[go: up one dir, main page]

JP5211829B2 - Super durable organic resin coated steel - Google Patents

Super durable organic resin coated steel Download PDF

Info

Publication number
JP5211829B2
JP5211829B2 JP2008114290A JP2008114290A JP5211829B2 JP 5211829 B2 JP5211829 B2 JP 5211829B2 JP 2008114290 A JP2008114290 A JP 2008114290A JP 2008114290 A JP2008114290 A JP 2008114290A JP 5211829 B2 JP5211829 B2 JP 5211829B2
Authority
JP
Japan
Prior art keywords
layer
organic resin
steel material
inorganic oxide
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114290A
Other languages
Japanese (ja)
Other versions
JP2009263716A (en
Inventor
隆生 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008114290A priority Critical patent/JP5211829B2/en
Publication of JP2009263716A publication Critical patent/JP2009263716A/en
Application granted granted Critical
Publication of JP5211829B2 publication Critical patent/JP5211829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、腐食の厳しい環境、例えば海浜近辺における鋼構造物の防食技術に関する。   The present invention relates to an anticorrosion technique for steel structures in a severely corrosive environment, for example, near a beach.

重防食用樹脂被覆は、海洋環境−日照による温度差が大きく、高濃度塩分で、乾湿繰返しのあるいは常時水没した環境−のような厳しい腐食環境にある鋼構造物に対する防食の目的で用いられる。   The resin coating for heavy anticorrosion is used for the purpose of anticorrosion to a steel structure in a severe corrosive environment such as marine environment-a temperature difference due to sunshine, a high concentration of salinity, a dry and wet repeated environment or a constantly submerged environment.

重防食用被覆樹脂には、一般にポリエチレン、ポリウレタンが用いられ、その被覆厚さは2〜10mmと厚い。鋼材の防食は主にこの厚い樹脂被覆層が担うため、下地のプライマーや化成処理は、防食性よりもまず長期間にわたる被覆樹脂との密着力維持(長期耐海水密着性)が要求され、両者が相まって、鋼材の長期防食が可能となる。現在では、ポリエチレン樹脂被覆自体は約40年程度の寿命が見込まれているが、5〜20年程度で密着力が低下し、樹脂被覆の剥離が開始する。   Generally, polyethylene and polyurethane are used for the coating resin for heavy anticorrosion, and the coating thickness is as thick as 2 to 10 mm. Since this thick resin coating layer is mainly responsible for the corrosion protection of steel materials, the primer and chemical conversion treatment of the base are required to maintain adhesion with the coating resin over a long period of time (long-term seawater adhesion resistance) rather than anticorrosion. Combined with this, long-term corrosion protection of steel materials becomes possible. At present, the polyethylene resin coating itself is expected to have a life of about 40 years, but the adhesive strength decreases after about 5 to 20 years, and peeling of the resin coating starts.

近年では時代の要請もあって、樹脂被覆が剥離するまでの期間(寿命)をさらに長くし、かつ環境負荷物質である六価クロム等を用いないという条件が課されてきている。これは開発側からみると非常に厳しいものとなっている。   In recent years, due to the demands of the times, a condition has been imposed that the period (life) until the resin coating is peeled off is further extended and hexavalent chromium or the like, which is an environmentally hazardous substance, is not used. This is very strict from the development side.

このような条件の下、りん酸アルミニウムが、表面処理分野でノンクロメート処理の点から注目されている。
りん酸アルミニウムは、もともと無機接着剤として古くから知られており、非常に強い密着性と耐久性が要求される歯科用セメントでは、りん酸アルミにII、III族の酸化物、水酸化物等の硬化剤を添加して用いられている。歯科用セメントは発熱量が多く、粘性が高いので、1g程度の少量を手作業で混練し、パテで塗布するにはよいが、ライン生産に使用するには全くの不向きであった。
Under such conditions, aluminum phosphate has attracted attention in terms of non-chromate treatment in the surface treatment field.
Aluminum phosphate has been known for a long time as an inorganic adhesive. For dental cements that require extremely high adhesion and durability, II, III group oxides, hydroxides, etc. It is used by adding a curing agent. Dental cement has a large calorific value and high viscosity, so a small amount of about 1 g may be kneaded by hand and applied with putty, but it is completely unsuitable for use in line production.

このような理由で、従来、りん酸アルミニウムは樹脂被覆鋼材の製造に使用されていなかったが、近年、ノンクロメート処理の点からその利用が検討されるようになり、例えば次のような技術が提案されている。   For these reasons, aluminum phosphate has not been used for the production of resin-coated steel materials in the past, but in recent years its use has been studied from the point of non-chromate treatment. Proposed.

特許文献1では、無水酸化物換算のモル比で、Al23/P25=0.2〜0.6、B23/P25=0.01〜0.1、MO/P25=0.01〜0.2(Mはアルカリ土類金属)である無機酸化物層を形成することにより、クロメート材に匹敵するノンクロメート樹脂被覆鋼材を製造する技術が開示されているが、長期耐海水密着性の向上についてはさらに検討が必要である。 In Patent Document 1, Al 2 O 3 / P 2 O 5 = 0.2 to 0.6, B 2 O 3 / P 2 O 5 = 0.01 to 0.1, in molar ratio in terms of anhydrous oxide. Disclosed is a technique for producing a non-chromate resin-coated steel material comparable to a chromate material by forming an inorganic oxide layer with MO / P 2 O 5 = 0.01 to 0.2 (M is an alkaline earth metal). However, further studies are needed to improve long-term seawater adhesion.

特許文献2では、トランスの鉄芯に用いる電磁鋼板用の絶縁皮膜形成剤にりん酸アルミニウムを用い、良好な密着性、溶接性、耐食性、絶縁性を発現する技術が開示されている。しかしここでいう密着性は、形成された絶縁皮膜と基材との密着性であり、さらにその上に形成される樹脂層との密着性ではないため、この技術では重防食鋼材の厳しい要求性能(長期耐海水密着性)を満たすことができない。   Patent Document 2 discloses a technique that uses aluminum phosphate as an insulating film forming agent for an electromagnetic steel sheet used for an iron core of a transformer and exhibits good adhesion, weldability, corrosion resistance, and insulation. However, the adhesion mentioned here is the adhesion between the formed insulating film and the substrate, and not the adhesion between the resin layer formed on it and this technology requires the strict required performance of heavy anti-corrosion steel. (Long-term seawater adhesion) cannot be satisfied.

特許文献3では、電磁鋼板に絶縁皮膜を形成するための処理液の組成において、リン酸塩と有機酸の組成比を、有機酸中の酸素原子と金属イオン総電荷数の比で規定することによって、クロムを用いずに低温焼付でも成膜性に優れる技術が開示されている。また、特許文献4では、水性エポキシ樹脂、シランカップリング剤、りん酸アルミニウム等の水溶性リン酸塩、を含有する化成処理液により亜鉛めっき鋼板のクロメートシーリング処理材と同等の耐白錆性・塗装性を有する化成処理剤が開示されている。しかし特許文献3、4のように、化成処理層に有機樹脂成分があると、厳しい腐食環境では徐々に加水分解を起こすため、長期耐海水密着性の点では不安がある。   In Patent Document 3, in the composition of the treatment liquid for forming the insulating film on the magnetic steel sheet, the composition ratio of the phosphate and the organic acid is defined by the ratio of the oxygen atom in the organic acid to the total number of metal ions. Discloses a technique that is excellent in film formability even at low temperature baking without using chromium. Moreover, in patent document 4, the white rust resistance equivalent to the chromate sealing processing material of a galvanized steel plate with the chemical conversion treatment liquid containing water-based epoxy resin, a silane coupling agent, and water-soluble phosphates, such as aluminum phosphate, is provided. A chemical conversion treatment agent having paintability is disclosed. However, as disclosed in Patent Documents 3 and 4, when the organic resin component is present in the chemical conversion treatment layer, since it gradually hydrolyzes in a severe corrosive environment, there is anxiety in terms of long-term seawater resistance.

特開2007−313885号公報JP 2007-313885 A 特開2003−147543号公報JP 2003-147543 A 特許第3935664号公報Japanese Patent No. 3935664 特開2006−9065号公報Japanese Unexamined Patent Publication No. 2006-9065

以上のように、薄板(めっき鋼板)分野で用いられているノンクロメート化成処理では、一般に長期耐海水密着性は期待できず、また、特許文献1で開示されているような耐水性及び耐陰極剥離性を両立した化成処理でも、長期耐海水密着性についてはさらに向上させる必要がある。そのため、ノンクロメート化成処理を用いて長期耐海水密着性を向上させた新たな樹脂被覆鋼材が必要となっている。   As described above, in the non-chromate chemical conversion treatment used in the field of thin plates (plated steel plates), generally long-term seawater adhesion cannot be expected, and the water resistance and cathode resistance as disclosed in Patent Document 1 are not expected. Even with chemical conversion treatment that achieves both peelability, long-term seawater adhesion needs to be further improved. Therefore, there is a need for a new resin-coated steel material that has improved long-term seawater adhesion using non-chromate chemical conversion treatment.

本発明者は、無機質である鉱石、ホーロー、陶器なみの高耐水性を実現するためには、有機樹脂を含まず、無機系物質だけで化成処理層を構成する必要があると考えた。しかし、無機質層の形成には、一般に数百度の温度で数時間の焼成が必要である。   The present inventor considered that in order to realize high water resistance like mineral ore, enamel, and earthenware, it is necessary to form a chemical conversion treatment layer only with an inorganic substance without including an organic resin. However, formation of the inorganic layer generally requires firing for several hours at a temperature of several hundred degrees.

そこで、特許文献1などに開示されている、取り扱い易い液体で、かつ、焼成温度が低いほう酸入りりん酸アルミニウムを主成分とした処理液を用いる技術に着目した。そして、りん酸アルミニウムを主成分とした無機系化成処理層を用いた場合の長期耐海水密着性は、無機系処理層中の構成元素のモル比ではなく、構成金属元素の電荷の総量と水素イオン(PO4 3-に配位しているものを含む)の比によって決定される知見を得た。 Therefore, attention has been paid to a technique disclosed in Patent Document 1 or the like that uses a treatment liquid that is an easy-to-handle liquid and contains boric acid-containing aluminum phosphate whose baking temperature is low. The long-term seawater adhesion when using an inorganic chemical conversion treatment layer mainly composed of aluminum phosphate is not the molar ratio of the constituent elements in the inorganic treatment layer, but the total amount of charges of constituent metal elements and hydrogen. The knowledge determined by the ratio of ions (including those coordinated to PO 4 3- ) was obtained.

図1は、後記の実施例にて得られた値を図示したものであるが、構成金属元素のモル数とその価数の積の総量μと水素イオンのモル数θを調整したりん酸アルミニウムを主成分とする処理液を用いて鋼材表面に無機酸化物層を形成し、その上を有機樹脂により被覆したサンプルを作成し、そのサンプルに海水浸漬促進試験を実施した後の有機樹脂被覆層の剥離距離を調査した結果得られたもので、μ/θの値が1前後の範囲において剥離距離が大きく低下しているのがわかる。
さらに、この比は、化成処理液に顔料を添加した場合、顔料が化成処理液中で溶解すると変化するため、顔料の溶解性に対する制限要件も必要であることもわかった。
FIG. 1 shows the values obtained in the examples described later. Aluminum phosphate in which the total number μ of products of the number of moles of constituent metal elements and their valences and the number of moles of hydrogen ions θ is adjusted. An organic oxide coating layer is formed after forming an inorganic oxide layer on the surface of a steel material using a treatment liquid containing as a main component, coating the sample with an organic resin, and conducting a seawater immersion acceleration test on the sample. It was obtained as a result of investigating the peeling distance, and it can be seen that the peeling distance is greatly reduced when the value of μ / θ is around 1.
Furthermore, it has been found that when the pigment is added to the chemical conversion treatment solution, this ratio changes when the pigment is dissolved in the chemical conversion treatment solution, so that a restriction requirement for the solubility of the pigment is also necessary.

本発明者は、これらの知見に基づきさらに検討した結果、以下のような本発明に到達した。すなわち、
(1) 鋼材表面に、Al、P、Mg、B、O及びHから成る無機酸化物層、有機樹脂層を順に積層してなる有機樹脂被覆鋼材において、前記無機酸化物層の元素モル組成比が、下記(式1)の条件を満たすことを特徴とする超耐久性有機樹脂被覆鋼材。
μ/θ=0.8〜1.2 ・・・(式1)
ここで、μ:Al、Mg、Bのイオンのモル数とその価数の積の総和
θ:水素イオンのモル数
As a result of further investigation based on these findings, the present inventor has reached the present invention as follows. That is,
(1) In an organic resin-coated steel material in which an inorganic oxide layer composed of Al, P, Mg, B, O, and H and an organic resin layer are sequentially laminated on the steel material surface, the element molar composition ratio of the inorganic oxide layer However, the super-durable organic resin-coated steel material satisfies the following condition (Formula 1).
μ / θ = 0.8 to 1.2 (Formula 1)
Here, the sum of products of the number of moles of ions of μ: Al, Mg, B and their valence
θ: Number of moles of hydrogen ions

(2) 前記無機酸化物層が、室温で、pH2のりん酸溶液に8mass%添加されてから5分後のpH増加が0.05以下である無機顔料を含み、その含有量が無機酸化物層に対して、10〜50mass%である(1)に記載の超耐久性有機樹脂被覆鋼材。
(3) 前記有機樹脂層のうちトップ層が、厚さ1.5mm以上のポリエチレン樹脂層あるいはポリウレタン樹脂層であることを特徴とする(1)あるいは(2)記載の超耐久性有機樹脂被覆鋼材。
(2) The inorganic oxide layer contains an inorganic pigment whose pH increase after 5 minutes after addition of 8 mass% to a phosphoric acid solution having a pH of 2 at room temperature is 0.05 or less, and the content thereof is an inorganic oxide. The super-durable organic resin-coated steel material according to (1), which is 10 to 50 mass% with respect to the layer.
(3) The super-durable organic resin-coated steel material according to (1) or (2), wherein a top layer of the organic resin layer is a polyethylene resin layer or a polyurethane resin layer having a thickness of 1.5 mm or more .

本発明により、環境負荷物質の使用を低減した樹脂被覆鋼材であって、かつ従来のクロメート化成処理材と同等以上の長期耐海水密着性及び耐食性を有する有機樹脂被覆鋼材、特に重防食用の有機樹脂被覆鋼材を提供することができる。   According to the present invention, it is a resin-coated steel material that reduces the use of environmentally hazardous substances, and has an organic resin-coated steel material that has long-term seawater adhesion and corrosion resistance equivalent to or better than that of conventional chromate chemical conversion treatment materials, particularly organic materials for heavy anticorrosion. A resin-coated steel material can be provided.

以下本発明の実施の形態を順次説明する。
本発明で用いられる鋼材は、一般に鋼構造物に使用される鋼材であればよく、特に限定されるものではないが、鋼材を構成する鋼種としては、普通鋼、低合金鋼、高合金鋼が例示できる。また、鋼材の品種としては、重防食被覆が適用される厚板、鋼管、鋼管杭、鋼管矢板、鋼矢板、H形鋼、線材等が例示できる。
本発明で用いる鋼材は、被覆前に、その表面のスケール、汚染物等を除去するための下地処理を行う必要がある。下地処理としては、アルカリ脱脂、酸洗、サンドブラスト処理、グリッドブラスト処理、ショットブラスト処理等がある。
Hereinafter, embodiments of the present invention will be sequentially described.
The steel material used in the present invention is not particularly limited as long as it is a steel material that is generally used for steel structures, but the steel types constituting the steel material include ordinary steel, low alloy steel, and high alloy steel. It can be illustrated. Moreover, as a kind of steel material, the thick board, steel pipe, steel pipe pile, steel pipe sheet pile, steel sheet pile, H-section steel, wire rod etc. to which heavy anti-corrosion coating is applied can be illustrated.
The steel material used in the present invention needs to be subjected to a ground treatment for removing scale, contaminants and the like on the surface before coating. Examples of the base treatment include alkali degreasing, pickling, sand blasting, grid blasting, and shot blasting.

本発明では、前述のように、鋼材表面に無機酸化物層を形成することにより、有機樹脂被覆層との長期耐海水密着性を確保する。
無機酸化物層は、全てイオン性結合物質であり、酸化数0の単体元素のような金属結合性物質、有機化合物のような共有結合性物質は不純物等不可避なものを除き含まない。但し、イオン分子の中に共有結合があってもよい。
In the present invention, as described above, long-term seawater-resistant adhesion with the organic resin coating layer is ensured by forming an inorganic oxide layer on the steel surface.
The inorganic oxide layers are all ionic binding materials, and do not include a metal binding material such as a single element having an oxidation number of 0 and a covalent binding material such as an organic compound except for inevitable impurities. However, there may be a covalent bond in the ionic molecule.

本発明の無機化成処理層は、Al、P、Mg、B、O、Hの各元素によって構成される。前述の特許文献1に開示されているように、りん酸アルミニウム系バインダーは、アルミニウム、りん、酸素、水素から成り、これに、焼成温度を低温にするためにほう素を、また、耐水性・密着性を向上させるためにマグネシウムを添加することにより構成される。   The inorganic chemical conversion treatment layer of the present invention is composed of Al, P, Mg, B, O, and H elements. As disclosed in the above-mentioned Patent Document 1, the aluminum phosphate binder is composed of aluminum, phosphorus, oxygen, and hydrogen. In order to lower the firing temperature, boron, In order to improve adhesiveness, it is comprised by adding magnesium.

無機酸化物層は、イオン性物質であるためイオンとして存在し、各元素のモル数×酸化数(電荷数)の総和は0という制約がある。さらに、この無機酸化物層は不定組成物であるため、定まった化学式がないが、主成分は第一りん酸アルミニウムAl(H2PO43であり、各元素の構成は、次の範囲が好ましい。
Alは、Pに対するモル比で、Al/P=0.23〜0.43の範囲が好ましく、より好ましくは、0.35〜0.4である。Mg、Bは添加元素であり、同様にPに対するモル比で、それぞれ0.01〜0.2の範囲が好ましく、より好ましくは、Mgが0.01〜0.05、Bが、0.05〜0.1である。
Since the inorganic oxide layer is an ionic substance, it exists as ions, and there is a restriction that the sum of the number of moles of each element × the number of oxidations (number of charges) is zero. Furthermore, since this inorganic oxide layer is an indefinite composition, there is no fixed chemical formula, but the main component is primary aluminum phosphate Al (H 2 PO 4 ) 3 , and the composition of each element is in the following range: Is preferred.
Al is a molar ratio with respect to P, and a range of Al / P = 0.23 to 0.43 is preferable, and 0.35 to 0.4 is more preferable. Mg and B are additive elements. Similarly, the molar ratio to P is preferably in the range of 0.01 to 0.2, more preferably 0.01 to 0.05 for Mg and 0.05 to B, respectively. ~ 0.1.

本発明の無機酸化物では、前記の金属元素あるいは典型元素の陽イオン及び酸素原子が存在していればよく、その存在形態は問わない。すなわち、酸素原子は、酸化物イオンO2−、オキソ陰イオンX n−、水酸化物イオンOHで存在していても構わない。 In the inorganic oxide of the present invention, it is sufficient that the cation and oxygen atom of the metal element or typical element are present, and the existence form is not limited. That is, the oxygen atom may be present as oxide ion O 2− , oxo anion X a O b n− , and hydroxide ion OH .

無機酸化物層を構成する陽イオンは、Al3+、B3+、Mg2+、H+、である。Pは酸化数+5で、PO 3−として存在し、これにHが順次配位すれば、順次HPO 2−、HPO 、となるが、本発明では、これらの陰イオンはHとPO 3−から構成されるものとして数える。 The cations constituting the inorganic oxide layer are Al 3+ , B 3+ , Mg 2+ , H + . P has an oxidation number of +5 and exists as PO 4 3− , and when H + is sequentially coordinated thereto, HPO 4 2− and H 2 PO 4 are sequentially formed. In the present invention, these anions are used. Is counted as consisting of H + and PO 4 3− .

本発明では、無機酸化物層の元素モル組成比μ/θが、下記(1)式の条件を満たすようにする。
μ/θ=0.8〜1.2 ・・・(1)
(1)式において、μはAl、Mg、Bのイオンの総電荷量であり、以下の(2)式で表わされる。
μ=ΣXi×ni ・・・(2)
ここで、Xiは、無機酸化物層を構成する元素iのイオンのモル数、niは同じく元素iのイオンのイオン価数である。無機酸化物層を構成するAl、Mg、Bのイオン全てについてそのモル数と価数の積を総和することによって、μは得られる。
In the present invention, the element molar composition ratio μ / θ of the inorganic oxide layer satisfies the following formula (1).
μ / θ = 0.8 to 1.2 (1)
In the formula (1), μ is the total charge amount of ions of Al, Mg, and B, and is represented by the following formula (2).
μ = ΣXi × ni (2)
Here, Xi is the number of moles of ions of elements i constituting the inorganic oxide layer, ni is the same ionic valence of ions of elements i. Μ can be obtained by summing up the products of the number of moles and the valence of all the ions of Al, Mg, and B constituting the inorganic oxide layer.

また、θは水素イオンの総電荷量(モル数)である。無機酸化物層中の陰イオンはPO 3−のみのため、陰イオンの総電荷量は、りん元素のモル量Xの3倍になる。電荷保存則より、陽イオンの総電荷量もこれと等しいので、水素イオン以外の陽イオン(全て金属イオン)の総電荷量を差し引くと、水素イオンの総量が求められる。水素イオン以外の陽イオンの総電荷量はμであるから、θは以下の(3)式で表せる。
θ=3X−μ・・・(3)
Θ is the total charge amount (number of moles) of hydrogen ions. For anion of the inorganic oxide layer is the PO 4 3- only, the total charge quantity of the anion, is three times the molar amount X p of phosphorus element. According to the law of conservation of charge, the total charge amount of cations is also equal to this, so that the total amount of hydrogen ions can be obtained by subtracting the total charge amount of cations other than hydrogen ions (all metal ions). Since the total charge amount of cations other than hydrogen ions is μ, θ can be expressed by the following equation (3).
θ = 3X p −μ (3)

本発明者は、図1に示されるように、μ/θの値が1前後の時に耐海水密着性が最大になることを見出したが、μ/θ=1±0.2を上下限とする範囲で実用性が認められるので、(1)式の範囲とした。ただし、1.0に近いほど耐海水密着性は良好であり、好ましくは1±0.1の範囲が薦められる。さらに可能であれば、1±0.05の範囲がより好ましい。わずかな性能の差も、超長期間では大きく開くからである。   As shown in FIG. 1, the present inventor has found that seawater adhesion is maximized when the value of μ / θ is around 1, but μ / θ = 1 ± 0.2 is the upper and lower limit. Therefore, the practicality is recognized within the range, so that the range of the formula (1) is adopted. However, the closer to 1.0, the better the seawater resistance, and a range of 1 ± 0.1 is recommended. If possible, the range of 1 ± 0.05 is more preferable. This is because even a slight difference in performance opens greatly in the ultra-long term.

無機酸化物層の付着量は、Al元素平均付着量で、0.01〜10g/m2であることが好ましい。これは、皮膜組成が酸化物表記法でAl23・3P25・2H2Oの場合、0.1〜100g/m2に相当する。より好ましい付着量はAl元素平均付着量で、0.1〜3g/m2、さらに好ましくは、0.5〜1g/m2である。膜厚(μm)に換算する場合、皮膜の組成によって若干変化するが、Al元素平均付着量(g/m2)の30倍である。 The adhesion amount of the inorganic oxide layer is preferably an Al element average adhesion amount of 0.01 to 10 g / m 2 . This corresponds to 0.1 to 100 g / m 2 when the film composition is Al 2 O 3 .3P 2 O 5 .2H 2 O by the oxide notation. A more preferable adhesion amount is an Al element average adhesion amount of 0.1 to 3 g / m 2 , and more preferably 0.5 to 1 g / m 2 . When converted to a film thickness (μm), it varies slightly depending on the composition of the film, but is 30 times the Al element average adhesion amount (g / m 2 ).

無機酸化物層のAl元素平均付着量は、10g/m2を超えると、緻密で均質な層でも密着性は飽和し、0.01g/m2より小さいと、十分な密着性が得られにくくなる。 If the average Al element deposition amount of the inorganic oxide layer exceeds 10 g / m 2 , the adhesion is saturated even in a dense and homogeneous layer, and if it is less than 0.01 g / m 2 , sufficient adhesion is difficult to obtain. Become.

本発明では、耐海水密着性をさらに向上させるため、りん酸アルミニウム溶液中に無機顔料を添加して、無機酸化物層中に無機顔料を含有させてもよい。
しかし、りん酸アルミニウム溶液は約pH2の酸性であるため、無機顔料を添加すると、種類によっては若干溶解する場合がある。その場合、μが変化し、(1)式の範囲からずれる場合も生じる。そのため、添加する無機顔料は酸性溶液に不溶でなくてはならない。
In the present invention, in order to further improve the seawater adhesion resistance, an inorganic pigment may be added to the aluminum phosphate solution to contain the inorganic pigment in the inorganic oxide layer.
However, since the aluminum phosphate solution is acidic at about pH 2, it may be slightly dissolved depending on the type when an inorganic pigment is added. In that case, μ may change and deviate from the range of the expression (1). Therefore, the inorganic pigment to be added must be insoluble in the acidic solution.

そこで、簡便な不溶性試験とその合格基準として、pH2のりん酸溶液に顔料を8mass%添加した時のpH増加量を用いることにした。溶液のpHと顔料の添加量は、実際の化成処理溶液を模倣したものである。この溶液中で酸化物顔料が溶解すると、液相のpHが増加する。
そこで、pH変化を不溶性の指標として増加量0.05以下と規定した。現在の一般的なpH計の読み取り精度は0.01であるが、校正誤差を考慮し、0.05の幅であれば、不溶、あるいは溶解による影響を無視できるので、上記のように定めた。
Therefore, as a simple insolubility test and its acceptance criteria, the amount of increase in pH when 8 mass% of pigment was added to a phosphoric acid solution at pH 2 was used. The pH of the solution and the amount of pigment added mimic the actual chemical conversion solution. When the oxide pigment dissolves in this solution, the pH of the liquid phase increases.
Therefore, the increase in pH is defined as 0.05 or less as an insoluble index. The reading accuracy of the current general pH meter is 0.01, but considering the calibration error, if the width is 0.05, the effect of insolubility or dissolution can be ignored. .

この基準を満たす顔料として、チタニア、シリカ、沈降性硫酸バリウムが例示できる。
顔料の添加量は、量が少ないと添加効果が薄く、多すぎると耐海水剥離性に悪影響を与えるので、好ましい量として10〜50mass%と規定した。
Examples of pigments that satisfy this criterion include titania, silica, and precipitated barium sulfate.
The addition amount of the pigment is defined as 10 to 50 mass% as a preferable amount because the addition effect is small when the amount is small, and when the amount is too large, the seawater peel resistance is adversely affected.

なお、酸化物顔料を添加した場合は、無機酸化物層は、バインダー(連続固相)中に無機顔料が粒子状に分散している構造となるが、上記の(1)式はバインダー相のみに適用される条件である。   When the oxide pigment is added, the inorganic oxide layer has a structure in which the inorganic pigment is dispersed in the binder (continuous solid phase), but the above formula (1) is for the binder phase only. This is a condition that applies to

無機酸化物層の形成は、りん酸アルミニウム水溶液を含み、顔料等の不溶性分散粒子を除いた液相の組成が前記(1)式を満たす化成処理液で鋼材を処理することにより可能である。例えば、特許文献1で開示されているような、りん酸アルミニウム系バインダーに、焼成温度を低温にするためにほう素を1〜2mass%、耐水性・密着性を向上させるためにマグネシウムを0.5〜5mass%それぞれ添加する。通常は、第一りん酸アルミニウム(重りん酸アルミニウム)水溶液に、B、Mgの酸化物・水酸化物を溶解させる。   The inorganic oxide layer can be formed by treating the steel with a chemical conversion treatment solution containing an aqueous aluminum phosphate solution and having a liquid phase composition excluding insoluble dispersed particles such as pigments that satisfies the above formula (1). For example, in an aluminum phosphate binder as disclosed in Patent Document 1, boron is added in an amount of 1 to 2 mass% in order to lower the firing temperature, and magnesium is added in an amount of 0.1 to improve water resistance and adhesion. Add 5-5 mass% each. Usually, oxides and hydroxides of B and Mg are dissolved in an aqueous solution of primary aluminum phosphate (aluminum biphosphate).

この水溶液に、酸化マグネシウム、あるいは酸化マグネシウムとオルトりん酸を添加・混合して、μ、θを前記(1)式を満たす値に調整する。
この水溶液は酸性のため、塩基性である酸化マグネシウム、酸化ホウ素あるいは水酸化マグネシウムを添加すると溶解し、μ値を増加させることができる。また、オルトりん酸を添加すると、水素イオンが増加し、θを増加させることができる。
μ、θを用いることの利点は、乾燥皮膜の成分から計算されるため、処理液の希釈度、pH、水素イオンの解離度に依存しない点である。
Magnesium oxide or magnesium oxide and orthophosphoric acid are added to and mixed with this aqueous solution, and μ and θ are adjusted to values satisfying the expression (1).
Since this aqueous solution is acidic, it can be dissolved by adding basic magnesium oxide, boron oxide or magnesium hydroxide, and the μ value can be increased. Further, when orthophosphoric acid is added, hydrogen ions increase and θ can be increased.
The advantage of using μ and θ is that they are calculated from the components of the dry film, and therefore do not depend on the dilution of the treatment liquid, pH, and the degree of dissociation of hydrogen ions.

この処理液を、ローラ法やスプレー法などを用いて鋼材表面に塗布し、ついで焼付して無機酸化物層を形成する。焼付け温度は、限定するものではないが、鋼材が変質・溶融しない条件を前提として、180℃以上、500℃以下の範囲である。μ/θの比率は、焼付け・硬化後も水溶液の比率と同じである。   This treatment liquid is applied to the surface of the steel material by using a roller method or a spray method, and then baked to form an inorganic oxide layer. The baking temperature is not limited, but is in the range of 180 ° C. or higher and 500 ° C. or lower on the condition that the steel material does not change or melt. The ratio of μ / θ is the same as the ratio of the aqueous solution after baking and curing.

以上で説明した無機酸化物層の上に有機樹脂による重防食被覆が形成される。
重防食被覆は、腐食因子(水、酸素、電解質)を鋼材から遮断することにより防食するため、被覆は厚い方が好ましく、長期にわたる耐久性を実現するためには、少なくとも1.5mm以上の厚さが望ましい。
A heavy anticorrosion coating with an organic resin is formed on the inorganic oxide layer described above.
Since the heavy anticorrosion coating prevents corrosion by blocking corrosion factors (water, oxygen, electrolyte) from the steel material, it is preferable that the coating is thick. In order to achieve long-term durability, the thickness is at least 1.5 mm or more. Is desirable.

被覆に用いる有機樹脂の種類は特に限定されず、一般に用いられている、エポキシ樹脂、フッ素樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン等の樹脂(いづれも変性物も含む)のいずれかであればよい。特に、ポリエチレンは遮断性の点で、ポリウレタンは容易に厚膜を形成できる点で優れている。
この有機樹脂層は、単層あるいは積層のどちらでもよいが、プライマー層/接着剤層/ポリエチレン層、あるいは、プライマー層/ポリウレタン層が例示できる。
The type of organic resin used for the coating is not particularly limited, and any of the commonly used resins such as epoxy resins, fluororesins, acrylic resins, polyester resins, polyurethane resins, polyolefins (including any modified products) I just need it. In particular, polyethylene is excellent in terms of barrier properties, and polyurethane is excellent in that a thick film can be easily formed.
The organic resin layer may be either a single layer or a laminated layer, and examples thereof include a primer layer / adhesive layer / polyethylene layer or a primer layer / polyurethane layer.

有機樹脂層の鋼材最表面を構成するトップ層は鋼材の耐久性にとって重要である。トップ層は、有機樹脂層が単層ならそれ自身、積層構造であれば、一番外側の有機樹脂層である。本発明で使用する化成処理層は、非常に長期にわたり樹脂層との接着性に優れているが、トップ層に十分な耐久性が無いと、被覆鋼材としての耐久性はないことになる。そのためトップ層には一定以上の厚みが必要であり、実際的には、1.5mm以上の有機樹脂層が望まれる。耐久性に優れるポリエチレン樹脂では2〜3mmが推奨され、厚膜化が可能なポリウレタン樹脂では3〜10mmが推奨されるが、特にこれらの例に限定されるものではない。   The top layer constituting the outermost steel material of the organic resin layer is important for the durability of the steel material. The top layer is the organic resin layer itself when the organic resin layer is a single layer, or the outermost organic resin layer when the organic resin layer is a laminated structure. The chemical conversion treatment layer used in the present invention is excellent in adhesion to the resin layer for a very long period of time, but if the top layer does not have sufficient durability, it will not have durability as a coated steel material. For this reason, the top layer needs to have a certain thickness or more, and actually, an organic resin layer of 1.5 mm or more is desired. Although 2 to 3 mm is recommended for a polyethylene resin excellent in durability, and 3 to 10 mm is recommended for a polyurethane resin capable of increasing the thickness, it is not particularly limited to these examples.

以下、実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。
なお、実施例に用いた条件はその確認のための一条件例であり、本発明は、この例に限定されるものではない。
Hereinafter, the feasibility and effects of the present invention will be further described using examples.
Note that the conditions used in the examples are a condition example for the confirmation, and the present invention is not limited to these examples.

鋼材には、厚さ4mmの普通鋼を用い、表面をグリッドブラストで3a(錆が完全に除去された光沢面)にブラスト処理した。
鋼材表面に無機酸化物層を形成するために、mass%で、Al23:9%、P25:31%、B 23:1.5%で構成されるホウ酸入り第一りん酸アルミニウム水溶液(燐酸Al)を準備し、これに酸化マグネシウム、あるいは酸化マグネシウムとオルトりん酸を添加・混合して、μ、θを種々の値に調整した処理液を作成した。粘性が濃い場合は、水を加えて調整した。また、それぞれの処理液にさらに無機顔料を添加した処理液も作成した。
表1、2に、処理液の組成やμ/θの値、添加した顔料の種類と量を示す。
The steel material was plain steel having a thickness of 4 mm, and the surface was blasted to 3a (glossy surface from which rust was completely removed) by grid blasting.
In order to form an inorganic oxide layer on the surface of the steel material, it is mass%, Al 2 O 3 : 9%, P 2 O 5 : 31% , B 2 O 3 : 1.5% containing boric acid An aqueous solution of aluminum monophosphate (Al phosphate) was prepared, and magnesium oxide, or magnesium oxide and orthophosphoric acid were added to and mixed with this to prepare a treatment solution in which μ and θ were adjusted to various values. When the viscosity was high, water was added for adjustment. Moreover, the processing liquid which added the inorganic pigment to each processing liquid was also created.
Tables 1 and 2 show the composition of the treatment liquid, the value of μ / θ, and the type and amount of the added pigment.

この処理液を鋼材に塗布し、それを乾燥した後、PMT(最高到達温度)200℃、保持時間0分で鋼材表面に焼き付けた。
比較材用に行うクロメート処理は、シリカ含有の塗布型3価クロメートを200℃で焼き付けることにより行った。その際のクロム元素付着量は500mg/m2である。
This treatment liquid was applied to a steel material, dried, and then baked on the surface of the steel material at a PMT (maximum temperature reached) of 200 ° C. and a holding time of 0 minutes.
The chromate treatment performed for the comparative material was performed by baking a coating type trivalent chromate containing silica at 200 ° C. In this case, the chromium element adhesion amount is 500 mg / m 2 .

無機顔料の溶解性を調べる試験は、pH2のりん酸溶液に8mass%添加された時のpH増加量ΔpHを測定することにより行った。pHは5分後に読み取った。何種類かの酸化物顔料を試験した結果を表3に示した。表1で、顔料を添加する場合は、発明例としてチタニア顔料(TiO2入)を、比較例として酸化亜鉛顔料(ZnO入)を用い、それぞれ30mass%添加した。 The test for examining the solubility of the inorganic pigment was carried out by measuring the pH increase ΔpH when 8 mass% was added to the pH 2 phosphoric acid solution. The pH was read after 5 minutes. The results of testing several types of oxide pigments are shown in Table 3. In Table 1, when adding a pigment, a titania pigment (with TiO 2 ) was used as an invention example, and a zinc oxide pigment (with ZnO) was used as a comparative example, and 30 mass% was added respectively.

得られた鋼材の無機酸化物層上に次のように有機樹脂被覆層を種々の厚さで形成した。
ポリウレタン被覆材は、プライマーとして、ポリオールとイソシアネート硬化剤による2液混合硬化型のウレタン樹脂塗料を60μmになるようにスプレー塗布・硬化させ、その表面にカオリンクレー微粉末含有2液硬化ウレタンエラストマーをスプレー塗装で3mmあるいは0.5mm厚さのポリウレタン樹脂層を形成した。作成したサンプルをPUと記す。
Organic resin coating layers were formed in various thicknesses on the resulting inorganic oxide layer of steel as follows.
The polyurethane coating material is spray-coated and cured with a two-component mixed-curing urethane resin coating of polyol and isocyanate curing agent to a thickness of 60 μm as a primer, and a two-component cured urethane elastomer containing kaolin clay powder is sprayed on the surface. A polyurethane resin layer having a thickness of 3 mm or 0.5 mm was formed by coating. The created sample is denoted as PU.

ポリエチレン被覆材は、まず、ビスフェノールA系エポキシ樹脂に、ジシアンジアミド、シリカを添加した一液硬化型プライマーでプライマー層を形成した(60μm)。プライマー層の上に、300μm無水マレイン酸変性ポリオレフィン接着剤層、2mmあるいは0.5mm厚さのポリエチレン樹脂層を順次積層した。このサンプルをPEと記す。   The polyethylene coating material first formed a primer layer with a one-part curable primer in which dicyandiamide and silica were added to a bisphenol A-based epoxy resin (60 μm). On the primer layer, a 300 μm maleic anhydride-modified polyolefin adhesive layer, a polyethylene resin layer having a thickness of 2 mm or 0.5 mm was sequentially laminated. This sample is referred to as PE.

以上のようにして得られたサンプルの耐海水密着性は、次のような海水浸漬促進試験で評価した。まず、約7.5cm角のサンプルの一辺に沿って、1×7.5cmの被覆を剥いで鋼面を露出させる。裏面・側面はシール塗装する。50℃に保たれた人工海水槽に入れ、下から空気泡を吹き込み、その泡がかかるようにサンプルを浸漬する。2ヶ月後、サンプルを取り出し、被覆をはつり、被覆を剥いだ端面からの平均剥離距離を求めた。被覆が基材から全て剥離した場合は、35mmと記した。   The seawater resistance of the samples obtained as described above was evaluated by the following seawater immersion acceleration test. First, a 1 × 7.5 cm coating is stripped along one side of a sample of about 7.5 cm square to expose the steel surface. The back and sides are sealed. It puts in the artificial seawater tank maintained at 50 degreeC, blows air bubbles from the bottom, and immerses the sample so that the bubbles may be applied. Two months later, the sample was taken out, the coating was removed, and the average peel distance from the end face from which the coating was peeled was determined. When all the coating peeled from the substrate, it was marked as 35 mm.

表1、2に結果を示した。表1より、μ/θの値を0.8〜1.1の範囲に調整した本発明例は、μ/θの値がその範囲外の比較例に比べて優れた耐海水密着性を有することが示されている。特に、1.5mm以上のトップ層厚みを有する本発明例は、クロメート材よりも優れた耐海水密着性を示すことがわかる。
また、表1、2より、りん酸溶液に添加された時のpH増加が0.05以下である無機顔料を好適な範囲で添加した場合は、耐海水密着性がさらに向上することが示されている。さらに、pH増加が0.05以下である無機顔料でも、添加量が50mass%を超えると耐海水密着性が劣化することが示されている。
Tables 1 and 2 show the results. From Table 1, the example of the present invention in which the value of μ / θ is adjusted in the range of 0.8 to 1.1 has excellent seawater adhesion resistance compared to the comparative example in which the value of μ / θ is out of the range. It has been shown. In particular, it can be seen that the present invention example having a top layer thickness of 1.5 mm or more exhibits better seawater adhesion than the chromate material.
Tables 1 and 2 show that when an inorganic pigment whose pH increase when added to a phosphoric acid solution is 0.05 or less is added in a suitable range, the seawater adhesion resistance is further improved. ing. Furthermore, even with inorganic pigments having an increase in pH of 0.05 or less, it has been shown that when the amount added exceeds 50 mass%, the seawater resistance is deteriorated.

Figure 0005211829
Figure 0005211829

Figure 0005211829
Figure 0005211829

Figure 0005211829
Figure 0005211829

μ/θと剥離距離の関係を示すための図である。It is a figure for showing the relation between μ / θ and the peeling distance.

Claims (3)

鋼材表面に、Al、P、Mg、B、O及びHから成る無機酸化物層、有機樹脂層を順に積層してなる有機樹脂被覆鋼材において、前記無機酸化物層の元素モル組成比が、下記(1)式の条件を満たすことを特徴とする超耐久性有機樹脂被覆鋼材。
μ/θ=0.8〜1.2 ・・・(1)
ここで、μ:Al、Mg、Bのイオンのモル数とその価数の積の総和
θ:水素イオンのモル数
In an organic resin-coated steel material in which an inorganic oxide layer composed of Al, P, Mg, B, O and H and an organic resin layer are sequentially laminated on the steel material surface, the element molar composition ratio of the inorganic oxide layer is as follows: An ultra-durable organic resin-coated steel material that satisfies the condition of formula (1).
μ / θ = 0.8 to 1.2 (1)
Here, the sum of products of the number of moles of ions of μ: Al, Mg, B and their valence
θ: Number of moles of hydrogen ions
前記無機酸化物層が、室温で、pH2のりん酸溶液に8mass%添加されてから5分後のpH増加が0.05以下である無機顔料を含み、その含有量が無機酸化物層に対して、10〜50mass%である請求項1に記載の超耐久性有機樹脂被覆鋼材。   The inorganic oxide layer contains an inorganic pigment whose pH increase after 5 minutes after addition of 8 mass% to a phosphoric acid solution having a pH of 2 at room temperature is 0.05 or less, and the content of the inorganic oxide layer is less than that of the inorganic oxide layer. The super-durable organic resin-coated steel material according to claim 1, which is 10 to 50 mass%. 前記有機樹脂層のうちトップ層が、厚さ1.5mm以上のポリエチレン樹脂層あるいはポリウレタン樹脂層であることを特徴とする請求項1あるいは2記載の超耐久性有機樹脂被覆鋼材。   The super-durable organic resin-coated steel material according to claim 1 or 2, wherein a top layer of the organic resin layer is a polyethylene resin layer or a polyurethane resin layer having a thickness of 1.5 mm or more.
JP2008114290A 2008-04-24 2008-04-24 Super durable organic resin coated steel Expired - Fee Related JP5211829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114290A JP5211829B2 (en) 2008-04-24 2008-04-24 Super durable organic resin coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114290A JP5211829B2 (en) 2008-04-24 2008-04-24 Super durable organic resin coated steel

Publications (2)

Publication Number Publication Date
JP2009263716A JP2009263716A (en) 2009-11-12
JP5211829B2 true JP5211829B2 (en) 2013-06-12

Family

ID=41389937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114290A Expired - Fee Related JP5211829B2 (en) 2008-04-24 2008-04-24 Super durable organic resin coated steel

Country Status (1)

Country Link
JP (1) JP5211829B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648742B2 (en) * 2004-04-12 2011-03-09 新日本製鐵株式会社 Surface treated steel
JP4416167B2 (en) * 2005-03-08 2010-02-17 新日本製鐵株式会社 Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
JP2006283045A (en) * 2005-03-31 2006-10-19 Nippon Steel Corp Surface treated steel
JP4701798B2 (en) * 2005-04-04 2011-06-15 住友金属工業株式会社 Surface-treated steel with excellent weather resistance in chloride environments
JP4772735B2 (en) * 2006-04-24 2011-09-14 新日本製鐵株式会社 Organic resin coated steel

Also Published As

Publication number Publication date
JP2009263716A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5669859B2 (en) Inorganic phosphate anti-corrosion coating
CN102991023B (en) The surface treated steel plate that corrosion stability, conductivity and coating appearance are excellent
Yu et al. A review of recent developments in coating systems for hot-dip galvanized steel
JP4772735B2 (en) Organic resin coated steel
JP2012514669A (en) Coating composition and passivated galvanized material
JP2004263252A (en) Chromium-free chemically treated steel sheet excellent in resistance to white rust
JP2010528176A (en) Anticorrosive structure for metal and pigment for anticorrosive structure
CN103666202A (en) Environment-friendly oily antirust paint and preparation method thereof
WO2011075712A2 (en) Inorganic phosphate corrosion resistant coatings
WO2013188402A2 (en) Inorganic phosphate corrosion resistant coatings
JP4416167B2 (en) Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
Song et al. Effects of CaO and MgO on anticorrosive performance of aluminum dihydrogen tripolyphosphate on mild steel
JP5211829B2 (en) Super durable organic resin coated steel
JP5927347B2 (en) Organic-inorganic composite coating solution composition and organic-inorganic composite-coated steel sheet
JP4964699B2 (en) Organic resin-coated steel and building using the same
KR101341925B1 (en) Zeolite-based anti-corrosion pigment
JP4603502B2 (en) Coated steel
JP6623543B2 (en) Organic resin coated steel
JP5293050B2 (en) Automotive parts
JP4648742B2 (en) Surface treated steel
JP4299576B2 (en) Heavy anticorrosion coated steel with excellent anti-peeling resistance
EP2241591A1 (en) Hybrid organic-inorganic corrosion inhibitors for chromate-free corrosion resistant coatings
JP2014031552A (en) Hexavalent chrome free organic coated steel material and method for manufacturing the same
JP5326921B2 (en) Organic resin coated steel
Kasisomayajula et al. Recent Advances in Polymer Nanocomposite Coatings for Corrosion Protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R151 Written notification of patent or utility model registration

Ref document number: 5211829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees