JP5219179B1 - Circular ring reinforcement structure for structural members subjected to shear bending - Google Patents
Circular ring reinforcement structure for structural members subjected to shear bending Download PDFInfo
- Publication number
- JP5219179B1 JP5219179B1 JP2012250992A JP2012250992A JP5219179B1 JP 5219179 B1 JP5219179 B1 JP 5219179B1 JP 2012250992 A JP2012250992 A JP 2012250992A JP 2012250992 A JP2012250992 A JP 2012250992A JP 5219179 B1 JP5219179 B1 JP 5219179B1
- Authority
- JP
- Japan
- Prior art keywords
- web
- circular ring
- shear
- stiffener
- flanges
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005452 bending Methods 0.000 title claims abstract description 9
- 230000002787 reinforcement Effects 0.000 title claims description 13
- 239000003351 stiffener Substances 0.000 claims abstract description 46
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 13
- 238000010008 shearing Methods 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Rod-Shaped Construction Members (AREA)
Abstract
【課題】せん断曲げを受けるウェブの両端にフランジを有する構造部材について、早期のウェブせん断座屈を回避してせん断降伏荷重を確保し、構造部材の塑性変形能力の向上を目論む。
【解決手段】本発明のウェブ1の上下にフランジ2を有する構造部材がウェブ面に円形環3が添接された代表的補強構造の全景を(a)図の斜視図として示したが、連続する円形環とそれぞれの間に縦方向スティフナー4を設け上下フランジ2と結ぶ。(b)図にウェブの面内応力の釣合いを示したが、円形環内側領域では面内せん断に伴う点線矢印で示す圧縮主応力−σは円形環の部材軸力σcと釣合い実線矢印で示す引張主応力+σが支配する張力場となり、加力初期段階から引張面となることでウェブのせん断降伏荷重を確保でき、更に円形環を囲むフランジと縦方向スティフナーとでトラス的釣合場を構成し、せん断降伏後も安定して耐力を維持し塑性変形能力の向上を図る。
【選択図】図11A structural member having flanges at both ends of a web subjected to shear bending is designed to improve the plastic deformation ability of the structural member by avoiding early web shear buckling and securing a shear yield load.
A perspective view of a typical reinforcing structure in which a structural member having flanges 2 on the upper and lower sides of a web 1 according to the present invention has a circular ring 3 attached to the web surface is shown as a perspective view in FIG. A vertical stiffener 4 is provided between the circular ring and the upper and lower flanges 2. (b) Although the balance of the in-plane stress of the web is shown in the figure, in the circular ring inner region, the compressive principal stress -σ indicated by the dotted arrow accompanying the in-plane shear is the axial force σ c of the circular ring and the balanced solid arrow. The tension field is controlled by the tensile principal stress + σ shown, and the shear yield load of the web can be secured by becoming the tension surface from the initial application stage. Furthermore, a truss-like balance field is created by the flange surrounding the circular ring and the longitudinal stiffener. Constructed to maintain stable yield strength after shear yield and improve plastic deformation capacity.
[Selection] Figure 11
Description
本発明は、ウェブの両端にフランジを有する構造部材に関するもので、せん断曲げを受けてウェブに付加するせん断力に対し早期のせん断座屈を回避してせん断降伏荷重を確保し、降伏後の耐力低下を防いで構造部材の塑性変形能力を高めることを意図するものである。これを達成するために最適の形状を提案し且つ出来るだけ簡単な補強構造とする。 The present invention relates to a structural member having flanges at both ends of a web, and avoids early shear buckling against shearing force applied to the web after being subjected to shear bending to ensure shear yield load and yield strength after yielding. This is intended to prevent the deterioration and increase the plastic deformation capacity of the structural member. In order to achieve this, an optimum shape is proposed and a reinforcement structure as simple as possible is provided.
材端部から逆対称曲げモーメントを受ける構造部材に対し、材端部近傍のフランジで先行して降伏する場合に塑性変形能力を高めるよう意図する補強構造がこれまでの主流で、構造部材のせん断力が大きくウェブが先行して塑性化する場合については降伏後の耐力維持を図る試みは多くはない。 In contrast to structural members that receive anti-symmetric bending moments from the end of the material, the conventional reinforcement structure intended to increase the plastic deformation capacity when yielding at the flange in the vicinity of the end of the material has been the mainstream so far. There are not many attempts to maintain the yield strength after yielding when the force is large and the web is plasticized in advance.
材長の短い構造部材に対して、加わるせん断力に対しウェブの塑性変形能力を高める例としては、ウェブを補強してせん断座屈を避けるもの,ウェブに降伏点の低い鋼材を使用するもの,構造部材の端部乃至中央部の接合部位を工夫するもの等、降伏後のせん断耐力の維持を意図する試みが散見される。 Examples of increasing the plastic deformation capacity of the web against the shear force applied to structural members with a short material length include those that reinforce the web to avoid shear buckling, those that use steel with a low yield point for the web, There are some attempts to maintain the shear strength after yielding, such as devising the joint part between the end part and the center part of the structural member.
解決しようとする課題は、せん断曲げを受けるウェブの両端に突出フランジを持つ構造部材について、面内せん断力によりウェブがフランジに先行して塑性化する場合に、ウェブの加力初期段階でのせん断座屈を回避してせん断降伏荷重を確保し、降伏後の変形推移にも耐力低下することなく塑性変形能力を高めることである。更に、ウェブに連続開口を持つ構造部材についても同様の力学性能となるようにする。 The problem to be solved is that in the case of a structural member having protruding flanges at both ends of the web subjected to shear bending, when the web is plasticized ahead of the flange due to in-plane shearing force, It is to avoid buckling and secure a shear yield load, and to increase the plastic deformation capacity without lowering the yield strength even in the deformation transition after yielding. Further, the structural member having a continuous opening in the web is made to have the same mechanical performance.
面内せん断によりウェブが安定して降伏せん断荷重に至るよう、ウェブ面に円形環を添接して補強するものである。円形環を金属平板に添接することで平板面内の圧縮主応力をアーチ効果により円形環部材の軸力で受け止め、円形環で囲まれる平板領域で引張主応力が支配する力学的釣合いを保つようにする。 A circular ring is attached to the web surface to reinforce it so that the web stably reaches the yield shear load by in-plane shear. By attaching the circular ring to the metal flat plate, the compressive principal stress in the flat plate surface is received by the axial force of the circular ring member by the arch effect, and the mechanical balance governed by the tensile principal stress is maintained in the flat plate region surrounded by the circular ring. To.
ウェブがせん断力を受けると、初期の純せん断場から徐々に斜め引張主応力が支配する張力場へと移行する。せん断変形の進行に伴いウェブの引張主応力に釣合うよう円形環を囲むフランジと縦方向スティフナーとでトラス的力の釣合いを考え、降伏後も耐力低下することなく塑性変形能力を向上させることを意図している。 When the web is subjected to a shearing force, it gradually shifts from an initial pure shear field to a tension field that is governed by a diagonal tensile principal stress. Consider the balance of truss-like forces between the flange surrounding the circular ring and the longitudinal stiffener to balance the tensile principal stress of the web as shear deformation progresses, and improve the plastic deformation capacity without lowering the yield strength after yielding. Intended.
ウェブに円形環を補強することで円形環内側領域は引張応力状態になるため、円形環と同心円となる円形穴を設けても力の釣合いが崩れることはなく、円形環を周辺のフランジとスティフナーとで安定した構造とし、円形穴中心線上の最小断面となるウェブのせん断降伏荷重を確保し且つ降伏後も前記せん断耐力が徐々に増加するようにする。 By reinforcing the circular ring on the web, the inner area of the circular ring is in a tensile stress state, so even if a circular hole that is concentric with the circular ring is provided, the balance of force is not lost, and the circular ring is connected to the surrounding flange and stiffener. Thus, the shear yield load of the web having the minimum cross section on the center line of the circular hole is secured, and the shear strength is gradually increased even after yielding.
図9は円形金属平板の外周に円形環枠を設けた場合の面内応力の釣合いを示す模式図である。(a)図は円形環枠からせん断力が作用する場合で、せん断変形の進行に伴い円形環と共に円形金属平板は斜め45度方向を軸とする楕円形に変形する。面内せん断に伴う点線矢印で示す圧縮主応力は円形環の部材軸力と釣合い、加力の初期段階から塑性変形領域に至るまで実線矢印で示す引張主応力が支配する張力場となる。 FIG. 9 is a schematic diagram showing a balance of in-plane stresses when a circular ring frame is provided on the outer periphery of a circular metal flat plate. (a) The figure shows a case where a shearing force is applied from a circular ring frame. As the shear deformation progresses, the circular metal plate and the circular metal plate are deformed into an elliptical shape with an angle of 45 degrees as an axis. The compressive principal stress indicated by the dotted arrow accompanying the in-plane shear is balanced with the axial force of the member of the circular ring and becomes a tension field governed by the tensile principal stress indicated by the solid arrow from the initial stage of the applied force to the plastic deformation region.
図10は円形環の力学的特性を示した模式図であり、面内せん断を受けることは(a)図のように捩りを受けることに相当し、円形環であることは(b)図のように構造部材が捩り剛性の低い矩形断面であっても円弧形状であることから回転変形が拘束され、そのことは捩り剛性が極めて高くなることと等価であり、円形金属平板がせん断降伏して以降も枠材は暫く弾性状態にあり降伏後の耐力維持に繋がる。 FIG. 10 is a schematic diagram showing the mechanical characteristics of a circular ring, and receiving in-plane shear corresponds to receiving a twist as shown in FIG. 10 (a), and that a circular ring is shown in FIG. Thus, even if the structural member has a rectangular cross section with low torsional rigidity, it is arc-shaped, so rotational deformation is constrained, which is equivalent to extremely high torsional rigidity. After that, the frame material is in an elastic state for a while and leads to maintenance of yield strength after yielding.
図11(a)はフランジ2に挟まれるウェブ1が円形環3で補強された構造部材の全景を示す斜視図であり、連続する円形環の間に縦方向スティフナー4を設けている。(b)図にウェブの面内応力の釣合いを示したが、円形環内側領域では面内せん断に伴う圧縮主応力−σは円形環の部材軸力σcと釣合い引張主応力+σが支配する張力場となり、円形環を囲む矩形領域をトラス機構として安定した力の釣合いが確保できる。
FIG. 11A is a perspective view showing a whole view of the structural member in which the
図1はウェブ1の表裏両面に円形環3を部材長手方向へ等間隔に配し、上下フランジ2を結んで縦方向スティフナー4を設けた本補強構造の代表例である。円形環で囲まれたウェブの内側領域は面内せん断に伴う斜め45度方向の引張主応力が支配する張力場となり、円形環を囲む上下フランジと左右縦方向スティフナーとでトラス機構を形成して力の釣合いを確保する。
FIG. 1 is a representative example of the present reinforcing structure in which
図3はウェブ片側面1に円形環3を上下フランジ2に近接し且つ裏側面に縦方向スティフナー4を配して円形環外側領域の力学的安定に配慮し、この構造単位を部材長手方向に一定の間隔をとり表裏交互に配して剛性のバランスを確保する。当然、縦方向スティフナーに挟まれた矩形領域は座屈に伴い耐力低下することのない範囲に限られる。
FIG. 3 shows a
図5は円形環3と縦方向スティフナー4とをウェブ片側面1に並べて配し、ウェブの裏側面から上下フランジ2に平行し且つ円形環の円弧上下に接するように横方向スティフナー5を配して構成する。ウェブ平板上の連続する円形環を結んで互いに拘束することで、ウェブ板厚の薄い場合に有効な補強構造となる。
In FIG. 5, the
図7は円形環3と縦方向スティフナー4とをウェブ片側面1に並べて配し、ウェブ裏側面から円形環の円弧と中立軸上で接するように更に2本の縦方向スティフナーを設けて剛性のバランスをとり、円形環内側のウェブに同心円となる任意径の円形穴6を設け且つ部材長手方向に力学性能を一様とすべく連続開口ウェブ型の構造部材とする。
In FIG. 7, a
図1はウェブ1の表裏両面に円形環3を部材長手方向に等間隔に配し、各円形環の間に縦方向スティフナー4を設けた本発明の代表的補強構造である。部材断面としてウェブ板厚9.0mmのH-1,200x300x9x36とウェブ板厚6.0mmのH-1,200x300x6x30を取上げ、ウェブ両面から断面100mmx19mmの円形環を中央に縦方向スティフナーで一定の幅に囲み連続4区間で構成されている。
FIG. 1 shows a typical reinforcing structure of the present invention in which
図2の実線はウェブ板厚が9.0mm,幅厚比133の解析結果で、円形環径は960mmで部材せいの80%とし、部材長さ5,200mm,5,600mm,6,000mmは3本の実線で上から下へと対応するが、この範囲では高い塑性変形能力が示されている。これを超える部材長さになると円形環外側のウェブ領域で座屈変形が進行し、降伏後早い段階から不安定な挙動が見られるようになる。 The solid line in Fig. 2 is the analysis result of web thickness of 9.0mm and width-thickness ratio of 133. The circular ring diameter is 960mm and the member length is 80%, and the member lengths of 5,200mm, 5,600mm and 6,000mm are three solid lines. In this range, a high plastic deformation capacity is shown. When the member length exceeds this, buckling deformation proceeds in the web region outside the circular ring, and unstable behavior can be seen from an early stage after yielding.
図2の点線はウェブ板厚が6.0mm,幅厚比200の解析結果で、円形環径は1,020mmで部材せいの85%とし、部材長さは前記例題と同じとしている。平板が薄くなるに従い円形環外側のウェブ領域で座屈変形が起き易くなるため、円形環径を大きくし上下フランジに近づけ添接した。ウェブ面上の円形環は不安定になりやすいため、ウェブの板厚に応じ円形環の周辺構成には十分に配慮する必要である。 The dotted line in FIG. 2 is the analysis result of the web plate thickness of 6.0 mm and the width-thickness ratio of 200. The circular ring diameter is 1,020 mm and the member length is 85%, and the member length is the same as the above example. As the flat plate becomes thinner, buckling deformation is likely to occur in the web region outside the circular ring. Since the circular ring on the web surface tends to be unstable, it is necessary to give sufficient consideration to the peripheral configuration of the circular ring according to the thickness of the web.
図3はウェブ片側面1に円形環3を上下フランジ2に近接し且つ裏側面に縦方向スティフナー4を近づけて配しウェブの円形環外側領域の力学的安定を図り、この構成を部材長手方向に任意間隔で表裏交互に配して剛性のバランスをとる。ウェブ板厚に応じ部材断面はH-1,200x300x4.5x30とH-1,200x300x3.2x25とし、両者とも円形環の直径は960mmで部材せいの80%とし、円形環とスティフナーの断面は前者は100mmx16mm,後者は100mmx12mmとしている。
FIG. 3 shows that a
図4の3本の実線はウェブ板厚4.5mm,幅厚比267で円形環両側の縦方向スティフナー間隔は1,200mmとし、実線の上から下へ部材長さ5,600mm,6,000mm,6,400mmと対応する解析結果を示している。図中左下側に矢印で示す座屈荷重Qcr=410kNは降伏せん断荷重Qy=930kNの44%ではあるが、座屈荷重を上回るせん断降伏荷重を確保でき、更にウェブ両面で縦方向スティフナーをずらすことで連続する円形環の間隔を若干広げることができる。 The three solid lines in Fig. 4 have a web thickness of 4.5mm, a width-thickness ratio of 267, and the vertical stiffener spacing on both sides of the circular ring is 1,200mm. The member lengths are 5,600mm, 6,000mm, and 6,400mm from the top to the bottom of the solid line. The corresponding analysis results are shown. The buckling load Q cr = 410kN indicated by the arrow on the lower left side of the figure is 44% of the yield shear load Q y = 930kN, but it can secure a shear yield load that exceeds the buckling load, and the longitudinal stiffener on both sides of the web. By shifting, the interval between successive circular rings can be slightly widened.
図4の3本の点線はウェブ板厚3.2mm,幅厚比375で円形環両側の縦方向スティフナー間隔は1,100mmとし、前記と同じ部材長さに応じる解析結果である。図の左下側に矢印で示す座屈荷重Qcr=150kNはQy=660kNの降伏せん断荷重の23%ではあるが、せん断降伏荷重にまで到達し更に降伏後も安定的に耐力維持し変形する。これらの結果から、平板の弾性座屈荷重は平板の実態強さとは何ら関係ないことが判る。 The three dotted lines in FIG. 4 are the analysis results according to the same member length as described above, with the web plate thickness of 3.2 mm, the width-thickness ratio of 375, and the vertical stiffener spacing on both sides of the circular ring being 1,100 mm. The buckling load Q cr = 150kN indicated by the arrow on the lower left side of the figure is 23% of the yield shear load of Q y = 660kN, but it reaches the shear yield load and further maintains its yield strength after yielding and deforms. . From these results, it can be seen that the elastic buckling load of the flat plate has nothing to do with the actual strength of the flat plate.
図5はウェブ1の片側面に円形環3と縦方向スティフナー4とを並べて配し、ウェブの裏側面から上下フランジに平行し且つ円形環の上下円弧に接するように横方向スティフナー5を配して構成する。部材断面はH-1,200x300xtwx25とし、1,200mmx1,200mmの5区画で材長6,000mmの構造部材で、円形環の直径は900mmで部材せいの75%と若干小さく、円形環とスティフナーの断面は100mmx12mmとしている。
In FIG. 5, the
図6はウェブ板厚が3.2mm,2.3mm,1.6mmとする解析結果を3本の実線で示したが、部材せい1,200mmであることからウェブの幅厚比は375,520,750に相当するが、横方向スティフナーで連続する円形環を拘束し且つ縦方向スティフナーで両フランジと結ぶことでウェブのせん断降伏荷重を確保でき、降伏後もせん断耐力が徐々に増加しつつ推移して十分な塑性変形能力のあることが判る。 Figure 6 shows the analysis results with web thicknesses of 3.2mm, 2.3mm, and 1.6mm as three solid lines, but the web width-thickness ratio is equivalent to 375, 520, and 750 because the member is 1,200mm. However, it is possible to secure the shear yield load of the web by restraining the continuous circular ring with the lateral stiffener and connecting it with both flanges with the longitudinal stiffener, and the shear strength gradually increases after the yield and is sufficient. It can be seen that it has plastic deformation ability.
図6には3本の点線で示した荷重変形関係は実線と同じ結果を横軸の変形角を3倍に広げて表示したもので加力初期段階の力学性状を検証するものである。Qcrで示す座屈荷重は降伏せん断荷重Qyの26%,14%,7%であるものの、図中矢印で示すせん断降伏荷重に至り降伏後の変形にも耐力は維持される。この事実は、弾性座屈荷重が実強度とは関係なく且つ降伏後の力学性状を予測できないことを示している。 In FIG. 6, the load deformation relationship indicated by the three dotted lines is the same result as the solid line, which is displayed by expanding the deformation angle of the horizontal axis three times, and verifies the mechanical properties at the initial stage of applied force. The buckling load indicated by Q cr is 26%, 14%, and 7% of the yield shear load Q y , but the shear yield load indicated by the arrow in the figure is reached and the yield strength is maintained even after deformation. This fact shows that the elastic buckling load is not related to the actual strength and the mechanical properties after yield cannot be predicted.
図7はウェブ片側面1に円形環3を1,200mm毎に添接し且つ裏側面から円形環の円弧に接するように縦方向スティフナー4を添接し、円形環内側領域に同心円となる任意径の円形穴6を設けている。部材断面はH-1,200x300x3.2x25で1,200mmx1,200mmの5区画とする材長6,000mmの構造部材で、円形環の直径は900mmで部材せいの75%とし円形環と縦方向スティフナーの断面は100mmx12mmで、ウェブに設けられる円形穴周りは原則補強しない。
FIG. 7 shows that a
図8に示す3本の実線はウェブ円形穴の直径を480mm,600mm,720mmとする解析結果で、部材せい1,200mmに対する開口率は40%,50%,60%である。無開口ウェブのせん断降伏荷重Qy=660kNに対し、円形穴中心線上のウェブ最小断面で換算されるせん断降伏荷重は図中矢印で示す前記数値の60%,50%,40%に相当し、それ以降ウェブの塑性化が進行しても徐々に耐力上昇して推移する。 The three solid lines shown in FIG. 8 are the analysis results when the diameter of the web circular hole is set to 480 mm, 600 mm, and 720 mm, and the opening ratio with respect to the member of 1,200 mm is 40%, 50%, and 60%. For shear opening load Q y = 660kN of non-opening web, the shear yield load converted by the minimum cross section of the web on the center line of the circular hole corresponds to 60%, 50%, 40% of the above-mentioned numerical value indicated by the arrow in the figure, After that, even if the plasticization of the web proceeds, the proof stress gradually increases.
図8に示す3本の点線は実施例3と同じ補強構造部材に対し同じ直径の円形穴を設けた場合の結果で、実線と略重なるように表示されている。連続する円形環が横方向スティフナーで結ばれており、前者の補強構造はスティフナー配置が異なるものの同様の結果となる。なお、せん断に伴う円形環の変形が斜め45度方向を長軸,短軸とする楕円形へ移行するため、円形環とスティフナーとが円弧上で接しても変形を拘束しない。 The three dotted lines shown in FIG. 8 are the results when circular holes having the same diameter are provided for the same reinforcing structural member as in Example 3, and are displayed so as to substantially overlap the solid line. The continuous circular rings are connected by lateral stiffeners, and the former reinforcing structure has the same result although the stiffener arrangement is different. In addition, since the deformation of the circular ring due to the shearing shifts to an elliptical shape having the major axis and the minor axis in the direction of 45 degrees obliquely, the deformation is not constrained even if the circular ring and the stiffener are in contact with each other on the arc.
本明細書で扱った金属材料は、降伏点応力度σy=30kN/cm2,ヤング係数E=20,500kN/cm2の鋼材としている。本補強構造は一般的に多用される普通鋼材を利用し得ること示したが、本補強構造は材種や材質に拘るものではなく高降伏点鋼乃至低降伏点鋼であってもよく、剛性の低い軽金属材料に対しても有効である。 Metallic material covered in this specification, yield stress of σ y = 30kN / cm 2, and a steel Young's modulus E = 20,500kN / cm 2. Although it has been shown that this reinforcement structure can use commonly used ordinary steel materials, this reinforcement structure is not limited to the grade or material, and may be high or low yield point steel, It is also effective for light metal materials with low
本発明の円形環で補強された構造部材は平板面内を純粋な引張応力状態にすることで平板座屈による耐力低下は回避され、これまでの座屈に伴う幅厚比に支配された平板の力学環境を完全に変えるものである。ウェブ板厚にとらわれることなく部材を構成できるため、制振乃至耐震を目的とするウェブせん断降伏型の構造部材として最適である。 The structural member reinforced with the circular ring according to the present invention avoids a decrease in yield strength due to flat plate buckling by making the flat plate surface into a pure tensile stress state, and a flat plate controlled by the width-to-thickness ratio accompanying conventional buckling. It completely changes the dynamic environment. Since the member can be configured without being restricted by the web plate thickness, it is optimal as a web shear yield type structural member for vibration suppression or earthquake resistance.
構造部材に対する円形環の補強をウェブ片側面に添接する場合に、ウェブ裏側面で円形環の円弧と接するように縦方向乃至横方向にスティフナーを設けることで上下フランジとも結ばれウェブ平板に直接支配されない補強構造となるため、極めて薄いウェブとする構造部材として幅広く利用される可能性がある。 When reinforcing a circular ring against a structural member on one side of a web, a vertical or horizontal stiffener is provided on the back side of the web so that it touches the arc of the circular ring. Since it is not a reinforced structure, it may be widely used as a structural member having a very thin web.
本発明の円形環補強構造は、円形環内側に同心円となる円形穴を設けても円中心線上の最小となるウェブ断面に換算されるせん断降伏荷重が確保でき且つ降伏後も徐々に耐力増加して塑性変形能力が高く、同じウェブ板厚でありながら円形穴径によりせん断降伏荷重を変えることができ、制振乃至耐震構造部材になり得るものである。 The circular ring reinforcing structure of the present invention can secure a shear yield load converted to the minimum web cross section on the center line of the circle even if concentric circular holes are provided inside the circular ring, and the yield strength gradually increases after yielding. Thus, the plastic deformation ability is high, the shear yield load can be changed by the diameter of the circular hole while the web thickness is the same, and it can be a vibration-damping or earthquake-resistant structural member.
1. 構造部材のウェブ
2. 構造部材のフランジ
3. 縦方向スティフナー
4. 横方向スティフナー
5. 円形環補強部材
6. ウェブ円形開口部
1. 1.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012250992A JP5219179B1 (en) | 2012-11-15 | 2012-11-15 | Circular ring reinforcement structure for structural members subjected to shear bending |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012250992A JP5219179B1 (en) | 2012-11-15 | 2012-11-15 | Circular ring reinforcement structure for structural members subjected to shear bending |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5219179B1 true JP5219179B1 (en) | 2013-06-26 |
JP2014098281A JP2014098281A (en) | 2014-05-29 |
Family
ID=48778717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012250992A Expired - Fee Related JP5219179B1 (en) | 2012-11-15 | 2012-11-15 | Circular ring reinforcement structure for structural members subjected to shear bending |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5219179B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115130206A (en) * | 2022-06-17 | 2022-09-30 | 中航西安飞机工业集团股份有限公司 | A calculation method for allowable shear stress of aircraft rectangular web |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05302397A (en) * | 1992-04-24 | 1993-11-16 | Toshiro Suzuki | Reinforcing structure of beam |
JP2012197661A (en) * | 2011-03-09 | 2012-10-18 | Koryo Kaihatsu Kk | Reinforcement metal plate and reinforcement structure for steel frame beam using the same |
-
2012
- 2012-11-15 JP JP2012250992A patent/JP5219179B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05302397A (en) * | 1992-04-24 | 1993-11-16 | Toshiro Suzuki | Reinforcing structure of beam |
JP2012197661A (en) * | 2011-03-09 | 2012-10-18 | Koryo Kaihatsu Kk | Reinforcement metal plate and reinforcement structure for steel frame beam using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115130206A (en) * | 2022-06-17 | 2022-09-30 | 中航西安飞机工业集团股份有限公司 | A calculation method for allowable shear stress of aircraft rectangular web |
Also Published As
Publication number | Publication date |
---|---|
JP2014098281A (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101298476B1 (en) | Steel concrete column | |
CA2923802C (en) | Bearing wall and wall surface member for bearing wall | |
JP5985929B2 (en) | Composite structures and buildings | |
JP5510597B1 (en) | Circular ring reinforcing beam member | |
JP6891053B2 (en) | Beam-column joint structure | |
JP2017057665A (en) | Column-beam joining structure | |
CN103924703A (en) | Shearing type buckling-restrained energy dissipation brace | |
JP5219179B1 (en) | Circular ring reinforcement structure for structural members subjected to shear bending | |
JP4829384B1 (en) | Four corner reinforcement structure of rectangular metal flat plate | |
KR20190012766A (en) | Built-Up Beam | |
JP5500472B1 (en) | Cross-section corner reinforcement structural member | |
JP2011190635A (en) | Rectangular tube reinforcing structure for rectangular metallic flat plate | |
WO2014208194A1 (en) | Cross sectional corner reinforcing structural member | |
JP5492163B2 (en) | Reinforced concrete wall column | |
JP6682903B2 (en) | Buckling stiffening structure and steel structure of H-shaped cross-section member | |
JP5551652B2 (en) | Bending-yield elastic-plastic damper | |
JP5097886B1 (en) | Circular ring reinforced metal flat plate | |
JP5603667B2 (en) | Reinforcement structure of the opening provided in the joint hardware part | |
JP2018062798A (en) | Truss frame | |
JP6836830B2 (en) | Reinforcement structure of one-side widened steel beam | |
WO2010116660A1 (en) | Anisotropic reinforcing metal plate | |
JP5110482B1 (en) | Circular ring framework structure of multi-layer circular metal flat plate | |
JP4062706B2 (en) | Bonding structure | |
JP6742741B2 (en) | Bending yield type damper | |
JP2020012329A (en) | Beam joint structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20190315 Year of fee payment: 6 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5219179 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |