JP5223743B2 - Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material - Google Patents
Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material Download PDFInfo
- Publication number
- JP5223743B2 JP5223743B2 JP2009064529A JP2009064529A JP5223743B2 JP 5223743 B2 JP5223743 B2 JP 5223743B2 JP 2009064529 A JP2009064529 A JP 2009064529A JP 2009064529 A JP2009064529 A JP 2009064529A JP 5223743 B2 JP5223743 B2 JP 5223743B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- titanium
- tool
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005520 cutting process Methods 0.000 title claims description 81
- 239000000463 material Substances 0.000 title claims description 55
- 229910052582 BN Inorganic materials 0.000 title claims description 12
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 12
- 239000010410 layer Substances 0.000 claims description 259
- 239000013078 crystal Substances 0.000 claims description 70
- 239000010936 titanium Substances 0.000 claims description 33
- 239000011247 coating layer Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 42
- 229910010037 TiAlN Inorganic materials 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 230000002159 abnormal effect Effects 0.000 description 11
- 229910001315 Tool steel Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910004349 Ti-Al Inorganic materials 0.000 description 5
- 229910004692 Ti—Al Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000007733 ion plating Methods 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- -1 argon ions Chemical class 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
この発明は、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材を高速切削加工した場合でも、硬質被覆層がすぐれた耐欠損性を発揮し、被削材の仕上げ面精度を維持したまま、長期にわたって安定した切削性能を発揮することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。 The present invention provides excellent fracture resistance with a hard coating layer even when a material made of a hard material such as a hardened material of alloy tool steel or bearing steel is subjected to high-speed cutting, and the finished surface of the work material. Surface-coated cubic crystals with a hard coating layer formed on the surface of a cutting tool base made of cubic boron nitride-based ultra-high pressure sintered material that can exhibit stable cutting performance over a long period of time while maintaining accuracy The present invention relates to a cutting tool made of a boron nitride-based ultra-high pressure sintered material (hereinafter referred to as a coated cBN-based sintered tool).
一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。 In general, a coated cBN-based sintered tool has an insert that can be attached to the tip of a cutting tool for turning of a work material such as various types of steel and cast iron, An insert-type end mill that performs cutting work in the same manner as a solid type end mill used for machining, grooving, and shoulder machining is known.
また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料で構成された工具本体の表面に、チタン窒化物層、チタンとアルミニウムの複合窒化物層などの表面被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。 Moreover, as a coated cBN-based sintered tool, a surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials, a surface of a titanium nitride layer, a composite nitride layer of titanium and aluminum, or the like Coated cBN-based sintered tools formed by vapor-depositing a coating layer are known, and it is also known that these are used for cutting of various steels and cast irons, for example.
さらに、上記の被覆cBN基焼結工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、金属TiあるいはTi−Al合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に、例えば、反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、チタン窒化物層、チタンとアルミニウムの複合窒化物層など、所望の層を蒸着形成することにより製造されることも知られている。 Further, the above-mentioned coated cBN-based sintered tool is loaded with the above-mentioned tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated by applying a current of, for example, 90 A between a cathode electrode (evaporation source) made of metal Ti or a Ti—Al alloy and an anode electrode while being heated to 500 ° C. Inside, for example, nitrogen gas is introduced as a reaction gas to form a reaction atmosphere of, for example, 2 Pa, while titanium nitride is applied to the surface of the tool base under the condition that a bias voltage of, for example, −100 V is applied to the tool base. It is also known that it is produced by depositing a desired layer such as a physical layer or a composite nitride layer of titanium and aluminum.
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、これを、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削に用いた場合には、切削時の高負荷により、切刃の刃先の境界部分に異常損傷(以下、境界異常損傷という)を生じたり、被削材の仕上げ面精度が悪化したりすることによって、比較的短時間で使用寿命に至るのが現状である。 In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the above-mentioned conventional coated tools, there is no particular problem when various types of steel and cast iron are machined under normal conditions. When used for high-speed cutting of hard materials such as hardened steel and bearing steel, abnormal damage to the boundary of the cutting edge of the cutting edge due to high load during cutting (hereinafter referred to as abnormal boundary damage) In the present situation, the service life is reached in a relatively short period of time.
そこで、本発明者等は、上述のような観点から、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削加工で、硬質被覆層がすぐれた耐欠損性を発揮し、また、長期の使用に亘って、すぐれた仕上げ面精度を維持したまま安定した切削特性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、次のような知見を得た。
a) 硬質被覆層を構成するTiとAlの複合窒化物層(以下、TiAlN層で示す)を、
組成式:(Ti1−XAlX)N
で表した場合、TiAlN層は通常{100}面が優先的に配向している立方晶の結晶構造を有しており、Tiとの合量に占めるAlの含有割合X(原子比)の値が、0.3〜0.7の範囲内において所定の高温硬さ、耐酸化性及び高温強度を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材の高速切削加工においては、切刃部に発生する高熱により被削材および切粉は極めて高温に加熱されるために、切刃の境界部分には境界異常損傷が生じ、そして、これが欠損の原因となる。
In view of the above, the inventors of the present invention have excellent fracture resistance with a hard coating layer in high-speed cutting of a work material made of a hard material such as a hardened material of alloy tool steel or bearing steel. As a result of research to develop a coated cBN-based sintered tool that exhibits stable cutting characteristics while maintaining excellent finished surface accuracy over a long period of use, the following knowledge was obtained. Obtained.
a) A composite nitride layer of Ti and Al (hereinafter referred to as a TiAlN layer) constituting the hard coating layer,
Composition formula: (Ti 1-X Al X ) N
The TiAlN layer usually has a cubic crystal structure in which the {100} plane is preferentially oriented, and the value of the Al content ratio X (atomic ratio) in the total amount with Ti However, it has a predetermined high temperature hardness, oxidation resistance and high temperature strength within the range of 0.3 to 0.7, and has wear resistance required under normal cutting conditions, In high-speed cutting of hard materials such as hardened materials of alloy tool steel and bearing steel, the work material and chips are heated to extremely high temperatures due to the high heat generated in the cutting edge, so the boundary part of the cutting edge Causes abnormal boundary damage, and this causes defects.
(b)上記(a)のTiAlN層を硬質被覆層の下部層とし、その上に、チタンの窒化物(以下、TiNで示す)層を第1中間層として蒸着形成せしめた場合、TiN層は、下部層のTiAlNとの結晶配向履歴が強いため、{100}面に優先的に配向した立方晶の結晶構造を備えるようになる。このような配向性を有するTiN層はすぐれた靭性、高温強度を示すことから、TiAlN層表面に{100}結晶配向性が高いTiN層を形成することにより、硬質被覆層の境界異常損傷、欠損の発生を防止することも考えられるが、このような層構造では、被削材の仕上げ面精度が低下するという問題が生じる。 (B) When the TiAlN layer of (a) is used as a lower layer of a hard coating layer, and a titanium nitride (hereinafter referred to as TiN) layer is deposited thereon as a first intermediate layer, the TiN layer is Since the crystal orientation history with TiAlN in the lower layer is strong, a cubic crystal structure oriented preferentially in the {100} plane is provided. Since the TiN layer with such orientation exhibits excellent toughness and high-temperature strength, by forming a TiN layer with a high {100} crystal orientation on the surface of the TiAlN layer, abnormal boundary damage and defects of the hard coating layer Although it is conceivable to prevent the occurrence of this, such a layer structure causes a problem that the finished surface accuracy of the work material is lowered.
(c)そこで、TiN層の結晶配向性とその特性について種々検討したところ、TiN結晶のすべり系は{111}面であり、{100}面に配向性の高いTiN層にかえて、{111}面への配向性が高いTiN層を形成すると、切削加工時に、TiN層の表面とすべり系{111}面が平行になるため、TiN層の耐チッピング性、塑性変形性が増し、それにより被削材の仕上げ面精度が向上する。
そして、{111}面への結晶配向度が高いTiN層を形成するためには、それ自体高温硬さ、高温強度にすぐれ、本発明にて用いる核形成が多く、{111}配向性を高める効果のあるチタンの炭窒化物層(Ti(C1−YNY)層。Yは0.5〜0.9(但し、原子比)。以下、TiCN層で示す)を第2中間層として介在形成することによりTiAlN層からなる下部層との結晶配向履歴を分断し、この第2中間層の表面にTiN層を上部層として形成すれば、{111}面への結晶配向度がより高いTiN層からなる上部層が形成されることを見出した。
(C) Therefore, various studies were made on the crystal orientation of the TiN layer and its characteristics. As a result, the slip system of the TiN crystal is the {111} plane, and instead of the TiN layer having high orientation on the {100} plane, {111 } When a TiN layer with high orientation to the plane is formed, the surface of the TiN layer and the slip system {111} plane are parallel to each other during cutting, thereby increasing the chipping resistance and plastic deformation of the TiN layer. The finished surface accuracy of the work material is improved.
And, in order to form a TiN layer having a high degree of crystal orientation on the {111} plane, it itself has excellent high-temperature hardness and high-temperature strength, and many nucleations used in the present invention enhance the {111} orientation. carbonitride layer of titanium is effective (Ti (C 1-Y N Y) layer .Y is 0.5 to 0.9 (provided that an atomic ratio). hereinafter, indicated by TiCN layer) as a second intermediate layer If the crystal orientation history with the lower layer composed of the TiAlN layer is divided by the intervening formation, and the TiN layer is formed as the upper layer on the surface of the second intermediate layer, the degree of crystal orientation to the {111} plane is higher. It has been found that an upper layer composed of a TiN layer is formed.
(d)したがって、被覆cBN基焼結工具において、硬質被覆層として、TiAlN層からなる下部層、TiN層からなる第1中間層、下部層の結晶配向性履歴を分断するTiCN層からなる第2中間層および{111}面に配向性の高いTiN層からなる上部層を蒸着形成することによって、硬質被覆層は全体として、すぐれた高温硬さ、靭性、高温強度を備え、その結果、大きな発熱を伴う合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削加工において、すぐれた耐チッピング性、耐欠損性を示し、境界異常損傷を生じることなく、また、仕上げ面精度の低下を招くこともなく、長期の使用に亘って安定した切削性能を発揮するものである。 (D) Therefore, in the coated cBN-based sintered tool, as the hard coating layer, the lower layer composed of the TiAlN layer, the first intermediate layer composed of the TiN layer, and the second layer composed of the TiCN layer that divides the crystal orientation history of the lower layer. By depositing an intermediate layer and an upper layer consisting of a highly oriented TiN layer on the {111} plane, the hard coating layer as a whole has excellent high temperature hardness, toughness, and high temperature strength, resulting in large heat generation. In high-speed cutting of work materials made of hard materials such as hardened alloy tool steel and bearing steel, it shows excellent chipping resistance and fracture resistance, without causing abnormal boundary damage and finishing. The surface performance is not degraded, and stable cutting performance is exhibited over a long period of use.
この発明は、上記知見に基づいてなされたものであって、
「(1) 立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に、下部層、第1中間層、第2中間層および上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)上記下部層は、0.5〜2.5μmの層厚を有し、
組成式:(Ti1−XAlX)N
で表した場合、Xが0.3〜0.7(但し、原子比)であるチタンとアルミニウムの複合窒化物層、
(b)上記第1中間層は、0.1〜1.5μmの層厚を有するチタンの窒化物層、
(c)上記第2中間層は、0.1〜1μmの層厚を有し、
組成式:Ti(C1−YNY)
で表した場合、Yが0.5〜0.9(但し、原子比)であるチタンの炭窒化物層、
(d)上記上部層は、0.3〜2μmの層厚を有するチタンの窒化物層であって、かつ、電界放出型走査電子顕微鏡を用い、上記上部層の表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すチタンの窒化物層、
であることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
(2) 上記工具基体の表面と上記下部層との界面から、0.4μmの深さだけ下部層側に位置する下部層横断面内におけるチタンとアルミニウムの複合窒化物の結晶粒の平均結晶粒径が100〜300nmであり、また、上記第2中間層と上記上部層との界面から、0.2μmの深さだけ上部層側に位置する上部層横断面内におけるチタンの窒化物の結晶粒の平均結晶粒径が10〜70nmである、
請求項1に記載される表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) A surface-coated cube in which a hard coating layer composed of a lower layer, a first intermediate layer, a second intermediate layer, and an upper layer is deposited on the surface of a tool base made of a cubic boron nitride-based ultrahigh pressure sintered material. In the cutting tool made of crystal boron nitride based ultra high pressure sintered material,
(A) The lower layer has a layer thickness of 0.5 to 2.5 μm,
Composition formula: (Ti 1-X Al X ) N
In this case, a composite nitride layer of titanium and aluminum whose X is 0.3 to 0.7 (atomic ratio),
(B) the first intermediate layer is a titanium nitride layer having a layer thickness of 0.1 to 1.5 μm;
(C) The second intermediate layer has a layer thickness of 0.1 to 1 μm,
Composition formula: Ti (C 1-Y N Y )
, A carbonitride layer of titanium having Y of 0.5 to 0.9 (atomic ratio),
(D) The upper layer is a titanium nitride layer having a layer thickness of 0.3 to 2 μm and is within the measurement range of the surface polished surface of the upper layer using a field emission scanning electron microscope. Each crystal grain having a cubic crystal lattice is irradiated with an electron beam, and an inclination angle formed by a normal line of the {111} plane which is a crystal plane of the crystal grain is made with respect to a normal line of the surface polished surface. Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section In the distribution graph, the highest peak exists in the inclination angle section in the range of 0 to 15 degrees, and the total of the frequencies existing in the range of 0 to 15 degrees is 50% of the entire frequency in the inclination angle frequency distribution graph. Titanium angle distribution graph showing the above ratio Oxide layer,
A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool characterized by
(2) Average crystal grains of titanium and aluminum composite nitride grains in the lower layer cross section located on the lower layer side by a depth of 0.4 μm from the interface between the surface of the tool base and the lower layer Titanium nitride crystal grains in the upper layer cross section having a diameter of 100 to 300 nm and located on the upper layer side by a depth of 0.2 μm from the interface between the second intermediate layer and the upper layer The average crystal grain size is 10 to 70 nm.
The surface-coated cubic boron nitride-based ultrahigh pressure sintered material cutting tool according to
It has the characteristics.
つぎに、この発明の被覆cBN基焼結工具における、硬質被覆層の層厚、組成、結晶配向性等について説明する。 Next, the layer thickness, composition, crystal orientation and the like of the hard coating layer in the coated cBN-based sintered tool of the present invention will be described.
下部層:
硬質被覆層の下部層を構成するTiAlN層におけるTi成分は高温強度の維持、Al成分は高温硬さと耐酸化性の向上に寄与することから、TiAlN層は、所定の高温強度、高温硬さおよび耐熱性を具備する層であって、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。
ただ、下部層を構成するTiAlN層を、
組成式:(Ti1−XAlX)N
で表した場合に、Alの含有割合Xが0.7を超えると、結晶構造の変化により、高温強度が低下し欠損が生じやすくなり、一方、Alの含有割合Xが0.3未満になると、高温硬さと耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Alの含有割合Xの値を0.3〜0.7(但し、原子比)と定めた。
また、下部層の層厚が0.5μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が2.5μmを越えると、欠損が生じ易くなることから、その層厚を0.5〜2.5μmと定めた。
なお、この発明でいう「層厚」とは、“工具の切れ刃と想定される部分において、刃先稜線から逃げ面に0.1mm(±0.02mm)の箇所の平均層厚”と定義する。例えば、図3に示すように、ノーズRと直線部のつなぎ部分から0.1mm(±0.02mm)の箇所(工具の切れ刃と想定される部分)、かつ、刃先稜線から逃げ面に0.1mm(±0.02mm)の箇所の平均層厚になる。これは、切れ刃から逃げ面に0.1mm程度の箇所が一番摩耗しやすい箇所であることから、この箇所の層厚が工具特性に大きな影響を与えるという理由、さらに、本発明の場合、測定箇所によるバラツキを避けるために、切れ刃と想定されるノーズRと直線部のつなぎ部分から一定の位置(この発明の場合は、0.1mm(±0.02mm))にある箇所で測定しなければならないという理由による。
さらに、下部層におけるTiAlN結晶粒の結晶粒径は、一般的に層厚が大になるほど結晶が成長しやすくなり、その結果、結晶粒径も大になるが、結晶粒径が大きくなると第1中間層(TiN層)との密着性が低下し、また、結晶粒径が小さいと硬さは上がるが結晶粒界強度が低下し、すきとり摩耗が発生するため、下部層のTiAlN結晶粒の平均結晶粒径は100〜300nmとすることが望ましい。
なお、ここでいう下部層の平均結晶粒径とは、工具基体の表面と下部層との界面から、0.4μmの深さだけ下部層側に位置する下部層横断面内におけるTiAlN結晶粒の平均結晶粒径である。また、平均結晶粒径の測定は、工具基体の表面と下部層との界面から、0.4μmの深さだけ下部層側に位置する下部層横断面内において、所定長さの直線範囲内に存在する結晶粒の数を測定することにより求め、任意の5箇所で求めた値の平均値を平均結晶粒径の値とした。例えば、1μmの直線範囲に5個の結晶粒が存在したとすれば、その平均結晶粒径は200nmとなる。
Lower layer:
Since the Ti component in the TiAlN layer constituting the lower layer of the hard coating layer maintains high temperature strength, and the Al component contributes to improvement in high temperature hardness and oxidation resistance, the TiAlN layer has a predetermined high temperature strength, high temperature hardness and It is a layer with heat resistance, and basically plays a role of ensuring the wear resistance of the cutting edge during high-speed cutting of work materials made of hard materials such as hardened materials of alloy tool steel and bearing steel. Bear.
However, the TiAlN layer constituting the lower layer is
Composition formula: (Ti 1-X Al X ) N
In the case where the Al content ratio X exceeds 0.7, the crystal structure changes and the high-temperature strength decreases and defects tend to occur. On the other hand, when the Al content ratio X is less than 0.3, Since the high temperature hardness and heat resistance are lowered, and as a result, the wear resistance is lowered, the value of the Al content ratio X is set to 0.3 to 0.7 (however, the atomic ratio). It was.
On the other hand, if the thickness of the lower layer is less than 0.5 μm, the heat resistance, high temperature hardness and high temperature strength possessed by itself cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the thickness exceeds 2.5 μm, defects tend to occur, so the layer thickness was determined to be 0.5 to 2.5 μm.
The “layer thickness” as used in the present invention is defined as “the average layer thickness at a position 0.1 mm (± 0.02 mm) from the edge of the blade edge to the flank surface in the portion assumed to be the cutting edge of the tool”. . For example, as shown in FIG. 3, 0.1 mm (± 0.02 mm) from the connecting portion of the nose R and the straight line portion (the portion assumed to be the cutting edge of the tool) and 0 to the flank from the edge of the cutting edge. The average layer thickness is 1 mm (± 0.02 mm). This is because the place where about 0.1 mm from the cutting edge to the flank is the most likely to wear, the reason that the layer thickness of this place has a great influence on the tool characteristics, and in the case of the present invention, In order to avoid variation due to the measurement location, measurement should be made at a certain position (0.1 mm (± 0.02 mm) in the case of this invention) from the joint between the nose R assumed to be the cutting edge and the straight portion. Because it has to be.
Furthermore, the crystal grain size of the TiAlN crystal grains in the lower layer is generally easier to grow as the layer thickness increases. As a result, the crystal grain size also increases, but the first grain size increases as the crystal grain size increases. Adhesion with the intermediate layer (TiN layer) decreases, and if the crystal grain size is small, the hardness increases but the grain boundary strength decreases and scraping wear occurs. The average crystal grain size is desirably 100 to 300 nm.
The average crystal grain size of the lower layer referred to here is the TiAlN crystal grains in the lower layer cross section located on the lower layer side by a depth of 0.4 μm from the interface between the surface of the tool base and the lower layer. Average grain size. The average crystal grain size is measured within a linear range of a predetermined length in the cross section of the lower layer located at the lower layer side by a depth of 0.4 μm from the interface between the surface of the tool base and the lower layer. It was determined by measuring the number of crystal grains present, and the average value of the values determined at any five locations was taken as the average crystal grain size value. For example, if there are 5 crystal grains in a linear range of 1 μm, the average crystal grain size is 200 nm.
第1中間層:
上記下部層の表面に蒸着形成された第1中間層は、下部層の結晶配向性に依存し、{100}面の配向度が高い結晶組織を有するTiN層となる。
この第1中間層(TiN層)は、所定の靭性、高温強度を備えるため、高硬度材の高速切削加工時において、硬質被覆層に境界異常損傷、欠損が発生することを防止する作用を有するが、その層厚が0.1μm未満では上記のすぐれた特性を十分発揮することはできず、一方、その層厚が1.5μmを超えると、高温硬さが不足し耐摩耗性が低下傾向を示すので、第1中間層の層厚は、0.1〜1.5μmと定めた。
First intermediate layer:
The first intermediate layer deposited on the surface of the lower layer is a TiN layer having a crystal structure with a high degree of orientation on the {100} plane depending on the crystal orientation of the lower layer.
Since this first intermediate layer (TiN layer) has predetermined toughness and high temperature strength, it has the effect of preventing the occurrence of abnormal boundary damage and defects in the hard coating layer during high-speed cutting of a hard material. However, when the layer thickness is less than 0.1 μm, the above-mentioned excellent characteristics cannot be sufficiently exhibited. On the other hand, when the layer thickness exceeds 1.5 μm, the high temperature hardness is insufficient and the wear resistance tends to decrease. Therefore, the thickness of the first intermediate layer was determined to be 0.1 to 1.5 μm.
第2中間層:
第2中間層を構成するTiCN層は、TiAlN層からなる下部層との結晶配向履歴を分断し、本発明における成膜条件では核形成が多いため{111}配向性を増すことにより、上部層のTiN層の{111}面への結晶配向度を高める。
第2中間層を構成するTiCN層のC成分には層の硬さを向上させ、N成分には層の強度を向上させる作用があるが、
組成式:Ti(C1−YNY)
で表した場合に、N成分の含有割合Yが0.5未満では、TiCN層の靭性、耐衝撃性が低下し、チッピングを発生しやすくなり、一方、N成分の含有割合Yが0.9を超えると、TiCN層の高温硬さの向上を期待できなくなるので、層中のN成分の含有割合Yの値を0.5〜0.9(但し、原子比)と定めた。
この第2中間層(TiCN層)は、その層厚が0.1μm未満では靭性、耐衝撃性というすぐれた特性を発揮できないばかりか、下部層、第1中間層の{100}面配向性を分断するには不十分な層厚であり、一方、その層厚が1μmを超えると、高温硬さが低下傾向を示すので、第2中間層の層厚は、0.1〜1μmと定めた。
Second intermediate layer:
The TiCN layer constituting the second intermediate layer divides the crystal orientation history with the lower layer made of the TiAlN layer, and since there are many nucleations under the film forming conditions in the present invention, the {111} orientation is increased, so that the upper layer The crystal orientation degree to the {111} plane of the TiN layer is increased.
The C component of the TiCN layer constituting the second intermediate layer has the effect of improving the hardness of the layer, and the N component has the effect of improving the strength of the layer.
Composition formula: Ti (C 1-Y N Y )
When the content ratio Y of the N component is less than 0.5, the toughness and impact resistance of the TiCN layer are lowered and chipping is likely to occur, while the content ratio Y of the N component is 0.9. Since the improvement of the high-temperature hardness of the TiCN layer cannot be expected when the value exceeds 1, the value of the content ratio Y of the N component in the layer is set to 0.5 to 0.9 (however, the atomic ratio).
This second intermediate layer (TiCN layer) can not only exhibit excellent properties such as toughness and impact resistance when its layer thickness is less than 0.1 μm, but it also has the {100} plane orientation of the lower layer and the first intermediate layer. On the other hand, the layer thickness is insufficient for dividing. On the other hand, if the layer thickness exceeds 1 μm, the high-temperature hardness tends to decrease, so the layer thickness of the second intermediate layer is determined to be 0.1 to 1 μm. .
上部層:
上部層を構成するTiN層は、所定の靭性、高温強度を備え、さらに、塑性変形性にすぐれた{111}面への配向割合が高い結晶組織を有する(下部層あるいは第1中間層からの結晶配向性は、第2中間層によって分断される)。
つまり、第2中間層の上に蒸着形成されたTiN層について、電界放出型走査電子顕微鏡を用い、その表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを求めたところ、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフ(図2参照)を示し、このことから、第2中間層の表面に蒸着形成された上部層であるTiN層は、{111}面への配向割合が高い結晶組織を有するものであることがわかる。
Upper layer:
The TiN layer constituting the upper layer has a predetermined toughness and high-temperature strength, and has a crystal structure with a high orientation ratio to the {111} plane excellent in plastic deformability (from the lower layer or the first intermediate layer). The crystal orientation is divided by the second intermediate layer).
That is, for the TiN layer deposited on the second intermediate layer, an electron beam is applied to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. Irradiate and measure the tilt angle formed by the normal of the {111} plane which is the crystal plane of the crystal grain with respect to the normal of the surface polished surface. The measured inclination angle within the range is divided for every pitch of 0.25 degrees, and the inclination angle number distribution graph obtained by summing up the frequencies existing in each division is obtained, and is within the range of 0 to 15 degrees. Inclination angle number distribution graph in which the highest peak exists in the inclination angle section and the total of the frequencies existing in the range of 0 to 15 degrees occupies 50% or more of the entire frequency in the inclination angle distribution graph (see FIG. 2), and from this, TiN layer is a top layer deposited on the surface of the layer is found to be one having an orientation ratio is high crystal structure of the {111} plane.
この上部層(TiN層)は、所定の靭性、高温強度に加え、すぐれた塑性変形性を有し、高硬度材の高速切削加工時において、硬質被覆層にチッピング、境界異常損傷、欠損が発生することを防止する作用を有するが、その層厚が0.3μm未満では上記のすぐれた特性を十分発揮することはできず、被削材の仕上げ面精度向上を期待できず、一方、その層厚が2.0μmを超えると、欠損を発生しやすくなるので、上部層の平均層厚は、0.3〜2.0μmと定めた。
また、上部層におけるTiN結晶粒の粒径も、下部層の場合と同様に、一般的に層厚が大になるほど結晶粒径も大になり、結晶粒径が大きくなると耐チッピング性が低下し、逆に、結晶粒径が小さくなると、硬さは上がるが結晶粒界強度が低下しすきとり摩耗が発生するため、上部層のTiN結晶粒の平均結晶粒径は10〜70nmとすることが望ましい。
なお、上部層の平均結晶粒径とは、第2中間層(TiCN層)と上部層との界面から、0.2μmの深さだけ上部層側に位置する上部層横断面内におけるTiN結晶粒の平均結晶粒径であり、平均結晶粒径の測定は、第2中間層(TiCN層)と上部層との界面から、0.2μmの深さだけ上部層側に位置する上部層横断面内において、所定長さの直線範囲内に存在する結晶粒の数を測定することにより求め、任意の5箇所で求めた値の平均値を平均結晶粒径の値とした。
This upper layer (TiN layer) has excellent toughness and high-temperature strength, as well as excellent plastic deformability, and chipping, abnormal boundary damage, and chipping occur in the hard coating layer during high-speed cutting of hard materials. However, if the layer thickness is less than 0.3 μm, the above-mentioned excellent characteristics cannot be fully exhibited, and improvement in the finished surface accuracy of the work material cannot be expected. If the thickness exceeds 2.0 μm, defects are likely to occur, so the average layer thickness of the upper layer was determined to be 0.3 to 2.0 μm.
In addition, the grain size of the TiN crystal grains in the upper layer is generally larger as the layer thickness is larger, as in the lower layer, and the chipping resistance decreases as the crystal grain size increases. On the contrary, when the crystal grain size is reduced, the hardness is increased but the grain boundary strength is lowered and scraping wear occurs. Therefore, the average grain size of the TiN crystal grains in the upper layer may be 10 to 70 nm. desirable.
The average crystal grain size of the upper layer is the TiN crystal grains in the upper layer cross section located on the upper layer side by a depth of 0.2 μm from the interface between the second intermediate layer (TiCN layer) and the upper layer. The average crystal grain size is measured within the upper layer cross section located on the upper layer side by a depth of 0.2 μm from the interface between the second intermediate layer (TiCN layer) and the upper layer. In the above, the number of crystal grains present within a linear range of a predetermined length was determined, and the average value of the values determined at arbitrary five locations was defined as the average crystal grain size.
この発明の被覆cBN基焼結工具の工具基体の表面粗度は、Raで0.05以上1.0以下であることが望ましい。表面粗度Raが0.05以上であれば、アンカー効果による基体と硬質被覆層の下部層との付着強度の向上が期待でき、一方、Raが1.0を超えるようになると、被削材の仕上げ面精度に悪影響を及ぼすようになるからである。 The surface roughness of the tool substrate of the coated cBN-based sintered tool according to the present invention is preferably 0.05 to 1.0 in terms of Ra. If the surface roughness Ra is 0.05 or more, an improvement in adhesion strength between the base body and the lower layer of the hard coating layer can be expected due to the anchor effect. On the other hand, if Ra exceeds 1.0, the work material This is because it will adversely affect the accuracy of the finished surface.
この発明の被覆cBN基焼結工具は、硬質被覆層を下部層、第1中間層、第2中間層および上部層で構成し、硬質被覆層の上部層を{111}面配向度の高いTiN層とすることによって、特にすぐれた高温硬さ、靭性、耐衝撃性を兼ね備えることから、合金工具鋼や軸受け鋼の焼入れ材などの高硬材からなる被削材の、高熱発生を伴う高速切削という厳しい切削条件下であっても、前記硬質被覆層にチッピング、境界異常損傷、欠損の発生はなく、しかも、被削材の仕上げ面精度の低下を招くことなく、長期の使用に亘って、安定した切削性能を発揮することができる。 In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of the lower layer, the first intermediate layer, the second intermediate layer, and the upper layer, and the upper layer of the hard coating layer is TiN having a high degree of {111} plane orientation. Because it has excellent high-temperature hardness, toughness, and impact resistance, the high-speed cutting with high heat generation of work materials made of hard materials such as hardened materials of alloy tool steel and bearing steel. Even under severe cutting conditions, there is no occurrence of chipping, boundary abnormal damage, or chipping in the hard coating layer, and without causing deterioration of the finished surface accuracy of the work material, over a long period of use, Stable cutting performance can be exhibited.
つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。 Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al2O3粉末、WC粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体A〜Jをそれぞれ製造した。 As raw material powders, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, Al 2 O 3 powder, and WC powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. Were mixed in the composition shown in Table 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. Then, the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In a state in which the ligated body is superposed on a separately prepared WC-based cemented carbide support piece having a size of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. The ultra-high pressure sintering equipment of The pressure is 4 GPa, the temperature is 1200 to 1400 ° C., the holding time is 0.8 hours, and the upper and lower surfaces are polished with a diamond grindstone after sintering. Then, it is divided into a regular triangle shape with a side of 3 mm by a wire electric discharge machine, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of CIS standard SNGA120212 (thickness: 4.76 mm × one side) Cu: 26%, Ti: 5%, Ni: 2.5% in the brazing part (corner part) of the WC-base cemented carbide insert body having a length of 12.7 mm square) , Ag: brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the honing process is performed on the cutting edge portion with a width of 0.13 mm and an angle of 25 °. To finish polishing Further, tool bases A to J each having an insert shape of ISO standard SNGA12041 were manufactured.
(a)ついで、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、第1中間層、第2中間層および上部層形成用金属Tiを、また、他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった下部層形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される目標組成および目標層厚の(Ti1−XAlX)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−50Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記下部層の表面に所定層厚のTiN層からなる第1中間層を形成し、
(e)ついで、
基体温度:250〜300℃、
バイアス電圧:−50〜−300V、
アーク放電電流:60〜100A、
装置内ガス流量:窒素(N2)ガス 300〜500sccm,
メタン(CH4)ガス 100〜300sccm、
装置内ガス圧力:1.3〜4Pa、
の範囲内の条件で蒸着することにより、表2に示される目標組成および目標層厚のTi(C1−YNY)層からなる第2中間層を蒸着形成し、
(f)ついで、基体温度を250〜300℃に変更する以外は前記(d)と同じ条件で蒸着することにより、表2に示される目標層厚の{111}面配向を有するTiN層からなる上部層を蒸着形成することにより、
本発明の被覆cBN基焼結工具1〜10(本発明工具1〜10という)をそれぞれ製造した。
(A) Next, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. The first intermediate layer, the second intermediate layer and the upper layer forming metal Ti are used as the cathode electrode (evaporation source) on one side, and the cathode on the other side. As an electrode (evaporation source), Ti-Al alloy for forming a lower layer having a component composition corresponding to the target composition shown in Table 2, respectively, is arranged opposite to the rotary table,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the rotating tool base while rotating on the rotary table, and a lower layer is formed. An arc discharge is generated by flowing a current of 100 A between the Ti-Al alloy and the anode electrode, so that the target composition and target layer thickness (Ti 1-X Al) shown in Table 2 are formed on the surface of the tool base. X ) depositing the N layer as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −50 V on the tool base rotating while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, an arc discharge is generated by flowing a predetermined current in a range of 50 to 200 A between the cathode electrode and the anode electrode of the metal Ti, and the surface of the lower layer Forming a first intermediate layer made of a TiN layer having a predetermined layer thickness,
(E) Next,
Substrate temperature: 250-300 ° C.
Bias voltage: −50 to −300V
Arc discharge current: 60-100A
Gas flow rate in the apparatus: nitrogen (N 2 ) gas 300 to 500 sccm,
Methane (CH 4 ) gas 100-300 sccm,
In-apparatus gas pressure: 1.3-4 Pa,
To form a second intermediate layer consisting of a Ti (C 1-Y N Y ) layer having a target composition and a target layer thickness shown in Table 2,
(F) Next, a TiN layer having a {111} plane orientation with a target layer thickness shown in Table 2 is formed by vapor deposition under the same conditions as in (d) except that the substrate temperature is changed to 250 to 300 ° C. By vapor-depositing the upper layer,
Coated cBN-based
また、比較の目的で、
(a’)上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、TiN層形成用金属TiおよびTiAlN層形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、
(b’)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c’)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、Ti−Al合金のカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti1−XAlX)N層を硬質被覆層の下部層として蒸着形成し、
(d’)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−50Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記下部層の表面に表3に示される所定層厚のTiN層を形成することにより、従来被覆cBN基焼結工具1〜10(従来工具1〜10という)をそれぞれ製造した。
For comparison purposes,
(A ′) Each of the tool bases A to J described above is ultrasonically cleaned in acetone and dried in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance away from each other, TiN layer forming metal Ti and TiAlN layer forming Ti-Al alloy are arranged facing each other across the rotary table as a cathode electrode (evaporation source) on one side. ,
(B ′) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. Applying a -200V DC bias voltage to the rotating tool base while rotating on the table, and bombarding the surface of the tool base with argon ions,
(C ′) Nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, and a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and Ti—Al An arc discharge is generated by passing a current of 100 A between the cathode and anode electrodes of the alloy, so that the target composition and target layer thickness (Ti 1-X Al X shown in Table 4) are formed on the surface of the tool base. ) N layer is deposited as a lower layer of the hard coating layer,
(D ′) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a reaction atmosphere of 2 Pa, and the tool base that rotates while rotating on the rotary table has a range of −10 to −50 V. In a state where a predetermined DC bias voltage is applied, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the metal Ti to generate arc discharge, and the lower layer Conventionally coated cBN-based
この結果得られた本発明工具1〜10および従来工具1〜10の下部層について、その組成を透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示し、また、本発明工具1〜10の第2中間層の組成についても同様に測定したところ、目標組成と実質的に同じ組成を示した。
さらに、本発明工具1〜10および従来工具1〜10の各層の層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
また、本発明工具1〜10の下部層を構成する(Ti1−XAlX)N層および上部層を構成するTiN層、さらに、従来工具1〜10の(Ti1−XAlX)N層およびTiN層のそれぞれを構成する結晶粒の平均結晶粒径を求め、その値を表2、表3に示す。なお、下部層の平均結晶粒径は、工具基体の表面と下部層との界面から、0.4μmの深さだけ下部層側に位置する下部層横断面内において、また、上部層の平均結晶粒径は、第2中間層と上部層との界面から、0.2μmの深さだけ上部層側に位置する上部層横断面内において、透過型電子顕微鏡を用いて、1μmの直線範囲内に存在する結晶粒の数を測定し、この測定を5箇所で行い、それぞれの値の平均値を求め、これを平均結晶粒径とした。
About the lower layer of this invention tool 1-10 obtained as a result and the conventional tool 1-10, when the composition was measured by the energy dispersive X-ray analysis using a transmission electron microscope, each of target composition and substantial The composition of the second intermediate layer of the
Furthermore, when the layer thickness of each layer of the
Further, constituting the lower layer of the present invention the tool 1~10 (Ti 1-X Al X ) N layer and TiN layer constituting the upper layer, further, conventional tools 1~10 (Ti 1-X Al X ) N The average crystal grain size of the crystal grains constituting each of the layers and the TiN layer was determined, and the values are shown in Tables 2 and 3. The average crystal grain size of the lower layer is within the lower layer cross section located at the lower layer side by a depth of 0.4 μm from the interface between the surface of the tool base and the lower layer. The particle size is within the linear range of 1 μm using a transmission electron microscope in the upper layer cross section located at the upper layer side by a depth of 0.2 μm from the interface between the second intermediate layer and the upper layer. The number of existing crystal grains was measured, this measurement was performed at five locations, the average value of each value was determined, and this was taken as the average crystal grain size.
また、本発明工具1〜10の上部層(TiN層)について、電界放出型走査電子顕微鏡を用い、その表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを求めた。その結果を、表2に{111}面配向割合として示す。
この表2から明らかなように、本発明工具1〜10の上部層(TiN層)について、0〜15度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めることがわかる。
参考のため、本発明工具1〜10の第1中間層(TiN層)および従来工具1〜10のTiN層について、その{111}面および{100}面についての傾斜角度数分布グラフを作成したところ、{111}面については、0〜15度の範囲内の傾斜角区分に最高ピークは存在せず、しかも、前記0〜15度の範囲内に存在する度数の合計も、傾斜角度数分布グラフにおける度数全体の20%以下にすぎなかった。一方、{100}面については、0〜15度の範囲内の傾斜角区分に最高ピークが存在し、しかも、前記0〜15度の範囲内に存在する度数の合計は、表3、表4にそれぞれ示すように、傾斜角度数分布グラフにおける度数全体の40%以上という値を示していた。このことから、本発明工具1〜10の第1中間層(TiN層)および従来工具1〜10のTiN層では、それぞれ{100}面配向を有していることが明らかである。
Moreover, about the upper layer (TiN layer) of this invention tool 1-10, using a field emission type | mold scanning electron microscope, an electron beam is individually sent to the crystal grain which has the cubic crystal lattice which exists in the measurement range of the surface polishing surface. Irradiate and measure the tilt angle formed by the normal of the {111} plane which is the crystal plane of the crystal grain with respect to the normal of the surface polished surface. The measured inclination angle within the range was divided for each pitch of 0.25 degrees, and the inclination angle number distribution graph obtained by counting the frequencies existing in each division was obtained. The results are shown in Table 2 as the {111} plane orientation ratio.
As is apparent from Table 2, the total number of frequencies existing in the tilt angle section within the range of 0 to 15 degrees for the upper layer (TiN layer) of the
For reference, an inclination angle number distribution graph was created for the {111} plane and {100} plane of the first intermediate layer (TiN layer) of the
つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明工具1〜10および従来工具1〜10ついて、以下に示す切削条件A〜Cで高速連続切削試験を実施した。
[切削条件A]
被削材:JIS・SCM420(硬さ:HRC60)の丸棒、
切削速度: 250 m/min.、
切り込み: 0.12 mm、
送り: 0.08 mm/rev.、
切削時間: 10 分、
の条件での浸炭焼入れ合金鋼の乾式連続高速切削加工試験(通常の切削速度は180m/min.)、
[切削条件B]
被削材:JIS・SCr420(硬さ:HRC61)の丸棒、
切削速度: 225 m/min.、
切り込み: 0.08 mm、
送り: 0.10 mm/rev.、
切削時間: 10 分、
の条件での浸炭焼入れクロム鋼の乾式連続高速切削加工試験(通常の切削速度は180m/min.)、
[切削条件C]
被削材:JIS・SUJ2(硬さ:HRC61)の丸棒、
切削速度: 275 m/min.、
切り込み: 0.06 mm、
送り: 0.08 mm/rev.、
切削時間: 10 分、
の条件での焼入れ軸受鋼の乾式連続高速切削加工試験(通常の切削速度は170m/min.)、
そして、上記の各切削加工試験における被削材の仕上げ面精度について、JIS・B0601−1994に従い、Rz(μm)を測定した。この測定結果を表4に示す。
なお、従来工具1〜10については、切削時間終了後、すべて被削材の仕上げ面精度(Rz(μm))が基準値(切削条件A,Bでは1.0μm、切削条件Cでは0.7μm)から外れてしまっていたため、上記所定の基準値を超えたときの切削時間を寿命(分)と判断し、表4には、従来工具1〜10の寿命(分を記載した。
Next, with the above various coated cBN-based sintered tools, the
[Cutting conditions A]
Work material: JIS / SCM420 (Hardness: HRC60) round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 0.12 mm,
Feed: 0.08 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of carburized and hardened alloy steel under normal conditions (normal cutting speed is 180 m / min.),
[Cutting conditions B]
Work material: JIS · SCr420 (hardness: HRC61) round bar,
Cutting speed: 225 m / min. ,
Cutting depth: 0.08 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high speed cutting test of carburized and quenched chrome steel under the conditions of (normal cutting speed is 180 m / min.),
[Cutting conditions C]
Work material: JIS / SUJ2 (Hardness: HRC61) round bar,
Cutting speed: 275 m / min. ,
Cutting depth: 0.06 mm,
Feed: 0.08 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of quenched bearing steel under the conditions of (normal cutting speed is 170 m / min.),
And Rz (micrometer) was measured according to JIS * B0601-1994 about the finishing surface precision of the work material in each said cutting test. The measurement results are shown in Table 4.
For the
表2〜4に示される結果から、本発明被覆cBN基焼結工具(本発明工具)は、いずれも硬質被覆層が、0.5〜2.5μmの層厚を有する下部層と、0.1〜1.5μmの層厚を有する第1中間層と、0.1〜1μmの層厚を有する第2中間層と、0.3〜2μmの層厚を有する上部層とからなり、さらに、特に、上記上部層が{111}面配向を有し、すぐれた靭性、耐衝撃性、塑性変形性を兼ね備えることから、合金工具鋼や軸受け鋼の焼入れ材などの高硬材からなる被削材の、高熱発生を伴う高速切削という厳しい切削条件下であっても、前記硬質被覆層にチッピング、境界異常損傷、欠損の発生はなく、しかも、被削材の仕上げ面精度の低下を招くことなく、長期の使用に亘って、安定した切削性能を発揮するのに対して、硬質被覆層がTiAlN層と{100}面配向を有するTiNからなる従来被覆cBN基焼結工具(従来工具)は、特に硬質被覆層の靭性不足が原因で、刃先に境界異常損傷や欠損が発生しやすく、また、使用に伴い被削材の仕上げ面精度が低下(被削材の表面粗さが増大)し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 2 to 4, the coated cBN-based sintered tool of the present invention (tool of the present invention) has a hard coating layer having a lower layer having a layer thickness of 0.5 to 2.5 μm, A first intermediate layer having a layer thickness of 1 to 1.5 μm, a second intermediate layer having a layer thickness of 0.1 to 1 μm, and an upper layer having a layer thickness of 0.3 to 2 μm; In particular, since the upper layer has {111} plane orientation and has excellent toughness, impact resistance, and plastic deformation, the work material is made of a hard material such as a hardened material of alloy tool steel or bearing steel. Even under severe cutting conditions such as high-speed cutting with high heat generation, there is no occurrence of chipping, abnormal boundary damage, or chipping in the hard coating layer, and without lowering the finished surface accuracy of the work material. , While exhibiting stable cutting performance over a long period of use, hard coating layer Conventional coated cBN-based sintered tools (conventional tools) consisting of a TiAlN layer and TiN with {100} plane orientation tend to cause abnormal boundary damage or chipping at the cutting edge, especially due to insufficient toughness of the hard coating layer. It is clear that the finished surface accuracy of the work material decreases with use (the surface roughness of the work material increases), and the service life is reached in a relatively short time.
上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削であっても、前記硬質被覆層がすぐれた耐境界異常損傷性、耐欠損性を発揮し、また、被削材の仕上げ面精度の低下を招くことなく、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cBN-based sintered tool of the present invention has high hardness such as hardened material of alloy tool steel and bearing steel, as well as cutting under normal cutting conditions such as various steels and cast iron. Even in high-speed cutting of a work material made of a material, the hard coating layer exhibits excellent boundary abnormal damage resistance and fracture resistance, and without incurring a decrease in the finished surface accuracy of the work material, Since it exhibits stable cutting performance over a long period of time, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.
Claims (2)
(a)上記下部層は、0.5〜2.5μmの層厚を有し、
組成式:(Ti1−XAlX)N
で表した場合、Xが0.3〜0.7(但し、原子比)であるチタンとアルミニウムの複合窒化物層、
(b)上記第1中間層は、0.1〜1.5μmの層厚を有するチタンの窒化物層、
(c)上記第2中間層は、0.1〜1μmの層厚を有し、
組成式:Ti(C1−YNY)
で表した場合、Yが0.5〜0.9(但し、原子比)であるチタンの炭窒化物層、
(d)上記上部層は、0.3〜2μmの層厚を有するチタンの窒化物層であって、かつ、電界放出型走査電子顕微鏡を用い、上記上部層の表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すチタンの窒化物層、
であることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。 Surface-coated cubic boron nitride in which a hard coating layer composed of a lower layer, a first intermediate layer, a second intermediate layer, and an upper layer is deposited on the surface of a tool base made of a cubic boron nitride-based ultrahigh pressure sintered material In the cutting tool made of super high pressure sintered material,
(A) The lower layer has a layer thickness of 0.5 to 2.5 μm,
Composition formula: (Ti 1-X Al X ) N
In this case, a composite nitride layer of titanium and aluminum whose X is 0.3 to 0.7 (atomic ratio),
(B) the first intermediate layer is a titanium nitride layer having a layer thickness of 0.1 to 1.5 μm;
(C) The second intermediate layer has a layer thickness of 0.1 to 1 μm,
Composition formula: Ti (C 1-Y N Y )
, A carbonitride layer of titanium having Y of 0.5 to 0.9 (atomic ratio),
(D) The upper layer is a titanium nitride layer having a layer thickness of 0.3 to 2 μm and is within the measurement range of the surface polished surface of the upper layer using a field emission scanning electron microscope. Each crystal grain having a cubic crystal lattice is irradiated with an electron beam, and an inclination angle formed by a normal line of the {111} plane which is a crystal plane of the crystal grain is made with respect to a normal line of the surface polished surface. Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section In the distribution graph, the highest peak exists in the inclination angle section in the range of 0 to 15 degrees, and the total of the frequencies existing in the range of 0 to 15 degrees is 50% of the entire frequency in the inclination angle frequency distribution graph. Titanium angle distribution graph showing the above ratio Oxide layer,
A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool characterized by
請求項1に記載される表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。 The average crystal grain size of the composite nitride of titanium and aluminum in the lower layer cross section located at the lower layer side by a depth of 0.4 μm from the interface between the surface of the tool base and the lower layer is 100. Average crystal of titanium nitride crystal grains in the upper layer cross section located at the upper layer side by a depth of 0.2 μm from the interface between the second intermediate layer and the upper layer. The particle size is 10-70 nm,
The surface-coated cubic boron nitride-based ultrahigh pressure sintered material cutting tool according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009064529A JP5223743B2 (en) | 2008-03-28 | 2009-03-17 | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008085901 | 2008-03-28 | ||
JP2008085901 | 2008-03-28 | ||
JP2009064529A JP5223743B2 (en) | 2008-03-28 | 2009-03-17 | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009255282A JP2009255282A (en) | 2009-11-05 |
JP5223743B2 true JP5223743B2 (en) | 2013-06-26 |
Family
ID=41383365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009064529A Expired - Fee Related JP5223743B2 (en) | 2008-03-28 | 2009-03-17 | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5223743B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014034923A1 (en) * | 2012-08-31 | 2016-08-08 | 株式会社タンガロイ | Coated cutting tool |
JP6756987B2 (en) * | 2017-08-24 | 2020-09-16 | 株式会社タンガロイ | Cover cutting tool |
JP6916472B2 (en) | 2019-08-30 | 2021-08-11 | 株式会社タンガロイ | Cover cutting tool |
JP7353591B2 (en) * | 2020-05-25 | 2023-10-02 | 株式会社タンガロイ | coated cutting tools |
CN116997430A (en) * | 2021-03-17 | 2023-11-03 | 三菱综合材料株式会社 | Surface-coated cutting tool |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331469A (en) * | 1989-06-27 | 1991-02-12 | Nippon Steel Corp | Coated tool steel and production thereof |
JPH0890310A (en) * | 1994-09-19 | 1996-04-09 | Mitsubishi Materials Corp | Surface coat cutting tool |
JP3416937B2 (en) * | 1994-10-28 | 2003-06-16 | 住友電気工業株式会社 | Laminate |
JP2004283930A (en) * | 2003-03-20 | 2004-10-14 | Nachi Fujikoshi Corp | Hob for cutting and gear processing method |
JP4591815B2 (en) * | 2003-12-01 | 2010-12-01 | 三菱マテリアル株式会社 | Cutting tool made of surface-coated cubic boron nitride-based sintered material with excellent wear resistance due to hard coating layer |
JP4725774B2 (en) * | 2004-12-27 | 2011-07-13 | 三菱マテリアル株式会社 | Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel |
-
2009
- 2009-03-17 JP JP2009064529A patent/JP5223743B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009255282A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5099586B2 (en) | Surface-coated cutting tool with excellent fracture resistance due to hard coating layer | |
JP5418833B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP4748450B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5935479B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting | |
JP2008188734A (en) | Surface coated cutting tool with hard coating layer exercising superior chipping resistance | |
JP5223743B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP2008254159A (en) | Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material | |
JP2009090395A (en) | Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting | |
JP5861982B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting | |
JP5240666B2 (en) | Surface-coated cutting tool with excellent chip evacuation | |
JP2007152542A (en) | Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent chipping resistance in heavy cutting of high hardness steel | |
JP4883471B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP4883472B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP5240665B2 (en) | Surface-coated cutting tool with excellent chip evacuation | |
JP5402155B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP5321360B2 (en) | Surface coated cutting tool | |
JP2008302439A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material | |
JP2010284759A (en) | Surface coated cutting tool | |
JP5321356B2 (en) | Surface coated cutting tool | |
JP2011051060A (en) | Surface coating cutting tool | |
JP4883479B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel | |
JP2005022021A (en) | Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting | |
JP5229487B2 (en) | Surface-coated cutting tool with excellent chip evacuation | |
JP5590332B2 (en) | Surface coated drill with excellent wear resistance and chip evacuation | |
JP5246596B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5223743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |