[go: up one dir, main page]

JP5236158B2 - Ferritic stainless steel welding wire and manufacturing method thereof - Google Patents

Ferritic stainless steel welding wire and manufacturing method thereof Download PDF

Info

Publication number
JP5236158B2
JP5236158B2 JP2006016799A JP2006016799A JP5236158B2 JP 5236158 B2 JP5236158 B2 JP 5236158B2 JP 2006016799 A JP2006016799 A JP 2006016799A JP 2006016799 A JP2006016799 A JP 2006016799A JP 5236158 B2 JP5236158 B2 JP 5236158B2
Authority
JP
Japan
Prior art keywords
mass
less
wire
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006016799A
Other languages
Japanese (ja)
Other versions
JP2006231404A (en
Inventor
正明 小林
悟 野中
幸男 縣
貞一郎 斉藤
正 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Welding Rod Co Ltd
Original Assignee
Nippon Welding Rod Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Welding Rod Co Ltd filed Critical Nippon Welding Rod Co Ltd
Priority to JP2006016799A priority Critical patent/JP5236158B2/en
Publication of JP2006231404A publication Critical patent/JP2006231404A/en
Application granted granted Critical
Publication of JP5236158B2 publication Critical patent/JP5236158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、ガスシールドアーク溶接等に用いられるフェライト系ステンレス鋼溶接ワイヤ及びその製造方法に関するものであり、特に、自動車の排気系の溶接に用いられるフェライト系ステンレス鋼溶接ワイヤ及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a ferritic stainless steel welding wire used for gas shielded arc welding and the like and a method for manufacturing the same, and more particularly to a ferritic stainless steel welding wire used for welding an automobile exhaust system and a method for manufacturing the same. It is.

ガスシールドアーク溶接等に用いられるワイヤとしてフェライト系ステンレス鋼を用いたワイヤが知られている。このようなフェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて安価であり、熱膨張係数が小さいので熱疲労を起こしにくい。また、塩化物環境下における耐割れ性も高い。しかしながら、フェライト系ステンレス鋼を溶接すれば、母材熱影響部はCr等の成分により少量のマルテンサイトを含む場合があるが、大部分はフェライト組織のままである。このようにフェライト系ステンレス鋼はほとんど変態しないので、入熱量が大きくなると溶接金属の結晶が粗大化し、脆弱化する。   As a wire used for gas shielded arc welding or the like, a wire using ferritic stainless steel is known. Such a ferritic stainless steel is less expensive than an austenitic stainless steel and has a low thermal expansion coefficient, so that it does not easily cause thermal fatigue. Moreover, the crack resistance in a chloride environment is also high. However, if ferritic stainless steel is welded, the base material heat-affected zone may contain a small amount of martensite due to components such as Cr, but the majority remains in the ferrite structure. Thus, since ferritic stainless steel hardly transforms, when the heat input becomes large, the crystal of the weld metal becomes coarse and brittle.

また、フェライト系ステンレス鋼の母材と同一または類似の溶接ワイヤ(共金溶接材料)で溶接した溶接金属についても母材と同様であり、溶接のままでは粗大化した溶接金属の結晶粒のため、引張強さが低く、シャルピ衝撃試験による靱性も低く、曲げ性も低い。また、耐割れ性も低くなる。引張強さは、溶接後の熱処理により改善できるが、熱処理を行っても、シャルピ衝撃試験による靱性及び曲げ性は低いままである。   The same applies to weld metal welded with the same or similar welding wire (metal alloy welding material) as the base material of ferritic stainless steel. The tensile strength is low, the toughness by the Charpy impact test is low, and the bendability is also low. Further, the crack resistance is also lowered. Tensile strength can be improved by heat treatment after welding, but even after heat treatment, the toughness and bendability by the Charpy impact test remain low.

このため、特開2004−42116号公報(特許文献1)、特開2004−141934号公報(特許文献2)、特許第2500008号公報(特許文献3)や特開2005−971号公報(特許文献4)に示されるように、Al、Ti等を少量添加して、溶接金属の結晶の粗大化を防いで耐割れ性を高めたフェライト系ステンレス鋼溶接ワイヤが提案された。   Therefore, Japanese Patent Application Laid-Open No. 2004-42116 (Patent Document 1), Japanese Patent Application Laid-Open No. 2004-141934 (Patent Document 2), Japanese Patent No. 2500008 (Patent Document 3), and Japanese Patent Application Laid-Open No. 2005-971 (Patent Document). As shown in 4), a ferritic stainless steel welding wire has been proposed in which a small amount of Al, Ti, or the like is added to prevent the weld metal crystals from coarsening and crack resistance is improved.

なお、本明細書において、「耐割れ性が高い」ことは、溶接後においてビード(溶接金属)が割れ難いことを意味し、「耐割れ性が低い」ことは、溶接後において溶接金属が割れやすいことを意味する。また、「曲げ性が高い」ことは、溶接金属を曲げても溶接金属が割れ難いことを意味し、曲げ性が低いことは、溶接金属を曲げたときに溶接金属が割れやすいことを意味する。また、「耐食性が高い」ことは、溶接金属が腐食し難いことを意味し、「耐食性が低いこと」は、溶接金属が腐食しやすいことを意味する。更に、「耐酸化性が高い」ことは、溶接金属が酸化し難いことを意味し、「耐酸化性が低い」ことは、溶接金属が酸化しやすいことを意味する。
特開2004−42116号公報 特開2004−141934号公報 特許第2500008号公報 特開2005−971号公報
In this specification, “high crack resistance” means that the bead (weld metal) is difficult to crack after welding, and “low crack resistance” means that the weld metal is cracked after welding. Means easy. In addition, “high bendability” means that the weld metal is difficult to crack even if the weld metal is bent, and low bendability means that the weld metal is easily cracked when the weld metal is bent. . Further, “high corrosion resistance” means that the weld metal is hardly corroded, and “low corrosion resistance” means that the weld metal is easily corroded. Furthermore, “high oxidation resistance” means that the weld metal is hardly oxidized, and “low oxidation resistance” means that the weld metal is easily oxidized.
JP 2004-42116 A JP 2004-141934 A Japanese Patent No. 2500008 JP 2005-971 A

自動車の排気系の溶接に用いられるフェライト系ステンレス鋼溶接ワイヤにおいては、以下の点が要求されている。   The following points are required for ferritic stainless steel welding wires used for automobile exhaust system welding.

(1)ワイヤの断線を防止できて比較的容易に製造できること。   (1) The wire can be prevented from being disconnected and can be manufactured relatively easily.

(2)溶接金属の耐割れ性が高いこと。   (2) The weld metal has high crack resistance.

(3)溶接金属(溶接後の母材と溶接材とが混合した溶接部分の金属)の結晶粒度が大きく細粒であること。   (3) The crystal grain size of the weld metal (the metal in the welded portion where the base material and the weld material after welding are mixed) is large and fine.

(4)溶接金属の曲げ性が高いこと。   (4) The bendability of the weld metal is high.

(5)溶接金属の高温までの引張り強さが規格(母材)以上であること。   (5) The tensile strength of the weld metal up to a high temperature is not less than the standard (base material).

(6)溶接金属の耐食性が高いこと。   (6) The weld metal has high corrosion resistance.

(7)溶接金属の耐酸化性が高いこと。   (7) The oxidation resistance of the weld metal is high.

しかしながら、従来のフェライト系ステンレス鋼溶接ワイヤでは、これらの全ての条件を満たすには限界があった。   However, the conventional ferritic stainless steel welding wire has a limit to satisfy all these conditions.

自動車の排気系の溶接は、通常、ロボット等の自動機器により効率よく行われる。そのため、適当な硬度で、均一で滑らかな表面を有するワイヤを用いて、スムーズな供給により安定した溶接を行うこと求められている。   The welding of an automobile exhaust system is usually performed efficiently by an automatic device such as a robot. Therefore, it is required to perform stable welding with a smooth supply using a wire having an appropriate hardness and a uniform and smooth surface.

本発明の目的は、結晶粒子を小さくして、耐割れ性、曲げ性、高温までの引張り強さ、耐食性、耐酸化性を改善できるフェライト系ステンレス鋼溶接ワイヤを提供することにある。   An object of the present invention is to provide a ferritic stainless steel welding wire capable of improving crack resistance, bendability, tensile strength up to high temperature, corrosion resistance, and oxidation resistance by reducing crystal grains.

本発明の他の目的は、上記の目的に加えて断線を防止できて比較的容易に製造できるフェライト系ステンレス鋼溶接ワイヤ及びその製造方法を提供することにある。   Another object of the present invention is to provide a ferritic stainless steel welding wire that can prevent wire breakage and can be manufactured relatively easily in addition to the above object, and a method for manufacturing the same.

本発明のフェライト系ステンレス鋼溶接ワイヤは、C:0.03質量%以下、Si:3質量%以下、Mn:3質量%以下、Ni:2質量%以下、Cr:11〜20質量%、Mo:3質量%以下、Co:1質量%以下、Cu:2質量%以下、Al:0.02〜2.0質量%、Ti:0.2〜1.0質量%、O:0.02質量%以下、N:0.04質量%以下、Nb及びTaの少なくとも1つ:(CとNとの合計の質量%の8倍)〜1.0質量%を含み残部がFe及び不可避不純物からなる。   The ferritic stainless steel welding wire of the present invention has C: 0.03 mass% or less, Si: 3 mass% or less, Mn: 3 mass% or less, Ni: 2 mass% or less, Cr: 11-20 mass%, Mo : 3 mass% or less, Co: 1 mass% or less, Cu: 2 mass% or less, Al: 0.02-2.0 mass%, Ti: 0.2-1.0 mass%, O: 0.02 mass % Or less, N: 0.04 mass% or less, at least one of Nb and Ta: (8 times the mass% of the total of C and N) to 1.0 mass%, with the balance being Fe and inevitable impurities .

本発明のフェライト系ステンレス鋼溶接ワイヤでは、溶接金属の結晶粒度を大きくして結晶を細粒化して、耐割れ性、曲げ性、高温までの引張り強さ、耐食性、耐酸化性を改善できる。なお、結晶粒度とは、JIS-G-0552の鋼のフェライト結晶粒度試験方法6.1項の比較法に準じて行った粒度番号(G)である。この粒度番号(G)は、断面積1mmあたりの結晶の数をmとしたときのm=8×2で表される指標である。一般に溶接金属は、アーク等の熱源により溶接ワイヤと母材(被溶接材)との一部が溶融し短時間に凝固するいわゆる鋳造組織であって、この結晶粒度は、ワイヤの組成によって調整される。 In the ferritic stainless steel welding wire of the present invention, the crystal size of the weld metal can be increased to refine the crystal, thereby improving crack resistance, bendability, tensile strength up to high temperature, corrosion resistance, and oxidation resistance. The grain size is a grain size number (G) obtained in accordance with the comparison method of ferrite grain size test method 6.1 of steel of JIS-G-0552. This particle size number (G) is an index represented by m = 8 × 2 G, where m is the number of crystals per 1 mm 2 cross-sectional area. In general, a weld metal is a so-called cast structure in which a part of a welding wire and a base material (material to be welded) is melted and solidified in a short time by a heat source such as an arc, and the crystal grain size is adjusted by the composition of the wire. The

特に本発明では、Al、Tiを適量加えることにより、従来のワイヤに比べて結晶を効果的に細粒化することができる。また、Nb及びTaの少なくとも1つを適量加えることにより、耐食性を高めることができる。   In particular, in the present invention, by adding appropriate amounts of Al and Ti, crystals can be effectively made finer than conventional wires. Moreover, corrosion resistance can be improved by adding an appropriate amount of at least one of Nb and Ta.

以下に、各組成の作用及び含有量の限定理由について説明する。   Below, the effect | action of each composition and the reason for limitation of content are demonstrated.

Cは、オーステナイト生成元素であり、溶接金属の強度を高めることができる。しかしながら、含有量が0.03質量%を上回ると、溶接金属の耐食性が低下し、溶接後の冷却過程でマルテンサイトが形成され溶接割れが発生しやすくなる。   C is an austenite generating element and can increase the strength of the weld metal. However, if the content exceeds 0.03% by mass, the corrosion resistance of the weld metal is lowered, martensite is formed in the cooling process after welding, and weld cracks are likely to occur.

Si及びMnは、脱酸作用がある。しかしながら、Siの含有量を高めると、溶接金属の靭性が低下して延性が悪くなる。また、Mnの含有量を高めると加工性が低下し、溶接金属の耐酸化性が低下する。そこで、含有量をいずれも3質量%以下とした。   Si and Mn have a deoxidizing action. However, when the Si content is increased, the toughness of the weld metal is lowered and the ductility is deteriorated. Moreover, when content of Mn is raised, workability will fall and the oxidation resistance of a weld metal will fall. Accordingly, the content is 3% by mass or less.

Niは、オーステナイト生成元素で溶接金属の延性、靭性、曲げ性を高める。しかしながら、含有量を高めると溶接金属の耐割れ性が低下する。そこで、含有量を2質量%以下とした。   Ni is an austenite generating element and improves the ductility, toughness and bendability of the weld metal. However, when the content is increased, the crack resistance of the weld metal decreases. Therefore, the content is set to 2% by mass or less.

Crは、フェライト生成元素であり、高温強度、耐食性、耐酸化性を高める。しかしながら、11質量%を下回ると十分な効果が得られない。また、20質量%を上回ると、硬化して製造し難くなる。   Cr is a ferrite-forming element and improves high-temperature strength, corrosion resistance, and oxidation resistance. However, if it is less than 11% by mass, a sufficient effect cannot be obtained. Moreover, when it exceeds 20 mass%, it will become hard to manufacture.

Moは、フェライト生成元素であり、高温強度、耐食性を高める。しかしながら、含有量が3質量%を上回ると溶接金属の靭性、曲げ性が低下する。   Mo is a ferrite-forming element and enhances high temperature strength and corrosion resistance. However, if the content exceeds 3% by mass, the toughness and bendability of the weld metal deteriorate.

Coは、高温で引張り強さや耐酸化性等の高温特性を高めるが、コスト面も考慮して1質量%以下とした。   Co enhances high-temperature characteristics such as tensile strength and oxidation resistance at high temperatures, but considering the cost, the content is set to 1% by mass or less.

Cuは、溶接金属の湯流れを良くし、良好なビードを形成する。また、少量の添加では、耐割れ性、靭性、曲げ性を高めるが、含有量が2質量%を上回ると、逆に低下する。   Cu improves the hot metal flow of the weld metal and forms a good bead. Moreover, although addition with a small amount improves crack resistance, toughness, and bendability, when the content exceeds 2% by mass, the content decreases.

Al及びTiは、脱酸剤であり、Alは溶接過程でN,Oと窒化物、酸化物を形成し、TiはN,Cと窒化物、酸化物を形成し、これらが核となり、等軸晶の細粒の組織が得られる。また、Tiの炭化物は、Crの炭化物よりも形成されやすいので、Crの低下による耐食性の低下防止を図ることができる。Al及びTiの含有量が0.02質量%、0.2質量%を下回るとこれらの効果を得ることができない。また、2.0質量%、1.0質量%を上回るとワイヤの製造時に断線が生じやすくなる。また、溶接後にこれらの窒化物、酸化物がスラグ化し、ビードの外観が悪くなる。そこで、Alの含有量を0.02〜2.0質量%とし、Tiの含有量を0.2〜1.0質量%とした。   Al and Ti are deoxidizers, Al forms N, O and nitrides and oxides in the welding process, Ti forms N, C and nitrides and oxides, which serve as nuclei, etc. A fine-grained structure of axial crystals is obtained. Further, since Ti carbide is more easily formed than Cr carbide, it is possible to prevent the corrosion resistance from being lowered due to the decrease in Cr. If the content of Al and Ti is less than 0.02% by mass and 0.2% by mass, these effects cannot be obtained. Moreover, when it exceeds 2.0 mass% and 1.0 mass%, it will become easy to produce a disconnection at the time of manufacture of a wire. Further, these nitrides and oxides are slagted after welding, and the appearance of the beads is deteriorated. Therefore, the Al content is set to 0.02 to 2.0 mass%, and the Ti content is set to 0.2 to 1.0 mass%.

Oは、ワイヤの製造過程において、ある程度の量が含まれてしまう。しかしながら、含有量が高くなると、過剰な酸化物が形成されて靭性、曲げ性が低下する。そこで、Oの含有量は0.02質量%以下に抑える必要がある。   O is included in a certain amount in the wire manufacturing process. However, when the content is increased, excessive oxide is formed, and toughness and bendability are lowered. Therefore, the content of O needs to be suppressed to 0.02% by mass or less.

Nは、オーステナイト生成元素である。前述のようにAl、Tiと窒化物を生成し、溶接金属が凝固後の冷却過程でこれらが核となり、等軸晶の細粒の組織が得られる。しかしながら、含有量が0.04質量%を上回ると、溶接金属の耐割れ性、靭性、曲げ性が低下する。   N is an austenite generating element. As described above, Al, Ti and nitride are produced, and these become nuclei in the cooling process after the weld metal is solidified, and an equiaxed crystal structure is obtained. However, if the content exceeds 0.04% by mass, the crack resistance, toughness, and bendability of the weld metal deteriorate.

Nb及びTaは、周期律表の族の元素であり性質が似ている。これらは、いずれも炭窒化物生成元素であり、耐食性を低下させるCr炭化物の析出を抑制する効果がある。この効果はNb及びTaの少なくとも1つがCとNとの合計の質量%の8倍を下回ると得ることができない。例えば、Cが0.01質量%であり、Nが0.005質量%の場合、(0.01質量%+0.005)×8=0.12質量%を下回ると効果を得ることができない。また、Nb及びTaの少なくとも1つの含有量が1.0質量%を上回ると溶接金属の耐割れ性、靭性、曲げ性が低下し、ワイヤの製造時に断線が生じやすくなる。 Nb and Ta are group V elements of the periodic table and have similar properties. These are all carbonitride-forming elements and have the effect of suppressing the precipitation of Cr carbides that reduce the corrosion resistance. This effect cannot be obtained if at least one of Nb and Ta is less than 8 times the total mass% of C and N. For example, when C is 0.01% by mass and N is 0.005% by mass, the effect cannot be obtained if it is less than (0.01% by mass + 0.005) × 8 = 0.12% by mass. On the other hand, if the content of at least one of Nb and Ta exceeds 1.0% by mass, the crack resistance, toughness and bendability of the weld metal are lowered, and breakage is likely to occur during the production of the wire.

本発明のワイヤでは、P:0.04質量%以下、S:0.02質量%以下、V:0.5質量%以下、W:0.5質量%以下、Zr:0.02質量%以下、B:0.02質量%以下、Ca:0.005質量%以下、Mg:0.005質量%以下の内、少なくとも1つを更に含有することができる。   In the wire of the present invention, P: 0.04 mass% or less, S: 0.02 mass% or less, V: 0.5 mass% or less, W: 0.5 mass% or less, Zr: 0.02 mass% or less B: 0.02% by mass or less, Ca: 0.005% by mass or less, Mg: 0.005% by mass or less can further be contained.

P及びSは、含有量が高くなると、溶接金属の耐割れ性、靭性が低下し、曲げ性が低くなる。P及びSが不純物として含有される場合は、Pの含有量を0.04質量%以下とし、Sの含有量を0.02質量%以下とする必要がある。Vは炭化物生成元素で耐食性を低下させるCr炭化物の析出を抑制する効果があるが、0.5質量%を上回ると溶接アークが不安定になる。Wは、高温強度及び耐食性を高めるが、0.5質量%を上回ると溶接金属の靭性、曲げ性が低下する。Zr、B、Ca、Mgは脱酸作用及び金属加工性が向上するが、0.02質量%、0.02質量%、0.005質量%、0.005質量%をそれぞれ上回ると溶接アークが不安定になる。   When the content of P and S is high, the crack resistance and toughness of the weld metal are lowered, and the bendability is lowered. When P and S are contained as impurities, it is necessary that the P content is 0.04 mass% or less and the S content is 0.02 mass% or less. V is a carbide-forming element and has the effect of suppressing the precipitation of Cr carbide that lowers the corrosion resistance. However, if it exceeds 0.5 mass%, the welding arc becomes unstable. W increases the high-temperature strength and corrosion resistance, but if it exceeds 0.5% by mass, the toughness and bendability of the weld metal decrease. Zr, B, Ca, and Mg improve the deoxidation action and metal workability, but if they exceed 0.02 mass%, 0.02 mass%, 0.005 mass%, and 0.005 mass%, the welding arc It becomes unstable.

このように本発明のワイヤは、自動車の排気系の溶接に要求される点を満たすので、自動車排気系統用溶接ワイヤとして用いると高い効果を得ることができる。   As described above, the wire of the present invention satisfies the points required for welding of an automobile exhaust system, and therefore, when used as a welding wire for an automobile exhaust system, a high effect can be obtained.

通常、フェライト系ステンレス鋼溶接ワイヤは、線材に熱処理を施し、その後に主ダイス等により所定の線径まで伸線されて製造される。この製造方法では、前述の成分の線材を用い、熱処理を施して線材の結晶粒度を3〜10にするのが好ましい。このような範囲であると伸線工程での断線を防ぐことができる。線材の結晶粒度が3を下回って結晶が大きくなると、粗大化した結晶粒のため、その後の伸線工程で断線が生じる。フェライト系ステンレス鋼は、冷間圧延等の機械的方法以外では細粒化できないので、実質的にワイヤ製造はできなくなる。また、10を上回って結晶が小さくなっても、伸線工程で断線が生じやすくなる。この場合、再度熱処理を行うことにより伸線は可能であるが、工数が増えてワイヤの製造が煩雑になる。なお、ここでいう線材の結晶粒度は、前述したJIS-G-0552の鋼のフェライト結晶粒度試験方法6.1項の比較法に準じて行った粒度番号(G)である。また、線材の結晶粒度は、前述した溶接金属の結晶粒度とは関連性を有するものではない。線材の結晶粒度は線材に施す熱処理による影響が大きく、溶接金属の結晶粒度は前述したようにワイヤの組成による影響が大きい。   Usually, a ferritic stainless steel welding wire is manufactured by subjecting a wire to a heat treatment and then drawing to a predetermined wire diameter with a main die or the like. In this manufacturing method, it is preferable to use the wire having the above-described components and to perform heat treatment so that the crystal grain size of the wire is 3 to 10. In such a range, disconnection in the wire drawing process can be prevented. When the crystal grain size of the wire is less than 3 and the crystal becomes large, the crystal grains are coarsened, and thus disconnection occurs in the subsequent wire drawing step. Since ferritic stainless steel cannot be refined by any means other than mechanical methods such as cold rolling, it is substantially impossible to produce wires. Moreover, even if the crystal size is smaller than 10, wire breakage is likely to occur in the wire drawing process. In this case, the wire can be drawn by performing the heat treatment again, but the number of man-hours increases and the manufacture of the wire becomes complicated. The crystal grain size of the wire referred to here is the grain size number (G) obtained in accordance with the comparison method described in Section 6.1 of the ferrite grain size test method for steel of JIS-G-0552 described above. Further, the crystal grain size of the wire is not related to the crystal grain size of the weld metal described above. The crystal grain size of the wire is greatly affected by the heat treatment applied to the wire, and the crystal grain size of the weld metal is greatly influenced by the wire composition as described above.

線材の結晶粒度を3〜10にするには、本発明の組成の場合は、例えば、1000℃±100℃で加熱後急冷する熱処理を施せばよい。   In order to make the crystal grain size of the wire from 3 to 10, in the case of the composition of the present invention, for example, a heat treatment may be performed by heating at 1000 ° C. ± 100 ° C. and then rapidly cooling.

通常、フェライト系ステンレス鋼溶接ワイヤは、線径2〜10mmの線材に熱処理を施し、その後に線径0.6〜2mmにまで伸線する場合が多い。この場合、線材として、C:0.03質量%以下、Si:3質量%以下、Mn:3質量%以下、Ni:2質量%以下、Cr:11〜20質量%、Mo:3質量%以下、Co:1質量%以下、Cu:2質量%以下、Al:0.02〜2.0質量%、Ti:0.2〜1.0質量%、O:0.02質量%以下、N:0.04質量%以下、Nb及びTaの少なくとも1つ:(CとNとの合計の質量%の8倍)〜1.0質量%を含み残部がFe及び不可避不純物からなる線材を用い、熱処理を施して線材の結晶粒度を3〜10にすればよい。このようにすれば、伸線工程で断線を防ぐことができ、耐割れ性等を改善できるフェライト系ステンレス鋼溶接ワイヤを得ることができる。   Usually, a ferritic stainless steel welding wire is often subjected to heat treatment on a wire having a wire diameter of 2 to 10 mm and then drawn to a wire diameter of 0.6 to 2 mm. In this case, as wire rods, C: 0.03% by mass or less, Si: 3% by mass or less, Mn: 3% by mass or less, Ni: 2% by mass or less, Cr: 11 to 20% by mass, Mo: 3% by mass or less Co: 1 mass% or less, Cu: 2 mass% or less, Al: 0.02 to 2.0 mass%, Ti: 0.2 to 1.0 mass%, O: 0.02 mass% or less, N: 0.04% by mass or less, at least one of Nb and Ta: (8 times the total mass% of C and N) to 1.0% by mass, and the remainder is made of Fe and inevitable impurities, and heat treatment And the crystal grain size of the wire may be 3-10. In this way, it is possible to obtain a ferritic stainless steel welding wire that can prevent disconnection in the wire drawing process and can improve crack resistance and the like.

本発明によれば、耐割れ性、曲げ性、高温までの引張り強さ、耐食性、耐酸化性を改善できるフェライト系ステンレス鋼溶接ワイヤを得ることができる。特に自動車の排気系の溶接に要求される点を満たすので、自動車排気系統用溶接ワイヤとして用いると高い効果を得ることができる。   According to the present invention, it is possible to obtain a ferritic stainless steel welding wire capable of improving crack resistance, bendability, tensile strength up to high temperature, corrosion resistance, and oxidation resistance. In particular, since the point required for welding of an automobile exhaust system is satisfied, a high effect can be obtained when used as a welding wire for an automobile exhaust system.

本発明の効果を確認するために、各種の組成のフェライト系ステンレス鋼溶接ワイヤからなるソリッドワイヤを作り、試験を行った。まず、表1に示すような本発明の実施例1〜10及び比較例1〜25の組成により線径5.1〜5.5mmの線材を作った。なお、Nb及びTaの少なくとも1つの欄(Nb,Ta)には、参考として下限値(CとNとの合計の質量%の8倍)も併せて記載している。

Figure 0005236158
In order to confirm the effect of the present invention, solid wires made of ferritic stainless steel welding wires of various compositions were made and tested. First, wire materials having a wire diameter of 5.1 to 5.5 mm were prepared using the compositions of Examples 1 to 10 and Comparative Examples 1 to 25 of the present invention as shown in Table 1. In addition, in at least one column (Nb, Ta) of Nb and Ta, a lower limit value (8 times the total mass% of C and N) is also described for reference.
Figure 0005236158

次に各線材に条件の異なる2つの熱処理1及び2をそれぞれ施した。熱処理1は、1000℃±100℃で加熱後急冷する熱処理であり、熱処理2は、800℃±100℃で加熱後徐冷する熱処理である。そして、これらの熱処理後の結晶粒度と、熱処理後に各線材を10〜12ダイスにより線径1.2mmに伸線してワイヤを製造した際の断線状況とを調べた。表2は、その結果を示している。なお、JIS-G-0552では、粒度番号は、−3〜10の範囲で規定されているが、本例では、−3〜10の範囲を超えて記載している。

Figure 0005236158
Next, two heat treatments 1 and 2 having different conditions were applied to each wire. Heat treatment 1 is a heat treatment that is rapidly cooled after heating at 1000 ° C. ± 100 ° C., and heat treatment 2 is a heat treatment that is heated at 800 ° C. ± 100 ° C. and then slowly cooled. And the crystal grain size after these heat processing and the disconnection condition at the time of manufacturing each wire rod to a wire diameter of 1.2 mm with 10-12 dies after heat processing were investigated. Table 2 shows the results. In JIS-G-0552, the particle size number is defined in the range of -3 to 10, but in this example, it is described beyond the range of -3 to 10.
Figure 0005236158

表2における断線状況の判定は、線材の結晶粒度が3を超えている場合は、◎:1回も断線しないもの、○:1回断線したもの、△:2回以上断線したもの、×:断線が多発したものとした。また、線材の結晶粒度が3以下の場合は、◎:1回も断線しないもの、○:1回断線したもの、×:粗大化した結晶粒のため断線し、その後の伸線ができないものとした。   In the determination of the disconnection state in Table 2, when the crystal grain size of the wire exceeds 3, A: No disconnection, ○: Disconnection once, Δ: Disconnection twice or more, ×: It was assumed that the disconnection occurred frequently. In addition, when the crystal grain size of the wire is 3 or less, ◎: one that is not broken, ○: one that is broken, ×: a wire that is broken due to coarse crystal grains, and cannot be drawn thereafter did.

表2より、本発明の実施例1〜10の線材は、1000℃±100℃で加熱後急冷する熱処理1を行って結晶粒度を3〜10にすると、伸線工程での断線を防ぐことができるのが分かる。   From Table 2, when the wire materials of Examples 1 to 10 of the present invention are heated at 1000 ° C. ± 100 ° C. and then rapidly cooled to make the crystal grain size 3 to 10, wire breakage in the wire drawing process can be prevented. I know you can.

次に熱処理2を施した実施例1〜10及び比較例1〜25の組成のワイヤを用いて、耐割れ性試験、溶接金属の結晶粒度の測定、曲げ試験、引張り試験、耐食性試験、耐酸化性試験を行った。表3はその測定結果を示している。

Figure 0005236158
Next, using the wires having the compositions of Examples 1 to 10 and Comparative Examples 1 to 25 subjected to heat treatment 2, crack resistance test, measurement of crystal size of weld metal, bending test, tensile test, corrosion resistance test, oxidation resistance A sex test was performed. Table 3 shows the measurement results.
Figure 0005236158

耐割れ性試験は、JIS-Z-3153のT形溶接割れ試験方法に準拠して行った。具体的には、図1に示すように、厚み19mm×長さ150mm×幅80mmの2枚のSUS430のステンレス板1を1mmのギャップGを隔てた状態でT型に配置し、試験ビードB1と拘束ビードB2とを形成するように、2枚のステンレス板1に跨って各ワイヤでガスシールドアーク溶接を行った。具体的には、まず、230Aの電流及び25Vの電圧により、Ar+20%COのシールドガスを20l/minの流速で流して、30cm/minの溶接速度で拘束ビードB2を形成した。次に、230Aの電流及び25Vの電圧により、Ar+20%COのシールドガスを20l/minの流速で流して、60cm/minと80cm/minの2つの溶接速度で試験ビードB1を形成した。そして、クレータ部を除く試験ビードB1の表面の割れ率[(割れ長さ/ビード長さ)×100]を求めて判定を行った。判定は、○:割れ率0%、△:割れ率0%を上回り30%を下回る、×:割れ率30%以上とした。 The crack resistance test was conducted in accordance with the T-type weld crack test method of JIS-Z-3153. Specifically, as shown in FIG. 1, two stainless steel plates 1 of SUS430 having a thickness of 19 mm, a length of 150 mm, and a width of 80 mm are arranged in a T shape with a gap G of 1 mm, and a test bead B1. Gas shield arc welding was performed with each wire across the two stainless steel plates 1 so as to form the constraining bead B2. Specifically, first, a confining bead B2 was formed at a welding speed of 30 cm / min by flowing a shielding gas of Ar + 20% CO 2 at a flow rate of 20 l / min with a current of 230 A and a voltage of 25 V. Next, a test bead B1 was formed at two welding speeds of 60 cm / min and 80 cm / min by flowing a shielding gas of Ar + 20% CO 2 at a flow rate of 20 l / min with a current of 230 A and a voltage of 25 V. And it determined by calculating | requiring the crack rate [(crack length / bead length) x100] of the surface of test bead B1 except a crater part. Judgment was made as follows: ◯: cracking rate 0%, Δ: cracking rate 0% above and below 30%, x: cracking rate 30% or more.

表3より、実施例1〜10のワイヤを用いると、比較例4,5,7,9〜11,17,18,20,21,23,25のワイヤを用いた場合に比べて溶接金属の割れ率を低くできるのが分かる。   From Table 3, when the wires of Examples 1 to 10 were used, the weld metal was compared with the case of using the wires of Comparative Examples 4, 5, 7, 9 to 11, 17, 18, 20, 21, 23, 25. It can be seen that the cracking rate can be lowered.

溶接金属の結晶粒度は、JIS-G-0552の鋼のフェライト結晶粒度測定試験方法に準拠して行った。結晶粒度3以上が細粒と認められる。なお、ここでいう溶接金属の結晶粒度は、表2に示す線材の結晶粒度とは関連するものではない。溶接金属の結晶粒度はワイヤの組成により大きく影響してその値が決定し、線材の結晶粒度は線材に施す熱処理により大きく影響してその値が決定する。   The crystal size of the weld metal was determined in accordance with the JIS-G-0552 steel ferrite grain size measurement test method. A grain size of 3 or more is recognized as a fine grain. In addition, the crystal grain size of the weld metal here is not related to the crystal grain size of the wire shown in Table 2. The crystal grain size of the weld metal is greatly influenced by the composition of the wire and its value is determined, and the crystal grain size of the wire is largely influenced by the heat treatment applied to the wire and its value is determined.

表3より、実施例1〜10のワイヤを用いた場合は、全て結晶粒度が3以上の細粒であったのに対して、比較例1〜5,7〜11,14〜25のワイヤを用いた場合は、結晶粒度が3を下回っているのが分かる。   From Table 3, when the wires of Examples 1 to 10 were used, the crystal grains were all fine grains of 3 or more, whereas the wires of Comparative Examples 1 to 5, 7 to 11, and 14 to 25 were used. When used, it can be seen that the grain size is below 3.

曲げ試験は、厚み1.5mm×長さ150mm×幅50mmの2枚のSUS429Mod.のステンレス板2を図2に示すように幅方向の端部を重ねて配置し、図3に示すようにトーチ角度θを10°にしてビードB3を形成するように、2枚のステンレス板2に跨って各ワイヤでガスシールドアーク溶接を行った。具体的には、150Aの電流及び24Vの電圧により、Ar+20%COのシールドガスを20l/minの流速で流して、80cm/minの溶接速度で行った。そして、図4に示すように、ビードB3が100mmのピッチで配置された径寸法32mmの2つの円柱C側に位置し、長さ方向の両端が2つの円柱Cに当接するように2枚のステンレス板2を配置した。そして、ビードB3の長手方向と直交する方向から先端が13.5mmの径寸法で湾曲するプレスPを用いて20mm、40mm、60mmの3つの押し込み量で2枚の溶接されたステンレス板2を押し込んで曲げた。そして、染色浸透探傷試験によりビードB3の表面割れを調べて判定した。判定は、○:割れなし、△:長さ1mm以下の割れが2個以下、×:長さ1mm以上の割れまたは割れが3個以上とした。 The bending test was performed using two SUS429 Mod., 1.5 mm thick, 150 mm long, and 50 mm wide. As shown in FIG. 2, the two stainless steel plates 2 are arranged such that the end portions in the width direction are overlapped as shown in FIG. 2, and the bead B3 is formed with a torch angle θ of 10 ° as shown in FIG. Gas shield arc welding was performed with each wire across the wire. Specifically, Ar + 20% CO 2 shielding gas was flowed at a flow rate of 20 l / min with a current of 150 A and a voltage of 24 V, and the welding speed was 80 cm / min. Then, as shown in FIG. 4, the two beads B3 are positioned on the two cylinder C sides with a diameter of 32 mm arranged at a pitch of 100 mm, and both ends in the length direction are in contact with the two cylinders C. A stainless steel plate 2 was arranged. Then, two welded stainless steel plates 2 are pushed in with three push-in amounts of 20 mm, 40 mm, and 60 mm using a press P whose tip is curved with a diameter of 13.5 mm from a direction perpendicular to the longitudinal direction of the bead B3. Bent in. And the surface crack of bead B3 was investigated and judged by the dye penetration test. Judgment: ○: no crack, Δ: 2 or less cracks having a length of 1 mm or less, and x: 3 or more cracks having a length of 1 mm or more.

表3より、実施例1〜10のワイヤを用いると、比較例1,4,5,7,8,11,14〜25のワイヤを用いた場合に比べて曲げによる割れ発生を低くできる(曲げ性を高くできる)のが分かる。   From Table 3, when the wire of Examples 1-10 is used, the crack generation by bending can be made low compared with the case where the wire of Comparative Examples 1, 4, 5, 7, 8, 11, 14-25 is used (bending) Can be improved).

引張り試験、耐食性試験、耐酸化性試験は、図5に示すように、厚み1.5mm×長さ250mm×幅150mmの2枚のSUS429Mod.のステンレス板3が幅方向の端部が10mmで異なるように配置し、ビードB4を形成するように、2枚のステンレス板3に跨ってガスシールドアーク溶接を行った。具体的には、前述の曲げ試験と同様に、150Aの電流及び24Vの電圧により、Ar+20%COのシールドガスを20l/minの流速で流して、80cm/minの溶接速度で行った。そして、2枚のステンレス板3を切断片4〜8を形成するように5等分し、中心の3つの切断片5〜7を引張り試験、耐食性試験、耐酸化性試験に用いた。なお、両端の切断片4,8は廃棄した。 As shown in FIG. 5, the tensile test, the corrosion resistance test, and the oxidation resistance test were performed using two SUS429 Mod. The stainless steel plates 3 were arranged so that the end portions in the width direction were different by 10 mm, and gas shield arc welding was performed across the two stainless steel plates 3 so as to form the beads B4. Specifically, similarly to the above-described bending test, Ar + 20% CO 2 shielding gas was flowed at a flow rate of 20 l / min with a current of 150 A and a voltage of 24 V, and the welding speed was 80 cm / min. And the two stainless steel plates 3 were equally divided into 5 so as to form the cut pieces 4 to 8, and the three cut pieces 5 to 7 at the center were used for a tensile test, a corrosion resistance test, and an oxidation resistance test. The cut pieces 4 and 8 at both ends were discarded.

引張り試験では、図6(A),(B)に示すように、切断片5の中央部の寸法が長さ40mm、幅40mmになるようにくびれを形成して試験片9を形成した。そして、試験片9を室温(RT)、700℃、900℃において両端から引張って試験片9が切断された際の単位面積あたりの力(Mpa)を測定した。表3において*印を記した比較例6,14,15,23のワイヤを用いた試験片では溶接熱影響部から溶接金属(ビードB4)の部分が切断され、それ以外の試験片では母材3aが切断された。なお、溶接金属の部分が切断されたものも母材3aが切断されたものも、切断部の断面積は、母材3aの断面積から求めた。   In the tensile test, as shown in FIGS. 6A and 6B, the test piece 9 was formed by forming a constriction so that the dimension of the central portion of the cut piece 5 was 40 mm in length and 40 mm in width. The test piece 9 was pulled from both ends at room temperature (RT), 700 ° C., and 900 ° C., and the force per unit area (Mpa) when the test piece 9 was cut was measured. In the test pieces using the wires of Comparative Examples 6, 14, 15 and 23 marked with an asterisk in Table 3, the weld metal (bead B4) portion was cut from the weld heat affected zone, and in the other test pieces, the base metal was used. 3a was cut. Note that the cross-sectional area of the cut portion was determined from the cross-sectional area of the base material 3a, whether the weld metal portion was cut or the base material 3a was cut.

表3より、実施例1〜10のワイヤを用いた場合は、全て母材3aで切断されたのに対して、比較例6,14,15,23のワイヤを用いた場合は溶接金属(ビードB4)で切断されるのが分かる。   From Table 3, when the wires of Examples 1 to 10 were used, all were cut with the base material 3a, whereas when the wires of Comparative Examples 6, 14, 15, and 23 were used, the weld metal (beads) It can be seen that it is cut at B4).

耐食性試験は、JIS-G-0571のステンレス鋼のしゅう酸エッチング試験方法に準拠して行った。具体的には、切断片6を溶接金属(ビードB4)以外の部分(母材)にマスキングを施して10%シュウ酸溶液中に浸漬して、一定電流密度で通電を行って判定した。判定は、○:溝状組織が認められないもの、△:部分的に溝状組織が認められるもの、×:全ての結晶粒界に溝状組織が認められるものとした。   The corrosion resistance test was conducted according to the oxalic acid etching test method for stainless steel of JIS-G-0571. Specifically, the cut piece 6 was masked on a portion (base material) other than the weld metal (bead B4), immersed in a 10% oxalic acid solution, and energized at a constant current density for determination. The judgment was made as follows: ◯: no groove-like structure was observed, Δ: groove-like structure was partially recognized, and x: groove-like structure was recognized at all crystal grain boundaries.

表3より、実施例1〜10のワイヤを用いると、比較例1,2,6〜8,11〜16,18,19,22,24のワイヤを用いた場合に比べて耐食性を高くできるのが分かる。   From Table 3, when the wires of Examples 1 to 10 are used, the corrosion resistance can be increased as compared with the case of using the wires of Comparative Examples 1, 2, 6 to 8, 11 to 16, 18, 19, 22, and 24. I understand.

耐酸化性試験は、図7(A),(B)に示すように、切断片7の中央部分を長さ40mm、幅30mmに切り出して試験片11を形成した。そして、試験片11を大気中において900℃で48時間加熱して単位面積あたりの酸化による増量(g/cm)を測定した。酸化増量1g/cm以下が良好である。 In the oxidation resistance test, as shown in FIGS. 7A and 7B, the central portion of the cut piece 7 was cut into a length of 40 mm and a width of 30 mm to form a test piece 11. And the test piece 11 was heated at 900 degreeC for 48 hours in air | atmosphere, and the increase (g / cm < 2 >) by the oxidation per unit area was measured. An oxidation increase of 1 g / cm 2 or less is good.

表3より、実施例1〜10のワイヤを用いた場合はいずれも良好で、耐酸化性が高いのに対して、比較例6,14,15,23のワイヤを用いた場合は、酸化増量が1g/cmを超えて耐酸化性が低下するのが分かる。 From Table 3, when the wires of Examples 1 to 10 are used, all are good and the oxidation resistance is high, whereas when the wires of Comparative Examples 6, 14, 15, and 23 are used, the amount of increase in oxidation is increased. It can be seen that the oxidation resistance is reduced by exceeding 1 g / cm 2 .

以上のように、表3全体より、本発明の実施例1〜10のワイヤを用いた場合は、溶接金属の結晶粒度を大きくして結晶を細粒化して、耐割れ性、曲げ性、高温までの引張り強さ、耐食性、耐酸化性を改善できるのが分かる。   As described above, from Table 3 as a whole, when the wires of Examples 1 to 10 of the present invention were used, the crystal grain size of the weld metal was increased to make the crystal finer, crack resistance, bendability, and high temperature. It can be seen that the tensile strength, corrosion resistance, and oxidation resistance can be improved.

表4は熱処理1を施した実施例1〜10の組成のワイヤを用いた場合の耐割れ性試験、溶接金属の結晶粒度の測定、曲げ試験、引張り試験、耐食性試験、耐酸化性試験の結果を示している。

Figure 0005236158
Table 4 shows the results of the crack resistance test, the measurement of the grain size of the weld metal, the bending test, the tensile test, the corrosion resistance test, and the oxidation resistance test when the wires having the compositions of Examples 1 to 10 subjected to the heat treatment 1 were used. Is shown.
Figure 0005236158

表4より熱処理1を施した場合でも、実施例1〜10の組成のワイヤは表3と同様の性能を得られるのが分かる。   It can be seen from Table 4 that even when heat treatment 1 is applied, the wires having the compositions of Examples 1 to 10 can obtain the same performance as in Table 3.

耐割れ性試験に用いるステンレス板の溶接された状態の側面図である。It is a side view of the welded state of the stainless steel plate used for a crack resistance test. 曲げ試験に用いるステンレス板の溶接された状態の斜視図である。It is a perspective view of the state by which the stainless steel plate used for a bending test was welded. 曲げ試験に用いるステンレス板を溶接する態様の図である。It is a figure of the aspect which welds the stainless steel plate used for a bending test. 溶接されたステンレス板に曲げ試験を行う態様の図である。It is a figure of the aspect which performs a bending test to the welded stainless steel plate. 引張り試験、耐食性試験、耐酸化性試験に用いるステンレス板の溶接された状態の平面図である。It is a top view of the welded state of the stainless steel plate used for a tensile test, a corrosion resistance test, and an oxidation resistance test. (A)及び()は、引張り試験に用いる試験片の平面図及び側面図である。(A) And ( B ) is the top view and side view of a test piece used for a tension test. (A)及び()は、耐酸化性試験に用いる試験片の平面図及び側面図である。(A) And ( B ) is the top view and side view of a test piece used for an oxidation resistance test.

符号の説明Explanation of symbols

1,2,3 ステンレス板
4〜8 切断片
1, 2, 3 Stainless steel plate 4-8 Cut pieces

Claims (6)

C:0.03質量%以下(0質量%を含まない)、Si:3質量%以下(0質量%を含まない)、Mn:3質量%以下(0質量%を含まない)、Ni:2質量%以下(0質量%を含まない)、Cr:11〜20質量%、Mo:3質量%以下(0質量%を含まない)、Co:1質量%以下(0質量%を含まない)、Cu:2質量%以下(0質量%を含まない)、Al:0.02〜2.0質量%、Ti:0.2〜1.0質量%、O:0.02質量%以下(0質量%を含まない)、N:0.04質量%以下(0質量%を含まない)、Nb及びTaの少なくとも1つ:(前記Cと前記Nとの合計の質量%の8倍)〜1.0質量%を含み残部がFe及び不可避不純物からなることを特徴とするフェライト系ステンレス鋼溶接ワイヤ。 C: 0.03 mass% or less (not including 0 mass%) , Si: 3 mass% or less (not including 0 mass%) , Mn: 3 mass% or less (not including 0 mass%) , Ni: 2 % By mass (not including 0% by mass) , Cr: 11 to 20% by mass, Mo: 3% by mass or less (not including 0% by mass) , Co: 1% by mass or less (not including 0% by mass) , Cu: 2 mass% or less (excluding 0 mass%) , Al: 0.02-2.0 mass%, Ti: 0.2-1.0 mass%, O: 0.02 mass% or less (0 mass) %) , N: 0.04 mass% or less (excluding 0 mass%) , at least one of Nb and Ta: (8 times the total mass% of C and N) to 1. A ferritic stainless steel welding wire comprising 0% by mass and the balance being Fe and inevitable impurities. P:0.04質量%以下(0質量%を含まない)、S:0.02質量%以下(0質量%を含まない)、V:0.5質量%以下(0質量%を含まない)、W:0.5質量%以下(0質量%を含まない)、Zr:0.02質量%以下(0質量%を含まない)、B:0.02質量%以下(0質量%を含まない)、Ca:0.005質量%以下(0質量%を含まない)、Mg:0.005質量%以下(0質量%を含まない)の内、少なくとも1つを更に含有する請求項1に記載のフェライト系ステンレス鋼溶接ワイヤ。 P: 0.04% by mass or less (not including 0% by mass) , S: 0.02% by mass or less (not including 0% by mass) , V: 0.5% by mass or less (not including 0% by mass) , W: 0.5% by mass or less (excluding 0% by mass) , Zr: 0.02% by mass or less (not including 0% by mass) , B: 0.02% by mass or less (excluding 0% by mass ) ) , Ca: 0.005 mass% or less (excluding 0 mass%) , Mg: 0.005 mass% or less (not including 0 mass%) , further containing at least one. Ferritic stainless steel welding wire. 線材に熱処理を施し、その後に伸線するフェライト系ステンレス鋼溶接ワイヤの製造方法において、
前記線材として、C:0.03質量%以下(0質量%を含まない)、Si:3質量%以下(0質量%を含まない)、Mn:3質量%以下(0質量%を含まない)、Ni:2質量%以下(0質量%を含まない)、Cr:11〜20質量%、Mo:3質量%以下(0質量%を含まない)、Co:1質量%以下(0質量%を含まない)、Cu:2質量%以下(0質量%を含まない)、Al:0.02〜2.0質量%、Ti:0.2〜1.0質量%、O:0.02質量%以下(0質量%を含まない)、N:0.04質量%以下(0質量%を含まない)、Nb及びTaの少なくとも1つ:(前記Cと前記Nとの合計の質量%の8倍)〜1.0質量%を含み残部がFe及び不可避不純物からなる線材を用い、
前記熱処理を施して前記線材の結晶粒度を3〜10にすることを特徴とするフェライト系ステンレス鋼溶接ワイヤの製造方法。
In the method of manufacturing a ferritic stainless steel welding wire that is subjected to heat treatment on the wire and then drawn,
As said wire, C: 0.03 mass% or less (not including 0 mass%) , Si: 3 mass% or less (not including 0 mass%) , Mn: 3 mass% or less (not including 0 mass%) Ni: 2% by mass or less (excluding 0% by mass) , Cr: 11-20% by mass, Mo: 3% by mass or less (not including 0% by mass) , Co: 1% by mass or less (0% by mass ) includes not), Cu: 2 mass% or less (not including 0 mass%), Al: 0.02 to 2.0 mass%, Ti: 0.2 to 1.0 wt%, O: 0.02 wt% Or less (excluding 0% by mass) , N: 0.04% by mass or less (not including 0% by mass) , at least one of Nb and Ta: (8 times the total mass% of the C and the N) ) -1.0% by mass and the balance is made of Fe and inevitable impurities,
A method for producing a ferritic stainless steel welding wire, wherein the heat treatment is performed so that the crystal grain size of the wire is 3 to 10.
前記線材として、P:0.04質量%以下(0質量%を含まない)、S:0.02質量%以下(0質量%を含まない)、V:0.5質量%以下(0質量%を含む)、W:0.5質量%以下(0質量%を含む)、Zr:0.02質量%以下(0質量%を含む)、B:0.02質量%以下(0質量%を含む)、Ca:0.005質量%以下(0質量%を含む)、Mg:0.005質量%以下(0質量%を含む)の内、少なくとも1つを更に含有する線材を用いることを特徴とする請求項3に記載のフェライト系ステンレス鋼溶接ワイヤの製造方法。 As said wire, P: 0.04 mass% or less (not including 0 mass%) , S: 0.02 mass% or less (not including 0 mass%) , V: 0.5 mass% or less (0 mass%) ) , W: 0.5 mass% or less (including 0 mass%) , Zr: 0.02 mass% or less (including 0 mass%) , B: 0.02 mass% or less ( including 0 mass%) ) , Ca: 0.005 mass% or less (including 0 mass%) , Mg: 0.005 mass% or less (including 0 mass%) , and using a wire further containing at least one The manufacturing method of the ferritic stainless steel welding wire of Claim 3. 前記熱処理は、1000℃±100℃で加熱後急冷することを特徴とする請求項3または4に記載のフェライト系ステンレス鋼溶接ワイヤの製造方法。   5. The method for producing a ferritic stainless steel welding wire according to claim 3, wherein the heat treatment is rapid cooling after heating at 1000 ° C. ± 100 ° C. 5. 線径2〜10mmの線材に熱処理を施し、その後に線径0.6〜2mmにまで伸線するフェライト系ステンレス鋼溶接ワイヤの製造方法において、
前記線材として、C:0.03質量%以下(0質量%を含まない)、Si:3質量%以下(0質量%を含まない)、Mn:3質量%以下(0質量%を含まない)、Ni:2質量%以下(0質量%を含まない)、Cr:11〜20質量%、Mo:3質量%以下(0質量%を含まない)、Co:1質量%以下(0質量%を含まない)、Cu:2質量%以下(0質量%を含まない)、Al:0.02〜2.0質量%、Ti:0.2〜1.0質量%、O:0.02質量%以下(0質量%を含まない)、N:0.04質量%以下(0質量%を含まない)、Nb及びTaの少なくとも1つ:(前記Cと前記Nとの合計の質量%の8倍)〜1.0質量%を含み残部がFe及び不可避不純物からなる線材を用い、
前記熱処理を施して前記線材の結晶粒度を3〜10にすることを特徴とするフェライト系ステンレス鋼溶接ワイヤの製造方法。
In the method for producing a ferritic stainless steel welding wire, heat treatment is performed on a wire having a wire diameter of 2 to 10 mm, and then the wire is drawn to a wire diameter of 0.6 to 2 mm.
As said wire, C: 0.03 mass% or less (not including 0 mass%) , Si: 3 mass% or less (not including 0 mass%) , Mn: 3 mass% or less (not including 0 mass%) Ni: 2% by mass or less (excluding 0% by mass) , Cr: 11-20% by mass, Mo: 3% by mass or less (not including 0% by mass) , Co: 1% by mass or less (0% by mass ) includes not), Cu: 2 mass% or less (not including 0 mass%), Al: 0.02 to 2.0 mass%, Ti: 0.2 to 1.0 wt%, O: 0.02 wt% Or less (excluding 0% by mass) , N: 0.04% by mass or less (not including 0% by mass) , at least one of Nb and Ta: (8 times the total mass% of the C and the N) ) -1.0% by mass and the balance is made of Fe and inevitable impurities,
A method for producing a ferritic stainless steel welding wire, wherein the heat treatment is performed so that the crystal grain size of the wire is 3 to 10.
JP2006016799A 2005-01-26 2006-01-25 Ferritic stainless steel welding wire and manufacturing method thereof Active JP5236158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016799A JP5236158B2 (en) 2005-01-26 2006-01-25 Ferritic stainless steel welding wire and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005018868 2005-01-26
JP2005018868 2005-01-26
JP2006016799A JP5236158B2 (en) 2005-01-26 2006-01-25 Ferritic stainless steel welding wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006231404A JP2006231404A (en) 2006-09-07
JP5236158B2 true JP5236158B2 (en) 2013-07-17

Family

ID=37039621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016799A Active JP5236158B2 (en) 2005-01-26 2006-01-25 Ferritic stainless steel welding wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5236158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502279B1 (en) * 2014-07-09 2015-03-12 하정선 Auto Welding Method Using Carbon Dioxide Welding Machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183916B2 (en) * 2006-11-28 2013-04-17 新日鐵住金ステンレス株式会社 Solid wire for ferritic stainless steel welding
CN101992365B (en) * 2010-12-20 2013-07-24 成都新大洋焊接材料有限责任公司 High-strength and high-tenacity gas shielded welding wire
US20140065005A1 (en) * 2012-08-31 2014-03-06 Eizo Yoshitake Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability
CN103056548B (en) * 2012-12-20 2014-10-15 成都新大洋焊接材料有限责任公司 High-strength heat-resistant steel gas-shielded solid wire
JP6385978B2 (en) * 2015-05-15 2018-09-05 日鐵住金溶接工業株式会社 Filler for welding ferritic stainless steel
JP7055050B2 (en) * 2018-03-27 2022-04-15 日鉄ステンレス株式会社 Ferritic stainless steel welding filler material
US20230398644A1 (en) 2022-06-10 2023-12-14 Daido Steel Co., Ltd. Ferritic stainless steel welding wire and welded part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137636A (en) * 1975-05-24 1976-11-27 Nippon Steel Corp Inert gas arc welding wire for chrome stainless steel
JPS5841955B2 (en) * 1977-05-21 1983-09-16 新日本製鐵株式会社 Inert gas arc welding wire made of highly corrosion-resistant chromium stainless steel
JPS57156893A (en) * 1981-03-23 1982-09-28 Daido Steel Co Ltd Welding material
JPS61226199A (en) * 1985-03-30 1986-10-08 Kobe Steel Ltd Production of flux cored wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502279B1 (en) * 2014-07-09 2015-03-12 하정선 Auto Welding Method Using Carbon Dioxide Welding Machine

Also Published As

Publication number Publication date
JP2006231404A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
US7732733B2 (en) Ferritic stainless steel welding wire and manufacturing method thereof
JP5236158B2 (en) Ferritic stainless steel welding wire and manufacturing method thereof
JP5010301B2 (en) Ferritic stainless steel for exhaust gas path member and exhaust gas path member
CN102744530B (en) Welding material and welded joint structure
JP5177330B1 (en) Carburization-resistant metal material
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP5880310B2 (en) Austenitic stainless steel
JP6197885B2 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
WO2012108517A1 (en) Weld metal with excellent creep characteristics
KR102303628B1 (en) Heat-resistant alloy and reaction tube
KR101764040B1 (en) Coated electrode
JP2006225718A (en) DEPOSITED METAL FOR HIGH STRENGTH Cr-Mo STEEL HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS AND SR CRACK RESISTANCE
JP5622707B2 (en) Welding materials for cryogenic steel
JP2011074403A (en) Steel for high heat input welding
CN107138876A (en) A kind of low nickel cupric type T/P92 steel wldings of high temperature creep-resisting
JP6965938B2 (en) Austenitic Stainless Steel Welded Metals and Welded Structures
CN103962748B (en) Heat-resisting high-temperature nickel-base alloy welding wire and welding method
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP5171006B2 (en) Welded joints with excellent brittle fracture resistance
KR20210124464A (en) Covered arc welding rod for high-Cr ferritic heat-resistant steel
JP2021049572A (en) Austenitic stainless steel weld joint
JP2021049570A (en) Austenitic stainless steel weld joint
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250