[go: up one dir, main page]

JP5229105B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP5229105B2
JP5229105B2 JP2009118322A JP2009118322A JP5229105B2 JP 5229105 B2 JP5229105 B2 JP 5229105B2 JP 2009118322 A JP2009118322 A JP 2009118322A JP 2009118322 A JP2009118322 A JP 2009118322A JP 5229105 B2 JP5229105 B2 JP 5229105B2
Authority
JP
Japan
Prior art keywords
measurement
fluid
flow
flow path
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009118322A
Other languages
Japanese (ja)
Other versions
JP2010266345A (en
Inventor
肇 宮田
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009118322A priority Critical patent/JP5229105B2/en
Publication of JP2010266345A publication Critical patent/JP2010266345A/en
Application granted granted Critical
Publication of JP5229105B2 publication Critical patent/JP5229105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波を利用してガス、水などの流体の流量を計測する流量計測装置に関するものである。   The present invention relates to a flow rate measuring apparatus that measures the flow rate of a fluid such as gas or water using ultrasonic waves.

従来この種の超音波式流量計測装置は、図12に示すように、計測流体が流れる主管流路51内に、その流体の一部を計測するための計測流路52を設置した構成であった。   Conventionally, this type of ultrasonic flow measuring device has a configuration in which a measurement channel 52 for measuring a part of the fluid is installed in a main channel 51 through which the measurement fluid flows, as shown in FIG. It was.

この構成においては、計測流路52内に分流された流量を計測し、予め設定された全体流量との分流比おいて、主管流路内に流れる流量を計算により求めるものであり、小流量の計測レンジである測定系でもって、配管全体の流れを測定できる可能性を有している(例えば、特許文献1、特許文献2参照)。   In this configuration, the flow rate divided in the measurement flow path 52 is measured, and the flow rate flowing in the main pipe flow path is obtained by calculation with a diversion ratio with the preset overall flow rate. There is a possibility that the flow of the entire pipe can be measured with a measurement system that is a measurement range (see, for example, Patent Document 1 and Patent Document 2).

特開2004−251686号公報JP 2004-251686 A 特開2005−140729号公報JP 2005-140729 A

しかしながら、前記従来の構成では、計測流路52内に流れ込む流量が、その計測流路52で計測できる上限を超えた場合、計測不可能となるため、計測できる範囲はその形状で画一的に制限されてしまうという課題があった。   However, in the conventional configuration, when the flow rate flowing into the measurement flow path 52 exceeds the upper limit that can be measured in the measurement flow path 52, measurement is impossible. There was a problem of being restricted.

本発明は上記従来の課題を解消するものであり、広範囲での確実な測定を可能としたものである。   The present invention solves the above-described conventional problems, and enables reliable measurement over a wide range.

上記従来の課題を解決するために本発明の流量計測装置は、流体流路と、この流体流路を流動する流体の一部が流れ込む測定流路と、この測定流路を流れる流体の流量を計測する計測手段と、測定流路へ流れ込む流体量を制御する流体分流手段とを有する構成である。   In order to solve the above-described conventional problems, a flow rate measuring device according to the present invention includes a fluid channel, a measurement channel into which a part of the fluid flowing through the fluid channel flows, and a flow rate of the fluid flowing through the measurement channel. It is the structure which has a measurement means to measure, and a fluid diversion means which controls the fluid quantity which flows into a measurement flow path.

したがって、測定流路へ流れ込む流体量が可変であるところから、広範囲の測定ができることとなる。   Therefore, since the amount of fluid flowing into the measurement channel is variable, a wide range of measurements can be performed.

本発明の流量計測装置は、流体分流手段により、測定流路に流れる、所謂、副流の量をコントロールすることが可能となり、流体流路を流れる主流が大流量であっても確実に計測可能となる。さらには、流体分流手段により主流と副流の分流比を最適化できるため、同一の測定流路でもって、主流が流れる流体流路の管径が違う組み合わせでも容易に設計変更できる汎用性も持ち合わせることができるものである。   The flow measuring device of the present invention can control the amount of so-called side flow flowing in the measurement flow path by the fluid diversion means, and can reliably measure even if the main flow flowing in the fluid flow path is a large flow rate. It becomes. Furthermore, because the flow splitting means can optimize the split ratio of the main flow and the secondary flow, it has the versatility that the design can be easily changed even if the pipe diameter of the fluid flow path in which the main flow flows is different with the same measurement flow path. It is something that can be done.

本発明の実施の形態を示す流量計測装置の縦側断面図The longitudinal cross-sectional view of the flow measuring device which shows embodiment of this invention 同流量計測装置の横側断面図Cross-sectional side view of the same flow measurement device 図2のA−A正断面図AA front sectional view of FIG. 図2のB−B正断面図BB front sectional view of FIG. 同流量計測装置のシステム構成図System configuration diagram of the same flow measurement device 同流量計測装置における計測手段部の説明図Explanatory drawing of measuring means part in the same flow measuring device 同流量計測装置の作用説明図Operation explanatory diagram of the flow rate measuring device 同流量計測装置の変形例を示す縦側断面図Vertical sectional view showing a modification of the flow rate measuring device 同流量計測装置の変形例における作用説明図Action explanatory drawing in the modification of the same flow measuring device 同流量計測装置の他の変形例を示す縦側断面図Vertical sectional view showing another modification of the flow rate measuring device 図10のA−A正断面図AA front sectional view of FIG. 従来の流量計測装置の概略構成図Schematic configuration diagram of a conventional flow measurement device

本発明は、流体流路と、前記流体流路に内設され、同流体流路を流れる流体の一部が分流する測定流路と、前記測定流路を流れる流体の流量を計測する計測手段と、前記測定流路へ流れ込む流体の流量を可動可能に構成した邪魔板で制御する流体分流手段とを具備し、前記邪魔板を、前記測定流路の上、下流側の双方に、前記測定流路から所定距離を置い
て配置したもので、流体分流手段を介して測定流路に分流する流体量をコントロールすることで広範囲の流量下での計測を可能にできるものである。
The present invention includes a fluid flow channel, a measurement flow channel provided in the fluid flow channel, in which a part of the fluid flowing through the fluid flow channel is shunted, and a measurement unit that measures the flow rate of the fluid flowing through the measurement flow channel. And fluid diverting means for controlling the flow rate of the fluid flowing into the measurement channel with a baffle plate configured to be movable , and the measurement plate is provided on both the upstream side and the downstream side of the measurement channel. A certain distance from the flow path
It is possible to measure under a wide range of flow rates by controlling the amount of fluid diverted to the measurement flow path via the fluid diverting means.

前記流体分流手段は可動可能にすることが望ましく、加えて、その構成は流体の流れを邪魔するように設定しておく。   The fluid diverting means is preferably movable, and in addition, its configuration is set so as to obstruct the flow of the fluid.

また、正流、逆流ともに測定できるように、流体分流手段を測定流路より上、下流側の双方に配置しておくことも考えられる。   It is also conceivable to arrange the fluid diversion means on both the upstream side and the downstream side of the measurement channel so that both the normal flow and the reverse flow can be measured.

測定流路を流体流路の内部に支持部材を介して同心的に配置しておけば、外部配管との接続が容易となるとともに、測定流路を中心に支持が容易で、分流するに当たり、副流に対する主流の対象性が確保しやすくなり、安定してより高い測定精度を確保することが可能となる。   If the measurement channel is placed concentrically inside the fluid channel via a support member, it will be easy to connect to the external piping, and it will be easy to support around the measurement channel. It becomes easier to ensure the mainstream objectability with respect to the secondary flow, and it becomes possible to stably ensure higher measurement accuracy.

また、支持部材と測定流路および流体流路を別部材としておけば、流体流路の内径が変更になっても、測定流路が収まる大きさ以上であれば支持部材の変更のみで対処できるものである。   In addition, if the support member, the measurement channel, and the fluid channel are provided as separate members, even if the inner diameter of the fluid channel is changed, it can be dealt with only by changing the support member as long as it is larger than the measurement channel can be accommodated. Is.

この場合、計測流路内の測定流路の開口部を除く、測定流路の流体流れの方向の投影面を少なくとも覆う周辺部の流れを遮断する遮蔽板を設けておけば、計測流路の開口部以外には流体が流れ込まないため、計測流路に対する流れによる破壊等の問題がなくなり、計測装置としての信頼性が上がるとともに、計測流路の外形が如何なる形状であっても流れへの影響を出さないため、安定した計測精度の確保にも貢献する。   In this case, if a shielding plate that blocks at least the peripheral flow covering the projection surface in the direction of the fluid flow of the measurement flow path, excluding the measurement flow path opening in the measurement flow path, is provided. Since the fluid does not flow into any part other than the opening, there are no problems such as breakage due to the flow to the measurement channel, the reliability of the measurement device is improved, and the flow channel is affected regardless of the shape of the measurement channel. Contributes to ensuring stable measurement accuracy.

さらに、流体分流手段と測定流路の間に整流部材を配置しておけば、計測流路に流れ込む流体に多くの偏流があっても安定した測定が可能となり、常に高精度の計測が可能となる。   Furthermore, if a rectifying member is placed between the fluid diversion means and the measurement flow path, stable measurement is possible even if there is a large amount of drift in the fluid flowing into the measurement flow path, and high-precision measurement is always possible. Become.

計測手段として、超音波方式とすることで、よりレンジアビリティの広い高精度な計測が可能となるとともに、サンプリング時間が短い計測が可能であるため、瞬時の計測が必要な用途などにも対応が可能となる。また逆流の計測も可能である。   By using the ultrasonic method as the measurement means, it is possible to perform high-accuracy measurement with a wider range capability, and because it enables measurement with a short sampling time, it can also be used for applications that require instantaneous measurement. It becomes possible. It is also possible to measure backflow.

以下本発明の実施の形態を図面を参照して説明する。なお、実施の形態が本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The embodiments do not limit the present invention.

(実施の形態1)
図1〜図4に於いて、被計測流体が流れる流体流路1には支持部材2を介して測定流路3が内設してあり、一部流体がこの測定流路3に分流するようにしている。
(Embodiment 1)
In FIG. 1 to FIG. 4, a measurement channel 3 is provided in a fluid channel 1 through which a fluid to be measured flows via a support member 2, and a part of the fluid is divided into the measurement channel 3. I have to.

前記流体流路1は断面円形状を、測定流路3は断面矩形状をしており、測定流路3の中心に前記測定流路3が位置するように設定されている。   The fluid flow path 1 has a circular cross section, the measurement flow path 3 has a rectangular cross section, and is set so that the measurement flow path 3 is located at the center of the measurement flow path 3.

前記測定流路3には計測手段4が配置してある。この計測手段4は測定流路3の上、下流側の対向壁部に設けられた一対の超音波送受信器5,6を有し、測定流路3を流れる流体を超音波が斜めに横切るようにしてある。   Measuring means 4 is arranged in the measurement channel 3. This measuring means 4 has a pair of ultrasonic transmitters / receivers 5, 6 provided on the measurement channel 3 and on the opposite wall portion on the downstream side, so that the ultrasonic waves obliquely cross the fluid flowing through the measurement channel 3. It is.

流体流路1の内部にあって、かつ、測定流路3の上、下流側端部開口から所定距離をおいて流体分流手段7,8が設けられている。   Fluid diverting means 7 and 8 are provided inside the fluid flow path 1 and at a predetermined distance from the downstream end opening above the measurement flow path 3.

上、下流側双方に流体分流手段7,8を配置したのは、流体が流体流路1を図1の左手方向へ流れる、所謂、正流だけでなく、それとは逆の、所謂、逆流でも対応できるようにしたためで、流体流路1を流れる流体が流体分流手段7または8で分流されて測定流路3に分流流体として流れ込むようにしてある。   The fluid diverting means 7 and 8 are arranged on both the upstream side and the downstream side because not only the so-called forward flow in which the fluid flows through the fluid flow path 1 in the left-hand direction in FIG. In order to cope with this, the fluid flowing in the fluid flow path 1 is diverted by the fluid diversion means 7 or 8 and flows into the measurement flow path 3 as a diversion fluid.

図5に示すように、計測手段4の信号、つまりは、超音波送受信器5,6間の超音波伝搬時間信号は、後述する演算手段9に入力され、測定流路3を流れる流体の流量が演算されるものである。   As shown in FIG. 5, the signal of the measuring means 4, that is, the ultrasonic propagation time signal between the ultrasonic transmitters / receivers 5 and 6, is input to the calculating means 9 described later, and the flow rate of the fluid flowing through the measurement flow path 3. Is calculated.

この求めた流量と、予め登録手段10に登録してある補正値により分流比に対応した測定流路3の流量を算出し、表示手段11に示すものであり、この全体の制御を制御手段12が受け持っている。   The flow rate of the measurement flow path 3 corresponding to the diversion ratio is calculated from the obtained flow rate and the correction value registered in advance in the registration unit 10 and shown in the display unit 11. Is in charge.

なお、本実施の形態では結果を表示手段により表示するようにしているが、測定結果は数値データとしてデータロガーなどに出力することでもよく、また無線システムまた有線によるデータ転送機能を搭載して他の場所で出力することも可能である。   In this embodiment, the result is displayed on the display means. However, the measurement result may be output to a data logger as numerical data, or equipped with a wireless system or wired data transfer function. It is also possible to output at the location.

以下、動作について説明する。   The operation will be described below.

先ず、計測手段4に関して図6をもとに説明する。   First, the measuring means 4 will be described with reference to FIG.

前記計測手段4は、超音波送受信器5,6間で交互に超音波を送受信させて流体の流れに対して順方向と逆方向の超音波の伝搬時間の差を一定間隔を置いて計り、伝搬時間差信号として出力する働きを持つ。この伝搬時間差信号を受けて演算手段9により被計測流体の流速、および流量を算出するものである。   The measuring means 4 alternately transmits and receives ultrasonic waves between the ultrasonic transmitters and receivers 5 and 6, and measures the difference in the propagation time of ultrasonic waves in the forward direction and the reverse direction with respect to the flow of the fluid at regular intervals. It has the function of outputting as a propagation time difference signal. The calculation means 9 receives the propagation time difference signal and calculates the flow velocity and flow rate of the fluid to be measured.

さらに述べると、図6において、Lを超音波送受信器5,6間の距離、T1を上流からの伝達時間、T2を下流からの伝達時間、Cを音速、φを測定流路3における流体の流動方向に対する超音波伝搬方向のなす角度、流速をVとしたとき、流速Vは以下の式にて算出される。   More specifically, in FIG. 6, L is the distance between the ultrasonic transceivers 5 and 6, T1 is the transmission time from the upstream, T2 is the transmission time from the downstream, C is the speed of sound, φ is the fluid velocity in the measurement channel 3 When the angle formed by the ultrasonic wave propagation direction with respect to the flow direction and the flow velocity are V, the flow velocity V is calculated by the following equation.

T1=L/(C+Vcosφ) (1)
T2=L/(C−Vcosφ) (2)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
V=(L/2cosφ)[(1/T1)−(1/T2)] (3)
φおよびLは既知なので,T1およびT2の値より流速Vが算出できる。今、例えば空気の流量を計ることを考え、角度φ=45度、距離L=35mm、音速C=340m/s
、流速V=8m/sを想定すると、T1=2.0×10−4秒、T2=2.1×10−4秒であり、瞬時計測ができる。
T1 = L / (C + Vcosφ) (1)
T2 = L / (C-Vcosφ) (2)
The speed of sound C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1, and V = (L / 2 cos φ) [(1 / T1) − (1 / T2)] (3)
Since φ and L are known, the flow velocity V can be calculated from the values of T1 and T2. Now, for example, considering measuring the flow rate of air, angle φ = 45 degrees, distance L = 35 mm, sound velocity C = 340 m / s
Assuming a flow velocity V = 8 m / s, T1 = 2.0 × 10 −4 seconds and T2 = 2.1 × 10 −4 seconds, and instantaneous measurement can be performed.

以上のように構成された流量計測装置について、以下その図7を用いその作用を説明する。   The operation of the flow rate measuring apparatus configured as described above will be described below with reference to FIG.

図7に示すように、流体流路1に流れ込む計測流体は流体分流手段7により、測定流路3に流れる副流Bとそれ以外の主流Aとに分流される。   As shown in FIG. 7, the measurement fluid flowing into the fluid flow path 1 is divided by the fluid diverting means 7 into the substream B flowing through the measurement flow path 3 and the other main flow A.

前述した、超音波による計測方法においては、超音波伝播部の流速が早くなった場合、流れの乱れの影響などで測定限界がある。   In the above-described measurement method using ultrasonic waves, when the flow velocity of the ultrasonic wave propagation portion is increased, there is a measurement limit due to the influence of flow disturbance.

測定限界は計測部の構成により変わるが、より大流量を測るためには計測部自体の大型化やセンサなどのデバイス部品の見直しが必要となり、測定流量のレンジに対応してそれぞれ計測手段を用意しなければいけなくなる。   Although the measurement limit varies depending on the configuration of the measurement unit, in order to measure a larger flow rate, it is necessary to enlarge the measurement unit itself and review the device parts such as sensors, and prepare measurement means corresponding to the range of the measurement flow rate. Will have to do.

本実施の形態による分流方式では、測定流路3へ流れる副流Bを流体分流手段7の邪魔板作用により、主流Aから分流し、その分流比によって副流Bの流れを計測手段4の測定限界値以下に抑えることができるため、計測装置としての測定レンジの仕様が変更されても分流比を変えることで計測手段4の仕様見直しは必要なくなる。   In the diversion method according to the present embodiment, the side flow B flowing to the measurement flow path 3 is diverted from the main flow A by the baffle plate action of the fluid diversion means 7, and the flow of the side flow B is measured by the measurement means 4 according to the diversion ratio. Since it can be suppressed to the limit value or less, it is not necessary to review the specification of the measuring means 4 by changing the shunt ratio even if the specification of the measurement range as the measuring device is changed.

なお、前記説明では上流側の流体分流手段7について述べたが、流体の流れが逆の場合は、下流側の流体分流手段8が同じ作用を行うものである。   In the above description, the upstream fluid diverting means 7 has been described. However, when the fluid flow is reversed, the downstream fluid diverting means 8 performs the same operation.

また図8、9に示すように、流体分流手段7,8に邪魔板7a,8aを可動的に配備することで、分流比を任意に変えることが可能となり、一つの計測装置で流量の測定レンジを切り替えて、広範囲な測定が可能となる。   Also, as shown in FIGS. 8 and 9, the baffle plates 7a and 8a are movably arranged in the fluid diverting means 7 and 8, so that the diversion ratio can be arbitrarily changed, and the flow rate can be measured with one measuring device. A wide range of measurements is possible by switching the range.

邪魔板7a,8aの可動はモータ(図示せず)の回転をベルトで伝達して、それらの取付け角を変えることで達成するようにしているが、駆動機構はこれに限ったものではない。   The movement of the baffle plates 7a and 8a is achieved by transmitting the rotation of a motor (not shown) with a belt and changing their mounting angle, but the drive mechanism is not limited to this.

また、図2、図4に示すように、測定流路3を支持する支持部材2は、流体流路1に内接し計測手段4の前後を覆う形状のため、流れの遮蔽板となり、測定流路3の開口部(副流Bが流れる部分)以外には流れが生じないため、計測手段4の形状による流れへの影響がなく、また、超音波送受信器5,6などの配線が流れに影響を与えないようにしている。   As shown in FIGS. 2 and 4, the support member 2 that supports the measurement flow path 3 has a shape that is inscribed in the fluid flow path 1 and covers the front and rear of the measurement means 4, and thus serves as a flow shielding plate. Since there is no flow other than the opening of the path 3 (portion where the side flow B flows), there is no influence on the flow due to the shape of the measuring means 4, and the wires such as the ultrasonic transmitters / receivers 5 and 6 are in the flow. It is trying not to affect.

さらに、支持部材2を交換するだけで流体流路1の径が異なるものにも適用でき、互換性に富むものにできる。   Furthermore, the present invention can be applied to a case where the diameter of the fluid flow path 1 is different only by exchanging the support member 2, and the compatibility can be enhanced.

加えて、邪魔板構成をなす流体分流手段7,8を設けることで、流体流路1内に異物が流れ込んでも測定流路3への流入の割合は減少し、測定手段の寿命・信頼性の向上を図ることができる。   In addition, by providing the fluid diverting means 7 and 8 having a baffle plate configuration, even if foreign matter flows into the fluid flow path 1, the rate of inflow into the measurement flow path 3 is reduced, and the life and reliability of the measuring means are improved. Improvements can be made.

なお、図10,11に示すように、流体分流手段7,8と測定流路3の間に整流部材13,14を挿入することで、流れ込む流れが非常に乱れていた場合でも、測定流路3での計測への影響を抑制でき、如何なる配管条件であっても精度の良い測定が可能となる。   As shown in FIGS. 10 and 11, by inserting rectifying members 13 and 14 between the fluid diverting means 7 and 8 and the measurement flow path 3, the measurement flow path can be obtained even when the flowing-in flow is very disturbed. 3 can be suppressed, and accurate measurement is possible under any piping conditions.

整流部材13,14は、多孔体、例えばハニカム状多孔体が最適であろう。   The rectifying members 13 and 14 are optimally porous bodies, for example, honeycomb-shaped porous bodies.

以上のように、本発明によれば、流体流路の流れる主流が大流量であっても確実な計測を可能とし、流体分流手段により主流と副流の分流比を最適化できるため、同一の測定流路でもって、主流が流れる計測流路の管径が違う組み合わせでも容易に設計変更できる汎用性がある流量計測装置を提供できる。   As described above, according to the present invention, it is possible to perform reliable measurement even when the main flow through the fluid flow path is a large flow rate, and the diversion ratio between the main flow and the side flow can be optimized by the fluid diversion means. It is possible to provide a versatile flow rate measuring device that can easily change the design even if the measurement flow channel has a different diameter of the measurement flow channel.

1 流体流路
3 測定流路
4 計測手段
5,6 超音波送受信器
2 支持部材
7,8 流体分流手段
7a,8b 邪魔板
13,14 整流部材
DESCRIPTION OF SYMBOLS 1 Fluid flow path 3 Measurement flow path 4 Measuring means 5,6 Ultrasonic transmitter / receiver 2 Support member 7,8 Fluid diversion means 7a, 8b Baffle plate 13,14 Rectification member

Claims (5)

流体流路と、
前記流体流路に内設され、同流体流路を流れる流体の一部が分流する測定流路と、
前記測定流路を流れる流体の流速および/または流量を計測する計測手段と、
前記測定流路へ流れ込む流体の流量を可動可能に構成した邪魔板で制御する流体分流手段とを具備し
前記邪魔板を、前記測定流路の上、下流側の双方に、前記測定流路から所定距離を置いて配置した流体の流れ計測装置。
A fluid flow path;
A measurement flow path provided in the fluid flow path, in which a part of the fluid flowing through the fluid flow path is diverted;
Measuring means for measuring the flow velocity and / or flow rate of the fluid flowing through the measurement channel;
Fluid diversion means for controlling the flow rate of the fluid flowing into the measurement flow path with a baffle plate configured to be movable ;
A fluid flow measuring device in which the baffle plate is arranged at a predetermined distance from the measurement channel on both the upstream and downstream sides of the measurement channel .
流体流路の内部に支持部材を介して測定流路を同心円状に配置した請求項1記載の流体の流れ計測装置。 The fluid flow measuring device according to claim 1 , wherein the measurement flow path is concentrically arranged inside the fluid flow path via a support member. 支持部材と測定流路および流体流路は別部材とした請求項記載の流量計測装置。 The flow rate measuring device according to claim 2, wherein the support member, the measurement channel, and the fluid channel are separate members. 流体分流手段と測定流路の間に整流部材を配置した請求項1〜いずれか1項記載の流体の流れ計測装置。 The fluid flow measuring device according to any one of claims 1 to 3 , wherein a rectifying member is disposed between the fluid diverting means and the measurement flow path. 計測手段は、超音波送受信器を用いた請求項1〜いずれか1項記載の流体の流れ計測装置。
The fluid flow measuring device according to any one of claims 1 to 4 , wherein the measuring means uses an ultrasonic transceiver.
JP2009118322A 2009-05-15 2009-05-15 Flow measuring device Active JP5229105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118322A JP5229105B2 (en) 2009-05-15 2009-05-15 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118322A JP5229105B2 (en) 2009-05-15 2009-05-15 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2010266345A JP2010266345A (en) 2010-11-25
JP5229105B2 true JP5229105B2 (en) 2013-07-03

Family

ID=43363446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118322A Active JP5229105B2 (en) 2009-05-15 2009-05-15 Flow measuring device

Country Status (1)

Country Link
JP (1) JP5229105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212129B1 (en) * 2020-04-14 2021-02-04 주식회사 케이디 Water meter assembly and compensation system for water meter
KR102212130B1 (en) * 2020-04-14 2021-02-04 주식회사 케이디 Ultrasonic type water meter for reducing the effect of the fluctuation in temperature

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132801A (en) * 2010-12-22 2012-07-12 Panasonic Corp Ultrasonic flowmeter
JP5815437B2 (en) * 2012-02-28 2015-11-17 アズビル株式会社 Ultrasonic fluid measuring device
JP5737477B2 (en) * 2012-07-05 2015-06-17 株式会社村田製作所 Flow meter, dialysis machine, chemical solution injection device
JP2014077750A (en) * 2012-10-12 2014-05-01 Panasonic Corp Ultrasonic meter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257221A (en) * 1988-04-06 1989-10-13 Japan Electron Control Syst Co Ltd Hot-wire type air flow rate detector for internal combustion engine
JPH0626903A (en) * 1992-03-16 1994-02-04 Hitachi Ltd Air flow measuring device
JP3387372B2 (en) * 1997-07-22 2003-03-17 三菱電機株式会社 Flow sensor
JP2000249581A (en) * 1999-03-02 2000-09-14 Fuji Electric Co Ltd Ultrasonic flow meter
JP3511959B2 (en) * 1999-11-05 2004-03-29 松下電器産業株式会社 Inlet / outlet symmetric flow meter
JP2003149024A (en) * 2001-11-15 2003-05-21 Denso Corp Flow rate measuring device
JP4453341B2 (en) * 2003-11-10 2010-04-21 パナソニック株式会社 Ultrasonic flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212129B1 (en) * 2020-04-14 2021-02-04 주식회사 케이디 Water meter assembly and compensation system for water meter
KR102212130B1 (en) * 2020-04-14 2021-02-04 주식회사 케이디 Ultrasonic type water meter for reducing the effect of the fluctuation in temperature

Also Published As

Publication number Publication date
JP2010266345A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5229105B2 (en) Flow measuring device
JP5394506B2 (en) Vortex flowmeter with vortex vibration sensor plate
JP5796154B2 (en) Flow measuring device
US9612141B2 (en) Ultrasonic flow measurement system
JP2017015475A (en) Measuring unit and flow meter
JP2022161052A (en) ultrasonic flow meter
JP5229164B2 (en) Fluid flow measuring device
US11885654B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP5857178B2 (en) Flow measuring device
KR101059931B1 (en) Flow measurement method
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2012220465A (en) Flow rate measuring apparatus
JP2018077066A (en) Saddle type ultrasonic flow rate meter and flow rate measurement method
JP2010223855A (en) Ultrasonic flow meter
JP4984348B2 (en) Flow measuring device
JP2011058883A (en) Ultrasonic flowmeter
JP4604520B2 (en) Flow measuring device
KR102088845B1 (en) Method for measuring flow rate of ultrasonic flow meter including recessed ultrasonic transducer
RU2672815C1 (en) Measuring flow in ultrasound
JPH0882540A (en) Ultrasonic flow-rate measuring method and ultrasonic flowmeter
JP3398251B2 (en) Flowmeter
JP6064160B2 (en) Flow measuring device
JP2004045425A (en) Flow rate measuring device
JP2014515491A (en) Measuring device for measuring fluid flow rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5229105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151