[go: up one dir, main page]

JP5219179B1 - Circular ring reinforcement structure for structural members subjected to shear bending - Google Patents

Circular ring reinforcement structure for structural members subjected to shear bending Download PDF

Info

Publication number
JP5219179B1
JP5219179B1 JP2012250992A JP2012250992A JP5219179B1 JP 5219179 B1 JP5219179 B1 JP 5219179B1 JP 2012250992 A JP2012250992 A JP 2012250992A JP 2012250992 A JP2012250992 A JP 2012250992A JP 5219179 B1 JP5219179 B1 JP 5219179B1
Authority
JP
Japan
Prior art keywords
web
circular ring
shear
stiffener
flanges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012250992A
Other languages
Japanese (ja)
Other versions
JP2014098281A (en
Inventor
敏郎 鈴木
Original Assignee
株式会社 構造材料研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 構造材料研究会 filed Critical 株式会社 構造材料研究会
Priority to JP2012250992A priority Critical patent/JP5219179B1/en
Application granted granted Critical
Publication of JP5219179B1 publication Critical patent/JP5219179B1/en
Publication of JP2014098281A publication Critical patent/JP2014098281A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

【課題】せん断曲げを受けるウェブの両端にフランジを有する構造部材について、早期のウェブせん断座屈を回避してせん断降伏荷重を確保し、構造部材の塑性変形能力の向上を目論む。
【解決手段】本発明のウェブ1の上下にフランジ2を有する構造部材がウェブ面に円形環3が添接された代表的補強構造の全景を(a)図の斜視図として示したが、連続する円形環とそれぞれの間に縦方向スティフナー4を設け上下フランジ2と結ぶ。(b)図にウェブの面内応力の釣合いを示したが、円形環内側領域では面内せん断に伴う点線矢印で示す圧縮主応力−σは円形環の部材軸力σcと釣合い実線矢印で示す引張主応力+σが支配する張力場となり、加力初期段階から引張面となることでウェブのせん断降伏荷重を確保でき、更に円形環を囲むフランジと縦方向スティフナーとでトラス的釣合場を構成し、せん断降伏後も安定して耐力を維持し塑性変形能力の向上を図る。
【選択図】図11
A structural member having flanges at both ends of a web subjected to shear bending is designed to improve the plastic deformation ability of the structural member by avoiding early web shear buckling and securing a shear yield load.
A perspective view of a typical reinforcing structure in which a structural member having flanges 2 on the upper and lower sides of a web 1 according to the present invention has a circular ring 3 attached to the web surface is shown as a perspective view in FIG. A vertical stiffener 4 is provided between the circular ring and the upper and lower flanges 2. (b) Although the balance of the in-plane stress of the web is shown in the figure, in the circular ring inner region, the compressive principal stress -σ indicated by the dotted arrow accompanying the in-plane shear is the axial force σ c of the circular ring and the balanced solid arrow. The tension field is controlled by the tensile principal stress + σ shown, and the shear yield load of the web can be secured by becoming the tension surface from the initial application stage. Furthermore, a truss-like balance field is created by the flange surrounding the circular ring and the longitudinal stiffener. Constructed to maintain stable yield strength after shear yield and improve plastic deformation capacity.
[Selection] Figure 11

Description

本発明は、ウェブの両端にフランジを有する構造部材に関するもので、せん断曲げを受けてウェブに付加するせん断力に対し早期のせん断座屈を回避してせん断降伏荷重を確保し、降伏後の耐力低下を防いで構造部材の塑性変形能力を高めることを意図するものである。これを達成するために最適の形状を提案し且つ出来るだけ簡単な補強構造とする。   The present invention relates to a structural member having flanges at both ends of a web, and avoids early shear buckling against shearing force applied to the web after being subjected to shear bending to ensure shear yield load and yield strength after yielding. This is intended to prevent the deterioration and increase the plastic deformation capacity of the structural member. In order to achieve this, an optimum shape is proposed and a reinforcement structure as simple as possible is provided.

材端部から逆対称曲げモーメントを受ける構造部材に対し、材端部近傍のフランジで先行して降伏する場合に塑性変形能力を高めるよう意図する補強構造がこれまでの主流で、構造部材のせん断力が大きくウェブが先行して塑性化する場合については降伏後の耐力維持を図る試みは多くはない。   In contrast to structural members that receive anti-symmetric bending moments from the end of the material, the conventional reinforcement structure intended to increase the plastic deformation capacity when yielding at the flange in the vicinity of the end of the material has been the mainstream so far. There are not many attempts to maintain the yield strength after yielding when the force is large and the web is plasticized in advance.

材長の短い構造部材に対して、加わるせん断力に対しウェブの塑性変形能力を高める例としては、ウェブを補強してせん断座屈を避けるもの,ウェブに降伏点の低い鋼材を使用するもの,構造部材の端部乃至中央部の接合部位を工夫するもの等、降伏後のせん断耐力の維持を意図する試みが散見される。   Examples of increasing the plastic deformation capacity of the web against the shear force applied to structural members with a short material length include those that reinforce the web to avoid shear buckling, those that use steel with a low yield point for the web, There are some attempts to maintain the shear strength after yielding, such as devising the joint part between the end part and the center part of the structural member.

特開 平06−017507 公開特許公報Japanese Patent Laid-Open No. 06-017507 特開 平10−220061 公開特許公報Japanese Patent Laid-Open No. 10-220061 特開2002−173977 公開特許公報Japanese Patent Application Laid-Open No. 2002-173977 特開2003−064901 公開特許公報Japanese Patent Application Laid-Open No. 2003-064901 特開2008−133694 公開特許公報JP 2008-133694 A 特開2011−113264 公開特許公報Japanese Patent Application Laid-Open No. 2011-113264 特開2011−202424 公開特許公報Japanese Patent Application Laid-Open No. 2011-202424

解決しようとする課題は、せん断曲げを受けるウェブの両端に突出フランジを持つ構造部材について、面内せん断力によりウェブがフランジに先行して塑性化する場合に、ウェブの加力初期段階でのせん断座屈を回避してせん断降伏荷重を確保し、降伏後の変形推移にも耐力低下することなく塑性変形能力を高めることである。更に、ウェブに連続開口を持つ構造部材についても同様の力学性能となるようにする。   The problem to be solved is that in the case of a structural member having protruding flanges at both ends of the web subjected to shear bending, when the web is plasticized ahead of the flange due to in-plane shearing force, It is to avoid buckling and secure a shear yield load, and to increase the plastic deformation capacity without lowering the yield strength even in the deformation transition after yielding. Further, the structural member having a continuous opening in the web is made to have the same mechanical performance.

面内せん断によりウェブが安定して降伏せん断荷重に至るよう、ウェブ面に円形環を添接して補強するものである。円形環を金属平板に添接することで平板面内の圧縮主応力をアーチ効果により円形環部材の軸力で受け止め、円形環で囲まれる平板領域で引張主応力が支配する力学的釣合いを保つようにする。   A circular ring is attached to the web surface to reinforce it so that the web stably reaches the yield shear load by in-plane shear. By attaching the circular ring to the metal flat plate, the compressive principal stress in the flat plate surface is received by the axial force of the circular ring member by the arch effect, and the mechanical balance governed by the tensile principal stress is maintained in the flat plate region surrounded by the circular ring. To.

ウェブがせん断力を受けると、初期の純せん断場から徐々に斜め引張主応力が支配する張力場へと移行する。せん断変形の進行に伴いウェブの引張主応力に釣合うよう円形環を囲むフランジと縦方向スティフナーとでトラス的力の釣合いを考え、降伏後も耐力低下することなく塑性変形能力を向上させることを意図している。   When the web is subjected to a shearing force, it gradually shifts from an initial pure shear field to a tension field that is governed by a diagonal tensile principal stress. Consider the balance of truss-like forces between the flange surrounding the circular ring and the longitudinal stiffener to balance the tensile principal stress of the web as shear deformation progresses, and improve the plastic deformation capacity without lowering the yield strength after yielding. Intended.

ウェブに円形環を補強することで円形環内側領域は引張応力状態になるため、円形環と同心円となる円形穴を設けても力の釣合いが崩れることはなく、円形環を周辺のフランジとスティフナーとで安定した構造とし、円形穴中心線上の最小断面となるウェブのせん断降伏荷重を確保し且つ降伏後も前記せん断耐力が徐々に増加するようにする。   By reinforcing the circular ring on the web, the inner area of the circular ring is in a tensile stress state, so even if a circular hole that is concentric with the circular ring is provided, the balance of force is not lost, and the circular ring is connected to the surrounding flange and stiffener. Thus, the shear yield load of the web having the minimum cross section on the center line of the circular hole is secured, and the shear strength is gradually increased even after yielding.

図9は円形金属平板の外周に円形環枠を設けた場合の面内応力の釣合いを示す模式図である。(a)図は円形環枠からせん断力が作用する場合で、せん断変形の進行に伴い円形環と共に円形金属平板は斜め45度方向を軸とする楕円形に変形する。面内せん断に伴う点線矢印で示す圧縮主応力は円形環の部材軸力と釣合い、加力の初期段階から塑性変形領域に至るまで実線矢印で示す引張主応力が支配する張力場となる。   FIG. 9 is a schematic diagram showing a balance of in-plane stresses when a circular ring frame is provided on the outer periphery of a circular metal flat plate. (a) The figure shows a case where a shearing force is applied from a circular ring frame. As the shear deformation progresses, the circular metal plate and the circular metal plate are deformed into an elliptical shape with an angle of 45 degrees as an axis. The compressive principal stress indicated by the dotted arrow accompanying the in-plane shear is balanced with the axial force of the member of the circular ring and becomes a tension field governed by the tensile principal stress indicated by the solid arrow from the initial stage of the applied force to the plastic deformation region.

図10は円形環の力学的特性を示した模式図であり、面内せん断を受けることは(a)図のように捩りを受けることに相当し、円形環であることは(b)図のように構造部材が捩り剛性の低い矩形断面であっても円弧形状であることから回転変形が拘束され、そのことは捩り剛性が極めて高くなることと等価であり、円形金属平板がせん断降伏して以降も枠材は暫く弾性状態にあり降伏後の耐力維持に繋がる。   FIG. 10 is a schematic diagram showing the mechanical characteristics of a circular ring, and receiving in-plane shear corresponds to receiving a twist as shown in FIG. 10 (a), and that a circular ring is shown in FIG. Thus, even if the structural member has a rectangular cross section with low torsional rigidity, it is arc-shaped, so rotational deformation is constrained, which is equivalent to extremely high torsional rigidity. After that, the frame material is in an elastic state for a while and leads to maintenance of yield strength after yielding.

図11(a)はフランジ2に挟まれるウェブ1が円形環3で補強された構造部材の全景を示す斜視図であり、連続する円形環の間に縦方向スティフナー4を設けている。(b)図にウェブの面内応力の釣合いを示したが、円形環内側領域では面内せん断に伴う圧縮主応力−σは円形環の部材軸力σcと釣合い引張主応力+σが支配する張力場となり、円形環を囲む矩形領域をトラス機構として安定した力の釣合いが確保できる。 FIG. 11A is a perspective view showing a whole view of the structural member in which the web 1 sandwiched between the flanges 2 is reinforced with a circular ring 3, and a vertical stiffener 4 is provided between successive circular rings. FIG. 5B shows the balance of the in-plane stress of the web. In the inner region of the circular ring, the compression principal stress −σ accompanying the in-plane shear is governed by the member axial force σ c of the circular ring and the balance tensile principal stress + σ. It becomes a tension field, and a stable balance of force can be secured by using a rectangular region surrounding the circular ring as a truss mechanism.

ウェブに円形環と縦スティフナーを連続配置した構造部材の代表図である。It is a typical view of a structural member in which a circular ring and a vertical stiffener are continuously arranged on a web. 円形環径及び縦スティフナー間隔との力学的関りについての説明図である。It is explanatory drawing about the dynamic relationship with a circular ring diameter and a vertical stiffener space | interval. ウェブ表面に円形環裏面に縦スティフナーを配置する部材の構成図である。It is a block diagram of the member which arrange | positions a vertical stiffener in the circular ring back surface on the web surface. 円形環と縦スティフナーの配置に伴う力学的安定性に関する説明図である。It is explanatory drawing regarding the mechanical stability accompanying arrangement | positioning of a circular ring and a vertical stiffener. 上下フランジに並行する横スティフナーが配置された部材の構成図である。It is a block diagram of the member by which the horizontal stiffener parallel to an up-and-down flange is arrange | positioned. 円形環上下円弧と裏面で重なる横スティフナーの補強効果の説明図である。It is explanatory drawing of the reinforcement effect of the horizontal stiffener which overlaps with a circular ring upper and lower circular arc on a back surface. ウェブの円形環内側に同心円となる開口部を持つ構造部材の構成図である。It is a block diagram of the structural member which has the opening part which becomes a concentric circle inside the circular ring of a web. ウェブに連続して円形開口部のある構造部材の力学的挙動の説明図である。It is explanatory drawing of the mechanical behavior of the structural member which has a circular opening continuously on a web. 円形環で囲まれた円形金属平板の面内せん断の釣合に関する説明図である。It is explanatory drawing regarding the balance of the in-plane shear of the circular metal flat plate enclosed by the circular ring. 円形環の力学的特性とせん断を受ける平板への補強効果の説明図である。It is explanatory drawing of the mechanical characteristic of a circular ring, and the reinforcement effect to the flat plate which receives a shear. 本発明の円形環補強部材の全景斜視図とウェブ面内応力の釣合図である。It is the whole view perspective view of the circular ring reinforcement member of this invention, and the balance figure of the stress in a web surface.

図1はウェブ1の表裏両面に円形環3を部材長手方向へ等間隔に配し、上下フランジ2を結んで縦方向スティフナー4を設けた本補強構造の代表例である。円形環で囲まれたウェブの内側領域は面内せん断に伴う斜め45度方向の引張主応力が支配する張力場となり、円形環を囲む上下フランジと左右縦方向スティフナーとでトラス機構を形成して力の釣合いを確保する。   FIG. 1 is a representative example of the present reinforcing structure in which circular rings 3 are arranged at equal intervals in the longitudinal direction of a member on both front and back surfaces of a web 1 and a vertical stiffener 4 is provided by connecting upper and lower flanges 2. The inner area of the web surrounded by the circular ring becomes a tension field controlled by the tensile principal stress in the oblique 45 degree direction due to in-plane shear, and a truss mechanism is formed by the upper and lower flanges surrounding the circular ring and the left and right vertical stiffeners. Ensure balance of power.

図3はウェブ片側面1に円形環3を上下フランジ2に近接し且つ裏側面に縦方向スティフナー4を配して円形環外側領域の力学的安定に配慮し、この構造単位を部材長手方向に一定の間隔をとり表裏交互に配して剛性のバランスを確保する。当然、縦方向スティフナーに挟まれた矩形領域は座屈に伴い耐力低下することのない範囲に限られる。   FIG. 3 shows a circular ring 3 on the side 1 of the web and a vertical stiffener 4 on the back side adjacent to the upper and lower flanges 2 in consideration of the mechanical stability of the outer region of the circular ring. Stiffness balance is ensured by arranging the front and back alternately at regular intervals. Naturally, the rectangular region sandwiched between the longitudinal stiffeners is limited to a range in which the yield strength does not decrease with buckling.

図5は円形環3と縦方向スティフナー4とをウェブ片側面1に並べて配し、ウェブの裏側面から上下フランジ2に平行し且つ円形環の円弧上下に接するように横方向スティフナー5を配して構成する。ウェブ平板上の連続する円形環を結んで互いに拘束することで、ウェブ板厚の薄い場合に有効な補強構造となる。   In FIG. 5, the circular ring 3 and the longitudinal stiffener 4 are arranged side by side on the one side 1 of the web. Configure. By connecting continuous circular rings on the web flat plate and restraining each other, the reinforcing structure is effective when the web plate thickness is thin.

図7は円形環3と縦方向スティフナー4とをウェブ片側面1に並べて配し、ウェブ裏側面から円形環の円弧と中立軸上で接するように更に2本の縦方向スティフナーを設けて剛性のバランスをとり、円形環内側のウェブに同心円となる任意径の円形穴6を設け且つ部材長手方向に力学性能を一様とすべく連続開口ウェブ型の構造部材とする。   In FIG. 7, a circular ring 3 and a longitudinal stiffener 4 are arranged side by side on one side 1 of the web, and two further longitudinal stiffeners are provided so as to contact the circular ring arc on the neutral axis from the web back side. In order to balance, a circular hole 6 having an arbitrary diameter which is a concentric circle is provided in the web inside the circular ring, and a continuous opening web type structural member is formed to make the mechanical performance uniform in the longitudinal direction of the member.

図1はウェブ1の表裏両面に円形環3を部材長手方向に等間隔に配し、各円形環の間に縦方向スティフナー4を設けた本発明の代表的補強構造である。部材断面としてウェブ板厚9.0mmのH-1,200x300x9x36とウェブ板厚6.0mmのH-1,200x300x6x30を取上げ、ウェブ両面から断面100mmx19mmの円形環を中央に縦方向スティフナーで一定の幅に囲み連続4区間で構成されている。   FIG. 1 shows a typical reinforcing structure of the present invention in which circular rings 3 are arranged at equal intervals in the longitudinal direction of a member on both front and back surfaces of a web 1 and vertical stiffeners 4 are provided between the circular rings. As a member cross section, we took H-1,200x300x9x36 with a web thickness of 9.0mm and H-1,200x300x6x30 with a web thickness of 6.0mm. From both sides of the web, a circular ring with a cross section of 100mmx19mm was centered by a vertical stiffener with a constant width and 4 sections It consists of

図2の実線はウェブ板厚が9.0mm,幅厚比133の解析結果で、円形環径は960mmで部材せいの80%とし、部材長さ5,200mm,5,600mm,6,000mmは3本の実線で上から下へと対応するが、この範囲では高い塑性変形能力が示されている。これを超える部材長さになると円形環外側のウェブ領域で座屈変形が進行し、降伏後早い段階から不安定な挙動が見られるようになる。   The solid line in Fig. 2 is the analysis result of web thickness of 9.0mm and width-thickness ratio of 133. The circular ring diameter is 960mm and the member length is 80%, and the member lengths of 5,200mm, 5,600mm and 6,000mm are three solid lines. In this range, a high plastic deformation capacity is shown. When the member length exceeds this, buckling deformation proceeds in the web region outside the circular ring, and unstable behavior can be seen from an early stage after yielding.

図2の点線はウェブ板厚が6.0mm,幅厚比200の解析結果で、円形環径は1,020mmで部材せいの85%とし、部材長さは前記例題と同じとしている。平板が薄くなるに従い円形環外側のウェブ領域で座屈変形が起き易くなるため、円形環径を大きくし上下フランジに近づけ添接した。ウェブ面上の円形環は不安定になりやすいため、ウェブの板厚に応じ円形環の周辺構成には十分に配慮する必要である。   The dotted line in FIG. 2 is the analysis result of the web plate thickness of 6.0 mm and the width-thickness ratio of 200. The circular ring diameter is 1,020 mm and the member length is 85%, and the member length is the same as the above example. As the flat plate becomes thinner, buckling deformation is likely to occur in the web region outside the circular ring. Since the circular ring on the web surface tends to be unstable, it is necessary to give sufficient consideration to the peripheral configuration of the circular ring according to the thickness of the web.

図3はウェブ片側面1に円形環3を上下フランジ2に近接し且つ裏側面に縦方向スティフナー4を近づけて配しウェブの円形環外側領域の力学的安定を図り、この構成を部材長手方向に任意間隔で表裏交互に配して剛性のバランスをとる。ウェブ板厚に応じ部材断面はH-1,200x300x4.5x30とH-1,200x300x3.2x25とし、両者とも円形環の直径は960mmで部材せいの80%とし、円形環とスティフナーの断面は前者は100mmx16mm,後者は100mmx12mmとしている。    FIG. 3 shows that a circular ring 3 is arranged on one side 1 of the web, close to the upper and lower flanges 2 and a longitudinal stiffener 4 is arranged close to the back side to achieve mechanical stability of the outer region of the circular ring of the web. The rigidity is balanced by arranging the front and back alternately at arbitrary intervals. Depending on the web plate thickness, the cross-section of the member is H-1,200x300x4.5x30 and H-1,200x300x3.2x25. The latter is 100mmx12mm.

図4の3本の実線はウェブ板厚4.5mm,幅厚比267で円形環両側の縦方向スティフナー間隔は1,200mmとし、実線の上から下へ部材長さ5,600mm,6,000mm,6,400mmと対応する解析結果を示している。図中左下側に矢印で示す座屈荷重Qcr=410kNは降伏せん断荷重Qy=930kNの44%ではあるが、座屈荷重を上回るせん断降伏荷重を確保でき、更にウェブ両面で縦方向スティフナーをずらすことで連続する円形環の間隔を若干広げることができる。 The three solid lines in Fig. 4 have a web thickness of 4.5mm, a width-thickness ratio of 267, and the vertical stiffener spacing on both sides of the circular ring is 1,200mm. The member lengths are 5,600mm, 6,000mm, and 6,400mm from the top to the bottom of the solid line. The corresponding analysis results are shown. The buckling load Q cr = 410kN indicated by the arrow on the lower left side of the figure is 44% of the yield shear load Q y = 930kN, but it can secure a shear yield load that exceeds the buckling load, and the longitudinal stiffener on both sides of the web. By shifting, the interval between successive circular rings can be slightly widened.

図4の3本の点線はウェブ板厚3.2mm,幅厚比375で円形環両側の縦方向スティフナー間隔は1,100mmとし、前記と同じ部材長さに応じる解析結果である。図の左下側に矢印で示す座屈荷重Qcr=150kNはQy=660kNの降伏せん断荷重の23%ではあるが、せん断降伏荷重にまで到達し更に降伏後も安定的に耐力維持し変形する。これらの結果から、平板の弾性座屈荷重は平板の実態強さとは何ら関係ないことが判る。 The three dotted lines in FIG. 4 are the analysis results according to the same member length as described above, with the web plate thickness of 3.2 mm, the width-thickness ratio of 375, and the vertical stiffener spacing on both sides of the circular ring being 1,100 mm. The buckling load Q cr = 150kN indicated by the arrow on the lower left side of the figure is 23% of the yield shear load of Q y = 660kN, but it reaches the shear yield load and further maintains its yield strength after yielding and deforms. . From these results, it can be seen that the elastic buckling load of the flat plate has nothing to do with the actual strength of the flat plate.

図5はウェブ1の片側面に円形環3と縦方向スティフナー4とを並べて配し、ウェブの裏側面から上下フランジに平行し且つ円形環の上下円弧に接するように横方向スティフナー5を配して構成する。部材断面はH-1,200x300xtwx25とし、1,200mmx1,200mmの5区画で材長6,000mmの構造部材で、円形環の直径は900mmで部材せいの75%と若干小さく、円形環とスティフナーの断面は100mmx12mmとしている。   In FIG. 5, the circular ring 3 and the longitudinal stiffener 4 are arranged side by side on one side of the web 1, and the lateral stiffener 5 is arranged from the back side of the web so as to be parallel to the upper and lower flanges and in contact with the upper and lower arcs of the circular ring. Configure. The cross-section of the member is H-1,200x300xtwx25, it is a structural member with a length of 6,000mm in five sections of 1,200mmx1,200mm, the diameter of the circular ring is 900mm and 75% of the member is slightly smaller, the cross section of the circular ring and stiffener is 100mmx12mm It is said.

図6はウェブ板厚が3.2mm,2.3mm,1.6mmとする解析結果を3本の実線で示したが、部材せい1,200mmであることからウェブの幅厚比は375,520,750に相当するが、横方向スティフナーで連続する円形環を拘束し且つ縦方向スティフナーで両フランジと結ぶことでウェブのせん断降伏荷重を確保でき、降伏後もせん断耐力が徐々に増加しつつ推移して十分な塑性変形能力のあることが判る。   Figure 6 shows the analysis results with web thicknesses of 3.2mm, 2.3mm, and 1.6mm as three solid lines, but the web width-thickness ratio is equivalent to 375, 520, and 750 because the member is 1,200mm. However, it is possible to secure the shear yield load of the web by restraining the continuous circular ring with the lateral stiffener and connecting it with both flanges with the longitudinal stiffener, and the shear strength gradually increases after the yield and is sufficient. It can be seen that it has plastic deformation ability.

図6には3本の点線で示した荷重変形関係は実線と同じ結果を横軸の変形角を3倍に広げて表示したもので加力初期段階の力学性状を検証するものである。Qcrで示す座屈荷重は降伏せん断荷重Qyの26%,14%,7%であるものの、図中矢印で示すせん断降伏荷重に至り降伏後の変形にも耐力は維持される。この事実は、弾性座屈荷重が実強度とは関係なく且つ降伏後の力学性状を予測できないことを示している。 In FIG. 6, the load deformation relationship indicated by the three dotted lines is the same result as the solid line, which is displayed by expanding the deformation angle of the horizontal axis three times, and verifies the mechanical properties at the initial stage of applied force. The buckling load indicated by Q cr is 26%, 14%, and 7% of the yield shear load Q y , but the shear yield load indicated by the arrow in the figure is reached and the yield strength is maintained even after deformation. This fact shows that the elastic buckling load is not related to the actual strength and the mechanical properties after yield cannot be predicted.

図7はウェブ片側面1に円形環3を1,200mm毎に添接し且つ裏側面から円形環の円弧に接するように縦方向スティフナー4を添接し、円形環内側領域に同心円となる任意径の円形穴6を設けている。部材断面はH-1,200x300x3.2x25で1,200mmx1,200mmの5区画とする材長6,000mmの構造部材で、円形環の直径は900mmで部材せいの75%とし円形環と縦方向スティフナーの断面は100mmx12mmで、ウェブに設けられる円形穴周りは原則補強しない。   FIG. 7 shows that a circular ring 3 is attached to one side of the web 1 every 1,200 mm, and a longitudinal stiffener 4 is attached so as to contact the circular arc of the circular ring from the back side. A hole 6 is provided. The cross-section of the member is H-1,200x300x3.2x25 and is a structural member with a length of 6,000mm with five sections of 1,200mmx1,200mm. The diameter of the circular ring is 900mm and the cross section of the circular ring and longitudinal stiffener is 75% of the member. It is 100mmx12mm and does not reinforce around the circular hole provided in the web.

図8に示す3本の実線はウェブ円形穴の直径を480mm,600mm,720mmとする解析結果で、部材せい1,200mmに対する開口率は40%,50%,60%である。無開口ウェブのせん断降伏荷重Qy=660kNに対し、円形穴中心線上のウェブ最小断面で換算されるせん断降伏荷重は図中矢印で示す前記数値の60%,50%,40%に相当し、それ以降ウェブの塑性化が進行しても徐々に耐力上昇して推移する。 The three solid lines shown in FIG. 8 are the analysis results when the diameter of the web circular hole is set to 480 mm, 600 mm, and 720 mm, and the opening ratio with respect to the member of 1,200 mm is 40%, 50%, and 60%. For shear opening load Q y = 660kN of non-opening web, the shear yield load converted by the minimum cross section of the web on the center line of the circular hole corresponds to 60%, 50%, 40% of the above-mentioned numerical value indicated by the arrow in the figure, After that, even if the plasticization of the web proceeds, the proof stress gradually increases.

図8に示す3本の点線は実施例3と同じ補強構造部材に対し同じ直径の円形穴を設けた場合の結果で、実線と略重なるように表示されている。連続する円形環が横方向スティフナーで結ばれており、前者の補強構造はスティフナー配置が異なるものの同様の結果となる。なお、せん断に伴う円形環の変形が斜め45度方向を長軸,短軸とする楕円形へ移行するため、円形環とスティフナーとが円弧上で接しても変形を拘束しない。   The three dotted lines shown in FIG. 8 are the results when circular holes having the same diameter are provided for the same reinforcing structural member as in Example 3, and are displayed so as to substantially overlap the solid line. The continuous circular rings are connected by lateral stiffeners, and the former reinforcing structure has the same result although the stiffener arrangement is different. In addition, since the deformation of the circular ring due to the shearing shifts to an elliptical shape having the major axis and the minor axis in the direction of 45 degrees obliquely, the deformation is not constrained even if the circular ring and the stiffener are in contact with each other on the arc.

本明細書で扱った金属材料は、降伏点応力度σy=30kN/cm2,ヤング係数E=20,500kN/cm2の鋼材としている。本補強構造は一般的に多用される普通鋼材を利用し得ること示したが、本補強構造は材種や材質に拘るものではなく高降伏点鋼乃至低降伏点鋼であってもよく、剛性の低い軽金属材料に対しても有効である。 Metallic material covered in this specification, yield stress of σ y = 30kN / cm 2, and a steel Young's modulus E = 20,500kN / cm 2. Although it has been shown that this reinforcement structure can use commonly used ordinary steel materials, this reinforcement structure is not limited to the grade or material, and may be high or low yield point steel, It is also effective for light metal materials with low

本発明の円形環で補強された構造部材は平板面内を純粋な引張応力状態にすることで平板座屈による耐力低下は回避され、これまでの座屈に伴う幅厚比に支配された平板の力学環境を完全に変えるものである。ウェブ板厚にとらわれることなく部材を構成できるため、制振乃至耐震を目的とするウェブせん断降伏型の構造部材として最適である。   The structural member reinforced with the circular ring according to the present invention avoids a decrease in yield strength due to flat plate buckling by making the flat plate surface into a pure tensile stress state, and a flat plate controlled by the width-to-thickness ratio accompanying conventional buckling. It completely changes the dynamic environment. Since the member can be configured without being restricted by the web plate thickness, it is optimal as a web shear yield type structural member for vibration suppression or earthquake resistance.

構造部材に対する円形環の補強をウェブ片側面に添接する場合に、ウェブ裏側面で円形環の円弧と接するように縦方向乃至横方向にスティフナーを設けることで上下フランジとも結ばれウェブ平板に直接支配されない補強構造となるため、極めて薄いウェブとする構造部材として幅広く利用される可能性がある。   When reinforcing a circular ring against a structural member on one side of a web, a vertical or horizontal stiffener is provided on the back side of the web so that it touches the arc of the circular ring. Since it is not a reinforced structure, it may be widely used as a structural member having a very thin web.

本発明の円形環補強構造は、円形環内側に同心円となる円形穴を設けても円中心線上の最小となるウェブ断面に換算されるせん断降伏荷重が確保でき且つ降伏後も徐々に耐力増加して塑性変形能力が高く、同じウェブ板厚でありながら円形穴径によりせん断降伏荷重を変えることができ、制振乃至耐震構造部材になり得るものである。   The circular ring reinforcing structure of the present invention can secure a shear yield load converted to the minimum web cross section on the center line of the circle even if concentric circular holes are provided inside the circular ring, and the yield strength gradually increases after yielding. Thus, the plastic deformation ability is high, the shear yield load can be changed by the diameter of the circular hole while the web thickness is the same, and it can be a vibration-damping or earthquake-resistant structural member.

1. 構造部材のウェブ
2. 構造部材のフランジ
3. 縦方向スティフナー
4. 横方向スティフナー
5. 円形環補強部材
6. ウェブ円形開口部
1. 1. Structural member web 2. Flange of structural member Longitudinal stiffener 4. 4. Horizontal stiffener 5. Circular ring reinforcing member Web circular opening

Claims (4)

ウェブの両端にフランジを有する構造部材について、せん断曲げが作用して加わるせん断力でウェブが先行して降伏する場合の補強構造として、ウェブ片側面乃至両側面に両フランジに近接する円形環と部材軸に直交するスティフナーとを一定間隔毎に添接し、円形環内側のウェブを引張応力面とし且つ前記引張応力と円形環を囲むフランジとスティフナーとのトラス的釣合いにより、ウェブで決まるせん断降伏荷重を確保するとともに構造部材の塑性変形能力の向上を図る補強構造。   For a structural member having flanges at both ends of the web, a circular ring and member adjacent to both flanges on one side or both sides of the web as a reinforcing structure when the web yields in advance by shearing force applied by shear bending A stiffener perpendicular to the axis is abutted at regular intervals, the web inside the circular ring is used as the tensile stress surface, and the tensile yield and the truss balance between the flange surrounding the circular ring and the stiffener provide a shear yield load determined by the web. Reinforcing structure that secures and improves the plastic deformation capacity of structural members. ウェブの両端にフランジを有する構造部材について、せん断曲げが作用して加わるせん断力でウェブが先行して降伏する場合の補強構造として、ウェブ片側面に両フランジに近接する円形環と部材軸に直交するスティフナーとを一定間隔毎に添接し、前記逆側面に各円形環の円弧と中立軸上で直交し接するスティフナーを設け、円形環内側のウェブを引張応力面とし且つ前記引張応力と円形環を囲むフランジとスティフナーとのトラス的釣合いにより、ウェブで決まるせん断降伏荷重を確保するとともに構造部材の塑性変形能力の向上を図る補強構造。   For structural members with flanges at both ends of the web, as a reinforcement structure when the web yields in advance by shearing force applied by shear bending, a circular ring adjacent to both flanges on one side of the web and a member axis orthogonal The stiffener is attached at regular intervals, and the stiffener is provided on the opposite side surface so as to be perpendicular to and in contact with the arc of each circular ring on the neutral axis, and the web inside the circular ring is used as a tensile stress surface, and the tensile stress and the circular ring are connected to each other. Reinforcement structure that secures the shear yield load determined by the web and improves the plastic deformation capacity of the structural member by the truss balance between the surrounding flange and the stiffener. ウェブの両端にフランジを有する構造部材について、せん断曲げが作用して加わるせん断力でウェブが先行して降伏する場合の補強構造として、ウェブ片側面に両フランジに近接する円形環と部材軸に直交するスティフナーとを一定間隔毎に添接し、前記逆側面に各円形環の円弧と接するようにフランジと並行するスティフナーを設け、円形環内側のウェブを引張応力面とし且つ前記引張応力と円形環を囲むフランジとスティフナーとのトラス的釣合いにより、ウェブで決まるせん断降伏荷重を確保するとともに構造部材の塑性変形能力の向上を図る補強構造。   For structural members with flanges at both ends of the web, as a reinforcement structure when the web yields in advance by shearing force applied by shear bending, a circular ring adjacent to both flanges on one side of the web and a member axis orthogonal The stiffener is attached at regular intervals, and a stiffener parallel to the flange is provided on the opposite side surface so as to contact the arc of each circular ring, the web inside the circular ring is used as a tensile stress surface, and the tensile stress and the circular ring are Reinforcement structure that secures the shear yield load determined by the web and improves the plastic deformation capacity of the structural member by the truss balance between the surrounding flange and the stiffener. ウェブの両端にフランジを有する構造部材について、せん断曲げが作用して加わるせん断力でウェブが先行して降伏する場合の補強構造として、ウェブ片側面乃至両側面に両フランジに近接する円形環と部材軸に直交するスティフナーとを一定間隔毎に添接し、ウェブの各円形環内側領域に円形環径を下回る同心円の穴を設けて連続開口ウェブとなる構造部材とし、円形穴中心線上のウェブ最小断面で決まるせん断降伏荷重を確保するとともに構造部材の塑性変形能力の向上を図る補強構造。   For a structural member having flanges at both ends of the web, a circular ring and member adjacent to both flanges on one side or both sides of the web as a reinforcing structure when the web yields in advance by shearing force applied by shear bending A stiffener that is perpendicular to the axis is attached at regular intervals, and a concentric hole that is smaller than the circular ring diameter is formed in each circular ring inner region of the web to form a continuous opening web. Reinforcement structure that ensures the shear yield load determined by, and improves the plastic deformation capacity of structural members.
JP2012250992A 2012-11-15 2012-11-15 Circular ring reinforcement structure for structural members subjected to shear bending Expired - Fee Related JP5219179B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250992A JP5219179B1 (en) 2012-11-15 2012-11-15 Circular ring reinforcement structure for structural members subjected to shear bending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250992A JP5219179B1 (en) 2012-11-15 2012-11-15 Circular ring reinforcement structure for structural members subjected to shear bending

Publications (2)

Publication Number Publication Date
JP5219179B1 true JP5219179B1 (en) 2013-06-26
JP2014098281A JP2014098281A (en) 2014-05-29

Family

ID=48778717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250992A Expired - Fee Related JP5219179B1 (en) 2012-11-15 2012-11-15 Circular ring reinforcement structure for structural members subjected to shear bending

Country Status (1)

Country Link
JP (1) JP5219179B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115130206A (en) * 2022-06-17 2022-09-30 中航西安飞机工业集团股份有限公司 A calculation method for allowable shear stress of aircraft rectangular web

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302397A (en) * 1992-04-24 1993-11-16 Toshiro Suzuki Reinforcing structure of beam
JP2012197661A (en) * 2011-03-09 2012-10-18 Koryo Kaihatsu Kk Reinforcement metal plate and reinforcement structure for steel frame beam using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302397A (en) * 1992-04-24 1993-11-16 Toshiro Suzuki Reinforcing structure of beam
JP2012197661A (en) * 2011-03-09 2012-10-18 Koryo Kaihatsu Kk Reinforcement metal plate and reinforcement structure for steel frame beam using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115130206A (en) * 2022-06-17 2022-09-30 中航西安飞机工业集团股份有限公司 A calculation method for allowable shear stress of aircraft rectangular web

Also Published As

Publication number Publication date
JP2014098281A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
KR101298476B1 (en) Steel concrete column
CA2923802C (en) Bearing wall and wall surface member for bearing wall
JP5985929B2 (en) Composite structures and buildings
JP5510597B1 (en) Circular ring reinforcing beam member
JP6891053B2 (en) Beam-column joint structure
JP2017057665A (en) Column-beam joining structure
CN103924703A (en) Shearing type buckling-restrained energy dissipation brace
JP5219179B1 (en) Circular ring reinforcement structure for structural members subjected to shear bending
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
KR20190012766A (en) Built-Up Beam
JP5500472B1 (en) Cross-section corner reinforcement structural member
JP2011190635A (en) Rectangular tube reinforcing structure for rectangular metallic flat plate
WO2014208194A1 (en) Cross sectional corner reinforcing structural member
JP5492163B2 (en) Reinforced concrete wall column
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP5551652B2 (en) Bending-yield elastic-plastic damper
JP5097886B1 (en) Circular ring reinforced metal flat plate
JP5603667B2 (en) Reinforcement structure of the opening provided in the joint hardware part
JP2018062798A (en) Truss frame
JP6836830B2 (en) Reinforcement structure of one-side widened steel beam
WO2010116660A1 (en) Anisotropic reinforcing metal plate
JP5110482B1 (en) Circular ring framework structure of multi-layer circular metal flat plate
JP4062706B2 (en) Bonding structure
JP6742741B2 (en) Bending yield type damper
JP2020012329A (en) Beam joint structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190315

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 5219179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees