[go: up one dir, main page]

JP5239153B2 - Electrode material composite method, electrode and lithium ion battery - Google Patents

Electrode material composite method, electrode and lithium ion battery Download PDF

Info

Publication number
JP5239153B2
JP5239153B2 JP2006333056A JP2006333056A JP5239153B2 JP 5239153 B2 JP5239153 B2 JP 5239153B2 JP 2006333056 A JP2006333056 A JP 2006333056A JP 2006333056 A JP2006333056 A JP 2006333056A JP 5239153 B2 JP5239153 B2 JP 5239153B2
Authority
JP
Japan
Prior art keywords
electrode
active material
electrode active
solvent
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006333056A
Other languages
Japanese (ja)
Other versions
JP2008147024A (en
Inventor
忠史 松下
敦 本多
光正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006333056A priority Critical patent/JP5239153B2/en
Publication of JP2008147024A publication Critical patent/JP2008147024A/en
Application granted granted Critical
Publication of JP5239153B2 publication Critical patent/JP5239153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電極材料の複合化方法及び電極並びにリチウムイオン電池に関するものである。   The present invention relates to an electrode material composite method, an electrode, and a lithium ion battery.

近年、携帯用電子機器やハイブリッド自動車等に用いるための電池として二次電池の開発が進められている。現在用いられている代表的な二次電池としては、例えば、鉛蓄電池、アルカリ蓄電池、リチウムイオン電池等が知られている。特に、リチウムイオン電池は、小型化、軽量化、高容量化が可能であり、しかも、高出力、高エネルギー密度であるという優れた特性から、更なる性能向上のために様々な研究が進められている。   In recent years, secondary batteries have been developed as batteries for use in portable electronic devices and hybrid vehicles. As typical secondary batteries currently used, for example, lead storage batteries, alkaline storage batteries, lithium ion batteries, and the like are known. In particular, lithium-ion batteries can be reduced in size, weight, and capacity, and because of their excellent characteristics of high output and high energy density, various studies have been conducted to further improve performance. ing.

リチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な活物質を有する正電極と、負電極と非水系の電解質として構成されている。リチウムイオン電池の正電極は、正極活物質、導電助剤およびバインダーを含む電極材料より構成され、この電極材料を集電体と呼ばれる金属箔の表面に塗布することにより正電極を形成することができる。   A lithium ion battery is configured as a positive electrode having an active material capable of reversibly inserting and removing lithium ions, a negative electrode, and a non-aqueous electrolyte. The positive electrode of a lithium ion battery is composed of an electrode material containing a positive electrode active material, a conductive additive and a binder, and the positive electrode can be formed by applying this electrode material to the surface of a metal foil called a current collector. it can.

この正極活物質を構成する材料としては、金属酸化物、金属硫化物、あるいはポリマー等が挙げられる。具体的には、例えば、硫化チタン(TiS)、硫化モリブデン(MoS)、セレン化ニオブ(NbSe)、酸化バナジウム(V)等のリチウム非含有化合物、あるいはLiMO(M=Co、Ni,Mn,Feなど)、LiMn等のリチウム複合酸化物等が知られている。 Examples of the material constituting the positive electrode active material include metal oxides, metal sulfides, and polymers. Specifically, for example, a lithium-free compound such as titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), niobium selenide (NbSe 2 ), vanadium oxide (V 2 O 5 ), or LiMO 2 (M = Co, Ni, Mn, Fe, etc.) and lithium composite oxides such as LiMn 2 O 4 are known.

このようなリチウムイオン電池の正極活物質の中でも、特にコバルト酸リチウム(LiCoO)は、高エネルギー密度で高電圧の電池を構成することが可能であるために、リチウムイオン電池の正極活物質として広く用いられている。しかしながら、Coは地球の地殻上に偏って存在し、かつ産出量も少ない希少な資源であるために、調達コストが高く、安定供給も難しいという課題がある。そこで、Co化合物に代わる正極活物質の材料として、地球の地殻上に豊富に、かつ広範囲に存在するために、調達コストが安く、安定供給も可能なNiやMnを用いた正極活物質、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等を正極活物質に用いた正電極が実用に供されつつある。 Among such positive electrode active materials for lithium ion batteries, lithium cobaltate (LiCoO 2 ), in particular, can constitute a battery having a high energy density and a high voltage. Widely used. However, since Co is a rare resource that is biased on the earth's crust and has a low output, there are problems in that procurement costs are high and stable supply is difficult. Therefore, a positive electrode active material using Ni or Mn as a material for the positive electrode active material replacing the Co compound, which is abundant and widespread on the earth's crust, so that procurement costs are low and stable supply is possible. Positive electrodes using lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) or the like as a positive electrode active material are being put into practical use.

しかしながら、LiNiOを正極活物質に用いた正電極は、理論容量が大きく、かつ高放電電位を有するという特徴があるものの、充放電サイクルを繰り返すことによって、LiNiOの結晶構造が崩壊してしまい、その結果、放電容量の低下、熱安定性の劣化等の課題がある。一方、LiMnは、正スピネル型構造を有し、かつ空間群Fd3mを有することから、リチウム電極に対し4Vクラスの高い電位を有し、しかも合成が容易で、かつ高い電池容量等の優れた特徴を有するために、非常に有望な正極活物質として注目され、実用化がなされている。 However, although a positive electrode using LiNiO 2 as a positive electrode active material has a large theoretical capacity and a high discharge potential, the crystal structure of LiNiO 2 is destroyed by repeating the charge / discharge cycle. As a result, there are problems such as a decrease in discharge capacity and deterioration in thermal stability. On the other hand, LiMn 2 O 4 has a positive spinel structure and has a space group Fd3m. Therefore, LiMn 2 O 4 has a high potential of 4V class with respect to the lithium electrode, is easily synthesized, and has a high battery capacity. Since it has excellent characteristics, it has attracted attention as a very promising positive electrode active material and has been put into practical use.

このようにLiMnは正極活物質として優れた材料ではあるが、その一方で、高温保存時における容量劣化が大きく、Mnが電解液に溶解してしまい、安定性や充放電サイクル特性が十分でないという課題が残されていた。また、Mn3+のヤーン・テラー歪みにより充放電サイクル特性が劣化するという課題も指摘されている。 Thus, LiMn 2 O 4 is an excellent material as a positive electrode active material, but on the other hand, capacity degradation during high-temperature storage is large, Mn is dissolved in the electrolyte, and stability and charge / discharge cycle characteristics are improved. The problem of not being enough was left. Moreover, the subject that charging / discharging cycling characteristics deteriorates by the yarn teller distortion of Mn3 + is pointed out.

そこで、オリビン構造を有する遷移金属、例えばFe、Mn、Co、Niのリン酸化合物を正極活物質として用いたリチウムイオン電池が提案され、特に、資源的に豊富で安価な金属であるFeを用いたLiFePOを正極活物質として用いたリチウムイオン電池が提案されている。このLiFePOは、金属リチウムに対して3.4V程度の電位を示し、充放電可能な正極材料として用いることが考えられている。しかしながら、一方でこのLiFePOを正極活物質として用いたリチウムイオン電池は、充放電時に流せる電流密度が低く、高出力化が困難な点がその実用化を妨げている。 Therefore, a lithium ion battery using a transition metal having an olivine structure, for example, a phosphoric acid compound of Fe, Mn, Co, and Ni as a positive electrode active material has been proposed. In particular, Fe, which is a resource-rich and inexpensive metal, is used. A lithium ion battery using LiFePO 4 as a positive electrode active material has been proposed. This LiFePO 4 exhibits a potential of about 3.4 V with respect to metallic lithium and is considered to be used as a chargeable / dischargeable positive electrode material. However, on the other hand, the lithium ion battery using this LiFePO 4 as a positive electrode active material has a low current density that can be applied during charging and discharging, and its high output is difficult to put into practical use.

従来より、リチウムイオン電池は正極活物質の電子導電性及びイオン導電性が低いために、電極活物質の電子導電性を向上させることを目的として、電極活物質に導電助剤を添加することが行なわれている。電極活物質に導電助剤を添加する工程では、電極活物質と導電助剤との混合に乾式のボールミル、攪拌翼型混合機などの混合機を用いてきたが、これらの混合機では、導電助剤の分散が十分に行なわれず、電極活物質の導電性の改善が不十分なため、電池の高速充放電時に容量低下を引き起こすという課題があった。   Conventionally, since a lithium ion battery has a low electronic conductivity and ionic conductivity of a positive electrode active material, a conductive additive has been added to the electrode active material for the purpose of improving the electronic conductivity of the electrode active material. It is done. In the process of adding a conductive additive to the electrode active material, a mixer such as a dry ball mill or a stirring blade type mixer has been used for mixing the electrode active material and the conductive additive. Since the auxiliary agent is not sufficiently dispersed and the conductivity of the electrode active material is insufficiently improved, there is a problem in that the capacity is reduced during high-speed charge / discharge of the battery.

従来の電極活物質と導電助剤との混合方法においては、LiFeMe1−yPO(但し、MeはCu、Ce、Mn、Co、Ni、Cr、Mo、Nb、Mg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Yおよび希土類元素から選択された少なくとも1種、0<X<2、0<y<1)で表される電極活物質と導電助剤との混合(以下、複合化と称する)は、材料合成時に原料を炭化して用いたり、溶媒を使用せず導電助剤と複合化することが一般的であった。 In the conventional method of mixing an electrode active material and a conductive additive, Li x Fe y Me 1-y PO 4 (where Me is Cu, Ce, Mn, Co, Ni, Cr, Mo, Nb, Mg, Ca). , Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y and at least one selected from rare earth elements, 0 <X <2, 0 <y <1) In general, the mixing of the electrode active material and the conductive assistant (hereinafter referred to as “compositing”) is performed by carbonizing the raw material when synthesizing the material, or by combining with the conductive assistant without using a solvent. It was.

しかしながら、材料合成時に原料を炭化して用いる方法では、導電助剤の状態制御が困難であった。また、溶媒を使用せず導電助剤と複合化を行う方法では、ナノスケールでの均一な複合化を行うことができず十分な効果は得られない。例えば、乾式ボールミルを用いミリング処理を行う方法が挙げられるが(非特許文献1、特許文献1、特許文献2を参照)、乾式による複合化のため、電極活物質と導電助剤とを均一に混合、複合化を行うことは困難である。   However, it is difficult to control the state of the conductive auxiliary agent by the method of carbonizing the raw material during material synthesis. Moreover, in the method of compounding with a conductive additive without using a solvent, uniform compounding at the nanoscale cannot be performed, and a sufficient effect cannot be obtained. For example, there is a method of performing a milling process using a dry ball mill (see Non-Patent Document 1, Patent Document 1, and Patent Document 2). It is difficult to perform mixing and compounding.

特に、特許文献1に記載された炭素複合化方法では、熱分解法を用い炭素複合を行っているが、LiFePOの分解を防止するためには焼成条件や温度条件が限定され、優れた導電性を得ることは困難であった。また、熱分解による炭素複合化ではLiFePO粒子全面が炭素で被覆されるため、抵抗が増加して高出力特性を得ることは困難であった。 In particular, in the carbon composite method described in Patent Document 1, carbon composite is performed using a thermal decomposition method. However, in order to prevent decomposition of LiFePO 4 , firing conditions and temperature conditions are limited, and excellent electrical conductivity is achieved. It was difficult to get sex. In addition, carbonization by pyrolysis is difficult to obtain high output characteristics due to an increase in resistance because the entire surface of LiFePO 4 particles is coated with carbon.

このような課題を解決するために、本発明者等は、サンドミルを用いたリチウムイオン電池の電極形成スラリーの製造方法を提案した(特許文献3)。この発明では、電極活物質、導電助剤、バインダーおよび溶媒を、メディアとともに撹拌させてスラリーにする際に、メディアの個数をスラリー1ml中に3500個以上としている。
N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P, Hovington, M.Armand, 196th ECS, Honolulu, Hawaii, October 17-22 (1999). 特開2002−75364号公報 特開2001−15111号公報 特開2006−309958号公報
In order to solve such a problem, the present inventors have proposed a method for producing an electrode-forming slurry for a lithium ion battery using a sand mill (Patent Document 3). In this invention, when the electrode active material, the conductive additive, the binder and the solvent are stirred together with the medium to form a slurry, the number of media is 3500 or more in 1 ml of the slurry.
N. Ravet, JB Goodenough, S. Besner, M. Simoneau, P, Hovington, M. Armand, 196th ECS, Honolulu, Hawaii, October 17-22 (1999). JP 2002-75364 A JP 2001-15111 A JP 2006-309958 A

しかしながら、本発明者等が提案した製造方法では、粘結剤であるPVdFが分散を阻害するため、PVdFの高分子鎖が切断され結着力、接着力が低下したり、ビーズの分散性のため高固形分濃度の電極形成スラリーを作製することが困難であったり、粘結剤を添加しているために溶媒を蒸発させて粉末状態にできないなどの課題が残っている。このような課題により、電極材料の均一な複合化は不十分であり、導電性をさらに向上させた電極材料が望まれていた。   However, in the production method proposed by the present inventors, PVdF, which is a binding agent, inhibits dispersion, so the polymer chain of PVdF is cut and the binding force and adhesive force are reduced, or the dispersibility of beads is reduced. Problems remain such as it is difficult to produce an electrode-forming slurry having a high solid content concentration, and since the binder is added, the solvent cannot be evaporated to form a powder. Due to such problems, uniform composite of electrode materials is insufficient, and an electrode material with further improved conductivity has been desired.

本発明は、電極活物質と、導電助剤と、溶媒とを湿式法により混合粉砕し、優れた導電性をもつ均一な電極材料を得ることが可能な電極材料の複合化方法、およびこの複合化方法によって得られる電極材料を用いた電極およびリチウムイオン電池を提供することを目的とする。   The present invention relates to an electrode material composite method capable of obtaining a uniform electrode material having excellent conductivity by mixing and pulverizing an electrode active material, a conductive additive, and a solvent by a wet method, and the composite It is an object to provide an electrode and a lithium ion battery using an electrode material obtained by the conversion method.

上記課題を解決するために、本発明は、次の様な電極材料の複合化方法及び電極並びにリチウムイオン電池を提供した。
すなわち、本発明の電極材料の複合化方法は、LiFeMe1−yPO(但し、MeはCu、Ce、Mn、Co、Ni、Cr、Mo、Nb、Mg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Yおよび希土類元素から選択された少なくとも1種、0<X<2、0<y<1)で表される電極活物質と、導電助剤と、ハンセンの溶解パラメーターにおけるδの値が12.5未満であり、かつ沸点が150℃以下である溶媒とを湿式法により混合粉砕し、その後、前記溶媒を除去することを特徴とする。
In order to solve the above-described problems, the present invention provides the following electrode material composite method, electrode, and lithium ion battery.
That is, the composite method of the electrode material of the present invention is Li x Fe y Me 1-y PO 4 (where Me is Cu, Ce, Mn, Co, Ni, Cr, Mo, Nb, Mg, Ca, Sr, Electrode activity represented by at least one selected from Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y and rare earth elements, 0 <X <2, 0 <y <1) Mixing and pulverizing a substance, a conductive additive, and a solvent having a Hansen solubility parameter having a δ value of less than 12.5 and a boiling point of 150 ° C. or less by a wet method, and then removing the solvent It is characterized by.

前記電極活物質は、平均粒径が0.03μm以上かつ10μm以下であり、前記導電助剤は、平均粒径が0.001μm以上かつ0.1μm以下であることが好ましい。
前記導電助剤は炭素系導電材を含み、この前記導電助剤の含有率は、前記電極活物質100重量部に対して30重量部以下であることが好ましい。
The electrode active material preferably has an average particle size of 0.03 μm or more and 10 μm or less, and the conductive auxiliary agent preferably has an average particle size of 0.001 μm or more and 0.1 μm or less.
The conductive assistant includes a carbon-based conductive material, and the content of the conductive assistant is preferably 30 parts by weight or less with respect to 100 parts by weight of the electrode active material.

また、本発明の電極は、前記電極材料の複合化方法によって製造された電極材料を用いてなることを特徴とする。
さらに、本発明のリチウムイオン電池は、前記電極を正電極として備えてなることを特徴とする。
In addition, the electrode of the present invention is characterized by using an electrode material manufactured by the above-described composite method of electrode materials.
Furthermore, the lithium ion battery of the present invention is characterized in that the electrode is provided as a positive electrode.

本発明の電極材料の複合化方法によれば、LiFeMe1−yPOで表される電極活物質と、導電助剤と、溶媒とを湿式法により混合粉砕し、その後、前記溶媒を除去するので、大電流密度による充放電を実現できるリチウムイオン電池に好適な電極材料ならびにリチウムイオン電池を実現することができる。 According to the composite method of the electrode material of the present invention, the electrode active material represented by Li x Fe y Me 1-y PO 4 , the conductive auxiliary agent, and the solvent are mixed and pulverized by a wet method, and then, Since the solvent is removed, it is possible to realize an electrode material suitable for a lithium ion battery and a lithium ion battery that can realize charging and discharging with a large current density.

また、本発明の電極材料によれば、電極活物質と導電助剤とは、溶媒中で均一に複合化されているので、この電極材料を電極の形成に用いることによって、優れた導電性を有する電極を得ることが可能になる。
さらに、本発明のリチウムイオン電池によれば、電極活物質と導電助剤とが均一に複合化された電極を正電極に用いているので、放電電流が大きくなっても、放電容量を良好に保つことが可能な高性能なリチウムイオン電池を実現することができる。
In addition, according to the electrode material of the present invention, the electrode active material and the conductive additive are uniformly combined in a solvent. Therefore, by using this electrode material for forming an electrode, excellent conductivity can be obtained. It becomes possible to obtain the electrode which has.
Furthermore, according to the lithium ion battery of the present invention, since the electrode in which the electrode active material and the conductive additive are uniformly combined is used as the positive electrode, the discharge capacity is improved even when the discharge current is increased. A high-performance lithium ion battery that can be maintained can be realized.

以下、本発明に係る電極材料の複合化方法、電極およびリチウムイオン電池の最良の形態について説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。   Hereinafter, the best mode of the electrode material composite method, electrode, and lithium ion battery according to the present invention will be described. The present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.

すなわち、本発明は、
LiFeMe1−yPO(但し、MeはCu、Ce、Mn、Co、Ni、Cr、Mo、Nb、Mg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Yおよび希土類元素から選択された少なくとも1種、0<X<2、0<y<1)で表される電極活物質と、導電助剤と、溶媒とを湿式法により混合粉砕し、その後、前記溶媒を除去する方法である。
That is, the present invention
Li x Fe y Me 1-y PO 4 (where Me is Cu, Ce, Mn, Co, Ni, Cr, Mo, Nb, Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In , Si, Ge, Sc, Y, and at least one selected from rare earth elements, an electrode active material represented by 0 <X <2, 0 <y <1), a conductive additive, and a solvent. By mixing and pulverizing, and then removing the solvent.

本願発明に用いる電極活物質としては、上述したLiFeMe1−yPO(但し、MeはCu、Ce、Mn、Co、Ni、Cr、Mo、Nb、Mg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Yおよび希土類元素から選択された少なくとも1種、0<X<2、0<y<1)で表される組成を持つ物質で、固相法、液相法、気相法などの方法により製造したものが用いられる。電極活物質の形状や大きさに特に制限はないが、電極活物質の粒径が0.03μm以上で、かつ10μm以下が好ましい。 As the electrode active material used in the present invention, the above-described Li x Fe y Me 1-y PO 4 (where Me is Cu, Ce, Mn, Co, Ni, Cr, Mo, Nb, Mg, Ca, Sr, Ba) , Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y and at least one selected from rare earth elements, having a composition represented by 0 <X <2, 0 <y <1) A substance produced by a method such as a solid phase method, a liquid phase method, or a gas phase method is used. Although there is no restriction | limiting in particular in the shape and magnitude | size of an electrode active material, The particle size of an electrode active material is 0.03 micrometer or more and 10 micrometers or less are preferable.

電極活物質の粒径が0.03μm未満では、導電助剤に対する粒径の差が小さくなるので、後述する湿式法による粉砕混合で用いるメディアであるボールまたはビーズを用いて、溶媒中で複合化処理で均一に複合を行うことが困難となる。一方、電極活物質の粒径が10μmを超えると、電極活物質と導電助剤を均一に複合化しても大電流密度による充放電が困難となる。なお、ここで粒径とは、透過型電子顕微鏡、反射型電子顕微鏡、光学顕微鏡などを用いて画像解析法などで測定される平均粒径のことであり、より具体的には、1個の粒子において最小部と最大部の平均値で表される大きさのことである。   When the particle size of the electrode active material is less than 0.03 μm, the difference in particle size with respect to the conductive auxiliary agent becomes small. Therefore, it is combined in a solvent using balls or beads, which are media used in pulverization and mixing by the wet method described later. It becomes difficult to uniformly combine by processing. On the other hand, when the particle size of the electrode active material exceeds 10 μm, it becomes difficult to charge and discharge with a large current density even if the electrode active material and the conductive additive are uniformly combined. Here, the particle size is an average particle size measured by an image analysis method using a transmission electron microscope, a reflection electron microscope, an optical microscope, or the like, and more specifically, one particle size. It is the size represented by the average value of the minimum and maximum parts of the particles.

導電助剤は、リチウムイオン電池を高出力化するために用いられるもので、炭素系導電助剤が好適に用いられ、この炭素系導電助剤としては、例えば、アセチレンブラック、カーボンブラック、ケッチェンブラック、天然黒鉛、人造黒鉛等が挙げられる。導電助剤の形状や大きさに特に制限はないが、導電助剤の粒径は0.001μm以上、かつ0.1μm以下であることが好ましい。   The conductive auxiliary agent is used to increase the output of the lithium ion battery, and a carbon-based conductive auxiliary agent is preferably used. Examples of the carbon-based conductive auxiliary agent include acetylene black, carbon black, and ketjen. Examples thereof include black, natural graphite, and artificial graphite. Although there is no restriction | limiting in particular in the shape and magnitude | size of a conductive support agent, It is preferable that the particle size of a conductive support agent is 0.001 micrometer or more and 0.1 micrometer or less.

導電助剤は、電極活物質100重量部に対して30重量部以下の割合で含まれることが好ましい。ここで、導電助剤の割合を30重量部以下とした理由は、導電助剤が30重量部を超えると電極活物質の比率が小さくなり、リチウムイオン電池の容量が小さくなってしまうためである。   The conductive auxiliary agent is preferably contained in a proportion of 30 parts by weight or less with respect to 100 parts by weight of the electrode active material. Here, the reason why the ratio of the conductive assistant is 30 parts by weight or less is that when the conductive assistant exceeds 30 parts by weight, the ratio of the electrode active material decreases and the capacity of the lithium ion battery decreases. .

なお、導電助剤の粒径を小さくするために、例えば、アミノ基含有有機酸、アミノ基含有有機酸塩、イミノ基含有有機酸、イミノ基含有有機酸塩などからなる分散改良剤を加えても良い。   In order to reduce the particle size of the conductive additive, for example, a dispersion improver comprising an amino group-containing organic acid, an amino group-containing organic acid salt, an imino group-containing organic acid, an imino group-containing organic acid salt, or the like is added. Also good.

溶媒としては、ハンセンの溶解パラメーターにおけるδの値が12.5未満のものが好ましく、更に好ましくは12未満である。ここで、ハンセン(Hansen)の溶解度パラメータとは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメータを分散項δd、極性項δp、水素結合項δhの3成分に分割し、3次元空間に表したものであり、以下の式1によって求めることができる。
δ=δd+δp+δh ・・・・(式1)
分散項δdは無極性相互作用を、極性項δpは相極子間力を、水素結合項δhは水素結合力をそれぞれ示す。また、ハンセンの溶解度パラメータのδが12.5以上のものに関しては界面活性剤などの分散改良剤を用いることで、複合化の溶媒として好ましく使用できる。
As a solvent, the value of δ in Hansen's solubility parameter is preferably less than 12.5, more preferably less than 12. Here, the Hansen solubility parameter is expressed in a three-dimensional space by dividing the solubility parameter introduced by Hildebrand into three components: a dispersion term δd, a polar term δp, and a hydrogen bond term δh. It can be calculated by the following formula 1.
δ 2 = δd 2 + δp 2 + δh 2 ... (Formula 1)
The dispersion term δd represents a nonpolar interaction, the polar term δp represents a force between phase poles, and the hydrogen bond term δh represents a hydrogen bond force. In addition, Hansen's solubility parameter δ of 12.5 or more can be preferably used as a complexing solvent by using a dispersion improving agent such as a surfactant.

また、複合化完了後に溶媒を蒸発させるため、使用する溶媒の沸点は150℃以下であることが好ましい。具体的な溶媒の種類としては、例えば、ヘキサン、ベンゼン、キシレン、トルエン、ブタノール、プロパノール、イソプロパノール、ペンタノール、酢酸メチル、酢酸エチル、酢酸ブチル、アセトン、アセトニトリル、メチルエチルケトンなどが好ましく挙げられる。このような溶媒と、電極活物質および導電助剤からなる粉末との混合比率は、スラリーの分散状態よりスラリーの固形分濃度が20重量%から70重量%の間となるような比率にすることが好ましい。   Moreover, in order to evaporate a solvent after completion | finish of composite_complex, it is preferable that the boiling point of the solvent to be used is 150 degrees C or less. Specific examples of the solvent include hexane, benzene, xylene, toluene, butanol, propanol, isopropanol, pentanol, methyl acetate, ethyl acetate, butyl acetate, acetone, acetonitrile, and methyl ethyl ketone. The mixing ratio of such a solvent and the powder composed of the electrode active material and the conductive auxiliary agent is set so that the solid content concentration of the slurry is between 20% by weight and 70% by weight from the dispersed state of the slurry. Is preferred.

本願発明においては、電極活物質と導電助剤とを均一に複合化するために、ハンセン溶解度パラメータδの値が12.5未満の溶媒を用いている。これは、ハンセン溶解度パラメータδの値が12.5を超えた溶媒を使用した場合、電極活物質と導電助剤の混ざりが悪く、複合化が困難となるためである。また、溶媒の沸点は150℃以下が好ましいとしているが、溶媒の沸点が150℃を超えると溶媒の除去が困難となるためである。一方、ハンセン溶解度パラメータのδが12.5以上の溶媒、例えば、水やエタノールなどの溶媒に対しては、界面活性剤などの分散改良剤を含有させることで、電極活物質と導電助剤との混合状態がよく、均一に複合化を行うことができる。   In the present invention, a solvent having a Hansen solubility parameter δ of less than 12.5 is used to uniformly combine the electrode active material and the conductive additive. This is because when a solvent having a Hansen solubility parameter δ exceeding 12.5 is used, mixing of the electrode active material and the conductive additive is poor, making it difficult to form a composite. Further, the boiling point of the solvent is preferably 150 ° C. or lower, but when the boiling point of the solvent exceeds 150 ° C., it is difficult to remove the solvent. On the other hand, with respect to a solvent having a Hansen solubility parameter δ of 12.5 or more, for example, a solvent such as water or ethanol, a dispersion improver such as a surfactant is contained, so that the electrode active material and the conductive auxiliary agent The mixed state is good and can be uniformly compounded.

この複合化には、湿式法にて混合粉砕する媒体攪拌型分散装置が用いられる。この媒体攪拌型分散装置は容器内に、前述した電極活物質、導電助剤、溶媒、および複合化の際のメディアとなるボールやビーズを投入し、その後、所定時間稼動させることで、電極活物質及び導電助剤を混合粉砕するが、媒体粒子どうしが衝突する際に、媒体粒子間に電極活物質、導電助剤が捕捉され、衝突による衝撃、せん断作用を受けることにより混合分散するとともに、これら電極活物質及び導電助剤を均一に複合化するものである。   For this combination, a medium agitation type dispersion apparatus that performs mixing and grinding by a wet method is used. In this medium agitating type dispersion apparatus, the electrode active material, the conductive auxiliary agent, the solvent, and the balls and beads that serve as the media for the composite are put into a container, and then operated for a predetermined time, whereby the electrode active material is dispersed. The material and the conductive additive are mixed and pulverized. When the medium particles collide with each other, the electrode active material and the conductive auxiliary agent are trapped between the medium particles, and are mixed and dispersed by receiving impact, shearing action due to collision, These electrode active materials and conductive additives are uniformly combined.

この媒体攪拌型分散装置の例としては、サンドミル、ペイントシェーカー、アトライタ、遊星ボールミル、振動ボールミル、転動ボールミル等が挙げられる。メディアとしては、ガラスビーズ、アルミナビーズ、ジルコニアビーズ、ジルコンビーズ、チタニアビーズなどを好ましく挙げることができる。媒体粒子の直径は、用いる媒体攪拌型分散装置の種類にもよるが、概ね10μm以上、かつ10mm以下であることが好ましい。   Examples of the medium stirring type dispersing device include a sand mill, a paint shaker, an attritor, a planetary ball mill, a vibrating ball mill, and a rolling ball mill. Preferred examples of the media include glass beads, alumina beads, zirconia beads, zircon beads, titania beads and the like. The diameter of the medium particles is preferably about 10 μm or more and 10 mm or less, although it depends on the type of the medium stirring type dispersion apparatus to be used.

このようにして複合化された混合物から溶媒を蒸発させて除去すれば、均一に複合化された電極材料を得ることができる。そして、得られた電極材料を用いて、更に、バインダーや溶剤と混合して、ペーストを作製する。得られたペーストを集電材、例えばアルミニウム(Al)箔に塗布し、乾燥、圧着等を行なうことによって、リチウムイオン電池の正電極として用いることができる。なお、バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の有機バインダーが好適に用いられる。   If the solvent is removed by evaporation from the composite mixture in this manner, a uniformly composite electrode material can be obtained. Then, the obtained electrode material is further mixed with a binder or a solvent to prepare a paste. The obtained paste can be used as a positive electrode of a lithium ion battery by applying it to a current collector, for example, an aluminum (Al) foil, and performing drying, pressure bonding, and the like. As the binder, organic binders such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC) and the like. Are preferably used.

本発明の電極の拡大模式図を図1(a)に、従来の電極の拡大模式図を図1(b)にそれぞれ示す。従来の電極20では、LiFePOなどの電極活物質粒子21に対してカーボンブラックなどの導電助剤粒子22が凝集して付着し、不均一に複合化された電極材料として集電体23に形成されている。一方で、本発明の電極10では、電極活物質粒子11に対して導電助剤粒子12が凝集せずに均一に分散し、均一に複合化された電極材料として集電体13に形成されている。
本発明の電極10によれば、電極活物質粒子11と導電助剤粒子12とが均一に複合化されているので、リチウムイオン電池の正電極として用いた場合に、優れた導電性によって電流密度が高く高出力が可能なリチウムイオン電池を実現することができる。
An enlarged schematic view of the electrode of the present invention is shown in FIG. 1 (a), and an enlarged schematic view of a conventional electrode is shown in FIG. 1 (b). In the conventional electrode 20, conductive auxiliary agent particles 22 such as carbon black aggregate and adhere to electrode active material particles 21 such as LiFePO 4, and are formed on the current collector 23 as a non-uniformly composited electrode material. Has been. On the other hand, in the electrode 10 of the present invention, the conductive auxiliary agent particles 12 are uniformly dispersed without being agglomerated with respect to the electrode active material particles 11, and are formed on the current collector 13 as a uniformly composited electrode material. Yes.
According to the electrode 10 of the present invention, the electrode active material particles 11 and the conductive auxiliary agent particles 12 are uniformly combined. Therefore, when used as a positive electrode of a lithium ion battery, the current density is excellent due to excellent conductivity. Therefore, it is possible to realize a lithium ion battery that is high and capable of high output.

以下、実施例1〜3、参考例4,5及び比較例1〜4により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely by Examples 1-3, Reference Examples 4, 5, and Comparative Examples 1-4, this invention is not limited by these Examples.

(実施例1)
LiFePO(住友大阪セメント社製)を14.25g、平均一次粒径11nmのカーボンブラック(デグサ社製)を0.75g、直径5mmのアルミナボールを50g、溶媒としてトルエンを22.5g混合し、12時間ボールミル処理を行った後、溶媒を蒸発させ、電極材料を得た。
(実施例2)
溶媒にアセトンを用い、実施例1と同様に作製した。
(実施例3)
溶媒にアセトニトリルを用い、実施例1と同様に作製した。
参考例4)
溶媒に37.5mgのアデカカチオエース(株式会社ADEKA製)を界面活性剤として加えた22.5gのエタノールを用い、実施例1と同様に作製した。
参考例5)
溶媒に37.5mgのアデカカチオエース(株式会社ADEKA製)を界面活性剤として加えた22.5gの水を用い、実施例1と同様に作製した。
(比較例1)
14.25gのLiFePOと0.75gのカーボンブラックを混合し、電極材料を得た。
(比較例2)
14.25gのLiFePOと0.75gのカーボンブラック、直径5mmのアルミナボールを50g混合し、乾式で12時間ボールミル処理を行い電極材料を得た。
(比較例3)
溶媒にエタノールを用い、実施例1と同様に作製した。
(比較例4)
溶媒に水を用い、実施例1と同様に作製した。
Example 1
14.25 g of LiFePO 4 (manufactured by Sumitomo Osaka Cement), 0.75 g of carbon black (manufactured by Degussa) with an average primary particle diameter of 11 nm, 50 g of alumina balls with a diameter of 5 mm, and 22.5 g of toluene as a solvent, After ball milling for 12 hours, the solvent was evaporated to obtain an electrode material.
(Example 2)
It was produced in the same manner as in Example 1 using acetone as a solvent.
(Example 3)
It was prepared in the same manner as in Example 1 using acetonitrile as the solvent.
( Reference Example 4)
It was produced in the same manner as in Example 1 using 22.5 g of ethanol to which 37.5 mg of Adekathioace (manufactured by ADEKA) was added as a surfactant.
( Reference Example 5)
It was produced in the same manner as in Example 1 using 22.5 g of water to which 37.5 mg of Adekathioace (manufactured by ADEKA Corporation) was added as a surfactant.
(Comparative Example 1)
14.25 g of LiFePO 4 and 0.75 g of carbon black were mixed to obtain an electrode material.
(Comparative Example 2)
14.25 g of LiFePO 4 , 0.75 g of carbon black, and 50 g of alumina balls having a diameter of 5 mm were mixed and ball milled for 12 hours in a dry manner to obtain an electrode material.
(Comparative Example 3)
It was prepared in the same manner as in Example 1 using ethanol as the solvent.
(Comparative Example 4)
It was prepared in the same manner as in Example 1 using water as the solvent.

「リチウムイオン電池の作製」
実施例1にて得られた正極活物質スラリーを、厚みが30μmのアルミニウム(Al)箔上に塗布し、その後、真空乾燥機を用いて真空乾燥し、その後、圧着し、正極(正の電極)とした。次いで、乾燥Ar雰囲気下にてステンレススチール(SUS)製の2016コイン型セルを用いて、実施例1のリチウムイオン電池を作製した。
なお、負極には金属Liを、セパレーターには多孔質ボリプロピレン膜を、電解質溶液には1mol/LのLiPF6溶液を、それぞれ用いた。このLiPF6溶液の溶媒としては、炭酸エチレンと炭酸ジエチルとの比が1:1のものを用いた。
“Production of lithium-ion batteries”
The positive electrode active material slurry obtained in Example 1 was applied onto an aluminum (Al) foil having a thickness of 30 μm, then vacuum-dried using a vacuum dryer, and then pressure-bonded to form a positive electrode (positive electrode ). Subsequently, the lithium ion battery of Example 1 was produced using the 2016 coin type cell made from stainless steel (SUS) in dry Ar atmosphere.
Metal Li was used for the negative electrode, a porous polypropylene film was used for the separator, and a 1 mol / L LiPF6 solution was used for the electrolyte solution. As a solvent for this LiPF6 solution, a solvent having a ratio of ethylene carbonate to diethyl carbonate of 1: 1 was used.

また、実施例2,3、参考例4,5及び比較例1〜4それぞれの電極材料を用い、実施例1のリチウムイオン電池と全く同様にして、実施例2,3、参考例4,5及び比較例1〜4のそれぞれのリチウムイオン電池を作製した。 In Example 2, 3, Reference Example 4, using 5 and Comparative Examples 1 to 4 each of the electrode material, in the same manner as the lithium ion battery of Example 1, Example 2, 3, Reference Example 4, 5 And each lithium ion battery of Comparative Examples 1-4 was produced.

そして、それぞれのリチウムイオン電池の放電レートを0.1C,1C,2C,3C,5Cおよび8Cに設定した時の放電容量を測定した。このような実施例1〜3、参考例4,5および比較例1〜4の測定結果を表1および図2に示す。 And the discharge capacity when the discharge rate of each lithium ion battery was set to 0.1C, 1C, 2C, 3C, 5C and 8C was measured. The measurement results of Examples 1 to 3, Reference Examples 4 and 5, and Comparative Examples 1 to 4 are shown in Table 1 and FIG.

Figure 0005239153
Figure 0005239153

表1および図2に示す測定結果によれば、比較例1〜4では、放電レートが高まるにつれて、放電容量が大幅に低下していくが、実施例1〜では、放電レートが高まっても放電容量の低下は緩やかであり、本発明の電極材料の複合化方法によって形成された電極を用いれば、電流密度が高く、高出力が可能なリチウムイオン電池を実現することが可能になることが確認された。 According to the measurement results shown in Table 1 and FIG. 2, in Comparative Examples 1 to 4, the discharge capacity decreases significantly as the discharge rate increases. In Examples 1 to 3 , even though the discharge rate increases. The decrease in discharge capacity is gradual, and the use of an electrode formed by the electrode material composite method of the present invention can realize a lithium ion battery with high current density and high output. confirmed.

例えば、本実施例では、電極材料自体の挙動をデータに反映させるため、負極に金属Liを用いたが、炭素材料、Li合金、LiTi12等の負極材料を用いてもかまわない。また電解液とセパレータの代わりに固体電解質を用いても良い。 For example, in this embodiment, metal Li is used for the negative electrode in order to reflect the behavior of the electrode material itself in the data. However, a negative electrode material such as a carbon material, a Li alloy, or Li 4 Ti 5 O 12 may be used. . A solid electrolyte may be used instead of the electrolytic solution and the separator.

本発明、および従来の電極を概念的に示す拡大模式図である。It is an expansion schematic diagram which shows the present invention and the conventional electrode notionally. 本発明の検証結果を示すグラフである。It is a graph which shows the verification result of this invention.

符号の説明Explanation of symbols

10 電極、11 電極活物質粒子、12 導電助剤粒子、13 集電体、20 電極、21 電極活物質粒子、22 導電助剤粒子、23 集電体。     DESCRIPTION OF SYMBOLS 10 Electrode, 11 Electrode active material particle, 12 Conductive auxiliary agent particle, 13 Current collector, 20 Electrode, 21 Electrode active material particle, 22 Conductive auxiliary agent particle, 23 Current collector.

Claims (5)

LiFeMe1−yPO(但し、MeはCu、Ce、Mn、Co、Ni、Cr、Mo、Nb、Mg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Yおよび希土類元素から選択された少なくとも1種、0<X<2、0<y<1)で表される電極活物質と、導電助剤と、ハンセンの溶解パラメーターにおけるδの値が12.5未満であり、かつ沸点が150℃以下である溶媒とを湿式法により混合粉砕し、その後、前記溶媒を除去することを特徴とする電極材料の複合化方法。 Li x Fe y Me 1-y PO 4 (where Me is Cu, Ce, Mn, Co, Ni, Cr, Mo, Nb, Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In , Si, Ge, Sc, Y and at least one selected from rare earth elements, an electrode active material represented by 0 <X <2, 0 <y <1), a conductive auxiliary agent, and a Hansen solubility parameter A composite method of electrode materials, characterized in that a solvent having a value of δ of less than 12.5 and a boiling point of 150 ° C. or less is mixed and pulverized by a wet method, and then the solvent is removed. 前記電極活物質は、平均粒径が0.03μm以上かつ10μm以下であり、前記導電助剤は、平均粒径が0.001μm以上かつ0.1μm以下であることを特徴とする請求項1に記載の電極材料の複合化方法。   The electrode active material has an average particle diameter of 0.03 μm or more and 10 μm or less, and the conductive auxiliary agent has an average particle diameter of 0.001 μm or more and 0.1 μm or less. A composite method of the electrode material described. 前記導電助剤は炭素系導電材を含み、この前記導電助剤の含有率は、前記電極活物質100重量部に対して30重量部以下であることを特徴とする請求項1または2に記載の電極材料の複合化方法。   The conductive assistant includes a carbon-based conductive material, and the content of the conductive assistant is 30 parts by weight or less with respect to 100 parts by weight of the electrode active material. The electrode material composite method. 請求項1ないしのいずれか1項に記載の電極材料の複合化方法によって製造された電極材料を用いてなることを特徴とする電極。 An electrode comprising the electrode material produced by the electrode material composite method according to any one of claims 1 to 3 . 請求項に記載の電極を正電極として備えてなることを特徴とするリチウムイオン電池。 A lithium ion battery comprising the electrode according to claim 4 as a positive electrode.
JP2006333056A 2006-12-11 2006-12-11 Electrode material composite method, electrode and lithium ion battery Expired - Fee Related JP5239153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333056A JP5239153B2 (en) 2006-12-11 2006-12-11 Electrode material composite method, electrode and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333056A JP5239153B2 (en) 2006-12-11 2006-12-11 Electrode material composite method, electrode and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2008147024A JP2008147024A (en) 2008-06-26
JP5239153B2 true JP5239153B2 (en) 2013-07-17

Family

ID=39606952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333056A Expired - Fee Related JP5239153B2 (en) 2006-12-11 2006-12-11 Electrode material composite method, electrode and lithium ion battery

Country Status (1)

Country Link
JP (1) JP5239153B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369550B2 (en) * 2008-09-03 2013-12-18 東洋インキScホールディングス株式会社 Battery composition
CA2769178A1 (en) * 2009-07-31 2011-02-03 Toda Kogyo Corporation Positive electrode active substance for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP5771891B2 (en) * 2009-08-04 2015-09-02 住友化学株式会社 Method for producing conductive positive electrode active material powder
JP2015115283A (en) * 2013-12-13 2015-06-22 日本電信電話株式会社 Sodium secondary battery, and method for manufacturing positive electrode material used therefor
JP7218661B2 (en) * 2019-04-16 2023-02-07 トヨタ自動車株式会社 Method for producing slurry, method for producing active material layer, and method for producing all-solid-state battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684727B2 (en) * 2005-04-20 2011-05-18 日本コークス工業株式会社 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2008147024A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US10374222B2 (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US9960413B2 (en) LMFP cathode materials with improved electrochemical performance
JP5553180B2 (en) Method for producing electrode active material
CN105552344A (en) Positive plate of lithium ion battery, lithium ion battery and preparation method of lithium ion battery
WO2014092141A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
US20120082898A1 (en) Method for producing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2009158099A (en) Lithium-ion secondary battery
JP6006662B2 (en) Method for producing silicon-containing particles, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
Wu et al. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn 2 O 4 powders prepared by a spray-drying method
CN106981630A (en) Composite, preparation method and the lithium secondary battery of cathode material in secondary cell
CN105684198B (en) Sode cell positive active material and sode cell
JP2017520892A (en) Positive electrode for lithium battery
US11374221B2 (en) Lithium-ion secondary battery
US20160372739A1 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
US9466828B2 (en) Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
JP4740415B2 (en) Lithium secondary battery for electric or hybrid vehicles
JP2011204564A (en) Method of manufacturing electrode active material
JP5239153B2 (en) Electrode material composite method, electrode and lithium ion battery
JP2016072135A (en) Electrode material and manufacturing method thereof, electrode, and lithium ion battery
US20200251717A1 (en) Anode layer and all sold state battery
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
CN107004856B (en) Lithium ion battery with improved thermal stability
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2020110943A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
CN103258989B (en) Electrode, manufacture method and lithium secondary battery for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees