[go: up one dir, main page]

JP5228778B2 - 光回路素子 - Google Patents

光回路素子 Download PDF

Info

Publication number
JP5228778B2
JP5228778B2 JP2008263529A JP2008263529A JP5228778B2 JP 5228778 B2 JP5228778 B2 JP 5228778B2 JP 2008263529 A JP2008263529 A JP 2008263529A JP 2008263529 A JP2008263529 A JP 2008263529A JP 5228778 B2 JP5228778 B2 JP 5228778B2
Authority
JP
Japan
Prior art keywords
port
light
circuit element
optical
optical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008263529A
Other languages
English (en)
Other versions
JP2010091900A (ja
Inventor
健志 岡本
健二 佐藤
健二 水谷
友章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008263529A priority Critical patent/JP5228778B2/ja
Publication of JP2010091900A publication Critical patent/JP2010091900A/ja
Application granted granted Critical
Publication of JP5228778B2 publication Critical patent/JP5228778B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、光回路素子に関する。
光部品パッケージの小型化、高機能化に対する要求は年々高まっており、それに伴い光デバイスの集積化が進んでいる。そのためには、光デバイスの集積方法、選定材料、素子構造について検討することが必要である。
まず、レーザ等の発光素子に波長可変フィルタや変調器といった異機能素子を集積する場合、それぞれの機能素子の材料をそれぞれの特徴に応じて最適なもので構成することが望ましい。光デバイスに用いる材料としては、化合物半導体系、シリコン系および石英系がある。
材料として化合物半導体系を一部領域あるいは全領域に用いる機能素子では、素子サイズ、高速応答性、信頼性等の観点から、それぞれの機能素子の構造をそれぞれの特徴に応じて最適なもので構成することが望ましい。構造には、コア構造と導波路構造がある。
まず、コア構造について説明する。コア構造には、目的の波長での光利得を得るためにバンドギャップエネルギーの小さい層をもつアクティブ領域とバンドギャップエネルギーが大きい層をもつパッシブ領域とに分けることができる。バンドギャップは層厚、結晶組成比、および結晶組成比に起因する結晶ひずみにより調整できる。アクティブ領域は、レーザ、LED(Light Emitting Diode)、光増幅器、フォトディテクタ等に用いられる。パッシブ領域は、変調器、光フィルタ等に用いられる。また、アクティブ領域、パッシブ領域それぞれ、構成する原子材料の種類を変えることで物性を異にすることができ、光デバイスには、Al、Ga、In、N、P、As、Sbといった原子がよく用いられる。
次に、導波路構造について図8を用いつつ説明する。導波路構造については、形状および導波モード数の違いで複数の種類に分けられる。形状に関し、光デバイスによく使われる導波路構造には大きく分けてハイメサ導波路構造、リブ導波路構造、埋め込み導波路構造の3種類がある。
図8(a)は、ハイメサ導波路構造の一例を示す模式図である。図8(a)で示すように、基板10上に、クラッド11とクラッド11に挟まれたコア12とからなるメサ形状の積層が形成されている。ハイメサ導波路構造は、導波路の脇の部分がコア12の上下にわたって空気や誘電体といった低屈折率材料に置き換わった形状をしているため、半導体と低屈折率材料との屈折率コントラストが大きい。したがって、導波路を急峻に曲げても放射損失が増大しにくいという特徴がある。そこで、ハイメサ導波路構造は、曲がり導波路を多用するデバイスを省サイズで形成するのに用いられる。また、ハイメサ導波路の両脇を低屈折率、すなわち低誘電率な材料で充填することにより、電気容量を低減することができる。このとき、信号変調時の容量部分の充電時間が短くてすむため、高速動作が必要なデバイスにも用いられる。
図8(b)は、リブ導波路構造の一例を示す模式図である。図8(b)で示すように、基板10上に、クラッド11とクラッド11に挟まれたコア12とからなる積層が形成され、コア12の上部に形成されたクラッド11がメサ状に形成されている。リブ導波路構造は、コア12よりも上側のクラッド11が空気や誘電体といった低屈折率材料に置き換わった形状をしている。この構造は、導波路形成のためにコア12を加工していないため、格子欠陥が生じにくい。その結果、電流注入による局在的な温度上昇が生じても素子劣化につながるような格子欠陥の増大もまた起こりにくく、信頼性が良好である。そこで、リブ導波路構造は、電流注入を伴うレーザ、LED、光増幅器といった利得素子によく用いられる。
図8(c)は、埋め込み導波路構造の一例を示す模式図である。図8(c)で示すように、基板10上に、クラッド11とクラッド11に埋め込まれたコア12とが形成されている。埋め込み導波路構造は導波路の脇の部分がコア12よりも屈折率の小さい半導体材料に置き換えられた形状をしている。この構造は、導波路形成のための加工により生じたダメージを結晶再成長により回復させているため、格子欠陥が生じにくい。その結果、図8(b)で示すリブ導波路と同様に、電流注入による局在的な温度上昇が生じても素子劣化につながるような格子欠陥の増大もまた起こりにくく、信頼性が良好である。そこで、埋め込み導波路構造は、電流注入を伴うレーザ、LED、光増幅器といった利得素子によく用いられる。また埋め込み導波路構造は、工程が複雑という欠点はあるが、図8(b)で示すリブ導波路構造よりもキャリア閉じ込めがよく、図8(a)で示すハイメサ導波路構造のように、剥き出しの半導体側面を介したリーク電流も発生しにくいため、レーザに適用した場合、しきい値を低くし、かつ、高効率に動作させることができる。
また、導波モード数に関し、光デバイスによく使われる導波路構造には大きく分けて複数のモードを導波するマルチモード導波路および単一のモードを導波するシングルモード導波路の2種類がある(図示しない)。
マルチモード導波路は、複数のモード光を導波する導波路のことである。複数のモード光を導波するため、光通信用デバイスの導波路としては適していないが、複数のモード光の干渉を巧みに利用することで、光合分波等の機能を付加することができる。この性質のことを、多モード干渉(Multimode Interference、MMI)と呼ぶ。
シングルモード導波路は、基本モード光のみを導波する導波路のことであり、光通信用デバイスの導波路としてよく用いられる。導波路の幅は、マルチモード導波路よりも狭い。
どのような素子にも最適となるような導波路構造やコア構造は存在しない。したがって、集積素子全体としての性能を向上させるためには、各素子に適した導波路構造やコア構造を用いることが重要である。
2種類のコア構造のモノリシック集積の手法の1つとして、コア構造の1部分をドライエッチング等により加工し、新たに別のコア構造を、Metal−Organic Vapor Phase Epitaxy(MOVPE)法やChemical Beam Epitaxy(CBE)法等の結晶成長により形成する公知のバットジョイント(BJ)技術がある。
導波路構造については、それぞれが大きく異なる断面形状であるため、導波モードの電界分布も異なっており、直接接続すると、導波モードの電界分布の不整合成分の一部が反射戻り光となる。反射戻り光はレーザの雑音の原因となり、相対的な戻り光量が10−6程度ときわめてわずかであっても特性の変化が生じる。具体的には、光出力、発振モード数、発振スペクトル、雑音強度、変調時の応答出力波形が変化する。関連する技術として、ハイメサ導波路構造72と埋め込み導波路構造71との境界部(反射境界22)の導波路幅を、お互いの導波モードの電界分布ができるだけ整合するように調整し、境界近傍の導波路の形状をテーパ状に徐々に変化させることにより、導波モードの急峻な変化を抑え、反射戻り光を抑制する方法が開発されている(図9)。
特開平11−87844号公報 "Spotsize Converter With Improved Design for InP−Based Deep−Ridge Waveguide Structure",Masaki Kohtoku et al,J.Lightwave Technology,23(12),pp.4207−4214,2005.
しかしながら、非特許文献1および特許文献1に開示された光回路素子には以下の問題がある。
まず第1に、異なる導波路構造同士の接続については、実用上十分な反射率低減に至っていない。この原因は、ハイメサ導波路構造、リブ導波路構造、埋め込み導波路構造がそれぞれ大きく異なる断面構造をもつため、各導波路の導波モードの電界分布を完全に揃えることが設計上困難だからである。また、それぞれの導波路構造が別々の工程で形成されることが多いため、露光等の位置ずれにより境界部の導波路にずれが生じ、これが反射戻り光の原因となることもある。
第2に、異なるコア構造同士を接続するBJ技術についても、実用上十分な反射率低減に至っていない。この原因は、高精度なエッチングと結晶再成長技術が必要であるため、形状制御が困難であることに起因する。したがって、BJにおいて反射戻り光が形成されることとなる。
本発明は、上記事情に鑑みてなされたものであって、反射戻り光が形成される反射境界が存在する光回路素子において、発生する反射戻り光の素子特性への影響を抑制できる技術を提供することを目的とする。
本発明によれば、第一の多モード干渉カプラと、
前記第一の多モード干渉カプラと対向している第二の多モード干渉カプラと、
前記第一の多モード干渉カプラと前記第二の多モード干渉カプラとの間をそれぞれ接続している第一、二の光導波路と、
を有し、
前記第一の多モード干渉カプラは、
一側に第一ポートと第二ポートとを有し、
他側に第三ポートと第四ポートとを有し、
前記第二の多モード干渉カプラは、
一側に第五ポートと第六ポートとを有し、
他側に第七ポートと第八ポートとを有し、
前記第三ポートと前記第五ポートとが前記第一光導波路を介して接続されており、
前記第四ポートと前記第六ポートとが前記第二光導波路を介して接続されており、
前記第二ポートには第一光吸収部が接続されており、
前記第七ポートには第二光吸収部が接続されており、
前記第三ポートと前記第五ポートとの間および前記第四ポートと前記第六ポートとの間のいずれかに、前記第一の多モード干渉カプラまたは前記第二の多モード干渉カプラを伝搬した光を反射する反射境界が介在している光回路素子
が提供される。
本発明によれば、反射境界で発生した反射戻り光を、光吸収部に導くことにより、反射戻り光の半導体レーザへの影響を抑制することができる。これにより、残留反射を抑制しつつ、各領域に最適な材料、導波路構造、コア構造を配した光集積デバイスを実現することができる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
図1は、本実施の形態の光回路素子1の平面図である。光回路素子1は、2×2MMIカプラ(第一の多モード干渉カプラ)30と、2×2MMIカプラ30と対向している2×2MMIカプラ(第二の多モード干渉カプラ)31と、2×2MMIカプラ30と2×2MMIカプラ31との間をそれぞれ接続している光導波路303(第一の光導波路)と光導波路304(第二の光導波路)とを有する。2×2MMIカプラ30は、一の端面にポート32(第一ポート)とポート33(第二ポート)とを有し、反対側の端面にポート34(第三ポート)とポート35(第四ポート)とを有する。2×2MMIカプラ31は、一の端面にポート36(第五ポート)とポート37(第六ポート)とを有し、反対側の端面にポート38(第七ポート)とポート39(第八ポート)とを有する。ポート34とポート36とが光導波路303を介して接続されており、ポート35とポート37とが光導波路304を介して接続されている。ポート33には光導波路302が接合しており、光導波路302を介してポート33と光吸収領域20(第一光吸収部)とが接続されている。ポート38には光導波路305が接合しており、光導波路305を介してポート38と光吸収領域21(第二光吸収部)とが接続されている。ポート34とポート36との間およびポート35とポート37との間に、2×2MMIカプラ30または2×2MMIカプラ31を伝搬した光を反射する反射境界22が介在している。
換言すると、本実施の形態の光回路素子1の構成は、以下の通りである。2×2MMIカプラ30と2×2MMIカプラ31とを有し、それぞれの2×2MMIカプラの向かい合う2つの端面に、それぞれ2つずつポートが接続されている。2×2MMIカプラ30の2つの端面のうち、2×2MMIカプラ31から遠い方の端面に接続されたポートがポート32、ポート33であり、他方の端面に接続されたポートがポート34、ポート35である。また、2×2MMIカプラ31の2つの端面のうち、2×2MMIカプラ30から遠い方の端面に接続されたポートがポート38、ポート39であり、他方の端面に接続されたポートがポート36、ポート37である。ポート34とポート36とは向かい合い接続されており、ポート35とポート37とは向かい合い接続されている。ポート33には光吸収領域20が接続されており、ポート38には光吸収領域21が接続されている。
光回路素子1には、レーザ、光増幅器、光検出器、光変調器、光偏向器、光減衰器、光モード変換器、光周波数変換器、光アイソレーター、フィルタ、光分波器、ビームスプリッター、ビームエキスパンダー、光遅延回路、偏光子、光結合器などが含まれる。光回路素子1は、光の強さ、位相、周波数、偏光状態、進行方向、ビーム径などに種々の操作を与える素子である。
本実施形態において、反射境界22とは、反射戻り光が形成される領域をいう。図1では、本実施形態の反射境界22が光導波路303および光導波路304に介在している例を示すが、反射境界22は、ポート34、35、36、37のいずれかに設けられていてもよい。
また、本実施形態において、ポートとは、光の出入り口をいう。換言すると、ポート32、33、34、35とは、2×2MMIカプラ30に光を入出力する端面をいい、ポート36、37、38、39とは、2×2MMIカプラ31に光を入出力する端面をいう。ポート32には、光導波路301が接合しており、ポート39には、光導波路306が接合している。光導波路301、306を介して外部から2×2MMIカプラ30、31に光が入射されたり、光導波路301、306を介して2×2MMIカプラ30、31から外部に光が出射されたりする。光導波路301、306は、たとえば、レーザ、LED、変調器、光スイッチと接続することができる。
光吸収領域20、21とは、反射境界22で形成された反射戻り光を吸収する領域をいう。光吸収領域20、21には、バンドギャップエネルギーの大きい層が設けられている。たとえば、光吸収領域20、21には、光受信器や光減衰器を設けることができる。
つづいて、光回路素子1の動作について図2を用いつつ説明する。光回路素子1の動作は、外部からポート32に光を入射する第一モードと外部からポート39に光を入射する第二モードからなる。
図2(a)では、第一モードにおける光回路素子1の動作を示す。外部からポート32に光が入射すると、2×2MMIカプラ30内では光は複数の伝搬モードに分割され、互いの干渉効果により、ポート34、35に、等しく強度分配される。但し、それぞれのポートに分配された光にはπ/2の位相差が生じている。一方、反射境界22からの反射戻り光は、2×2MMIカプラ30を再び通過することになるが、結果として、ポート32、33の位置まで到達した光の位相関係は、外部から入射したときよりもπ変化する。結果、光が結合するポートはポート33に切り替わり、光吸収領域20に導かれ吸収される。
また、反射境界22を透過した光は、ポート36およびポート37を介して2×2MMIカプラ31に入射する。2×2MMIカプラ31は2×2MMIカプラ30と同様に、入力時と出力時のそれぞれのポートにおける光にπ/2の位相差が生じるように設計してある。すると、2×2MMIカプラ31に入射した光は、合計2回2×2MMIカプラを通過することで、ポート38、39の位置に到達した光の位相関係は、外部から入射したときよりもπ変化し、結果、光はポート39に結合する。このとき、透過光はポート38にはほとんど結合しない。したがって、ポート36、37から入力した光のほとんどは、ポート39から出力することとなる。
図2(b)では、第二モードにおける光回路素子1の動作を示す。外部からポート39に光が入射すると、2×2MMIカプラ31内では光は複数の伝搬モードに分割され、互いの干渉効果により、ポート36、37に、等しく強度分配される。但し、それぞれのポートに分配された光にはπ/2の位相差が生じている。一方、反射境界22からの反射戻り光は、2×2MMIカプラ31を再び通過することになるが、結果として、ポート38、39の位置まで到達した光の位相関係は、外部から入射したときよりもπ変化する。結果、光が結合するポートはポート38に切り替わり、光吸収領域21に導かれ吸収される。
一方、反射境界22を透過した光は、ポート34およびポート35を介して2×2MMIカプラ30に入射する。すると、2×2MMIカプラ30に入射した光は、合計2回2×2MMIカプラを通過することで、ポート32、33の位置に到達した光の位相関係は、外部から入射したときよりもπ変化し、結果、光はポート32に結合する。このとき、透過光はポート33にはほとんど結合しない。したがって、ポート34、35から入力した光のほとんどは、ポート32から出力することとなる。
また、光が2×2MMIカプラから出射される時の各ポートの光の位相差は、各ポートを介して反射境界にて反射され再び2×2MMIカプラに入射するときに保存されている必要がある。このためには、2×2MMIカプラ30から各光導波路303、304を介した反射境界22までの距離と2×2MMIカプラ31から各光導波路303、304を介した反射境界22までの距離とはほぼ同じにすると好適である。
つづいて、光回路素子1の作用効果について説明する。光回路素子1は、2つの2×2MMIカプラを互いに対向するように配置し、互いに対向していない面に設けられたポート33、38にそれぞれ光吸収領域20、21を接続している。こうすることで、ポート32を介して光を入射する第一モードでは、反射戻り光をポート33に出力することで光吸収領域20に吸収させ、透過光をポート39から出力する。一方、ポート39を介して光を入射する第二モードでは、反射戻り光をポート38に出力することで光吸収領域21に吸収させ、透過光をポート32から出力させる。したがって、素子内の反射戻り光を局所に集中させて素子内への再入射を防止することができる。
反射戻り光は、半導体レーザの安定動作に悪影響を与える。Trans.IEICE,E73(1),pp.77−82,1990の図8には、反射戻り光の反射率について解析したものが示されている。この図により、半導体レーザより出射した光の10−6倍程度以上の光が反射戻り光として再入射したときに、不安定動作の原因となりうることが分かる。
例えば、BJ技術を用いて異なるコア構造同士を接続する場合、エッチングの深さ制御、加工形状が良好であり、結晶再成長の形状に段差等が生じない。そのため、再成長界面に空孔等が発生しない場合は、反射はほぼ無視できる程度となる。しかし、現状のエッチングと結晶再成長技術では、実用上十分な反射率低減には至っておらず、10−3倍程度以上の反射が発生することがある。
一方、光回路素子1では、反射境界22で発生した反射戻り光を光吸収領域20、21に導くことにより、反射戻り光の再入射を防ぐことができる。したがって、光回路素子1を導入することで半導体レーザを安定に動作させることができる。
(第2の実施形態)
図3は、本実施の形態の光回路素子2を示す平面図である。光回路素子2は、2×2MMIカプラ30と2×2MMIカプラ31とが異なる材料で形成されている。その他の構成は、第1の実施形態と同様である。光回路素子2では、材料41と材料42との接合面に反射境界22が設けられている。本実施形態において、光導波路303および光導波路304は、それぞれ異なる2つの材料から構成されている。光導波路303の材料41と材料42との接合面201に反射境界22が設けられ、光導波路304の材料41と材料42との接合面202に反射境界22が設けられている。接合面201、202がそれぞれ光を反射する反射面となり、反射戻り光を形成する。
材料41、42としては、例えば、石英系材料、Si系材料、InP系材料がある。具体的には、InP系材料としてInGaAsP、InGaAlAs等が例示される。また、Si系材料としては、Si、Ge、SiGe、SiC等が例示される。また、石英系材料としては、SiN、SiO、SiON等が例示される。
光回路素子2においても、第1の実施形態において説明した同様な原理により、反射境界22で発生した反射戻り光は、光吸収領域20または光吸収領域21に導かれ、吸収される。そのため、反射戻り光の半導体レーザに対する影響を抑制しながら、集積するそれぞれの素子に適した材料を用いることができる。したがって、光回路素子2によれば、集積光デバイスの最終性能を向上させることが可能となる。
(第3の実施形態)
図4は、本実施の形態の光回路素子3を示す平面図である。光回路素子3は、2×2MMIカプラ30と2×2MMIカプラ31とが、異なる導波路構造で形成されている。光回路素子3では、導波路61と導波路62との接合面に反射境界22が設けられている。本実施形態において、光導波路303および光導波路304は、それぞれ異なる2つの導波路構造から構成されている。光導波路303の導波路構造61と導波路構造62との接合面201に反射境界22が設けられ、光導波路304の導波路構造61と導波路構造62との接合面202に反射境界22が設けられている。接合面201、202がそれぞれ光を反射する反射面となり、反射戻り光を形成する。その他の構成は、第1の実施形態と同様である。
たとえば、導波路構造61を埋め込み導波路構造とし、導波路構造62をリブ導波路構造とすることができる。
また、導波路構造61をリブ導波路構造とし、導波路構造62をハイメサ導波路構造としてもよい。
また、導波路構造61を埋め込み導波路構造とし、導波路構造62をハイメサ導波路構造としてもよい。
光回路素子3においても、第1の実施形態において説明した同様な原理により、反射戻り光は、光吸収領域20または光吸収領域21に導かれ、吸収される。そのため、反射戻り光の半導体レーザに対する影響を抑制しながら、集積する素子のそれぞれに適した導波路構造を用いることができる。したがって、光回路素子3によれば、集積光デバイスの最終性能を向上させることが可能となる。
(第4の実施形態)
図5は、本実施の形態の光回路素子4を示す平面図である。光回路素子4は、2×2MMIカプラ30のコア構造がアクティブ領域51で構成され、2×2MMIカプラ31のコア構造がパッシブ領域52で構成されている。光回路素子4では、アクティブ領域51とパッシブ領域52との接合面に反射境界22が設けられている。本実施形態において、光導波路303および光導波路304は、それぞれ異なるコア構造から構成されている。光導波路303のアクティブ領域51とパッシブ領域52との接合面201に反射境界22が設けられ、光導波路304のアクティブ領域51とパッシブ領域52との接合面202に反射境界22が設けられている。接合面201、202がそれぞれ光を反射する反射面となり、反射戻り光を形成する。その他の構成は、第1の実施形態と同様である。
アクティブ領域51のコアは、目的の波長での光利得を得るためにバンドギャップエネルギーの小さい層から構成される。一方、パッシブ領域52のコアは、バンドギャップエネルギーが大きい層から構成される。バンドギャップは層厚、結晶組成比、および結晶組成比に起因する結晶ひずみにより調整できるが、たとえば、アクティブ領域51をバンドギャップの波長換算値が1.47〜1.63μmのInGaAsPもしくはInGaAlAsといった材料から構成し、パッシブ領域52をバンドギャップの波長換算値が1.05〜1.45μmのInGaAsPもしくはInGaAlAsといった材料から構成することができる。アクティブ領域51は、レーザ、LED、光増幅器、フォトディテクタ等とすることができる。一方、パッシブ領域52は、変調器、光フィルタ等とすることができる。
このように、本実施形態では、2×2MMIカプラ30と2×2MMIカプラ31とを別々のコア構造を用いた構成とする。そのため、別々のコア構造の接合部は反射境界22となりうるが、第1の実施形態で説明したように、外部からポート32に光を入射したとき、反射戻り光は光吸収領域20に吸収され、外部からポート39に光を入射したとき、反射戻り光は、光吸収領域21に吸収される。そのため、反射戻り光の半導体レーザに対する影響を抑制しながら、集積するそれぞれの素子に適した材料を用いることができる。したがって、光回路素子4によれば、集積光デバイスの最終性能を向上させることが可能となる。
(第5の実施形態)
図6は、本実施の形態の光回路素子5を示す平面図である。光回路素子5は、光導波路301を介してポート32に利得領域81を接続し、光導波路306を介してポート39に変調器82を接続する。その他の構成は、第1の実施形態と同様である。
光回路素子5では、光回路素子2のように、2×2MMIカプラ30と2×2MMIカプラ31とが、異なる材料で形成されていてもよい。用いる材料としては、例えば、石英系材料、Si系材料、InP系材料がある。
光回路素子5では、光回路素子3のように、2×2MMIカプラ30と2×2MMIカプラ31とが、異なる構造で形成されていてもよい。たとえば、2×2MMIカプラ30を埋め込み導波路構造とし、2×2MMIカプラ31をリブ導波路構造とすることができる。また、2×2MMIカプラ30をリブ導波路構造とし、2×2MMIカプラ31をハイメサ導波路構造としてもよい。また、2×2MMIカプラ30を埋め込み導波路構造とし、2×2MMIカプラ31をハイメサ導波路構造としてもよい。
光回路素子5では、光回路素子4のように、2×2MMIカプラ30と2×2MMIカプラ31とが、異なるコア構造で形成されていてもよい。すなわち、2×2MMIカプラ30のコア構造がアクティブ領域で構成され、2×2MMIカプラ31のコア構造がパッシブ領域で構成されていてもよい。
本実施形態では、ポート32に利得領域81を接続し、ポート39に変調器82が配された構成としている。こうすることによって、複数の要素で構成された集積レーザの共振器の内部における反射戻り光を低減させることが可能となる。レーザ内部での反射戻り光も、外部からの反射戻り光と同様にレーザの不安定動作の要因となる。したがって、レーザの内部における反射戻り光を低減させることで、レーザの発振動作が安定し、集積光デバイスの最終性能が向上する。
また、本実施形態では、光を発生する利得領域(レーザやSOA)が設けられており、発生する光のパワーは一定の場合と、時間的に変化する場合とがあり、発生する光の波長は目的に応じて設計により変更可能である。さらに、本実施形態では、変調器または波長可変フィルタが設けられており、それらの消光特性や反射率は波長に依存する。
また、通常、利得領域および変調器を組み合わせた光集積素子(変調器集積レーザ)では、素子全体で扱う偏光状態はTEモード光またはTMモード光のいずれか一方である。したがって、本実施形態を構成する2つの光吸収領域は、少なくとも一方の共通の偏光状態の光を吸収させることが必要である。
一方、本実施形態の光回路素子5では、構成要素である利得領域81において発生する光も、光回路素子の外部から入射する光も、反射境界22で形成された反射戻り光を光吸収領域に20、21に吸収させることができる。また、光回路素子5で扱う偏光状態がTEモード光およびTMモード光のいずれであっても、光吸収領域20、21に吸収させることができる。したがって、光回路素子5によれば、素子内部の反射戻り光を低減し、レーザの発振動作を安定させることが可能となる。
なお、本実施の形態において、変調器82に変えて波長可変フィルタを接続してもよい。利得領域81と波長可変フィルタとを含んだ集積レーザとすることで、光回路素子5によれば、レーザ内部における反射戻り光を低減することができる。したがって、半導体レーザの動作を安定にすることが可能になる。
(第6の実施形態)
図7は、本実施の形態の光回路素子6を示す平面図である。本実施形態において反射境界22、23が接着剤からなる接着層24に設けられている。
具体的には、光回路素子6は、光回路素子2のように、2×2MMIカプラ30と2×2MMIカプラ31とが異なる材料41、42で形成されている。そして、材料41と材料42の接合部に接着剤を用いており、これにより接着層24が形成されている。また、光導波路303および光導波路304は、それぞれ異なる材料41、42から構成され、材料41と材料42の接続部に接着層24が形成されている。材料41からなる光導波路303、304と接着層24との接合面201a、202aがそれぞれ2×2MMIカプラ30を伝搬した光を反射する反射面となり、材料42からなる光導波路303、304と接着層24との接合面201b、202bがそれぞれ2×2MMIカプラ31を伝搬した光を反射する反射面となる。したがって、接合面201a、202aに反射境界22が設けられ、接合面201b、202bに反射境界23が設けられている。その他の構成は、第1の実施形態と同様である。
材料41、42としては、例えば、石英系材料、Si系材料、InP系材料がある。
接着層24を形成する接着剤の材料として、それぞれの材料の中間の屈折率をもつものを使用する。こうすることによって、屈折率が大きく異なる材料同士を結合する場合に、反射境界22および反射境界23で発生する反射戻り光を抑制することができ、光集積デバイスの損失を低減させることができる。
なお、光回路素子6では、光回路素子3のように、2×2MMIカプラ30と2×2MMIカプラ31とが、異なる構造で形成されていてもよい。このとき、異なる構造の接合部に接着層24が形成されることとなる。たとえば、2×2MMIカプラ30を埋め込み導波路構造とし、2×2MMIカプラ31をリブ導波路構造とすることができる。また、2×2MMIカプラ30をリブ導波路構造とし、2×2MMIカプラ31をハイメサ導波路構造としてもよい。また、2×2MMIカプラ30を埋め込み導波路構造とし、2×2MMIカプラ31をハイメサ導波路構造としてもよい。
また、光回路素子5では、光回路素子4のように、2×2MMIカプラ30と2×2MMIカプラ31とが、異なるコア構造で形成されていてもよい。すなわち、2×2MMIカプラ30のコア構造がアクティブ領域で構成され、2×2MMIカプラ31のコア構造がパッシブ領域で構成されていてもよい。このとき、アクティブ領域とパッシブ領域との接合部に接着層24が形成されることとなる。
以上のように、本発明では、2×2MMIカプラ30は、2×2MMIカプラ30の第一の入射ポート(ポート32)から入射した光が2×2MMIカプラ30の第一の出射ポート(ポート34)および第二の出射ポート(ポート35)に等しく強度分配される。反射境界22からの反射戻り光は、2×2MMIカプラ30を2回通過することにより、光結合器の光の干渉性から、2×2MMIカプラ30の第二の入射ポート(ポート33)に結合し、光吸収領域21に導かれ吸収される。結果として、2×2MMIカプラ30の第一の入射ポート(ポート32)を介した反射戻り光は抑制され、半導体レーザの安定動作を可能とする。これにより、各領域に最適な導波路構造、コア構造を配した光集積デバイスを実現できる新規な素子構造を提供することができる。
本発明の活用例として、幹線系、アクセス系に使用される波長多重通信用の中長距離光源が挙げられる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
たとえば、本発明は、以下の態様も適用可能である。
(1)光を伝搬させる光回路素子において、
第1の2×2多モード干渉(MMI)カプラ(以下2×2MMIカプラ)と第2の2×2MMIカプラを有し、
第1の2×2MMIカプラには、1方にポート1およびポート2を有し、反対側にポート3およびポート4を有し、
第2の2×2MMIカプラには、1方にポート5およびポート6を有し、反対側にポート7およびポート8を有し、
ポート3とポート5は向かい合い接続されており、ポート4とポート6は向かい合い接続されており、
ポート2には光吸収領域1が接続されており、ポート7には光吸収領域2が接続されていることを特徴とする。
(2)(1)に記載の光回路素子において、ポート3およびポート4の位置からポート5およびポート6の位置の間の
いずれかの位置において反射境界を有しており、
前記範囲には、各々のポートの付け根の位置も含まれていることを特徴とする光回路素子。
(3)(2)に記載の光回路素子において、第1の2×2MMIカプラと第2の2×2MMIカプラとが異なる材料で形成されていることを特徴とする光回路素子。
(4)(2)に記載の光回路素子において、第1の2×2MMIカプラと第2の2×2MMIカプラとが、異なる構造で形成されていることを特徴とする光回路素子。
(5)(1)〜(4)に記載の光回路素子において、第1の2×2MMIカプラと第2の2×2MMIカプラとが、異なる材料あるいは異なる構造で形成されており、片端に利得領域が接続されており、もう片端に変調器あるいは波長可変フィルタが接続されていることを特徴とする光回路素子。
(6)(1)〜(5)に記載の光回路素子において、第1の2×2MMIカプラのコア構造がアクティブ領域で構成され、第2の2×2MMIカプラのコア構造がパッシブ領域で構成されていることを特徴とする光回路素子。
(7)(1)〜(5)に記載の光回路素子において、第1の2×2MMIカプラが埋め込み導波路構造で構成され、第2の2×2MMIカプラがリブ導波路構造で構成されていることを特徴とする光回路素子。
(8)(1)〜(5)に記載の光回路素子において、第1の2×2MMIカプラがリブ導波路構造で構成され、第2の2×2MMIカプラがハイメサ導波路構造で構成されていることを特徴とする光回路素子。
(9)(1)〜(5)に記載の光回路素子において、第1の2×2MMIカプラが埋め込み導波路構造で構成され、第2の2×2MMIカプラがハイメサ導波路構造で構成されていることを特徴とする光回路素子。
(10)(1)〜(9)に記載の光回路素子において、反射境界は材料の境界の接合部には接着剤を用いていることを特徴とする光回路素子。
なお、当然ながら、上述した実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本発明を満足する範囲で各種に変更することができる。
第1の実施形態の光回路素子を示す平面図である。 第1の実施形態の光回路素子の動作を示す図である。 第2の実施形態の光回路素子を示す平面図である。 第3の実施形態の光回路素子を示す平面図である。 第4の実施形態の光回路素子を示す平面図である。 第5の実施形態の光回路素子を示す平面図である。 第6の実施形態の光回路素子を示す平面図である。 導波路構造を示す模式図である。 関連する導波路構造を示す模式図である。
符号の説明
1 光回路素子
2 光回路素子
3 光回路素子
4 光回路素子
5 光回路素子
6 光回路素子
10 基板
11 クラッド
12 コア
20 光吸収領域
21 光吸収領域
22 反射境界
23 反射境界
24 接着層
30 2×2MMIカプラ
31 2×2MMIカプラ
32 ポート
33 ポート
34 ポート
35 ポート
36 ポート
37 ポート
38 ポート
39 ポート
41 材料
42 材料
51 アクティブ領域
52 パッシブ領域
61 導波路構造
62 導波路構造
71 埋込導波路構造
72 ハイメサ導波路構造
81 利得領域
82 変調器
201 接合面
201a 接合面
201b 接合面
202 接合面
202a 接合面
202b 接合面
301 光導波路
302 光導波路
303 光導波路
304 光導波路
305 光導波路
306 光導波路

Claims (10)

  1. 第一の多モード干渉カプラと、
    前記第一の多モード干渉カプラと対向している第二の多モード干渉カプラと、
    前記第一の多モード干渉カプラと前記第二の多モード干渉カプラとの間をそれぞれ接続している第一、二の光導波路と、
    を有し、
    前記第一の多モード干渉カプラは、
    一側に第一ポートと第二ポートとを有し、
    他側に第三ポートと第四ポートとを有し、
    前記第一ポートに光が入射すると、当該光は前記第三ポートと前記第四ポートとに等しい強度で分配され、かつ、前記第四ポートに分配された当該光は、前記第三ポートに分配された当該光に対して、π/2の位相差が生じ、
    前記第三ポートに光が入射すると、当該光は前記第一ポートと前記第二ポートとに等しい強度で分配され、かつ、前記第二ポートに分配された当該光は、前記第一ポートに分配された当該光に対して、π/2の位相差が生じ、
    前記第四ポートに光が入射すると、当該光は前記第一ポートと前記第二ポートとに等しい強度で分配され、かつ、前記第一ポートに分配された当該光は、前記第二ポートに分配された当該光に対して、π/2の位相差が生じ、
    前記第二の多モード干渉カプラは、
    一側に第五ポートと第六ポートとを有し、
    他側に第七ポートと第八ポートとを有し、
    前記第五ポートに光が入射すると、当該光は前記第七ポートと前記第八ポートとに等しい強度で分配され、かつ、前記第八ポートに分配された当該光は、前記第七ポートに分配された当該光に対して、π/2の位相差が生じ、
    前記第六ポートに光が入射すると、当該光は前記第七ポートと前記第八ポートとに等しい強度で分配され、かつ、前記第七ポートに分配された当該光は、前記第八ポートに分配された当該光に対して、π/2の位相差が生じ、
    前記第八ポートに光が入射すると、当該光は前記第五ポートと前記第六ポートとに等しい強度で分配され、かつ、前記第五ポートに分配された当該光は、前記第六ポートに分配された当該光に対して、π/2の位相差が生じ、
    前記第三ポートと前記第五ポートとが前記第一光導波路を介して接続されており、
    前記第四ポートと前記第六ポートとが前記第二光導波路を介して接続されており、
    前記第二ポートには第一光吸収部が接続されており、
    前記第七ポートには第二光吸収部が接続されており、
    前記第三ポートと前記第五ポートとの間および前記第四ポートと前記第六ポートとの間に、前記第一の多モード干渉カプラまたは前記第二の多モード干渉カプラを伝搬した光を反射する反射境界が介在している光回路素子。
  2. 前記反射境界は、前記第一光導波路および前記第二光導波路介在している請求項1に記載の光回路素子。
  3. 前記第一の多モード干渉カプラと前記第二の多モード干渉カプラとが異なる材料で形成されている請求項1または2に記載の光回路素子。
  4. 前記反射境界が接着剤からなる層に設けられている請求項1乃至3いずれかに記載の光回路素子。
  5. 前記第一の多モード干渉カプラと前記第二の多モード干渉カプラとが異なる構造で形成されている請求項1乃至4いずれかに記載の光回路素子。
  6. 前記第一の多モード干渉カプラが埋め込み導波路構造で構成され、前記第二の多モード干渉カプラがリブ導波路構造で構成されている請求項5に記載の光回路素子。
  7. 前記第一の多モード干渉カプラがリブ導波路構造で構成され、前記第二の多モード干渉カプラがハイメサ導波路構造で構成されている請求項5に記載の光回路素子。
  8. 前記第一の多モード干渉カプラが埋め込み導波路構造で構成され、前記第二の多モード干渉カプラがハイメサ導波路構造で構成されている請求項5に記載の光回路素子。
  9. 前記第一の多モード干渉カプラのコア構造がアクティブ領域で構成され、前記第二の多モード干渉カプラのコア構造がパッシブ領域で構成されている請求項5乃至8いずれかに記載の光回路素子。
  10. 前記第一ポートに利得領域を接続し、前記第八ポートに変調器または波長可変フィルタを接続している請求項5乃至9いずれかに記載の光回路素子。
JP2008263529A 2008-10-10 2008-10-10 光回路素子 Expired - Fee Related JP5228778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263529A JP5228778B2 (ja) 2008-10-10 2008-10-10 光回路素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263529A JP5228778B2 (ja) 2008-10-10 2008-10-10 光回路素子

Publications (2)

Publication Number Publication Date
JP2010091900A JP2010091900A (ja) 2010-04-22
JP5228778B2 true JP5228778B2 (ja) 2013-07-03

Family

ID=42254663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263529A Expired - Fee Related JP5228778B2 (ja) 2008-10-10 2008-10-10 光回路素子

Country Status (1)

Country Link
JP (1) JP5228778B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133025B2 (ja) * 2012-08-10 2017-05-24 古河電気工業株式会社 光集積素子の製造方法
JP6232751B2 (ja) * 2013-05-31 2017-11-22 富士通オプティカルコンポーネンツ株式会社 光変調器
JP6239989B2 (ja) * 2014-01-17 2017-11-29 Nttエレクトロニクス株式会社 光路変換構造体、発光モジュール及び受光モジュール
JP6391451B2 (ja) 2014-12-03 2018-09-19 富士通株式会社 光機能素子、光受信装置及び光送信装置
JP2018017808A (ja) * 2016-07-26 2018-02-01 日本電気株式会社 光導波路デバイス、および、光回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130766A (ja) * 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
JP2004158745A (ja) * 2002-11-08 2004-06-03 Fujitsu Ltd 光干渉器
JP4505470B2 (ja) * 2005-01-20 2010-07-21 富士通株式会社 光導波路デバイス及び半導体デバイス
JP5223092B2 (ja) * 2006-03-20 2013-06-26 国立大学法人東京工業大学 偏波無依存光アイソレータ
JP4948185B2 (ja) * 2007-01-19 2012-06-06 古河電気工業株式会社 平面光波回路
US8433164B2 (en) * 2008-10-10 2013-04-30 Nec Corporation Optical joint

Also Published As

Publication number Publication date
JP2010091900A (ja) 2010-04-22

Similar Documents

Publication Publication Date Title
US10826267B2 (en) Surface coupled systems
US9620931B2 (en) Optical device, optical transmission device, optical reception device, hybrid laser and optical transmission apparatus
US8649639B2 (en) Method and system for waveguide mode filters
US8380032B2 (en) Semiconductor optical amplifier module
US9025241B2 (en) Gain medium providing laser and amplifier functionality to optical device
US10302859B1 (en) Single edge coupling of chips with integrated waveguides
US11131806B2 (en) System comprising an integrated waveguide-coupled optically active device and method of formation
US10151877B2 (en) Optical circuit module, optical transceiver using the same, and semiconductor photonic device
CN113777708B (zh) 模变换器
US6282345B1 (en) Device for coupling waveguides to one another
WO2010016295A1 (ja) 波長可変光送信機
JP5665728B2 (ja) 光デバイス
JP5228778B2 (ja) 光回路素子
US8131122B2 (en) Monolithically integrated multi-directional transceiver
JP2012098472A (ja) 光変調器
JP6610834B2 (ja) 波長可変レーザ装置
WO2020246042A1 (ja) 表面出射型光回路及びそれを適用した表面出射型光源
JP5440506B2 (ja) 光ジョイント
JP2016018894A (ja) 集積半導体光素子
JP2011258785A (ja) 光導波路およびそれを用いた光半導体装置
Romero-García et al. Misalignment tolerant couplers for hybrid integration of semiconductor lasers with silicon photonics parallel transmitters
JP2013251424A (ja) 光集積素子
JP5901509B2 (ja) 光分波器
WO2024172750A1 (en) Reflector for use in laser architecture
JP2023141334A (ja) 光デバイス、基板型光導波路素子及び光通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees