to a third aspect of the invention, magnetic particles are dispersed in a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the magnetic particles. A step of forming a monomolecular film containing an epoxy group covalently bonded to the surface of the magnetic fine particle by reacting a drug having an imino group A method for producing a magnetically responsive drug, comprising the step of immobilizing the drug on the surface of the magnetic fine particles .
(削除)(Delete)
第四の発明は、第三の発明に於いて、シラノール縮合触媒の代わりに、ケチミン化合物、又は、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いる磁気応答性の薬剤の製造方法である。 The fourth invention is a magnetically responsive agent using a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst in the third invention. It is a manufacturing method.
第五の発明は、第三の発明に於いて、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いる磁気応答性の薬剤の製造方法である。 According to a fifth invention, in the third invention, the silanol condensation catalyst is mixed with at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound as a co-catalyst. It is a manufacturing method of the magnetic responsive chemical | medical agent used as a result.
以下、本発明に関してその内容を更に説明する。 The contents of the present invention will be further described below.
一方、本発明は、磁性微粒子を少なくともエポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程と、微粒子表面を有機溶剤で洗浄して余分なアルコキシシラン化合物を除去して磁性微粒子表面に共有結合したエポキシ基を含む単分子膜を形成する工程を用いて、磁性微粒子表面に共有結合した有機薄膜に、−CH2−N−結合を介してイミノ基を有していた、抗ガン物質、抗生物質、抗菌物質、および造影剤のいずれかである薬物が結合固定されている磁気応答性の薬剤を製造提供することを要旨とする。 On the other hand, in the present invention, the magnetic fine particles are dispersed in a chemical adsorption liquid prepared by mixing an alkoxysilane compound containing at least an epoxy group, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the magnetic fine particles. And the step of forming a monomolecular film containing an epoxy group covalently bonded to the surface of the magnetic fine particle by removing the excess alkoxysilane compound by washing the surface of the fine particle with an organic solvent and covalently bonding to the surface of the magnetic fine particle. Response in which a drug, which is an anticancer substance, antibiotic, antibacterial substance, or contrast agent, having an imino group via a —CH 2 —N— bond is bound and fixed to the organic thin film The gist is to manufacture and provide a sex medicine.
ここで、有機薄膜が単分子膜であると、機能物質の特性を損なうことがないので都合がよい。
また、表面に共有結合した単分子膜が一端にエポキシ基を含み他端でSiを介して磁性粒子表面に共有結合する分子で構成されているので、機能物質を共有結合で固定するのに都合がよい。
Here, it is convenient that the organic thin film is a monomolecular film because the characteristics of the functional substance are not impaired.
Further, since the monomolecular film covalently bonded is composed of molecules that are covalently attached to the magnetic particle surface through Si at the other end comprises an epoxy group at one end to the surface, convenient to fix the functional substance covalently Is good.
さらにこのとき、エポキシ基を含む単分子膜を形成する工程の後、イミノ基を有する薬物を反応させて磁性微粒子表面に薬物を固定するので、薬物を安定に固定する上で都合がよい。
また、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、製造時間を短縮できて都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いると、より一層製造時間を短縮できて都合がよい。
In this case further, after the step of forming a monomolecular film containing epoxy groups, since to secure the drug to the magnetic microparticle surface by reacting a drug having an imino group, it is advantageous in terms of securing the drug stability.
In addition, it is advantageous to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound instead of the silanol condensation catalyst because the production time can be shortened.
In addition, when a ketimine compound or at least one selected from organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds is used as a co-catalyst for the silanol condensation catalyst, the production time can be further reduced. Convenient.
(削除)(Delete)
以上説明したとおり、本発明によれば、磁力を用いて分離あるいは集積が可能な磁気感応物質を製造でき、触媒等に用いた物質の分離を高能率に行える効果がある。
また、磁性微粒子表面に薬物を薬物本来の機能をほぼ保ったままで固定したDDS用の薬剤を製造提供でき、人体投与後、磁力を用いて必要部位に薬剤を集積させることにより、効果を減じることなく薬剤の投与量を低減できたり、薬剤の副作用を和らげるという特別の効果がある。
As described above, according to the present invention, a magnetically sensitive substance that can be separated or accumulated using magnetic force can be manufactured, and the substance used for a catalyst or the like can be separated efficiently.
In addition, it is possible to manufacture and provide a drug for DDS in which the drug is immobilized on the surface of the magnetic fine particles while maintaining almost the original function of the drug, and after administration to the human body, the effect is reduced by accumulating the drug at the necessary site using magnetic force. There is a special effect that the dose of the drug can be reduced and the side effects of the drug are alleviated.
本発明は、磁性微粒子を少なくともエポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程と、微粒子表面を有機溶剤で洗浄して余分なアルコキシシラン化合物を除去して磁性微粒子表面に共有結合したエポキシ基を含む単分子膜を形成する工程と、前記エポキシ基を介して機能性の物質を結合固定する工程により、磁性微粒子表面に共有結合した有機薄膜を介して機能物質が結合固定されている磁気感応物質を製造提供するものである。 The present invention comprises a step of reacting an alkoxysilane compound and the surface of a magnetic fine particle by dispersing the magnetic fine particle in a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group, a silanol condensation catalyst, and a non-aqueous organic solvent. Cleaning the surface of the fine particles with an organic solvent to remove excess alkoxysilane compound to form a monomolecular film containing an epoxy group covalently bonded to the surface of the magnetic fine particles, and a functional substance via the epoxy group In the present invention, a magnetically sensitive substance in which a functional substance is bonded and fixed through an organic thin film covalently bonded to the surface of a magnetic fine particle by the step of binding and fixing is provided.
本発明は、磁性微粒子を少なくともエポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させ、微粒子表面を有機溶剤で洗浄して余分なアルコキシシラン化合物を除去して磁性微粒子表面に共有結合したエポキシ基を含む単分子膜を形成し、タンパク質や、アミノ酸、酵素、抗体、抗生物質、抗菌物質、あるいは造影剤など、物質内にイミノ基を含む薬物を反応させて磁性微粒子表面に薬物を固定することにより、薬物が磁性微粒子表面に共有結合した単分子膜を介して結合固定されているDDS用の薬剤を製造提供するものである。 In the present invention, the magnetic fine particles are dispersed in a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound and the surface of the magnetic fine particles, The surface of the fine particles is washed with an organic solvent to remove excess alkoxysilane compounds and form a monomolecular film containing an epoxy group covalently bonded to the surface of the magnetic fine particles. Proteins, amino acids, enzymes, antibodies, antibiotics, antibacterial substances Alternatively, a DDS in which a drug containing an imino group in a substance such as a contrast agent is reacted to fix the drug on the surface of the magnetic fine particle, whereby the drug is bound and fixed through a monomolecular film covalently bonded to the surface of the magnetic fine particle. Manufacturing and providing pharmaceuticals for use.
したがって、本発明の薬剤には、人体投与後、磁力を用いて必要部位に薬剤を集積させる機能があり、効果を減じることなく薬剤の投与量を低減できたり、薬剤の副作用を和らげたりできるという作用がある。 Therefore , the drug of the present invention has a function of accumulating the drug at a necessary site using magnetic force after administration to the human body, so that the dose of the drug can be reduced without reducing the effect, or the side effect of the drug can be reduced. There is an effect.
以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。 Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.
なお、本発明に関する磁気感応性物質には、機能物質として触媒や凝集剤が固定された磁気感応性物質があり、磁気応答性の薬剤には、タンパク質や、アミノ酸、酵素、抗体、抗生物質、抗菌物質、あるいは造影剤など、物質内にイミノ基を含む薬物を磁性微粒子表面に固定した薬剤があるが、まず、代表例として、機能物質であるペニシリンGを固定した磁性微粒子を取り上げて説明する。 In addition, the magnetically sensitive substance related to the present invention includes a magnetically sensitive substance in which a catalyst or an aggregating agent is fixed as a functional substance, and magnetically responsive drugs include proteins, amino acids, enzymes, antibodies, antibiotics, There are drugs, such as antibacterial substances or contrast agents, in which a drug containing an imino group is immobilized on the surface of the magnetic fine particles. First, as a representative example, magnetic fine particles fixed with a functional substance, penicillin G, will be described. .
まず、粒径が数十ナノメートルの無水のマグネタイト1を用意し、よく乾燥した。次に、化学吸着剤として機能部位にエポキシ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチルスズジアセチルアセトナートを1重量%となるようにそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンに1重量%程度の濃度(好ましい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, anhydrous magnetite 1 having a particle size of several tens of nanometers was prepared and dried well. Then, the chemical adsorbent as the functional sites on the drug having an alkoxysilyl group in the epoxy group and the other end, for example, 99 wt% of the drug represented by the following formula (Formula 1, as a silanol condensation catalyst, e.g., dibutyltin diacetyl acetonate 1% by weight and dissolved in a silicone solvent such as hexamethyldisiloxane to a concentration of about 1% by weight ( preferably the concentration of the chemical adsorbent is about 0.5 to 3%). A chemisorbed liquid was prepared.
この吸着液に前記無水のマグネタイト微粒子を混入撹拌して普通の空気中(相対湿度45%)で室温で2時間程度反応させた。このとき、無水のマグネタイト微粒子表面には水酸基2が多数含まれているの(図1a)で、前記化学吸着剤の−Si(OCH3)基と前記水酸基がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CH3OH)反応し、下記式(化2)に示したような結合を形成し、磁性微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3が約1ナノメートル程度の膜厚で形成される(図1b)。
The adsorbed liquid was mixed with the anhydrous magnetite fine particles and stirred and allowed to react for about 2 hours at room temperature in normal air (relative humidity 45%). At this time, since there are many hydroxyl groups 2 on the surface of the anhydrous magnetite fine particles (FIG. 1a), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are dealcoholized in the presence of a silanol condensation catalyst. (In this case, de-CH 3 OH) reacts to form a bond as shown in the following formula (Chemical Formula 2), and includes a chemical adsorption
その後、トリクレン等の塩素系溶媒を添加して撹拌洗浄すると、表面にエポキシ基有する化学吸着単分子膜で被われたマグネタイト微粒子4を作製できた。
Thereafter, when a chlorine-based solvent such as trichlene was added and washed with stirring, magnetite
この処理部は、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー状の有機薄膜が形成されたマグネタイト微粒子が得られた。この状態でも、後工程の反応で問題が出るほどの厚膜の被膜は形成されず、単分子膜とほぼ同様の取り扱いが可能であった。
This treatment part did not impair the particle diameter because the coating was extremely thin with a film thickness of nanometer level.
Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Magnetite fine particles in which an ultrathin polymer organic thin film made of an adsorbent was formed were obtained. Even in this state, a thick film enough to cause a problem in the subsequent reaction was not formed, and the film could be handled in the same manner as a monomolecular film.
また、この方法の特徴は脱アルコール反応であるため、マグネタイト微粒子のような酸で破壊されるような物でも使用可能である。 In addition, since the feature of this method is a dealcoholization reaction, it is possible to use a material that is destroyed by an acid such as magnetite fine particles.
次に、前記エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子4をアルコール中に分散し、ペニシリンGを加えて加温反応させた。ここで、ペニシリンGにはβラクタム環の隣にイミノ基が含まれているので、下記式(化3)に示したような反応でエポキシ基とイミノ基が付加してペニシリンGが磁性微粒子表面に1層結合固定され、その後、不要の未反応ペニシリンGを洗浄除去するとペニシリンGが表面に固定されたDDS用の磁気感応性の薬剤5を製造できた(図1c)。
Next, the
この薬剤は、粒径がたかだか数十ナノメートルなので、純水に分散して血管注射しても、血管が詰まることはない。さらに、この薬剤は、磁石を近づけると磁石に引き寄せられる機能を持っているため、患部近傍に磁石を設置しておくと血液が一定時間体内を循環する間に磁力で薬剤を患部に集中できる。
したがってトータルの投与量が極めて少なくても、患部近傍のみペニシリンGを高濃度にできるため副作用を低減でき、効率の良い治療が可能となる。
Since this drug has a particle size of at most several tens of nanometers, it does not clog blood vessels even when dispersed in pure water and injected into blood vessels. Further, since this medicine has a function of being attracted to the magnet when the magnet is brought close to it, if the magnet is installed in the vicinity of the affected area, the drug can be concentrated on the affected area by the magnetic force while blood circulates in the body for a certain period of time.
Therefore, even if the total dose is extremely small, penicillin G can be increased in concentration only in the vicinity of the affected area, so that side effects can be reduced and efficient treatment is possible.
なお、この技術は、タンパク質や、アミノ酸、酵素、抗体、抗生物質、抗菌物質、あるいは造影剤など、物質内にイミノ基を含む薬物なら薬効を減じない範囲で全て適用が可能である。例えば、セファレキシンでも、同様のイミノ基や、アミノ基を含んでいるので、同様に適用できた。 Note that this technique can be applied to all drugs that contain an imino group in the substance, such as proteins, amino acids, enzymes, antibodies, antibiotics, antibacterial substances, and contrast agents, as long as the drug efficacy is not reduced. For example, cephalexin can be similarly applied because it contains the same imino group and amino group.
また、上記実施例では、エポキシ基を含む化学吸着剤として式(化1)示した物質を用いたが、上記のもの以外にも、下記(1)〜(10)に示した物質が利用できた。 Moreover, in the said Example, although the substance shown by Formula (Formula 1) was used as a chemical adsorption agent containing an epoxy group, the substance shown to following (1)-(10) other than the said thing can be utilized. It was.
(1) (CH2OCH)CH2O(CH2)7Si(OCH3)3
(2) (CH2OCH)CH2O(CH2)11Si(OCH3)3
(3) (CH2CHOCH(CH2)2)CH(CH2)2Si(OCH3)3
(4) (CH2CHOCH(CH2)2)CH(CH2)4Si(OCH3)3
(5) (CH2CHOCH(CH2)2)CH(CH2)6Si(OCH3)3
(6) (CH 2 OCH)CH2O(CH2)7Si(OC2H5)3
(7) (CH2OCH)CH2O(CH2)11Si(OC2H5)3
(8) (CH2CHOCH(CH2)2)CH(CH2)2Si(OC2H5)3
(9) (CH2CHOCH(CH2)2)CH(CH2)4Si(OC2H5)3
(10) (CH2CHOCH(CH2)2)CH(CH2)6Si(OC2H5)3
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
ここで、(CH2OCH)−基は、下記式(化4)で表される官能基を表し、(CH2CHOCH(CH2)2)CH−基は、下記式(化5)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 4), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 5). Represents a functional group.
さらに、実施例1において、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマー、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 Furthermore, Oite in Example 1, the silanol condensation catalyst, a carboxylic acid metal salt, carboxylic acid ester metal salt, metal carboxylate polymer, metal carboxylate chelate, titanate esters, and titanate chelates available It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctoate, dibutyltin diacetate, dioctyltin dilaurate, dioctyl tin dioctate, dioctyl tin diacetate, stannous, lead naphthenate dioctanoate, cobalt naphthenate , 2-ethyl hexene iron, dioctyl tin bis octene dust thioglycolic acid ester salts, dioctyl tin maleate salt, dibutyl tin maleate polymer, dimethyl tin mercapto propionate polymers, dibutyl tin bis acetyl acetate, dioctyl tin bis-acetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.
また、膜形成溶液の溶媒として、沸点が50〜250℃程度で、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいは、フッ化炭素系溶媒やシリコーン系溶媒、ジメチルホルムアミド、あるいは、それら混合物を用いることが可能であった。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいは、それら混合物が使用できた。 Further, as a solvent for the film-forming solution, an organic chlorine solvent, hydrocarbon solvent, fluorocarbon solvent, silicone solvent, dimethylformamide or the like having a boiling point of about 50 to 250 ° C. and not containing water. It was possible to use a mixture. Furthermore, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, in addition to the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used. .
具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド、あるいは、それら混合物等を挙げることができる。 Specifically usable are organic chlorinated solvents, non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone , Alkyl-modified silicone, polyether silicone, dimethylformamide, or a mixture thereof.
また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.
一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.
さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Further, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.
例えば、シラノール触媒であるジブチルスズオキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, replacing the dibutyl tin oxide silanol catalyst H3 of the Japan Epoxy Resin Co. is a ketimine compound, and other conditions were tried to the same, except that the reaction time was reduced to about 1 hour, nearly the same Results were obtained.
さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチルスズビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Further, a silanol catalyst, and Japan Epoxy Resins Co. of H3 is a ketimine compound, a mixture of dibutyl tin bis-acetyl acetonate silanol catalyst (mixing ratio 1: 1) replaced, but other conditions were tried to the same The same results were obtained except that the reaction time could be shortened to about 30 minutes.
したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.
さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.
なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.
また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、酪酸、マロン酸等があり、ほぼ同様の効果があった。 Although not particularly limited as organic acids which can be used, for example, formic acid or acetic acid, propionic acid, butyric acid, there is and malonic acid, it had substantially the same effect.
また、上記実施例では、マグネタイト微粒子を例として説明したが、本発明は、表面に水酸基のような活性水素を含んだ磁性微粒子で有れば、どのような磁性ナノ粒子にでも適用可能である。具体的には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子等に適用可能である。 In the above-described embodiment, magnetite fine particles have been described as an example. However, the present invention can be applied to any magnetic nanoparticles as long as the surface is a magnetic fine particle containing active hydrogen such as a hydroxyl group on the surface. . Specifically, the present invention can be applied to magnetic metal fine particles made of iron, chromium, nickel, and alloys thereof, magnetic metal oxide fine particles made of ferrite, magnetite, chromium oxide, and the like.
1
マグネタイト微粒子
2
水酸基
3
エポキシ基を含む単分子膜
4 エポキシ基を含む単分子膜で被覆されたマグネタイト微粒子
5 ペニシリンGが結合固定されたマグネタイト微粒子
1
Magnetite fine particles 2
Monomolecular film containing epoxy groups
Magnetite fine particles coated with monomolecular film containing 4 epoxy groups
Magnetite fine particles with 5 penicillin G bound and immobilized
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005331239A JP5240959B2 (en) | 2005-11-16 | 2005-11-16 | Drug and production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005331239A JP5240959B2 (en) | 2005-11-16 | 2005-11-16 | Drug and production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007137793A JP2007137793A (en) | 2007-06-07 |
JP5240959B2 true JP5240959B2 (en) | 2013-07-17 |
Family
ID=38201108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005331239A Expired - Fee Related JP5240959B2 (en) | 2005-11-16 | 2005-11-16 | Drug and production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5240959B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8610147B2 (en) | 1996-07-29 | 2013-12-17 | Nichia Corporation | Light emitting device and display comprising a plurality of light emitting components on mount |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9180206B2 (en) | 2007-05-14 | 2015-11-10 | Empire Technology Development Llc | Pharmaceutical preparation and manufacturing method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0620536B2 (en) * | 1988-07-04 | 1994-03-23 | 松下電器産業株式会社 | Microcapsules and manufacturing method thereof |
JP3008507B2 (en) * | 1991-01-28 | 2000-02-14 | 松下電器産業株式会社 | Artificial joint and manufacturing method thereof |
JPH0763761A (en) * | 1993-08-31 | 1995-03-10 | Tosoh Corp | Method for producing magnetic fine particles on which physiologically active substance is immobilized |
JPH08337654A (en) * | 1995-06-14 | 1996-12-24 | Matsushita Electric Ind Co Ltd | Method for producing chemical adsorption film and chemical adsorption liquid used for the same |
JP3545524B2 (en) * | 1995-12-28 | 2004-07-21 | ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Conductive magnetic beads with immobilized physiologically active substances |
JP2004187932A (en) * | 2002-12-11 | 2004-07-08 | National Cardiovascular Center | Aneurysm occluding material and aneurysm occluding method |
JP2004305055A (en) * | 2003-04-04 | 2004-11-04 | Hitachi Maxell Ltd | Magnetic composite particles and method for producing the same |
JP2005069955A (en) * | 2003-08-27 | 2005-03-17 | Hitachi Maxell Ltd | Magnetic carrier for binding biological materials |
JP4444713B2 (en) * | 2004-03-29 | 2010-03-31 | 株式会社アドバネクス | Releasable mold, method for producing the same, and method for producing molded product |
-
2005
- 2005-11-16 JP JP2005331239A patent/JP5240959B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8610147B2 (en) | 1996-07-29 | 2013-12-17 | Nichia Corporation | Light emitting device and display comprising a plurality of light emitting components on mount |
US8679866B2 (en) | 1996-07-29 | 2014-03-25 | Nichia Corporation | Light emitting device and display |
US8685762B2 (en) | 1996-07-29 | 2014-04-01 | Nichia Corporation | Light emitting device and display |
US8754428B2 (en) | 1996-07-29 | 2014-06-17 | Nichia Corporation | Light emitting device and display |
Also Published As
Publication number | Publication date |
---|---|
JP2007137793A (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bruce et al. | Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations | |
Chao et al. | Surface modification of halloysite nanotubes with dopamine for enzyme immobilization | |
De Palma et al. | Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible | |
Yang et al. | Coordination-enabled one-step assembly of ultrathin, hybrid microcapsules with weak pH-response | |
US8252249B2 (en) | Biochemical chip and production method thereof | |
WO2008068873A1 (en) | Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof | |
JP5240959B2 (en) | Drug and production method | |
Hollingsworth et al. | Preparation of metalloporphyrin-bound superparamagnetic silica particles via “Click” reaction | |
JP2007118276A (en) | Single-layer fine particle film, cumulative fine particle film, and production method thereof. | |
US9180206B2 (en) | Pharmaceutical preparation and manufacturing method thereof | |
JP5050190B2 (en) | Fine particles and production method thereof | |
US7611835B2 (en) | Process for preparing multilayer enzyme coating on a fiber | |
US20070077567A1 (en) | High stability, high activity materials and processes for using same | |
JP2007117827A (en) | Patterned fine particle film and manufacturing method thereof. | |
JP2007161912A (en) | Adhesion method and biochemical chip and optical component manufactured using it | |
JP5167528B2 (en) | Chemisorption solution | |
JP5391387B2 (en) | Magnetosensitive drug and method for producing the same | |
JP7346998B2 (en) | Surface-modified magnetic particles and method for producing the same | |
JP4868496B2 (en) | Solar cell and manufacturing method thereof | |
JP4820988B2 (en) | Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same | |
JP2007161748A (en) | Phosphor fine particles, method for producing the same, and phosphor coating using the same | |
Roy et al. | Dendron-modified polystyrene microtiter plate: Surface characterization with picoforce AFM and influence of spacing between immobilized amyloid beta proteins | |
JP5200244B2 (en) | Fine particle film and manufacturing method thereof | |
JP2007173518A (en) | Optical sensor and manufacturing method thereof | |
JP4904559B2 (en) | Coating substrate manufacturing method, coating substrate manufactured by the method, and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081007 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091103 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121203 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160412 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |