JP5227126B2 - Roll bearing structure in hot dipping bath and manufacturing method thereof - Google Patents
Roll bearing structure in hot dipping bath and manufacturing method thereof Download PDFInfo
- Publication number
- JP5227126B2 JP5227126B2 JP2008244510A JP2008244510A JP5227126B2 JP 5227126 B2 JP5227126 B2 JP 5227126B2 JP 2008244510 A JP2008244510 A JP 2008244510A JP 2008244510 A JP2008244510 A JP 2008244510A JP 5227126 B2 JP5227126 B2 JP 5227126B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- roll
- bearing structure
- layer
- hot dipping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007598 dipping method Methods 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000007747 plating Methods 0.000 claims description 59
- 230000003628 erosive effect Effects 0.000 claims description 51
- 238000012986 modification Methods 0.000 claims description 43
- 230000004048 modification Effects 0.000 claims description 43
- 238000003466 welding Methods 0.000 claims description 42
- 239000000956 alloy Substances 0.000 claims description 41
- 229910045601 alloy Inorganic materials 0.000 claims description 41
- 229910018487 Ni—Cr Inorganic materials 0.000 claims description 37
- 239000000919 ceramic Substances 0.000 claims description 28
- 229910052804 chromium Inorganic materials 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 230000007797 corrosion Effects 0.000 claims description 10
- 238000005260 corrosion Methods 0.000 claims description 10
- 238000005299 abrasion Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- 239000011812 mixed powder Substances 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 1
- 238000002407 reforming Methods 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 41
- 239000000463 material Substances 0.000 description 34
- 238000012360 testing method Methods 0.000 description 22
- 239000011651 chromium Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 16
- 239000010959 steel Substances 0.000 description 16
- 238000007654 immersion Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229910020994 Sn-Zn Inorganic materials 0.000 description 11
- 229910009069 Sn—Zn Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020810 Sn-Co Inorganic materials 0.000 description 1
- 229910018757 Sn—Co Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、溶融Snを含むめっき浴(例えば、溶融Sn−Zn又は溶融Snのめっき浴)中に配置されるロールの軸受け構造及びその製造方法に関する。 The present invention relates to a bearing structure for a roll disposed in a plating bath containing molten Sn (for example, a molten Sn-Zn or molten Sn plating bath) and a method for manufacturing the same.
従来、例えば、家電部品や自動車部品に使用する鋼板に、溶融金属を連続的にめっき処理する設備として、溶融金属めっき設備がある。
この溶融金属めっき設備は、溶融金属が貯留されためっき槽を有しており、このめっき槽内の溶融金属のめっき浴中には、固定アームに回転自在に取付けられたロールが浸漬されている。これにより、鋼板を、ロールを介してめっき浴中に連続的に投入すると共に排出して、鋼板の表面にめっきを施している。
このような、鋼板のめっき処理においては、ロールが高速回転するため、ロールと固定アームとの摺動面に、例えば、Coベースの耐摩耗層を形成し、その耐摩耗性を高めていた(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, for example, there is a molten metal plating facility as equipment for continuously plating molten metal on steel plates used for home appliance parts and automobile parts.
This molten metal plating facility has a plating tank in which molten metal is stored, and a roll mounted rotatably on a fixed arm is immersed in the molten metal plating bath in the plating tank. . Thereby, the steel plate is continuously put into the plating bath through the roll and discharged, and the surface of the steel plate is plated.
In such a steel plate plating process, since the roll rotates at a high speed, for example, a Co-based wear-resistant layer is formed on the sliding surface between the roll and the fixed arm to enhance its wear resistance ( For example, see Patent Document 1).
しかしながら、Coベースの耐摩耗層は、例えばめっき浴がAlやZnの場合、めっき浴に侵食されにくい(耐食性を有している)が、Sn―Zn又はSnのようなSn系(Snを85質量%以上)の場合には、めっき浴に侵食され易かった。このことは、Sn−Co系の状態図からも明らかである。具体的には、温度235℃において、Snに対するCoの溶解度は0.5質量%程度である。
このため、侵食された部分の硬度が低下して、耐摩耗性が低下していた。その結果、部品の交換頻度が増加するため不経済となり、また交換時にめっき処理を中止しなければならず、鋼板の生産性が低下する問題があった。
また、Coベースの耐摩耗層を溶射により形成した場合、形成した耐摩耗層には多くの気孔が存在するため、その内部にめっき浴が侵入して侵食され、耐摩耗性が低下する問題もあった。
However, the Co-based wear-resistant layer is not easily eroded by the plating bath (having corrosion resistance), for example, when the plating bath is Al or Zn, but it is Sn-based such as Sn—Zn or Sn (85 Sn). In the case of (mass% or more), it was easily eroded by the plating bath. This is apparent from the Sn-Co phase diagram. Specifically, at a temperature of 235 ° C., the solubility of Co in Sn is about 0.5% by mass.
For this reason, the hardness of the eroded part was lowered and the wear resistance was lowered. As a result, the frequency of parts replacement increases, which is uneconomical, and the plating process must be stopped at the time of replacement, resulting in a problem of reduced productivity of the steel sheet.
In addition, when a Co-based wear-resistant layer is formed by thermal spraying, there are many pores in the formed wear-resistant layer. there were.
本発明はかかる事情に鑑みてなされたもので、溶融Snによる侵食を抑制でき、鋼板の生産性を高め、経済的にめっき処理を実施できる溶融めっき浴中のロール軸受け構造及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a roll bearing structure in a hot dipping bath that can suppress erosion due to molten Sn, increase the productivity of a steel sheet, and can economically carry out a plating process, and a method for manufacturing the same. The purpose is to do.
前記目的に沿う第1の発明に係る溶融めっき浴中のロール軸受け構造は、固定アームに回転自在に取付けられ、Snを85質量%以上含む溶融Snのめっき浴中に配置されるロールの軸受け構造において、
前記ロールの回転軸には軸受け部が設けられ、しかも前記固定アームの先側には前記軸受け部を回転自在に支持するチョック部が設けられており、前記軸受け部及び前記チョック部のいずれか一方又は双方の表面には、
1)Co:0又は0を超え5質量%以下、Ni:30質量%以上90質量%以下、Cr:10質量%以上60質量%以下、Mo:0又は0を超え20質量%以下を有し、しかも前記Niと前記Crの合計含有量が60質量%以上のNi−Cr合金からなる耐侵食層と、
2)前記Ni−Cr合金と同一組成又は異なる組成のNi−Cr合金と、炭化物及び硼化物のいずれか1種又は2種で構成されているセラミックスを10質量%以上90質量%以下含む耐摩耗層を、順次肉盛溶接した表面改質層が形成されている。
なお、前記した肉盛溶接には、セラミックスが溶ける場合の他、セラミックスが溶けないで合金層内に分散している場合も含む。
The roll bearing structure in the hot dipping bath according to the first aspect of the present invention, which is rotatably attached to the fixed arm, is arranged in a hot dipped Sn plating bath containing 85 mass% or more of Sn. In
A bearing portion is provided on the rotating shaft of the roll, and a chock portion that rotatably supports the bearing portion is provided on the front side of the fixed arm, and one of the bearing portion and the chock portion is provided. Or on both surfaces,
1) Co: 0 or more than 0 to 5% by mass, Ni: 30% to 90% by mass, Cr: 10% to 60% by mass, Mo: 0 or more than 0 to 20% by mass And an erosion-resistant layer made of a Ni-Cr alloy having a total content of Ni and Cr of 60% by mass or more,
2) Abrasion resistance containing 10% by mass or more and 90% by mass or less of a ceramic composed of a Ni—Cr alloy having the same composition as or different from the Ni—Cr alloy and one or two of carbides and borides. A surface modification layer is formed by successively overlay welding the layers.
The above-described overlay welding includes not only the case where the ceramic is melted, but also the case where the ceramic is not dissolved but is dispersed in the alloy layer.
第1の発明に係る溶融めっき浴中のロール軸受け構造において、前記耐侵食層を構成する前記Ni−Cr合金には、更にSi:0.01質量%以上1.5質量%以下、B:0.001質量%以上1.0質量%以下が含まれることが好ましい。
第1の発明に係る溶融めっき浴中のロール軸受け構造において、前記表面改質層は、プラズマアーク溶接又はレーザ溶接により形成されることが好ましい。
In the roll bearing structure in the hot dipping bath according to the first invention, the Ni—Cr alloy constituting the erosion resistant layer further includes Si: 0.01% by mass to 1.5% by mass, and B: 0. It is preferable that 0.001 mass% or more and 1.0 mass% or less are included.
In the roll bearing structure in the hot dipping bath according to the first invention, the surface modified layer is preferably formed by plasma arc welding or laser welding.
第1の発明に係る溶融めっき浴中のロール軸受け構造において、前記表面改質層の厚みは、1mm以上5mm以下であることが好ましい。
第1の発明に係る溶融めっき浴中のロール軸受け構造において、前記軸受け部の表面に前記表面改質層を形成する場合、該表面改質層には螺旋状の溝加工が施されていることが好ましい。
In the roll bearing structure in the hot dipping bath according to the first invention, the thickness of the surface modified layer is preferably 1 mm or more and 5 mm or less.
In the roll bearing structure in the hot dipping bath according to the first invention, when the surface modified layer is formed on the surface of the bearing portion, the surface modified layer is subjected to a spiral groove processing. Is preferred.
前記目的に沿う第2の発明に係る溶融めっき浴中のロール軸受け構造の製造方法は、固定アームに回転自在に取付けられ、Snを85質量%以上含む溶融Snのめっき浴中に配置されるロールの軸受け構造の製造方法において、
前記ロールの回転軸には軸受け部が設けられ、しかも前記固定アームの先側には前記軸受け部を回転自在に支持するチョック部が設けられており、前記軸受け部及び前記チョック部のいずれか一方又は双方の表面に、
Co:0又は0を超え5質量%以下、Ni:30質量%以上90質量%以下、Cr:10質量%以上60質量%以下、Mo:0又は0を超え20質量%以下を有し、しかも前記Niと前記Crの合計含有量が60質量%以上のNi−Cr合金を肉盛溶接して耐侵食層を形成した後、
炭化物及び硼化物のいずれか1種又は2種で構成されているセラミックスが10質量%以上添加された前記Ni−Cr合金と同一組成又は異なる組成のNi−Cr合金の混合粉末を、又は前記セラミックスの粉末のみを肉盛溶接して耐摩耗層を形成し、表面改質層を形成する。
A roll bearing structure manufacturing method in a hot dipping bath according to the second aspect of the present invention that meets the above-described object is a roll that is rotatably mounted on a fixed arm and disposed in a hot Sn plating bath containing 85 mass% or more of Sn. In the manufacturing method of the bearing structure of
A bearing portion is provided on the rotating shaft of the roll, and a chock portion that rotatably supports the bearing portion is provided on the front side of the fixed arm, and one of the bearing portion and the chock portion is provided. Or on both surfaces,
Co: 0 or more than 0 to 5% by mass, Ni: 30% to 90% by mass, Cr: 10% to 60% by mass, Mo: 0 or more than 0 to 20% by mass, and After forming a corrosion resistant layer by overlay welding a Ni-Cr alloy having a total content of Ni and Cr of 60 mass% or more,
A mixed powder of Ni—Cr alloy having the same composition as or different from the Ni—Cr alloy to which 10% by mass or more of a ceramic composed of any one or two of carbide and boride is added, or the ceramic The wear-resistant layer is formed by overlay welding only the above powder, and the surface modified layer is formed.
第2の発明に係る溶融めっき浴中のロール軸受け構造の製造方法において、前記耐侵食層を構成する前記Ni−Cr合金には、更にSi:0.01質量%以上1.5質量%以下、B:0.001質量%以上1.0質量%以下が含まれることが好ましい。 In the manufacturing method of the roll bearing structure in the hot dipping bath according to the second invention, the Ni-Cr alloy constituting the erosion-resistant layer further includes Si: 0.01 mass% or more and 1.5 mass% or less, B: It is preferable that 0.001 to 1.0 mass% is contained.
請求項1〜5記載の溶融めっき浴中のロール軸受け構造、及び請求項6、7記載の溶融めっき浴中のロール軸受け構造の製造方法は、軸受け部及びチョック部のいずれか一方又は双方の表面に形成される表面改質層が、Co:0又は0を超え5質量%以下、Ni:30質量%以上90質量%以下、Cr:10質量%以上60質量%以下、Mo:0又は0を超え20質量%以下を有し、しかもNiとCrの合計含有量が60質量%以上のNi−Cr合金を有しているので、表面改質層がめっき浴中の溶融Snに侵食されにくい。
例えば、めっき浴がAlやZnの場合、Coを主成分とする表面改質層が適している。この浴成分の場合、浴温が460〜700℃と高いため、Niを主成分とする表面改質層を形成すると、めっき浴中にNiが拡散して侵食され易いからである。
しかし、Snを85質量%以上含む溶融Snのめっき浴の場合、めっき浴の浴温が低いため(例えば、290℃程度)、Niを主成分とする表面改質層を使用しても、めっき浴中へNiが拡散しずらくなる。
また、このようなめっき浴の温度では、Niに比較してCoの方が、めっき浴への拡散が大きい。具体的には、状態図の温度235℃において、Snに対するCoの溶解度が0.5質量%程度であるのに対し、Snに対するNiの溶解度がほとんど0質量%である。
従って、表面改質層がNi−Cr合金を有することで、めっき浴中の溶融Snと反応することを抑制、更には防止できるので、その硬度低下を抑制できる。
更に、この表面改質層には、Crや必要に応じてMoが添加されるため、Ni系合金が形成され、めっき浴へのNiの拡散を更に抑制できる。
また、Ni−Cr合金とセラミックスとで構成される耐摩耗層を、Ni−Cr合金からなる耐侵食層を介して形成するので、表面改質層を安定に形成できる。これは、耐摩耗層が、軸受け部又はチョック部の溶接面を、例えば、500℃以上に予熱しなければ肉盛溶接できないため、溶接面が酸化し割れが発生する恐れがあるのに対し、耐侵食層は、溶接面を、例えば、200℃以下(常温でも可)に予熱すれば肉盛溶接できるからである。なお、肉盛溶接された耐侵食層は、500℃以上に予熱しても割れが発生しないため、耐摩耗層を、この耐侵食層を介して溶接面に肉盛溶接でき、溶接面に、表面改質層を安定に形成できる。
そして、表面改質層は、肉盛溶接により形成されるので、表面改質層内への気孔の発生を抑制、更には防止して、めっき浴の侵入による表面改質層の侵食を抑制でき、耐摩耗性の低下を抑制できる。
これにより、鋼板の生産性を高め、経済的にめっき処理を実施できる。
The roll bearing structure in the hot dipping bath according to claim 1 and the manufacturing method of the roll bearing structure in the hot dipping bath according to claims 6 and 7 are the surfaces of either or both of the bearing part and the chock part. The surface modification layer formed on the surface is Co: 0 or more than 0 and 5 mass% or less, Ni: 30 mass% or more and 90 mass% or less, Cr: 10 mass% or more and 60 mass% or less, Mo: 0 or 0 Since the Ni—Cr alloy has a content exceeding 20% by mass and the total content of Ni and Cr is 60% by mass or more, the surface modified layer is less likely to be eroded by the molten Sn in the plating bath.
For example, when the plating bath is Al or Zn, a surface modified layer containing Co as a main component is suitable. In the case of this bath component, since the bath temperature is as high as 460 to 700 ° C., when a surface modified layer mainly composed of Ni is formed, Ni is easily diffused and eroded in the plating bath.
However, in the case of a molten Sn plating bath containing 85 mass% or more of Sn, since the bath temperature of the plating bath is low (for example, about 290 ° C.), even if a surface modified layer mainly composed of Ni is used, plating is performed. Ni is difficult to diffuse into the bath.
Further, at such a plating bath temperature, Co diffuses more into the plating bath than Ni. Specifically, at a temperature of 235 ° C. in the phase diagram, the solubility of Co in Sn is about 0.5 mass%, whereas the solubility of Ni in Sn is almost 0 mass%.
Therefore, since the surface modification layer has the Ni—Cr alloy, it can be suppressed and further prevented from reacting with molten Sn in the plating bath.
Furthermore, since Cr and Mo are added to the surface modification layer as necessary, a Ni-based alloy is formed, and the diffusion of Ni into the plating bath can be further suppressed.
In addition, since the wear resistant layer composed of the Ni—Cr alloy and the ceramic is formed via the erosion resistant layer made of the Ni—Cr alloy, the surface modified layer can be formed stably. This is because the wear-resistant layer cannot be welded unless the welded surface of the bearing or chock part is preheated to, for example, 500 ° C. or more, whereas the welded surface may be oxidized and cracked. This is because the erosion-resistant layer can be subjected to overlay welding if the welding surface is preheated to, for example, 200 ° C. or lower (or even at room temperature). In addition, since the erosion-resistant layer subjected to overlay welding does not crack even when preheated to 500 ° C. or higher, the wear-resistant layer can be overlay welded to the weld surface via this erosion-resistant layer, The surface modification layer can be formed stably.
And since the surface modification layer is formed by overlay welding, the generation of pores in the surface modification layer can be suppressed and further prevented, and the erosion of the surface modification layer due to the penetration of the plating bath can be suppressed. In addition, a decrease in wear resistance can be suppressed.
Thereby, productivity of a steel plate can be improved and a plating process can be implemented economically.
請求項3記載の溶融めっき浴中のロール軸受け構造は、表面改質層が、プラズマアーク溶接又はレーザ溶接により形成されるので、既存の方法を使用でき、表面改質層の形成が容易である。
請求項4記載の溶融めっき浴中のロール軸受け構造は、表面改質層の厚みが1mm以上5mm以下であるので、軸受け部又はチョック部への侵食を防止できる。
請求項5記載の溶融めっき浴中のロール軸受け構造は、軸受け部の表面に表面改質層を形成する場合、表面改質層には螺旋状の溝加工が施されているので、ロールが回転することで、軸受け部とチョック部との間からめっき液を排除でき、めっき液による損傷を防止できる。
In the roll bearing structure in the hot dipping bath according to claim 3, since the surface modification layer is formed by plasma arc welding or laser welding, an existing method can be used and the surface modification layer can be easily formed. .
In the roll bearing structure in the hot dipping bath according to claim 4, since the thickness of the surface modification layer is 1 mm or more and 5 mm or less, erosion to the bearing portion or the chock portion can be prevented.
In the roll bearing structure in the hot dipping bath according to claim 5, when the surface modification layer is formed on the surface of the bearing part, the roll is rotated because the surface modification layer is provided with a spiral groove processing. By doing so, the plating solution can be eliminated from between the bearing portion and the chock portion, and damage due to the plating solution can be prevented.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る溶融めっき浴中のロール軸受け構造を適用しためっき装置の説明図、図2(A)、(B)はそれぞれ表面改質層が形成された軸受け部の正断面図、チョック部の正断面図、図3は変形例に係る表面改質層が形成された軸受け部の正面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a plating apparatus to which a roll bearing structure in a hot dipping bath according to an embodiment of the present invention is applied, and FIGS. 2 (A) and 2 (B) each have a surface modification layer formed. FIG. 3 is a front view of the bearing portion in which the surface modification layer according to the modification is formed.
図1、図2(A)、(B)に示すように、本発明の一実施の形態に係る溶融めっき浴中のロール軸受け構造(以下、単にロール軸受け構造ともいう)10は、固定アーム11に回転自在に取付けられ、めっき槽12内のSn(すず)を85質量%以上含む溶融Snのめっき浴(例えば、溶融Sn−Zn又は溶融Snのめっき浴)13中に配置されるシンクロール(ロールの一例)14の軸受け構造であり、シンクロール14の軸受け部15と固定アーム11の先側のチョック部16の摺動面に、それぞれ表面改質層17、18が形成されている。なお、図1中の番号19は、めっき処理がなされる帯状の鋼板であり、番号20、21は、鋼板19をガイドするガイドロールである。以下、詳しく説明する。 As shown in FIGS. 1, 2A, and 2B, a roll bearing structure (hereinafter also simply referred to as a roll bearing structure) 10 in a hot dipping bath according to an embodiment of the present invention includes a fixed arm 11. A sink roll (for example, a molten Sn plating bath (for example, molten Sn—Zn or molten Sn plating bath) 13 containing 85 mass% or more of Sn (tin) in the plating tank 12. An example of a roll) is a bearing structure of 14, and surface modification layers 17 and 18 are formed on the sliding surfaces of the bearing portion 15 of the sink roll 14 and the chock portion 16 on the front side of the fixed arm 11, respectively. In addition, the number 19 in FIG. 1 is a strip-shaped steel plate to be plated, and the numbers 20 and 21 are guide rolls for guiding the steel plate 19. This will be described in detail below.
図1、図2(A)に示すように、シンクロール14はその幅方向(軸方向)両側に突出する回転軸22を有しており、この回転軸22には、回転軸22の外周に取付け取外し可能なキャップ状の軸受け部15が取付けられている。この軸受け部15は、例えば、鋼系材料(例えば、普通鋼:SS400)で構成されている。なお、軸受け部は、筒状でもよい。
また、図1、図2(B)に示すように、固定アーム11は、シンクロール14を幅方向両側から挟み込んで支持するものであり、その先側には、軸受け部15を回転自在に支持する円筒状のチョック部16が取付けられている。このチョック部16は、例えば、鋼系材料(例えば、普通鋼:SS400)で構成されている。
この軸受け部15の外径はチョック部16の内径より小さくなって、軸受け部15の外側表面がチョック部16の内側表面に部分的に接触するように、軸受け部15とチョック部16との間に隙間が形成されている。
As shown in FIGS. 1 and 2A, the sink roll 14 has a rotating shaft 22 protruding on both sides in the width direction (axial direction). A cap-shaped bearing portion 15 that can be attached and detached is attached. The bearing portion 15 is made of, for example, a steel-based material (for example, ordinary steel: SS400). The bearing portion may be cylindrical.
As shown in FIGS. 1 and 2B, the fixed arm 11 sandwiches and supports the sink roll 14 from both sides in the width direction, and the bearing portion 15 is rotatably supported on the front side. A cylindrical chock portion 16 is attached. The chock portion 16 is made of, for example, a steel material (for example, ordinary steel: SS400).
The outer diameter of the bearing portion 15 is smaller than the inner diameter of the chock portion 16 so that the outer surface of the bearing portion 15 partially contacts the inner surface of the chock portion 16. A gap is formed in
この軸受け部15の外側表面と、チョック部16の内側表面には、それぞれ表面改質層17、18が形成されている。
表面改質層17、18は、Ni−Cr合金からなる耐侵食層と、このNi−Cr合金と同一組成又は異なる組成のNi−Cr合金及びセラミックスで構成される耐摩耗層が、順次肉盛溶接されて形成されたものである。
この耐侵食層及び耐摩耗層を構成するNi−Cr合金は、Co(コバルト)の含有量を低減させているので、前述したように、めっき浴中の溶融Snに侵食されにくい。なお、Ni−Cr合金は、Coが0又は0を超え5質量%以下の範囲であれば、本発明の権利範囲に含まれる。特に、材料として、インコネルを使用する場合は、Coを含む場合もあり、この場合は5質量%以下(より好ましくは2.5質量%以下、実質的には1質量%以下)である。
Surface modified layers 17 and 18 are formed on the outer surface of the bearing portion 15 and the inner surface of the chock portion 16, respectively.
The surface modification layers 17 and 18 are successively built up by an erosion resistant layer made of a Ni—Cr alloy and a wear resistant layer made of Ni—Cr alloy and ceramics having the same composition as or different from this Ni—Cr alloy. It is formed by welding.
Since the Ni—Cr alloy constituting the erosion-resistant layer and the wear-resistant layer has a reduced Co (cobalt) content, it is difficult to be eroded by the molten Sn in the plating bath as described above. The Ni—Cr alloy is included in the scope of the present invention as long as Co is in the range of 0 or more than 0 and 5% by mass or less. In particular, when Inconel is used as a material, it may contain Co. In this case, it is 5% by mass or less (more preferably 2.5% by mass or less, substantially 1% by mass or less).
この耐侵食層及び耐摩耗層を構成するNi−Cr合金は、Ni(ニッケル):30質量%以上90質量%以下、Cr(クロム):10質量%以上60質量%以下、Mo(モリブデン):0又は0を超え20質量%以下を有し、しかもNiとCrの合計含有量が60質量%以上である。なお、ここでは、更に、耐侵食層において、Si(ケイ素):0.01質量%以上1.5質量%以下、B(ホウ素):0.001質量%以上1.0質量%以下も添加されているが、耐侵食層において、SiとBは添加しなくてもよい。
なお、上記した耐侵食層及び耐摩耗層を構成するNi−Cr合金の化学成分は、後述する実施例の結果に基づき、規定したものであるが、各化学成分の意味合いを以下に示す。
The Ni—Cr alloy constituting the erosion resistant layer and the wear resistant layer is Ni (nickel): 30% by mass to 90% by mass, Cr (chromium): 10% by mass to 60% by mass, Mo (molybdenum): 0 or more than 0 and 20% by mass or less, and the total content of Ni and Cr is 60% by mass or more. Here, Si (silicon): 0.01% by mass to 1.5% by mass and B (boron): 0.001% by mass to 1.0% by mass are further added in the erosion resistant layer. However, Si and B may not be added in the erosion resistant layer.
In addition, although the chemical component of the Ni-Cr alloy which comprises the above-mentioned erosion-resistant layer and abrasion-resistant layer is prescribed | regulated based on the result of the Example mentioned later, the meaning of each chemical component is shown below.
Niは、表面改質層の肉盛溶接性に重大な影響を及ぼす成分であると共に、表面改質層の溶融Sn−Znに対する拡散速度を低減する効果を顕著にするため、耐食性に対しても大きな効果がある。
ここで、Niが30質量%未満の場合、Ni量が少な過ぎて、表面改質層の靱性及び耐食性が大幅に低下し、肉盛溶接性が著しく劣化する。一方、90質量%を超える場合、Ni量が多過ぎて、肉盛溶接でNi−Cr合金の酸化が激しくなると共に、溶融Sn−Znに対する拡散速度を低減する効果が認められない(好ましくは、下限を34質量%、上限を82質量%とする)。
Ni is a component that has a significant effect on the build-up weldability of the surface-modified layer, and also has a remarkable effect of reducing the diffusion rate of the surface-modified layer with respect to molten Sn—Zn. There is a big effect.
Here, when Ni is less than 30% by mass, the amount of Ni is too small, and the toughness and corrosion resistance of the surface modified layer are significantly lowered, and the build-up weldability is remarkably deteriorated. On the other hand, when it exceeds 90% by mass, the amount of Ni is too large, and the oxidation of the Ni—Cr alloy becomes intense by overlay welding, and the effect of reducing the diffusion rate with respect to molten Sn—Zn is not recognized (preferably, The lower limit is 34% by mass and the upper limit is 82% by mass).
Crは、Niと同様に、表面改質層の耐食性に、重大な影響を及ぼす成分である。
ここで、Crが10質量%未満の場合、Cr量が少な過ぎて、Ni−Cr合金の溶融Sn−Znに対する拡散速度を低減する効果が認められない。一方、60質量%を超える場合、Cr量が多過ぎて、表面改質層の靱性が大幅に低下し、肉盛溶接性が著しく劣化する(好ましくは、下限を13質量%、上限を58質量%)。
なお、上記したNiとCrの相互作用を得るためには、NiとCrの合計量が60質量%以上(好ましくは、67質量%以上、更には77質量%以上)必要である。
Cr, like Ni, is a component that has a significant effect on the corrosion resistance of the surface modified layer.
Here, when Cr is less than 10% by mass, the amount of Cr is too small, and the effect of reducing the diffusion rate of Ni—Cr alloy into molten Sn—Zn is not recognized. On the other hand, when it exceeds 60% by mass, the amount of Cr is too large, the toughness of the surface-modified layer is significantly lowered, and the build-up weldability is significantly deteriorated (preferably, the lower limit is 13% by mass, and the upper limit is 58% by mass. %).
In order to obtain the above-described interaction between Ni and Cr, the total amount of Ni and Cr needs to be 60% by mass or more (preferably 67% by mass or more, and further 77% by mass or more).
Moは、元来、硬質のM2C型共晶炭化物を形成し、耐摩耗性を向上させる成分であるが、表面改質層の溶融Sn−Znに対する拡散速度を低減する効果がある。
ここで、Moは0質量%でもよい。一方、20質量%を超える場合、Mo量が多過ぎて、表面改質層の靱性が大幅に低下し、肉盛溶接性が著しく劣化する(好ましくは、下限を3質量%、上限を16質量%)。
Mo is a component that originally forms a hard M 2 C type eutectic carbide and improves wear resistance, but has an effect of reducing the diffusion rate of the surface-modified layer with respect to molten Sn—Zn.
Here, Mo may be 0% by mass. On the other hand, when the amount exceeds 20% by mass, the amount of Mo is too large, the toughness of the surface modified layer is significantly reduced, and the build-up weldability is significantly deteriorated (preferably, the lower limit is 3% by mass and the upper limit is 16% by mass. %).
SiとBは、肉盛溶接の初期に合金層を形成し、表面改質層の金属組織を安定化させ、表面改質層の耐食性を向上させる効果がある。
ここで、Siが0.01質量%未満の場合、Si量が少な過ぎて、耐食性を向上させる効果が乏しくなる。一方、1.5質量%を超える場合、Si量が多過ぎて、肉盛溶接金属の融点が低下し、高温での耐食性が劣化する。
また、Bが0.001質量%未満の場合、B量が少な過ぎて、耐食性を向上させる効果が乏しくなる。一方、1.0質量%を超える場合、B量が多過ぎて、肉盛溶接金属の融点が低下し、高温での耐食性が劣化する。
Si and B have an effect of forming an alloy layer at the initial stage of overlay welding, stabilizing the metal structure of the surface modified layer, and improving the corrosion resistance of the surface modified layer.
Here, when Si is less than 0.01% by mass, the amount of Si is too small, and the effect of improving the corrosion resistance becomes poor. On the other hand, when it exceeds 1.5 mass%, there is too much Si amount, melting | fusing point of overlay welding metal falls, and corrosion resistance in high temperature deteriorates.
Moreover, when B is less than 0.001 mass%, the amount of B is too small, and the effect of improving the corrosion resistance becomes poor. On the other hand, when it exceeds 1.0 mass%, there is too much B amount, melting | fusing point of the overlay welding metal falls, and corrosion resistance at high temperature deteriorates.
また、耐摩耗層に使用するセラミックスは、粒状(例えば、粒径が100μm以下程度)となった炭化物及び硼化物のいずれか1種又は2種を使用できる。この炭化物は、例えば、WC、NbC、Cr3C2、及びTiCのいずれか1種又は2種以上、硼化物は、例えば、WB及びMoBのいずれか1種又は2種を使用できる。
この耐摩耗層に含まれるセラミックス量は、耐摩耗層の全体量の10質量%以上90質量%以下である。ここで、セラミックス量が、耐摩耗層の全体量の10質量%未満の場合、セラミックス量が少な過ぎて耐摩耗性を十分に確保できない。
なお、耐摩耗層中に含まれるセラミックス量が多くなれば、耐摩耗層が剥がれ落ち易くなることから、耐摩耗層に含まれるセラミックス量を、耐摩耗層の全体量の10質量%以上90質量%以下としたが、下限を20質量%、30質量%とし、上限を80質量%とすることが好ましい。
Moreover, the ceramic used for an abrasion-resistant layer can use either 1 type or 2 types of the carbide | carbonized_material and boride which became granular (for example, a particle size is about 100 micrometers or less). For example, one or more of WC, NbC, Cr 3 C 2 , and TiC can be used as the carbide, and any one or two of WB and MoB can be used as the boride.
The amount of ceramic contained in the wear resistant layer is 10% by mass or more and 90% by mass or less of the total amount of the wear resistant layer. Here, when the amount of ceramics is less than 10% by mass of the total amount of the wear-resistant layer, the amount of ceramics is too small to ensure sufficient wear resistance.
In addition, if the amount of ceramics contained in the wear-resistant layer increases, the wear-resistant layer is easily peeled off. Therefore, the amount of ceramic contained in the wear-resistant layer is 10% by mass or more and 90% by mass of the total amount of the wear-resistant layer. The lower limit is preferably 20% by mass and 30% by mass, and the upper limit is preferably 80% by mass.
この表面改質層17、18の形成に際しては、まず、軸受け部15とチョック部16の摺動側表面に、前記したNi−Cr合金からなる粉末を供給して、プラズマアーク(PTA:Plasma Transfer Arc)溶接により肉盛溶接し、耐侵食層を形成する。
この肉盛溶接は、軸受け部15とチョック部16の表面を、それぞれ200℃以下の温度範囲で予熱した後に行う。なお、軸受け部とチョック部の表面を予熱することなく、常温のまま肉盛溶接してもよい。
これは、軸受け部15とチョック部16が、それぞれ鋼系の材料で構成されているため、上記した温度を超えると、酸化して割れが発生する恐れがあることに起因する。
In forming the surface modification layers 17 and 18, first, the powder made of the Ni—Cr alloy is supplied to the sliding side surfaces of the bearing portion 15 and the chock portion 16, and a plasma arc (PTA: Plasma Transfer) is then supplied. Arc) Overlay welding is performed by welding to form an erosion resistant layer.
This build-up welding is performed after preheating the surfaces of the bearing portion 15 and the chock portion 16 in a temperature range of 200 ° C. or less. Note that overlay welding may be performed at room temperature without preheating the surfaces of the bearing portion and the chock portion.
This is because the bearing portion 15 and the chock portion 16 are each made of a steel-based material, and therefore, if the temperature exceeds the above-described temperature, there is a risk of oxidation and cracking.
このように、耐侵食層を形成した後、その表面に、前記したNi−Cr合金に10質量%以上のセラミックスが添加された混合粉末を供給して、又はセラミックスの粉末のみを供給して、プラズマアーク溶接により肉盛溶接し、耐摩耗層を形成する。なお、このように、セラミックスの粉末のみを肉盛溶接する場合は、この熱で耐侵食層を構成するNi−Cr合金がセラミックスの粒子間に侵入するため、このNi−Cr合金とセラミックスで、耐摩耗層が形成される。このため、形成された耐摩耗層中のセラミックス量は、90質量%以下となる。
この肉盛溶接は、耐侵食層の表面を、500℃以上(上限は800℃程度)に予熱した後に行うので、セラミックスを含む耐摩耗層を、耐侵食層の表面に安定に形成できる。
なお、肉盛溶接は、上記したプラズマアーク溶接の代わりにレーザ溶接により行うこともできる。また、以上の肉盛溶接において、セラミックスは溶解している場合の他、溶解せず合金中に分散している場合も含む。
In this way, after forming the erosion-resistant layer, the surface is supplied with a mixed powder obtained by adding 10% by mass or more of the ceramic to the Ni-Cr alloy, or only the ceramic powder is supplied. Overlay welding is performed by plasma arc welding to form a wear-resistant layer. In this way, when overlay welding only the ceramic powder, the Ni-Cr alloy constituting the erosion-resistant layer penetrates between the ceramic particles by this heat, so with this Ni-Cr alloy and ceramics, A wear-resistant layer is formed. For this reason, the amount of ceramics in the formed wear-resistant layer is 90% by mass or less.
This build-up welding is performed after the surface of the erosion-resistant layer is preheated to 500 ° C. or higher (the upper limit is about 800 ° C.), so that a wear-resistant layer containing ceramics can be stably formed on the surface of the erosion-resistant layer.
The overlay welding can also be performed by laser welding instead of the plasma arc welding described above. In addition, in the above overlay welding, ceramics are not only dissolved, but also include cases where ceramics are not dissolved but are dispersed in the alloy.
以上に示した方法で、軸受け部15とチョック部16の表面に、それぞれ耐侵食層と耐摩耗層で構成される表面改質層17、18を形成できる。なお、表面改質層17、18の厚みは、1mm以上5mm以下にするのがよい。
ここで、表面改質層の厚みが1mm未満の場合、表面改質層の厚みが薄過ぎて、その効果を長期に渡って維持できなくなる恐れがある。一方、表面改質層の厚みが5mmを超える場合、表面改質層の厚みが厚過ぎて、欠陥等が入り易くなり、その効果の顕著な向上が望めない。
以上のことから、表面改質層の厚みを、1mm以上5mm以下としたが、下限を2mmとし、上限を4mmとすることが好ましい。
なお、耐摩耗層の厚みは、この表面改質層の厚みの範囲内において、0.5mm以上3mm以下の範囲内で設定する。
By the method described above, the surface modification layers 17 and 18 each composed of an erosion resistant layer and an abrasion resistant layer can be formed on the surfaces of the bearing portion 15 and the chock portion 16, respectively. The thickness of the surface modification layers 17 and 18 is preferably 1 mm or more and 5 mm or less.
Here, when the thickness of the surface modification layer is less than 1 mm, the thickness of the surface modification layer is too thin, and the effect may not be maintained for a long time. On the other hand, when the thickness of the surface modified layer exceeds 5 mm, the thickness of the surface modified layer is too thick and defects and the like are likely to enter, and a significant improvement in the effect cannot be expected.
From the above, the thickness of the surface modification layer is set to 1 mm or more and 5 mm or less, but the lower limit is preferably 2 mm and the upper limit is preferably 4 mm.
The thickness of the wear resistant layer is set within the range of 0.5 mm or more and 3 mm or less within the range of the thickness of the surface modified layer.
また、図3に示すように、軸受け部15の表面に、前記表面改質層17と同一の材料で肉盛溶接され、螺旋状に溝加工が施された表面改質層23を形成することもできる。この表面改質層23の溝24は、シンクロール14が回転した際に、めっき液が溝24に沿って、又は溝24によって形成されるめっき液の流れにより、シンクロール14側(ロール本体側)に移動するように、シンクロール14の両側でそれぞれ右ねじと左ねじの螺旋状になっている。
この溝24は、表面改質層23の厚みに応じて、深さを0.2mm以上2mm以下、内幅を0.1mm以上2mm以下としている。
これにより、シンクロール14が回転する際に、軸受け部15とチョック部16との摺動面からめっき液を排除でき、軸受け部15とチョック部16のめっき液による損傷を防止できる。
Further, as shown in FIG. 3, the surface modification layer 23 is formed on the surface of the bearing portion 15 by overlay welding with the same material as the surface modification layer 17 and spirally grooved. You can also. The groove 24 of the surface modification layer 23 is formed on the sink roll 14 side (the roll body side) by the plating solution flowing along the groove 24 or the plating solution formed by the groove 24 when the sink roll 14 rotates. ) In the form of a right-handed screw and a left-handed screw on each side of the sink roll 14.
The groove 24 has a depth of 0.2 mm or more and 2 mm or less and an inner width of 0.1 mm or more and 2 mm or less according to the thickness of the surface modification layer 23.
Thereby, when the sink roll 14 rotates, the plating solution can be removed from the sliding surface between the bearing portion 15 and the chock portion 16, and damage to the bearing portion 15 and the chock portion 16 due to the plating solution can be prevented.
次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、表1〜表4に示す実施例1〜26、及び表5に示す比較例1〜7の各表面改質層から作製した試験片を用いて、めっき浴中への侵食試験を行った結果と、耐摩耗試験を行った結果について、それぞれ説明する。なお、表1〜表5には、各試験片を作製するための耐摩耗層及び耐侵食層の化学成分と、セラミックスの種類及びその添加率と、表面改質層の処理法(溶接方法及びその厚さ)を示している。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, an erosion test into the plating bath was performed using test pieces prepared from the surface modified layers of Examples 1 to 26 shown in Tables 1 to 4 and Comparative Examples 1 to 7 shown in Table 5. The results obtained and the results of the wear resistance test will be described. In Tables 1 to 5, the chemical components of the wear-resistant layer and the erosion-resistant layer for producing each test piece, the type and addition rate of the ceramic, and the treatment method (welding method and Its thickness).
ここで、実施例1〜26は、表面改質層の耐侵食層と耐摩耗層を構成するNi−Cr合金が、Co:0又は0を超え5質量%以下、Ni:30質量%以上90質量%以下、Cr:10質量%以上60質量%以下、Mo:0又は0を超え20質量%以下を有し、しかもNiとCrの合計含有量が60質量%以上である。また、実施例1〜23は、耐摩耗層を構成するNi−Cr合金が、耐侵食層を構成するNi−Cr合金と同一組成で構成されているが、実施例24〜26については、異なる組成で構成されている。
なお、実施例1〜4、6〜11、13〜20、22、23、26の表面改質層は、前記したプラズマアーク(PTA)溶接により、また、実施例5、12、21、24、25の各表面改質層は、前記したレーザ溶接により、基材(SS400)にそれぞれ肉盛溶接した。ここで、実施例1〜10、12〜26は、基材表面に耐侵食層を形成した後、Ni−Cr合金にセラミックスが添加された混合粉末を肉盛溶接して耐摩耗層を形成して表面改質層を形成し、実施例11は、基材表面に耐侵食層を形成した後、セラミックスの粉末のみを肉盛溶接して耐摩耗層を形成して表面改質層を形成している。
Here, in Examples 1 to 26, the Ni—Cr alloy constituting the erosion-resistant layer and the wear-resistant layer of the surface modified layer is Co: 0 or more than 0 and 5 mass% or less, Ni: 30 mass% or more 90 Less than mass%, Cr: 10 mass% or more and 60 mass% or less, Mo: 0 or more than 0 and 20 mass% or less, and the total content of Ni and Cr is 60 mass% or more. Further, in Examples 1 to 23, the Ni—Cr alloy constituting the wear resistant layer is composed of the same composition as the Ni—Cr alloy constituting the erosion resistant layer, but the examples 24 to 26 are different. It is composed of composition.
In addition, the surface modification layers of Examples 1-4, 6-11, 13-20, 22, 23, and 26 were obtained by the above-described plasma arc (PTA) welding, and Examples 5, 12, 21, 24, Each surface modification layer of 25 was build-up welded to the base material (SS400) by the laser welding described above. Here, in Examples 1 to 10 and 12 to 26, after forming an erosion-resistant layer on the surface of the base material, a wear-resistant layer is formed by overlay welding a mixed powder obtained by adding ceramics to a Ni-Cr alloy. In Example 11, after forming an erosion-resistant layer on the surface of the substrate, only the ceramic powder was welded to form a wear-resistant layer to form the surface-modified layer. ing.
一方、比較例1、2、6は、表面改質層としてCo量が前記した適正範囲外の材料を、比較例1、2、3、6は、NiとCrの合計含有量が前記した適正範囲外の材料を、比較例1、2、4〜6は、Niが前記した適正範囲外の材料を、比較例5は、Crが前記した適正範囲外の材料を、比較例7は、Moが前記した適正範囲外の材料を、それぞれ使用し、比較例1〜5、7はプラズマアーク溶接により、比較例6は溶射により、それぞれ基材(SS400)に肉盛した。 On the other hand, Comparative Examples 1, 2, and 6 are materials whose surface modification layer has a Co amount outside the above-described appropriate range, and Comparative Examples 1, 2, 3, and 6 are the above-described appropriate contents of Ni and Cr in total. In Comparative Examples 1, 2, 4 to 6, Ni is a material outside the proper range described above, Comparative Example 5 is a material outside the proper range described above, and Comparative Example 7 is Mo. However, Comparative Examples 1 to 5 and 7 were overlaid on the base material (SS400) by plasma arc welding, and Comparative Example 6 by thermal spraying, respectively.
まず、浸漬試験について説明する。
この浸漬試験は、温度290〜300℃に調整された溶融Sn−Znのめっき浴中に、試験片を浸漬することにより、侵食層の深さと侵食速度を調査する試験である。なお、浸漬試験に使用する実施例1〜26、比較例1〜7の試験片には、いずれも幅30mm、長さ150mm、厚み5mmの基材に、全体の厚みが10〜20mmとなるように、肉盛したものを用いた。
ここで、侵食層の深さと侵食速度は、33日浸漬(33日後)と40日浸漬(40日後)の2条件について調査した。この侵食速度は、侵食層の深さ(33日浸漬:a、40日浸漬:b)を、浸漬時間の1/2乗(33日浸漬:A、40日浸漬:B)で除して求めた値である。
First, the immersion test will be described.
This immersion test is a test for investigating the depth of the erosion layer and the erosion rate by immersing the test piece in a molten Sn—Zn plating bath adjusted to a temperature of 290 to 300 ° C. In addition, all of the test pieces of Examples 1 to 26 and Comparative Examples 1 to 7 used for the immersion test have a total thickness of 10 to 20 mm on a base material having a width of 30 mm, a length of 150 mm, and a thickness of 5 mm. In addition, the surfacing material was used.
Here, the depth of the erosion layer and the erosion rate were examined under two conditions of immersion for 33 days (after 33 days) and immersion for 40 days (after 40 days). The erosion rate is obtained by dividing the depth of the erosion layer (33-day immersion: a, 40-day immersion: b) by the ½ power of the immersion time (33-day immersion: A, 40-day immersion: B). Value.
これらの結果を表6〜表8に示す。なお、表6〜表8には、浸漬試験と併せて、実機での侵食推定結果(侵食推定例)についても示している。この実機での侵食層の深さ(33日浸漬:C、40日浸漬:D)は、浸漬試験との相関性を調査した結果に基づき、算出した値である。 These results are shown in Tables 6-8. In addition, Table 6 to Table 8 also show erosion estimation results (erosion estimation examples) in an actual machine together with the immersion test. The depth of the erosion layer in this actual machine (33-day immersion: C, 40-day immersion: D) is a value calculated based on the results of investigating the correlation with the immersion test.
表6〜表8に示す浸漬試験の結果から、実施例1〜26は、比較例1〜7と比較して、その侵食層の深さを大幅に浅くでき、また侵食速度を大幅に低減できることを確認できた。
なお、当然ではあるが、実機レベルでも、その侵食層の深さを大幅に浅くでき、また侵食速度を大幅に低減できることが推定される。
この侵食された箇所は、大幅な硬度低下(比較例2の場合、ビッカース硬度が772から280まで低下)が発生する。
From the results of the immersion test shown in Tables 6 to 8, Examples 1 to 26 can greatly reduce the depth of the erosion layer and can greatly reduce the erosion rate as compared with Comparative Examples 1 to 7. Was confirmed.
Of course, it is estimated that the depth of the erosion layer can be greatly reduced and the erosion speed can be greatly reduced even at the actual machine level.
In the eroded portion, a significant decrease in hardness occurs (in the case of Comparative Example 2, the Vickers hardness decreases from 772 to 280).
また、比較例1のCo系材料と実施例1のNi系材料の溶融Sn−Znのめっき浴による侵食層の解析結果を、図4、図5にそれぞれ示す。なお、図4、図5は、それぞれ比較例1のCo系材料と実施例1のNi系材料のX線マイクロアナライザー(EPMA)の写真であり、図4、図5の左上の写真が反射電子像、右上の写真がSnの濃度分布、左下の写真がZnの濃度分布、図4の右下の写真がCoの濃度分布、図5の右下の写真がNiの濃度分布を、それぞれ示している。この解析法は、数μm3の微小領域より放出される特性X線の波長及び強度より、定性と定量の各分析を行う従来公知の方法である。
また、図4、図5において、「界面」とは、Co系材料又はNi系材料(表面改質層に相当)と溶融Sn−Znのめっき浴との境界を意味し、図4、図5において上方がめっき浴であり、下方がCo系材料又はNi系材料である。なお、この「界面」の位置は、図4、図5の左上の写真、即ち反射電子像から確定した。また、めっき浴側試験片の白い模様は、試験片の埋め込み樹脂である(EPMA分析とは無関係)。
Moreover, the analysis result of the erosion layer by the plating bath of the molten Sn—Zn of the Co-based material of Comparative Example 1 and the Ni-based material of Example 1 is shown in FIGS. 4 and 5, respectively. 4 and 5 are photographs of an X-ray microanalyzer (EPMA) of the Co-based material of Comparative Example 1 and the Ni-based material of Example 1, respectively, and the photographs at the upper left of FIGS. 4 and 5 are reflected electrons. The upper right photo shows the Sn concentration distribution, the lower left photo shows the Zn concentration distribution, the lower right photo in FIG. 4 shows the Co concentration distribution, and the lower right photo in FIG. 5 shows the Ni concentration distribution. Yes. This analysis method is a conventionally known method for performing qualitative and quantitative analysis based on the wavelength and intensity of characteristic X-rays emitted from a minute region of several μm 3 .
4 and 5, the “interface” means a boundary between the Co-based material or Ni-based material (corresponding to the surface modification layer) and the molten Sn—Zn plating bath, and FIG. The upper part is a plating bath and the lower part is a Co-based material or Ni-based material. The position of the “interface” was determined from the upper left photographs of FIGS. 4 and 5, that is, the reflected electron image. Moreover, the white pattern of the test piece on the plating bath side is a resin embedded in the test piece (regardless of EPMA analysis).
まず、図4、図5の右上と左下の写真から、Co系材料又はNi系材料のSnとZnの濃度分布がそれぞれ分かる。これにより、めっき浴中のSn−Zn成分がCo系材料又はNi系材料に侵食している深さ、即ち侵食層の厚さが分かる。
更に、図4、図5の右下の写真から、上記した侵食層の厚さが、侵食されていないCo系材料又はNi系材料の分布と、正しく一致していることが分かる。
なお、図4、図5において、Sn、Zn、Co、及びNiの濃度分布を示す写真の右側に、各濃度差を示す色別グラフを示している。この色別グラフは、上側の色ほど各濃度が高く(提出する手続補足書の白色や赤色に相当)、下側の色ほど各濃度が低い(提出する手続補足書の青色や緑色に相当)ことを示している。また、色別グラフには、その定量値を数値で示している。しかし、この数値は、CPS(Count per Second)と称し、濃度を示す数値ではあるが、写真ごとに数値が異なるため、各写真間での比較検討はできない。
First, from the upper right and lower left photographs of FIGS. 4 and 5, the concentration distributions of Sn and Zn in the Co-based material or the Ni-based material can be seen. Thereby, the depth at which the Sn—Zn component in the plating bath is eroded by the Co-based material or the Ni-based material, that is, the thickness of the eroded layer is known.
Furthermore, it can be seen from the photographs at the lower right of FIGS. 4 and 5 that the thickness of the erosion layer described above correctly matches the distribution of the non-eroded Co-based material or Ni-based material.
In FIGS. 4 and 5, a graph for each color indicating the concentration difference is shown on the right side of the photograph showing the concentration distribution of Sn, Zn, Co, and Ni. In this graph for each color, the upper color has a higher density (corresponding to white and red in the submitted procedure supplement), and the lower color has a lower density (corresponds to blue and green in the submitted procedure supplement). It is shown that. Moreover, the quantitative value is shown numerically in the graph according to color. However, this numerical value is referred to as CPS (Count per Second) and is a numerical value indicating the density. However, since the numerical value is different for each photograph, it is not possible to make a comparative study between the photographs.
なお、本願発明では、侵食層の厚さだけが問題となるため、以下、侵食層について説明する。ここで、侵食層の厚さは、図4、図5の各写真の左下にあるスケールに基づき算出した。
図4から、比較例1のCo系材料の場合、めっき浴中のSnとZnが、めっき浴との接触面から137μm程度まで侵食しており、Coがめっき浴側へ拡散していることが分かった。一方、図5から、実施例1のNi系材料の場合、SnとZnの侵食の程度は、めっき浴との接触面から13μm程度であり、Niの拡散がCoに比べて極めて遅いことを確認できた。
従って、実施例1〜26の肉盛材料を肉盛溶接することで、長期に渡って安定した品質の表面改質層を維持できる。
In the present invention, since only the thickness of the erosion layer becomes a problem, the erosion layer will be described below. Here, the thickness of the erosion layer was calculated based on the scale at the lower left of each photograph in FIGS.
From FIG. 4, in the case of the Co-based material of Comparative Example 1, Sn and Zn in the plating bath were eroded from the contact surface with the plating bath to about 137 μm, and Co diffused to the plating bath side. I understood. On the other hand, in the case of the Ni-based material of Example 1, the degree of erosion of Sn and Zn is about 13 μm from the contact surface with the plating bath, and it is confirmed that the diffusion of Ni is extremely slow compared to Co. did it.
Therefore, the surface-modified layer having stable quality can be maintained over a long period of time by overlay welding the overlay materials of Examples 1 to 26.
次に、耐摩耗試験について説明する。
ここでは、めっき浴に浸漬させていない実施例1〜26、及び比較例1〜7の材料の耐摩耗性について調査した。
この耐摩耗試験は、SiC製(表面粗さ:♯40)の無端ベルトを240m/分の速度で移動させ、この無端ベルトの表面に試験片の表面を2時間押し付け続けることにより、試験片の摩耗減量を調査する試験である。なお、試験片の押し付け面の寸法は、50mm×50mmであり、荷重3100gで押し付けた(圧力:1.2×104Pa)。
この結果を表9〜表11に示す。なお、表9〜表11には、摩耗試験の結果から算出して得られる実機レベル(実機用メタル)の摩耗深さの検討結果についても示している。
Next, the abrasion resistance test will be described.
Here, the wear resistance of the materials of Examples 1 to 26 and Comparative Examples 1 to 7 that were not immersed in the plating bath was investigated.
In this abrasion resistance test, an endless belt made of SiC (surface roughness: # 40) was moved at a speed of 240 m / min, and the surface of the test piece was kept pressed against the surface of the endless belt for 2 hours. This is a test to investigate wear loss. In addition, the dimension of the pressing surface of a test piece was 50 mm x 50 mm, and it pressed with the load of 3100g (pressure: 1.2 * 10 < 4 > Pa).
The results are shown in Tables 9-11. Tables 9 to 11 also show the examination results of the wear depth at the actual machine level (the actual machine metal) obtained by calculation from the results of the wear test.
表9〜表11に示す摩耗試験の結果から、実施例1〜26は、比較例1〜7の材料と比較して、その摩耗減量を大幅に低減(0.020g/cm2以下)できることを確認できた。なお、当然ではあるが、実機レベルの摩耗深さについても、大幅に低減できることが推定される。
従って、実施例1〜26を肉盛溶接することで、長期に渡って安定した品質の表面改質層を維持できる。
以上のことから、本願発明を適用することで、溶融Snによる侵食を抑制でき、鋼板の生産性を高め、経済的にめっき処理を実施できることを確認できた。
From the results of the wear tests shown in Tables 9 to 11, Examples 1 to 26 can significantly reduce the wear loss (0.020 g / cm 2 or less) compared to the materials of Comparative Examples 1 to 7. It could be confirmed. Needless to say, it is estimated that the wear depth at the actual machine level can be significantly reduced.
Therefore, by surface-welding Examples 1 to 26, it is possible to maintain a surface modified layer having a stable quality over a long period of time.
From the above, it was confirmed that by applying the present invention, erosion due to molten Sn can be suppressed, the productivity of the steel sheet can be increased, and the plating treatment can be carried out economically.
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の溶融めっき浴中のロール軸受け構造及びその製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、シンクロールの軸受け部及びチョック部の双方に、表面改質層を形成した場合について説明したが、軸受け部又はチョック部のみに、表面改質層を形成してもよい。更に、シンクロールではなく、めっき浴中に配置されるサポートロールの軸受け部及びチョック部のいずれか一方又は双方に、表面改質層を形成することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the roll bearing structure in the hot dipping bath of the present invention and the manufacturing method thereof are configured by combining some or all of the above-described embodiments and modifications are also included in the scope of the present invention.
In the above embodiment, the case where the surface modified layer is formed on both the bearing portion and the chock portion of the sink roll has been described. However, the surface modified layer is formed only on the bearing portion or the chock portion. Also good. Furthermore, the surface modification layer can be formed not on the sink roll but on one or both of the bearing portion and the chock portion of the support roll disposed in the plating bath.
10:溶融めっき浴中のロール軸受け構造、11:固定アーム、12:めっき槽、13:めっき浴、14:シンクロール、15:軸受け部、16:チョック部、17、18:表面改質層、19:鋼板、20、21:ガイドロール、22:回転軸、23:表面改質層、24:溝 10: Roll bearing structure in hot dip bath, 11: Fixed arm, 12: Plating tank, 13: Plating bath, 14: Sink roll, 15: Bearing part, 16: Chock part, 17, 18: Surface modification layer, 19: steel plate, 20, 21: guide roll, 22: rotating shaft, 23: surface modified layer, 24: groove
Claims (7)
前記ロールの回転軸には軸受け部が設けられ、しかも前記固定アームの先側には前記軸受け部を回転自在に支持するチョック部が設けられており、前記軸受け部及び前記チョック部のいずれか一方又は双方の表面には、
1)Co:0又は0を超え5質量%以下、Ni:30質量%以上90質量%以下、Cr:10質量%以上60質量%以下、Mo:0又は0を超え20質量%以下を有し、しかも前記Niと前記Crの合計含有量が60質量%以上のNi−Cr合金からなる耐侵食層と、
2)前記Ni−Cr合金と同一組成又は異なる組成のNi−Cr合金と、炭化物及び硼化物のいずれか1種又は2種で構成されているセラミックスを10質量%以上90質量%以下含む耐摩耗層を、順次肉盛溶接した表面改質層が形成されていることを特徴とする溶融めっき浴中のロール軸受け構造。 In a bearing structure of a roll that is rotatably mounted on a fixed arm and disposed in a molten Sn plating bath containing 85 mass% or more of Sn,
A bearing portion is provided on the rotating shaft of the roll, and a chock portion that rotatably supports the bearing portion is provided on the front side of the fixed arm, and one of the bearing portion and the chock portion is provided. Or on both surfaces,
1) Co: 0 or more than 0 to 5% by mass, Ni: 30% to 90% by mass, Cr: 10% to 60% by mass, Mo: 0 or more than 0 to 20% by mass And an erosion-resistant layer made of a Ni-Cr alloy having a total content of Ni and Cr of 60% by mass or more,
2) Abrasion resistance containing 10% by mass or more and 90% by mass or less of a ceramic composed of a Ni—Cr alloy having the same composition as or different from the Ni—Cr alloy and one or two of carbides and borides. A roll bearing structure in a hot dipping bath characterized in that a surface reforming layer is formed by successively overlay welding the layers.
前記ロールの回転軸には軸受け部が設けられ、しかも前記固定アームの先側には前記軸受け部を回転自在に支持するチョック部が設けられており、前記軸受け部及び前記チョック部のいずれか一方又は双方の表面に、
Co:0又は0を超え5質量%以下、Ni:30質量%以上90質量%以下、Cr:10質量%以上60質量%以下、Mo:0又は0を超え20質量%以下を有し、しかも前記Niと前記Crの合計含有量が60質量%以上のNi−Cr合金を肉盛溶接して耐侵食層を形成した後、
炭化物及び硼化物のいずれか1種又は2種で構成されているセラミックスが10質量%以上添加された前記Ni−Cr合金と同一組成又は異なる組成のNi−Cr合金の混合粉末を、又は前記セラミックスの粉末のみを肉盛溶接して耐摩耗層を形成し、表面改質層を形成することを特徴とする溶融めっき浴中のロール軸受け構造の製造方法。 In a manufacturing method of a bearing structure of a roll that is rotatably attached to a fixed arm and is disposed in a molten Sn plating bath containing 85 mass% or more of Sn,
A bearing portion is provided on the rotating shaft of the roll, and a chock portion that rotatably supports the bearing portion is provided on the front side of the fixed arm, and one of the bearing portion and the chock portion is provided. Or on both surfaces,
Co: 0 or more than 0 to 5% by mass, Ni: 30% to 90% by mass, Cr: 10% to 60% by mass, Mo: 0 or more than 0 to 20% by mass, and After forming a corrosion resistant layer by overlay welding a Ni-Cr alloy having a total content of Ni and Cr of 60 mass% or more,
A mixed powder of Ni—Cr alloy having the same composition as or different from the Ni—Cr alloy to which 10% by mass or more of a ceramic composed of any one or two of carbide and boride is added, or the ceramic A method for producing a roll bearing structure in a hot dipping bath, wherein a wear-resistant layer is formed by overlay welding only the powder of the above, and a surface modified layer is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008244510A JP5227126B2 (en) | 2008-09-24 | 2008-09-24 | Roll bearing structure in hot dipping bath and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008244510A JP5227126B2 (en) | 2008-09-24 | 2008-09-24 | Roll bearing structure in hot dipping bath and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010077466A JP2010077466A (en) | 2010-04-08 |
JP5227126B2 true JP5227126B2 (en) | 2013-07-03 |
Family
ID=42208226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008244510A Active JP5227126B2 (en) | 2008-09-24 | 2008-09-24 | Roll bearing structure in hot dipping bath and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5227126B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7082867B2 (en) * | 2017-11-06 | 2022-06-09 | 三菱重工コンプレッサ株式会社 | Metal lamination modeling method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04232221A (en) * | 1990-12-28 | 1992-08-20 | Daido Steel Co Ltd | Roll material having high corrosion resistance |
JPH05126135A (en) * | 1991-11-05 | 1993-05-21 | Nkk Corp | Bearing for roll bathed in hot dipping |
JPH07138720A (en) * | 1993-11-17 | 1995-05-30 | Nippon Steel Corp | Transfer roll for hot tin plating by slit nozzle method |
JP3175457B2 (en) * | 1993-12-17 | 2001-06-11 | 三菱マテリアル株式会社 | Ni-base sintered metal with excellent corrosion resistance obtained by hot isostatic pressing |
JP2845144B2 (en) * | 1994-02-10 | 1999-01-13 | 住友金属工業株式会社 | Hot-dip metal bath immersion member and method for producing the same |
JP3291116B2 (en) * | 1994-04-01 | 2002-06-10 | 大阪富士工業株式会社 | Composite surface treatment method for metal materials |
JPH07144295A (en) * | 1994-08-08 | 1995-06-06 | Daido Steel Co Ltd | Powder for plasma build-up welding |
JP3129648B2 (en) * | 1996-02-02 | 2001-01-31 | プラクスエア エス ティ テクノロジー インコーポレイテッド | Bearing for roll in hot-dip metal plating bath |
JP3042836B2 (en) * | 1996-10-04 | 2000-05-22 | トーカロ株式会社 | Conductor roll for electroplating and method of manufacturing the same |
JPH1180917A (en) * | 1997-09-05 | 1999-03-26 | Nippon Steel Hardfacing Co Ltd | Immersion member for molten metal bath, excellent in resistance to corrosion and wear |
JP2004263284A (en) * | 2003-03-04 | 2004-09-24 | Daido Steel Co Ltd | Composite steel pipe for heat exchanger and its production method |
-
2008
- 2008-09-24 JP JP2008244510A patent/JP5227126B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010077466A (en) | 2010-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3167100B1 (en) | A chromium-containing coating and a coated object | |
CA2254700C (en) | Laser clad pot roll sleeves for galvanizing baths | |
WO2011074131A1 (en) | Member for conveying high-temperature materials | |
TWI623624B (en) | Metal-ceramic powder, protective coating member and its manufacturing method, and roller in electroplating bath and its manufacturing method | |
JP2010520810A (en) | High melting point metal tool for friction stir welding | |
JP2019218606A (en) | Self-lubricating composite | |
JP6735497B2 (en) | Method for producing intermetallic compound alloy, metal member and clad layer | |
JP5227126B2 (en) | Roll bearing structure in hot dipping bath and manufacturing method thereof | |
JP4412563B2 (en) | High temperature material conveying member | |
JP6796446B2 (en) | Thermal spray coating | |
Biswas et al. | A review on TIG cladding of engineering material for improving their surface property | |
CN119040881A (en) | Laser cladding nickel-based superalloy wear-resistant gradient coating and preparation method thereof | |
KR100825509B1 (en) | Journal bearing for molten metal plating equipment and its manufacturing method | |
JPH07268648A (en) | Composite surface treatment of metallic material | |
TW201443284A (en) | Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath | |
JP5524479B2 (en) | Surface treatment method for metal parts | |
JP4929093B2 (en) | High hardness, wear resistant parts and method of manufacturing the same | |
Scheid et al. | Effect of temperature and reactivity of molten 55Al–Zn alloy on Co based alloy coatings | |
JP6762179B2 (en) | Parts for bath equipment | |
WO2019167149A1 (en) | Member for equipment in baths, equipment in molten metal bath, and molten metal plating material production device | |
CN115255357B (en) | Powder material for manufacturing zinc pot shaft sleeve by laser compounding and manufacturing method thereof | |
KR101194459B1 (en) | Coating method of surface coating composition for molten zinc bath member, and coating member | |
RU2746518C1 (en) | Method of forming a coating on stamped steels | |
JP2023144716A (en) | Casting mold for continuous casting | |
Simeonova et al. | Microstructure and properties of NiCrBSiC overlay coatings deposited by the plasma scanning process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5227126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |