[go: up one dir, main page]

JP5192134B2 - Waste treatment method and system - Google Patents

Waste treatment method and system Download PDF

Info

Publication number
JP5192134B2
JP5192134B2 JP2006160735A JP2006160735A JP5192134B2 JP 5192134 B2 JP5192134 B2 JP 5192134B2 JP 2006160735 A JP2006160735 A JP 2006160735A JP 2006160735 A JP2006160735 A JP 2006160735A JP 5192134 B2 JP5192134 B2 JP 5192134B2
Authority
JP
Japan
Prior art keywords
methane fermentation
waste
liquid
solid
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006160735A
Other languages
Japanese (ja)
Other versions
JP2007326070A (en
Inventor
展行 鵜飼
洋 水谷
豊一 内田
猛 甘利
卓 池
玲朋 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2006160735A priority Critical patent/JP5192134B2/en
Publication of JP2007326070A publication Critical patent/JP2007326070A/en
Application granted granted Critical
Publication of JP5192134B2 publication Critical patent/JP5192134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、繊維質を含む廃棄物と過酸化系酸化剤を含む酸化剤含有排水を処理する技術であって、特に、飲料・食品工場から排出される廃棄物をメタン発酵してバイオガスを回収するとともに、該工場にて滅菌、洗浄に用いられた酸化剤含有排水を処理することができる廃棄物処理方法及びシステムに関する。   The present invention is a technology for treating waste containing fiber and oxidant-containing wastewater containing a peroxide-based oxidant, and in particular, biogas is produced by methane fermentation of waste discharged from a beverage / food factory. The present invention relates to a waste treatment method and system capable of collecting and treating oxidant-containing wastewater used for sterilization and washing in the factory.

飲料工場若しくは食品工場(以下、飲料・食品工場と称する)から排出される廃棄物には、飲料・食品加工残渣等の固形状廃棄物、製品の残液等の液状廃棄物、或いは製品容器や機器の洗浄に用いられた洗浄排水などがある。飲料工場を例に挙げて説明すると、図5に示すように、製品の加工工程では、例えばコーヒー豆や茶葉等の原料から液を抽出101した後に抽出液を調合102する工程において、コーヒー粕や茶葉等の加工残渣が発生する。一方、ボトリング工程では、ペットボトルの内側を酸化剤含有洗浄水により滅菌・洗浄103した後に抽出液を充填104し、ペットボトルを密封105した後、キャップの内側でペットボトルの外側ネジ部を水洗浄(106)する。さらに、工場内の各種機器等を洗浄するためにも酸化剤や洗浄水が用いられるため、ここでも酸化剤含有排水が発生する。   Waste discharged from beverage factories or food factories (hereinafter referred to as beverage and food factories) includes solid waste such as beverage and food processing residues, liquid waste such as product residue, There are cleaning wastewater used to clean equipment. A beverage factory will be described as an example. As shown in FIG. 5, in the product processing step, for example, in the step of extracting the liquid 101 from raw materials such as coffee beans and tea leaves and then preparing the extract 102, Processing residues such as tea leaves are generated. On the other hand, in the bottling process, the inside of the PET bottle is sterilized and washed 103 with oxidant-containing washing water, and then the extract is filled 104, the PET bottle is sealed 105, and then the outside screw portion of the PET bottle is watered inside the cap. Wash (106). Furthermore, since an oxidizing agent and washing water are used for washing various devices in the factory, an oxidizing agent-containing wastewater is generated here.

製品を入れる容器や工場内の各種機器を滅菌、洗浄するために各種薬剤が用いられている。従来のホット充填システムでは容器内の洗浄に次亜塩素酸等の塩素系薬剤が多く用いられていたが、近年では無菌充填システムの伸張により過酢酸や過酸化水素等の過酸化系酸化剤が使用されることが多くなってきた。従って、飲料・食品工場にて発生する排水中には過酸化系酸化剤が残存するプラントもある。酸化剤含有排水を処理する場合、還元剤による中和処理(特許文献1等参照)、触媒活性炭による分解処理(特許文献2等参照)などが一般的である。   Various chemicals are used to sterilize and clean containers for products and various equipment in factories. In conventional hot filling systems, chlorine-based chemicals such as hypochlorous acid were often used to clean the inside of containers, but in recent years, peroxide-based oxidizing agents such as peracetic acid and hydrogen peroxide have been added due to the extension of the aseptic filling system. It has been increasingly used. Therefore, there is a plant in which the peroxidation oxidant remains in the wastewater generated in the beverage / food factory. When treating oxidant-containing wastewater, neutralization with a reducing agent (see Patent Document 1 and the like), decomposition with catalytic activated carbon (see Patent Document 2 and the like), and the like are common.

飲料・食品工場では、上記したような複数種類の廃棄物が排出されるため、複数系統の処理工程が設けられている。図6に示すように、食料・食品加工残渣60等の固形性廃棄物は、混合調整槽51にて水分調整、温度調整等をした後、メタン発酵槽52に供給されてメタン発酵され、メタン発酵液は固液分離装置53にて固液分離される。分離液は廃水処理設備54にて活性汚泥処理等の処理が施される。工場から排出される他の廃水65も同時に処理される。また、廃水処理にて発生した汚泥は汚泥貯槽58にて一旦貯留された後に脱水機59にて脱水され脱水汚泥と分離液に分離される。分離液は廃水処理設備54にて処理される。脱水汚泥はコンポスト化、焼却、埋め立て等により処理される。
一方、過酸化系酸化剤を含む酸化剤含有排水61は、還元設備66にて還元処理されて放流又は廃水処理設備へ送られる。
In a beverage / food factory, a plurality of types of wastes are discharged, and therefore, a plurality of processing steps are provided. As shown in FIG. 6, solid waste such as food / food processing residue 60 is supplied to a methane fermentation tank 52 and subjected to methane fermentation after moisture adjustment, temperature adjustment, and the like in a mixing adjustment tank 51. The fermentation liquor is solid-liquid separated by the solid-liquid separation device 53. The separated liquid is subjected to treatment such as activated sludge treatment in the wastewater treatment facility 54. Other waste water 65 discharged from the factory is also treated at the same time. The sludge generated in the wastewater treatment is once stored in the sludge storage tank 58 and then dehydrated by the dehydrator 59 and separated into the dehydrated sludge and the separated liquid. The separated liquid is processed in the wastewater treatment facility 54. The dewatered sludge is treated by composting, incineration, landfill, etc.
On the other hand, the oxidant-containing waste water 61 containing a peroxide-based oxidant is reduced by the reduction facility 66 and sent to the discharge or wastewater treatment facility.

このように、従来は個別に複数の処理系統を備えていたが、これらを有機的に結びつけた方法が特許文献3(特開2004−9017号公報)に開示されている。特許文献3には、過酸化水素や過酢酸等の過酸化物を含有する排水を処理する方法として、生物処理すべき排水を嫌気処理した後、その嫌気処理水を過酸化物含有排水と混合して過酸化物含有排水中の過酸化物を分解する方法が開示されている。これにより、還元剤や触媒等を別途必要とせずに排水中の過酸化物を分解して生物処理することを可能としている。   As described above, conventionally, a plurality of processing systems have been individually provided, but a method of organically connecting them is disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2004-9017). In Patent Document 3, as a method for treating wastewater containing peroxides such as hydrogen peroxide and peracetic acid, wastewater to be biologically treated is anaerobically treated, and then the anaerobic treated water is mixed with peroxide-containing wastewater. Thus, a method for decomposing peroxide in the peroxide-containing waste water is disclosed. As a result, it is possible to biologically treat the peroxide in the wastewater by decomposing it without requiring a reducing agent, a catalyst, or the like.

一方、飲料・食品工場で排出される固形状廃棄物には、繊維質を多量に含むものが多い。繊維質が多い廃棄物の場合、メタン発酵し難いためバイオガスの回収量が少ない。
そこで、特許文献4(特許第3600566号)では、難分解性成分を含む有機性廃棄物をメタン発酵しバイオガスを回収する方法として、メタン発酵処理した汚泥をオゾン酸化して可溶化し、固液分離した後に分離汚泥をメタン発酵槽に返送する方法が提案されている。このように難分解性物質を可溶化処理することによりメタン発酵が促進され、バイオガス回収率を高めることができる。
On the other hand, solid waste discharged from beverage and food factories often contains a large amount of fiber. In the case of waste with high fiber content, biogas recovery is small because methane fermentation is difficult.
Therefore, in Patent Document 4 (Patent No. 36005626), as a method for methane fermentation of organic waste containing a hardly decomposable component and recovering biogas, sludge treated with methane fermentation is solubilized by ozone oxidation and solidified. A method of returning separated sludge to a methane fermentation tank after liquid separation has been proposed. Thus, by solubilizing the hardly decomposable substance, methane fermentation is promoted and the biogas recovery rate can be increased.

特開平11−267666号公報JP-A-11-267666 特開2003−211168号公報JP 2003-2111168 A 特開2004−9017号公報JP 2004-9017 A 特許第3600566号Japanese Patent No. 36005626

酸化剤は殺菌効果が高いため、活性汚泥などの排水処理設備に直接投入することができず、高価な還元剤や活性炭による処理が必要でコストが嵩むという問題があった。また、酸化剤が過酢酸(CHCOOOH)の場合、還元処理後に酢酸(CHCOOH)、過酸化水素(H)が発生するため、廃水処理設備の負荷が増大する。特許文献3では還元剤や活性炭等が不要となるが、過酸化物を単に分解し処理するのみであり、有効利用が図れていない。
また、コーヒー粕や茶葉などの繊維質が多い廃棄物が排出される場合、メタン発酵し難いためバイオガスの回収量が少ないという問題があった。特許文献4のように可溶化を行うことはメタン発酵に有効な手段であるが、酸化剤含有排水は別途処理しなければならない。また可溶化処理でオゾン添加を行う場合、放電により生成させるため発生コストが高い。また、保管が難しいためオゾン発生器を場内に設ける必要があった。さらに、ガス状物質であるため周囲に拡散しないように排ガス処理や封じ込めが必要であるといった問題があり、効率的な可溶化処理が求められている。
Since the oxidizing agent has a high bactericidal effect, it cannot be directly put into wastewater treatment facilities such as activated sludge, and there is a problem that the treatment with an expensive reducing agent or activated carbon is required and the cost is increased. In addition, when the oxidizing agent is peracetic acid (CH 3 COOOH), acetic acid (CH 3 COOH) and hydrogen peroxide (H 2 O 2 ) are generated after the reduction treatment, which increases the load on the wastewater treatment facility. In Patent Document 3, a reducing agent, activated carbon, and the like are unnecessary, but the peroxide is merely decomposed and processed, and effective use cannot be achieved.
In addition, when wastes with high fiber content such as coffee cake and tea leaves are discharged, there is a problem that the amount of biogas recovered is small because methane fermentation is difficult. Solubilization as in Patent Document 4 is an effective means for methane fermentation, but oxidant-containing wastewater must be treated separately. In addition, when ozone is added in the solubilization process, the cost is high because it is generated by discharge. Moreover, since it was difficult to store, it was necessary to install an ozone generator in the hall. Furthermore, since it is a gaseous substance, there is a problem that exhaust gas treatment or containment is necessary so that it does not diffuse around, and an efficient solubilization treatment is required.

従って、本発明は上記従来技術の問題点に鑑み、繊維質を含む廃棄物をメタン発酵する際にバイオガス回収量を増加できるとともに、還元剤、活性炭等を用いずに酸化剤含有排水の還元処理を行うことができる廃棄物処理方法及びシステムを提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention can increase the amount of biogas recovered when methane fermentation of fiber-containing waste, and reduce oxidant-containing wastewater without using a reducing agent or activated carbon An object of the present invention is to provide a waste treatment method and system capable of performing the treatment.

そこで、本発明はかかる課題を解決するために、飲料叉は食品工場から排出される加工残渣をメタン発酵により処理するメタン発酵工程と、前記メタン発酵液を固液分離する固液分離工程と、該固液分離した液を活性汚泥処理する加工残渣処理系に、飲料叉は食品工場から排出される酸化剤含有排水を投入して処理する廃棄物処理方法であって、
前記加工残渣をメタン発酵工程に投入する前に、前記酸化剤含有排水を直接、若しくは固液分離工程に投入する前のメタン発酵液と共に、前記加工残渣と酸化剤含有排水を混合部で混合して該混合廃棄物をメタン発酵工程に投入することを特徴とする。
Therefore, in order to solve such a problem, the present invention treats a processing residue discharged from a beverage or food factory by methane fermentation, a solid-liquid separation step for solid-liquid separation of the methane fermentation liquid, A waste treatment method in which an oxidant-containing wastewater discharged from a beverage or food factory is fed into a processing residue treatment system for treating the activated liquid sludge with the solid-liquid separated liquid ,
Before turning on the processing residue to methane fermentation step, the pre-Symbol oxidant containing wastewater directly, or with the previous methane fermentation liquid to be introduced into the solid-liquid separation step, mixing an oxidizing agent-containing wastewater and the processing residue at the mixing section Then, the mixed waste is fed into a methane fermentation process .

本発明では、飲料叉は食品工場から排出される加工残渣に投入された酸化剤含有排水は、その酸化力により廃棄物に含まれる繊維質を低分子化し、廃棄物を可溶化する。可溶化された廃棄物はメタン発酵されやすくバイオガス回収量が増加する。また同時に、酸化剤は還元処理されるため別途還元処理する必要がなく、還元剤、活性炭等が不要となりランニングコストを低減できる。 In the present invention, the oxidant-containing wastewater introduced into the processing residue discharged from the beverage or food factory reduces the molecular weight of the fiber contained in the waste by its oxidizing power and solubilizes the waste. Solubilized waste tends to be methane-fermented, increasing biogas recovery. At the same time, since the oxidizing agent is reduced, it is not necessary to separately reduce the oxidizing agent, and a reducing agent, activated carbon and the like are unnecessary, and the running cost can be reduced.

即ち、前酸化剤含有排水を(メタン発酵の下流側の)固液分離工程に投入する前のメタン発酵液と共に、前記加工残渣と酸化剤含有排水を混合部で混合して該混合廃棄物をメタン発酵工程に投入することにより、メタン発酵液に酸化剤含有排水が混合されることとなる。メタン発酵液自体はC/N比(炭素(C)/窒素(N))が低いが、酸化分解することでC/N比を向上でき、これにより後段に設けた廃水処理設備にて脱窒処理を行う場合に、炭素源として添加するメタノール等の栄養源の量を低減できる。
また本発明では、記酸化剤含有排水を固液分離工程に投入する前のメタン発酵液とともに、メタン発酵より上流側の前記混合部へ返送するようにしており、酸化剤含有排水の混合により可溶化した返送汚泥がメタン発酵に導入されることとなり、メタン発酵が促進され、バイオガス回収量が増加する。さらに、投入した酸化剤含有排水が還元されるが、メタン発酵液中には嫌気性成分が多く含有されるため、還元効果が極めて高い。
That is, the pre-Symbol oxidant containing wastewater with methane fermentation liquid before introducing the (downstream side of the methane fermentation) solid-liquid separation step, the mixed waste by mixing an oxidizing agent-containing wastewater and the processing residue at the mixing section Is added to the methane fermentation liquid, the oxidant-containing wastewater is mixed with the methane fermentation liquid. Although the methane fermentation liquid itself has a low C / N ratio (carbon (C) / nitrogen (N)), the C / N ratio can be improved by oxidative decomposition. When processing, the amount of nutrient sources such as methanol added as a carbon source can be reduced.
In the present invention also with the previous SL oxidant containing waste water to solid-liquid separation step methane fermentation liquid before turning to, and so as to return from the methane fermentation of the upstream side to the mixing unit, the mixing of the oxidizing agent-containing wastewater Solubilized return sludge is introduced into methane fermentation, which promotes methane fermentation and increases the amount of biogas recovered. Furthermore, although throw off to oxidant-containing waste water is reduced, the methane fermentation liquid for anaerobic ingredients are contained many, a very high reduction effect.

また、これらの発明において、前記加工残渣が、飲料・食品工場から排出される廃棄物であり、前記酸化剤含有排水が過酸化系酸化剤であって、過酸化系酸化剤が過酢酸を主成分とする前記飲料・食品工場にて殺菌・洗浄に用いられた酸化剤を含有する排水であることを特徴とする。
飲料・食品工場では、飲料・食品加工残渣等の繊維質を多く含む廃棄物と、製品容器や機器の洗浄に用いられた洗浄排水等の酸化剤含有排水が発生する。従って、本発明は、工場から排出される廃棄物、排水の処理を有機的に結びつけることにより外部より供給する薬剤コストを削減し、複合的な処理を可能として処理効率を向上させることができる。
In these inventions, the processing residue is waste discharged from a beverage / food factory, the oxidizing agent-containing wastewater is a peroxide oxidizing agent, and the peroxide oxidizing agent is mainly peracetic acid. The waste water containing an oxidizing agent used for sterilization and washing in the beverage / food factory as a component .
In beverage and food factories, wastes containing a large amount of fiber such as beverage and food processing residues and oxidant-containing wastewater such as washing wastewater used for washing product containers and equipment are generated. Accordingly, the present invention can reduce the cost of chemicals supplied from the outside by organically linking the waste and wastewater discharged from the factory, and can improve the processing efficiency by enabling complex processing.

さらに、前記加工残渣と酸化剤含有排水を混合する混合部に、前記固液分離工程で固液分離した分離汚泥の少なくとも一部返送することを特徴とする。
これにより、活性汚泥処理後の余剰汚泥が酸化されて可溶化されるため、余剰汚泥発生量が低減し、同時に酸化剤含有排水が還元される。
尚、本発明を飲料・食品工場に適用する場合、前記廃水としては、同工場から排出される濃厚排水、一般排水、希薄排水のような廃水が挙げられる。


Furthermore, at least a part of the separated sludge that has been subjected to solid-liquid separation in the solid-liquid separation step is returned to a mixing unit that mixes the processing residue and oxidant-containing wastewater.
Thereby, since the surplus sludge after the activated sludge treatment is oxidized and solubilized, the surplus sludge generation amount is reduced, and at the same time, the oxidizing agent-containing waste water is reduced.
When the present invention is applied to a beverage / food factory, examples of the waste water include waste water such as concentrated waste water, general waste water, and diluted waste water discharged from the factory.


また、本発明は、前記加工残渣と酸化剤含有排水を混合部で混合して該混合廃棄物をメタン発酵工程に投入することを特徴とする。
一般的に、メタン発酵に投入する廃棄物若しくはメタン発酵液は、メタン発酵する前に水分調整、温度調整等が行われるが、本発明ではさらに加工残渣と酸化剤含有排水を混合部で混合することによりメタン発酵を促進させる構成としている。このとき、本発明の処理系内で発生した廃熱や廃アルカリを可溶化処理に利用することが好ましく、これによりメタン発酵を促進できるとともに省エネルギー且つ低コストの処理を提供することができる。
Further, the present invention is characterized in that the processing residue and oxidant-containing wastewater are mixed in a mixing section, and the mixed waste is put into a methane fermentation process .
In general, waste or methane fermentation liquid to be put into methane fermentation is subjected to moisture adjustment, temperature adjustment, etc. before methane fermentation. In the present invention, the processing residue and oxidizing agent-containing wastewater are further mixed in the mixing section. Therefore, the methane fermentation is promoted. At this time, it is preferable to use the waste heat and waste alkali generated in the treatment system of the present invention for the solubilization treatment, thereby promoting methane fermentation and providing energy-saving and low-cost treatment.

さらにまた、これらの発明において、前記過酸化系酸化剤が過酢酸を主成分とすることが好適である。
過酸化系酸化剤が過酢酸を主成分とする場合、過酢酸から過酸化水素と酢酸が生成するが、生成した過酸化水素が酸化剤として機能し、廃棄物の低分子化に寄与する。一方、過酢酸の還元により生成した酢酸はメタン発酵の原料となるため、より一層バイオガスの回収量を増加できる。
Furthermore, in these inventions, it is preferable that the peroxidic oxidant is mainly composed of peracetic acid.
When the peroxidic oxidant is mainly composed of peracetic acid, hydrogen peroxide and acetic acid are produced from peracetic acid, but the produced hydrogen peroxide functions as an oxidant and contributes to the reduction of waste molecules. On the other hand, since acetic acid produced by reduction of peracetic acid becomes a raw material for methane fermentation, the amount of biogas recovered can be further increased.

また、前記発明の廃棄物処理システムに関する発明として、
飲料叉は食品工場から排出される加工残渣をメタン発酵により処理するメタン発酵装置と、前記メタン発酵液を固液分離する固液分離装置と、該固液分離した液を活性汚泥処理する加工残渣処理系に、飲料叉は食品工場から排出される酸化剤含有排水を処理する酸化剤含有排水処理系を組み込んだ廃棄物処理システムであって、
前記加工残渣をメタン発酵工程に投入する投入ラインに混合調整槽を設け、該混合調整槽に直接若しくは固液分離工程に投入する前のメタン発酵液と共に酸化剤含有排水を投入して、該混合調整槽で前記加工残渣と酸化剤含有排水を混合させる混合ラインを備えたことを特徴とする。
As an invention related to the waste treatment system of the invention,
A methane fermentation apparatus for processing a processing residue discharged from a beverage or food factory by methane fermentation, a solid-liquid separation apparatus for solid-liquid separation of the methane fermentation liquid, and a processing residue for processing activated sludge for the solid-liquid separated liquid A waste treatment system that incorporates an oxidant-containing wastewater treatment system that treats oxidant-containing wastewater discharged from beverages or food factories into the treatment system,
A mixing adjustment tank is provided in the input line for supplying the processing residue to the methane fermentation process , and the oxidizer-containing wastewater is input to the mixing adjustment tank directly or together with the methane fermentation liquid before being input to the solid-liquid separation process. A mixing line for mixing the processing residue and the oxidant-containing wastewater in the adjustment tank is provided.

また、記混合調整槽に、固液分離装置で固液分離した分離汚泥の少なくとも一部を前記メタン発酵槽より上流側に返送する返送ラインを備えたことを特徴とする。Further, the mixing adjustment tank is provided with a return line for returning at least a part of the separated sludge solid-liquid separated by the solid-liquid separator to the upstream side of the methane fermentation tank.

さらに、記メタン発酵後のメタン発酵液を固液分離した分離液を活性汚泥処理する活性汚泥処理設備を備え、
前記活性汚泥処理設備が曝気槽と沈殿槽を有し、該沈殿槽にて得られる余剰汚泥の少なくとも一部を前記曝気槽に返送する返送ラインを備えており、
前記返送ライン上に、前記余剰汚泥の少なくとも一部に前記酸化剤含有排水を混合する手段を設けたことを特徴とする。
また、前記メタン発酵槽の前段に混合調整槽を設け、システム内で発生した廃熱若しくは廃アルカリを該混合調整槽に供給して前記廃棄物若しくは前記メタン発酵液を可溶化処理することを特徴とする。
さらにまた、前記過酸化系酸化剤が過酢酸を主成分とすることが好適である。
Further comprising an active sludge treatment facility for activated sludge treatment pre Symbol methane fermentation liquor to solid-liquid separation was separated liquid after the methane fermentation,
The activated sludge treatment facility has an aeration tank and a settling tank, and includes a return line for returning at least a part of the excess sludge obtained in the settling tank to the aeration tank,
The return line is provided with means for mixing the oxidant-containing waste water with at least a part of the excess sludge.
In addition, a mixing adjustment tank is provided in the previous stage of the methane fermentation tank, and waste heat or waste alkali generated in the system is supplied to the mixing adjustment tank to solubilize the waste or the methane fermentation liquid. And
Furthermore, it is preferable that the peroxidic oxidant is mainly composed of peracetic acid.

以上記載のごとく本発明によれば、繊維質を含む廃棄物であっても、酸化剤含有排水を有効に利用することで効率的にメタン発酵を行うことができ、バイオガス回収量を増加させることができる。また、同時に酸化剤含有排水を還元処理することもできるため、還元剤や活性炭等の供給が不要となり、ランニングコストを低減できる。
さらに、酸化剤含有排水をメタン発酵、若しくはメタン発酵と活性汚泥処理の両方に投入することにより、生物処理の分解が促進されるため、汚泥発生量を低減でき、処理コストも低減できる。
As described above, according to the present invention, methane fermentation can be performed efficiently by effectively using waste water containing oxidant even if it is waste containing fiber, and the amount of biogas recovered is increased. be able to. In addition, since the oxidizing agent-containing waste water can be reduced at the same time, it is not necessary to supply a reducing agent or activated carbon, and the running cost can be reduced.
Furthermore, by introducing the oxidizing agent-containing wastewater into methane fermentation or both methane fermentation and activated sludge treatment, decomposition of biological treatment is promoted, so that the amount of sludge generated can be reduced and treatment costs can be reduced.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係る廃棄物処理システムの主要構成を示す概略図、図2は本発明の実施例1に係る廃棄物処理システムの全体構成図、図3は本発明の実施例2に係る廃棄物処理システムの全体構成図、図4は本発明の実施例3に係る廃棄物処理システムの全体構成図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a schematic diagram showing the main configuration of a waste treatment system according to an embodiment of the present invention, FIG. 2 is an overall configuration diagram of the waste treatment system according to Embodiment 1 of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is an overall configuration diagram of a waste treatment system according to Embodiment 3 of the present invention.

図1を参照して本実施例の主要構成につき説明する。処理対象は、コーヒー粕、茶粕、果実搾汁粕等の飲料・食品加工残渣10などのような繊維質を含む廃棄物と、システム内の滅菌、洗浄に用いられた酸化剤を含有する酸化剤含有排水11である。酸化剤としては、過酢酸、過酸化水素等の過酸化系酸化剤が挙げられるが、特に過酢酸を含む酸化剤に適用することが好ましい。
本実施例では、同図に示されるように飲料・食品加工残渣10をメタン発酵に適した状態に調整する混合調整槽1と、該混合調整後の飲料・食品加工残渣10をメタン発酵するメタン発酵槽2と、該メタン発酵後のメタン発酵液を固液分離する固液分離装置3と、固液分離にて得られた分離液を水処理する廃水処理設備4と、廃水処理にて発生した汚泥を貯留する汚泥貯槽8と、該汚泥を脱水する脱水機9とを備える。
The main configuration of the present embodiment will be described with reference to FIG. The object to be treated is waste containing fiber such as coffee / tea bowl, fruit squeezed fruit and other beverage / food processing residue 10 and the like, and an oxidizing agent containing an oxidizing agent used for sterilization and washing in the system. It is an agent-containing wastewater 11. Examples of the oxidizing agent include peroxidic oxidizing agents such as peracetic acid and hydrogen peroxide, but it is particularly preferable to apply to oxidizing agents containing peracetic acid.
In the present embodiment, as shown in the figure, a mixing adjustment tank 1 for adjusting the beverage / food processing residue 10 to a state suitable for methane fermentation, and methane for methane fermentation of the mixed beverage / food processing residue 10 Generated by the fermenter 2, the solid-liquid separation device 3 for solid-liquid separation of the methane fermentation liquid after the methane fermentation, the waste water treatment facility 4 for water treatment of the separated liquid obtained by solid-liquid separation, and the waste water treatment A sludge storage tank 8 for storing the sludge and a dehydrator 9 for dewatering the sludge.

混合調整槽1では、飲料・食品加工残渣10の水分調整、温度調整等が行われるが、他にも、システム内で発生した廃アルカリ12や廃熱13を加えて、飲料・食品加工残渣10を可溶化してもよい。
メタン発酵槽2は、槽内にメタン発酵菌等の嫌気性微生物が繁殖しており、嫌気性微生物が卓越して繁殖できる環境に温度、pH等の条件が維持されており、槽内で有機性廃棄物20中の有機物を主にガス化反応によって分解処理することによりバイオガスを生成させる周知の装置である。
In the mixing adjustment tank 1, moisture adjustment, temperature adjustment, and the like of the beverage / food processing residue 10 are performed, but in addition to the waste alkali 12 and waste heat 13 generated in the system, the beverage / food processing residue 10 May be solubilized.
In the methane fermentation tank 2, anaerobic microorganisms such as methane fermentation bacteria are propagated in the tank, and conditions such as temperature and pH are maintained in an environment in which the anaerobic microorganisms can prominently propagate. This is a well-known device that generates biogas by decomposing organic matter in the radioactive waste 20 mainly by gasification reaction.

廃水処理設備4は、固液分離にて得られた分離液に生物処理を主とする水処理を施す設備であり、活性汚泥処理が好適に用いられる。活性汚泥処理は、直列に接続された曝気槽5と沈殿槽6と、該沈殿槽6にて得られた余剰汚泥の少なくとも一部を返送汚泥16として曝気槽5に返送する。返送ライン上には混合槽7が設けられる。
沈殿槽6にて分離された分離液17は、放流若しくは他の水処理系へ送られる。一方、分離汚泥18は汚泥貯槽8に一旦貯留された後、適宜脱水機9に投入され、脱水される。脱水分離液は、工場内で発生した他の廃水15とともに廃水処理設備4にて処理することが好ましい。
The wastewater treatment facility 4 is a facility that performs water treatment mainly on biological treatment on the separated liquid obtained by solid-liquid separation, and activated sludge treatment is suitably used. In the activated sludge treatment, the aeration tank 5 and the sedimentation tank 6 connected in series and at least a part of the excess sludge obtained in the sedimentation tank 6 are returned to the aeration tank 5 as a return sludge 16. A mixing tank 7 is provided on the return line.
The separated liquid 17 separated in the settling tank 6 is discharged or sent to another water treatment system. On the other hand, the separated sludge 18 is once stored in the sludge storage tank 8, and then appropriately put into the dehydrator 9, where it is dehydrated. The dehydrated separation liquid is preferably treated in the wastewater treatment facility 4 together with other wastewater 15 generated in the factory.

さらに本実施例では、酸化剤含有排水11をメタン発酵槽2より上流側、若しくはメタン発酵槽2より下流側で且つ固液分離装置3より上流側へ投入する構成となっている。
酸化剤含有排水11をメタン発酵槽2より上流側に投入する場合、混合調整槽1、若しくは混合調整槽1の前段、或いは混合調整槽1とメタン発酵槽2の間に投入することができ、この投入位置は特に限定されない。飲料・食品加工残渣10に投入された酸化剤含有排水11は、その酸化力により該残渣10に含まれる繊維質を低分子化し、飲料・食品加工残渣10を可溶化する。可溶化された廃棄物はメタン発酵され易いため、バイオガス回収量が増加する。また、同時に酸化剤は還元処理されるという利点も有する。
Furthermore, in this embodiment, the oxidant-containing waste water 11 is introduced upstream from the methane fermentation tank 2 or downstream from the methane fermentation tank 2 and upstream from the solid-liquid separator 3.
When the oxidant-containing wastewater 11 is introduced upstream from the methane fermentation tank 2, it can be introduced between the mixing adjustment tank 1, the preceding stage of the mixing adjustment tank 1, or between the mixing adjustment tank 1 and the methane fermentation tank 2, This input position is not particularly limited. The oxidant-containing wastewater 11 put into the beverage / food processing residue 10 lowers the molecular weight of the fiber contained in the residue 10 by its oxidizing power and solubilizes the beverage / food processing residue 10. Since the solubilized waste is easily methane-fermented, the amount of biogas recovered increases. At the same time, the oxidizing agent is advantageously reduced.

酸化剤含有排水11が過酢酸を含む場合、過酢酸は以下の式(1)のような平衡状態で存在するため、生成した過酸化水素が酸化剤として機能し、飲料・食品加工残渣10の低分子化に寄与する。一方、過酢酸の還元により酢酸が生成するが、酢酸はメタン発酵の原料となるため、より一層バイオガスの回収量を増加できる。
CHCOOOH+HO→CHCOOH+H ・・・(1)
When the oxidant-containing waste water 11 contains peracetic acid, since the peracetic acid exists in an equilibrium state as in the following formula (1), the generated hydrogen peroxide functions as an oxidant, and the beverage / food processing residue 10 Contributes to low molecular weight. On the other hand, acetic acid is produced by the reduction of peracetic acid. Since acetic acid is a raw material for methane fermentation, the amount of biogas recovered can be further increased.
CH 3 COOOH + H 2 O → CH 3 COOH + H 2 O 2 (1)

酸化剤含有排水11をメタン発酵槽2と固液分離装置3の間に投入する場合、メタン発酵後のメタン発酵液に酸化剤含有排水11が混合されることとなる。メタン発酵液自体はC/N比(炭素(C)/窒素(N))が低いが、酸化分解することでC/N比を向上でき、これにより後段の廃水処理設備4にて脱窒処理を行う場合に、炭素源として添加するメタノール等の栄養源の量を低減できる。
またこの場合、酸化剤含有排水11と混合したメタン発酵液の少なくとも一部及び/又は該メタン発酵液を固液分離装置3にて固液分離した分離汚泥の少なくとも一部を、返送汚泥14、14’としてメタン発酵槽2より上流側へ返送するようにしている。このため、酸化剤含有排水11の混合により可溶化した返送汚泥14、14’がメタン発酵槽2に導入されることとなり、メタン発酵が促進され、バイオガス回収量が増加する。さらに、前述した構成と同様に、投入した酸化剤含有排水11が還元されるが、メタン発酵液中には嫌気性成分が多く含有されるため、還元効果が極めて高い。従って、処理すべき酸化剤含有排水11の量が多い場合には、本構成を採用することが好ましい。
勿論、酸化剤含有排水11を、メタン発酵槽2より上流側と下流側の両方に供給するようにしてもよい。
When the oxidant-containing waste water 11 is introduced between the methane fermentation tank 2 and the solid-liquid separator 3, the oxidant-containing waste water 11 is mixed with the methane fermentation liquid after methane fermentation. Although the methane fermentation liquid itself has a low C / N ratio (carbon (C) / nitrogen (N)), it can be improved by oxidative decomposition, and denitrification treatment can be performed at the wastewater treatment facility 4 at the subsequent stage. When performing this, the amount of nutrient sources such as methanol added as a carbon source can be reduced.
Further, in this case, at least a part of the methane fermentation liquid mixed with the oxidant-containing waste water 11 and / or at least a part of the separated sludge obtained by solid-liquid separation of the methane fermentation liquid with the solid-liquid separator 3 are returned to the return sludge 14. 14 ′ is returned to the upstream side from the methane fermentation tank 2. For this reason, the return sludges 14, 14 ′ solubilized by the mixing of the oxidant-containing waste water 11 are introduced into the methane fermentation tank 2, methane fermentation is promoted, and the biogas recovery amount is increased. Furthermore, the oxidant-containing waste water 11 that has been input is reduced as in the above-described configuration, but since the methane fermentation liquid contains a large amount of anaerobic components, the reduction effect is extremely high. Therefore, it is preferable to adopt this configuration when the amount of the oxidant-containing wastewater 11 to be treated is large.
Of course, you may make it supply the oxidizing agent containing waste_water | drain 11 to both the upstream and downstream from the methane fermentation tank 2. FIG.

また、上記した何れかの構成に加えて、廃水処理設備4に酸化剤含有排水11を投入するようにしてもよい。沈殿槽6からの余剰汚泥の少なくとも一部を返送汚泥16として曝気槽7に返送するようにし、返送ライン上に混合槽7を設け、該混合槽7に酸化剤含有排水11を投入する。これにより、活性汚泥処理後の余剰汚泥が酸化されて可溶化されるため、余剰汚泥発生量が低減する。酸化剤含有排水11が過酢酸を含む場合に発生する酢酸は、曝気槽にて分解される。   In addition to any of the above-described configurations, the oxidant-containing waste water 11 may be input to the waste water treatment facility 4. At least a part of the excess sludge from the settling tank 6 is returned to the aeration tank 7 as the return sludge 16, the mixing tank 7 is provided on the return line, and the oxidizing agent-containing waste water 11 is put into the mixing tank 7. Thereby, since the surplus sludge after activated sludge processing is oxidized and solubilized, the surplus sludge generation amount reduces. Acetic acid generated when the oxidant-containing wastewater 11 contains peracetic acid is decomposed in the aeration tank.

以下、図2乃至図4に示した実施例1乃至実施例3にて、本実施例の具体的な構成例を説明する。これらの実施例では、一例として飲料工場における廃棄物処理を目的としている。
図2に示されるように、一般的な飲料工場では濃厚排水、一般排水、希薄排水、廃棄物、酸化剤含有排水が発生する。ここで、濃厚排水は製品ブロー、一次洗浄排水等で、一般排水はレトルト排水、パストライザ排水、洗びん機排水、CIP排水、ユーティリティ排水等で、希薄排水はブレンド冷却排水、抽出冷却排水、リンサ排水、用水洗浄排水等で、廃棄物はコーヒー粕、茶粕等で、酸化剤含有排水は過酢酸又は過酸化水素を含有する排水である。
Hereinafter, a specific configuration example of the present embodiment will be described with reference to Embodiments 1 to 3 shown in FIGS. These examples are intended for waste disposal in beverage factories as an example.
As shown in FIG. 2, in a general beverage factory, concentrated waste water, general waste water, diluted waste water, waste, and oxidizing agent-containing waste water are generated. Here, concentrated wastewater is product blow, primary wash wastewater, general wastewater is retort wastewater, pastorizer wastewater, bottle washer wastewater, CIP wastewater, utility wastewater, etc., lean wastewater is blend cooling wastewater, extraction cooling wastewater, rinser wastewater Waste water for washing water, wastes are coffee cakes, teacups, etc., and oxidant-containing wastewater is wastewater containing peracetic acid or hydrogen peroxide.

濃厚排水は、一旦貯槽20に貯留された後、適宜酸発酵21され、EGSBリアクタ222にて嫌気性生物処理される。EGSB(Expanded Granuler Sludge Bed)リアクタは、 嫌気性細菌を使った生物処理装置であり、高負荷に対応可能であるため濃厚排水に適している。
一般排水は、中和処理23を施された後に油分離24し、貯槽25に貯留される。貯槽25ではEGSBリアクタ22にて処理後の処理液も受け入れる。貯槽25の排水は適宜活性汚泥処理26等の生物処理が施されて有機物、BOD等を分解した後に、凝集27、沈殿28により無機物、リン等が除去され、沈殿分離液は貯槽29に送られる。その後、生物膜濾過30等の処理を施した後、貯槽31に貯留されて処理水は放流される。
After the concentrated wastewater is once stored in the storage tank 20, it is appropriately subjected to acid fermentation 21 and subjected to an anaerobic biological treatment in the EGSB reactor 222. The EGSB (Expanded Granuler Sludge Bed) reactor is a biological treatment device that uses anaerobic bacteria and is suitable for concentrated wastewater because it can handle high loads.
The general waste water is subjected to neutralization 23 and then oil-separated 24 and stored in a storage tank 25. In the storage tank 25, the processing liquid after processing in the EGSB reactor 22 is also received. The wastewater in the storage tank 25 is appropriately subjected to biological treatment such as activated sludge treatment 26 to decompose organic matter, BOD, etc., and then inorganic matter, phosphorus, etc. are removed by agglomeration 27 and precipitation 28, and the precipitate separation liquid is sent to the storage tank 29. . Then, after processing, such as biofilm filtration 30, is stored in the storage tank 31, and treated water is discharged.

希薄排水は有機物濃度が極めて低いため、一旦貯槽20に貯留された後、一般排水処理工程の後段側、即ち本実施例では貯槽29に送給され、一般排水の沈殿分離液とともに生物膜濾過30を施された後に放流される。希薄排水の水質によっては、回収設備33に回収し、有機物濃度が高い場合には一般排水の上流側、本実施例では貯槽25に送給して活性汚泥処理26から処理を始めるようにする。また、回収水として他の目的で再利用するようにしてもよい。   Since dilute wastewater has an extremely low organic matter concentration, it is once stored in the storage tank 20 and then fed to the rear side of the general wastewater treatment process, that is, the storage tank 29 in this embodiment, and biofilm filtration 30 together with the precipitate separation liquid of general wastewater. It is released after being given. Depending on the quality of the diluted waste water, the waste water is recovered in the recovery facility 33. When the organic matter concentration is high, the waste water is supplied to the upstream side of the general waste water, in this embodiment, the storage tank 25, and the treatment starts from the activated sludge treatment 26. Further, the recovered water may be reused for other purposes.

廃棄物は、一旦ホッパ34に貯留された後必要に応じて粉砕35され、混合調整槽1(図1参照)にて調整36されるとともに、酸化剤含有排水が混合される。廃棄物は酸化剤含有排水の酸化力により可溶化し、酸化剤は中和される。可溶化した廃棄物はメタン発酵槽2にてメタン発酵37される。
メタン発酵37により発生したメタン発酵液は脱水機(固液分離装置3)にて脱水され、分離水は一般排水処理工程の貯槽25に送られ、活性汚泥処理26等が施される。一方、脱水汚泥は乾燥39した後にコンポスト原料として用いられたり、焼却、埋め立て等により処理される。
メタン発酵37にて発生したバイオガスは、ガスタンク40に回収され、必要に応じて脱硫処理等を施した後にガスタービン41の燃料として用いられる。本実施例では、ガスタービン41とボイラ42を併設しており、ボイラ42で発生させた蒸気を脱水汚泥の乾燥39等に有効利用することが好ましい。また、ガスタービンで発電した電気は、場内利用することが好ましい。
The waste is temporarily stored in the hopper 34 and then pulverized 35 as necessary, adjusted 36 in the mixing adjustment tank 1 (see FIG. 1), and mixed with the oxidant-containing waste water. The waste is solubilized by the oxidizing power of the oxidizing agent-containing wastewater, and the oxidizing agent is neutralized. The solubilized waste is subjected to methane fermentation 37 in the methane fermentation tank 2.
The methane fermentation liquor generated by the methane fermentation 37 is dehydrated by a dehydrator (solid-liquid separation device 3), and the separated water is sent to the storage tank 25 in the general wastewater treatment process, and subjected to activated sludge treatment 26 and the like. On the other hand, the dewatered sludge is dried 39 and then used as a compost raw material, or is treated by incineration, landfilling or the like.
The biogas generated in the methane fermentation 37 is collected in the gas tank 40 and used as a fuel for the gas turbine 41 after performing a desulfurization process or the like as necessary. In the present embodiment, the gas turbine 41 and the boiler 42 are provided side by side, and it is preferable to effectively use the steam generated in the boiler 42 for drying 39 of the dewatered sludge. The electricity generated by the gas turbine is preferably used in the field.

このように、本実施例1によれば、飲料工場で発生する廃棄物の処理工程に、該工場で発生する酸化剤含有排水の処理工程を有効に組み合わせることで、メタン発酵を促進し、バイオガスの回収量を増加させるとともに、酸化剤含有排水の中和を行うことができる。また、系内から発生する汚泥量を低減することができる。   Thus, according to the present Example 1, methane fermentation is promoted by effectively combining the treatment process of waste generated in a beverage factory with the treatment process of oxidant-containing wastewater generated in the factory. It is possible to increase the amount of gas recovered and neutralize the oxidant-containing wastewater. In addition, the amount of sludge generated from the system can be reduced.

図3に本実施例2に係る廃棄物処理システムの全体構成を示す。以下、実施例2及び実施例3において、実施例1と同様の構成についてはその詳細な説明を省略する。
本実施例2では、廃棄物処理工程のメタン発酵37前には酸化剤含有排水を混合せずに、メタン発酵37後のメタン発酵液に酸化剤含有排水を混合36’している。混合36’後のメタン発酵液の少なくとも一部はメタン発酵37より上流側に返送し、再度メタン発酵する。これにより、可溶化したメタン発酵液が返送されてメタン発酵37が促進され、また、メタン発酵液中には嫌気性成分が多く含有されるため、酸化剤の還元効果が極めて高くなる。
FIG. 3 shows the overall configuration of the waste treatment system according to the second embodiment. Hereinafter, in the second embodiment and the third embodiment, detailed description of the same configurations as those in the first embodiment is omitted.
In the second embodiment, the oxidizer-containing wastewater is not mixed with the oxidizer-containing wastewater before the methane fermentation 37 in the waste treatment process, but the oxidizer-containing wastewater is mixed 36 ′ with the methane fermentation liquid after the methane fermentation 37. At least a part of the methane fermentation liquid after the mixing 36 ′ is returned to the upstream side of the methane fermentation 37 and again subjected to methane fermentation. As a result, the solubilized methane fermentation broth is returned to promote the methane fermentation 37, and since the methane fermentation broth contains a large amount of anaerobic components, the reducing effect of the oxidizing agent becomes extremely high.

図4に本実施例3に係る廃棄物処理システムの全体構成を示す。
本実施例3では、上記した実施例1若しくは実施例2の構成に加えて、酸化剤含有排水を、一般排水処理工程の活性汚泥処理26に投入するようにしている。活性汚泥処理26は曝気26aと、沈殿26bと、混合26cからなり、一般排水を曝気槽5(図1参照)にて曝気26aした後に沈殿槽6にて沈殿26bさせ、分離液の少なくとも一部を、混合槽7を介して曝気26aに返送させる。このとき、混合槽7に酸化剤含有排水を供給する。
混合槽7にて余剰汚泥と酸化剤含有排水を混合することにより、活性汚泥処理後の余剰汚泥が酸化されて可溶化されるため、余剰汚泥発生量が低減する。
FIG. 4 shows the overall configuration of the waste treatment system according to the third embodiment.
In the third embodiment, in addition to the configuration of the first embodiment or the second embodiment described above, the oxidant-containing wastewater is input to the activated sludge treatment 26 in the general wastewater treatment process. The activated sludge treatment 26 includes an aeration 26a, a precipitate 26b, and a mixture 26c. The general waste water is aerated 26a in the aeration tank 5 (see FIG. 1) and then precipitated in the precipitation tank 6 to at least part of the separated liquid. Is returned to the aeration 26 a through the mixing tank 7. At this time, oxidant-containing wastewater is supplied to the mixing tank 7.
By mixing the excess sludge and the oxidizing agent-containing wastewater in the mixing tank 7, the excess sludge after the activated sludge treatment is oxidized and solubilized, so that the amount of excess sludge generated is reduced.

本発明の実施例に係る廃棄物処理システムの主要構成を示す概略図である。It is the schematic which shows the main structures of the waste disposal system which concerns on the Example of this invention. 本発明の実施例1に係る廃棄物処理システムの全体構成図である。1 is an overall configuration diagram of a waste disposal system according to Embodiment 1 of the present invention. 本発明の実施例2に係る廃棄物処理システムの全体構成図である。It is a whole block diagram of the waste disposal system which concerns on Example 2 of this invention. 本発明の実施例3に係る廃棄物処理システムの全体構成図である。It is a whole block diagram of the waste disposal system which concerns on Example 3 of this invention. 飲料工場における製造・洗浄工程を示すフロー図である。It is a flowchart which shows the manufacture and washing process in a beverage factory. 従来の廃棄物処理システムの主要構成を示す概略図である。It is the schematic which shows the main structures of the conventional waste disposal system.

符号の説明Explanation of symbols

1 混合調整槽
2 メタン発酵槽
3 固液分離装置
4 廃水処理設備
5 曝気槽
6 沈殿槽
7 混合槽
9 脱水機
26 活性汚泥処理
26a 曝気
26b 沈殿
26c 混合
36、36’ 混合
37 メタン発酵
DESCRIPTION OF SYMBOLS 1 Mixing adjustment tank 2 Methane fermentation tank 3 Solid-liquid separator 4 Waste water treatment equipment 5 Aeration tank 6 Precipitation tank 7 Mixing tank 9 Dehydrator 26 Activated sludge treatment 26a Aeration 26b Precipitation 26c Mixing 36, 36 'Mixing 37 Methane fermentation

Claims (10)

飲料叉は食品工場から排出される加工残渣をメタン発酵により処理するメタン発酵工程と、前記メタン発酵液を固液分離する固液分離工程と、該固液分離した液を活性汚泥処理する加工残渣処理系に、飲料叉は食品工場から排出される酸化剤含有排水を投入して処理する廃棄物処理方法であって、
前記加工残渣をメタン発酵工程に投入する前に、前記酸化剤含有排水を直接、若しくは固液分離工程に投入する前のメタン発酵液と共に、前記加工残渣と酸化剤含有排水を混合部で混合して該混合廃棄物をメタン発酵工程に投入することを特徴とする廃棄物処理方法。
A methane fermentation process for treating the processing residue discharged from a beverage or food factory by methane fermentation, a solid-liquid separation process for solid-liquid separation of the methane fermentation liquid, and a processing residue for treating the sludge separated liquid with activated sludge A waste treatment method in which oxidant-containing wastewater discharged from a beverage or food factory is put into a treatment system and treated,
Before introducing the processing residue into the methane fermentation process, the processing residue and the oxidizing agent-containing wastewater are mixed in the mixing unit directly or together with the methane fermentation liquid before being input into the solid-liquid separation process. The mixed waste is put into a methane fermentation process.
前記加工残渣と酸化剤含有排水を混合する混合部に、前記固液分離工程で固液分離した分離汚泥の少なくとも一部返送することを特徴とする請求項1記載の廃棄物処理方法。 2. The waste treatment method according to claim 1, wherein at least a part of the separated sludge that has been subjected to solid-liquid separation in the solid-liquid separation step is returned to a mixing unit that mixes the processing residue and oxidant-containing wastewater. 前記活性汚泥処理が曝気工程と沈殿工程を有し、該沈殿工程にて得られる余剰汚泥の少なくとも一部を前記曝気工程に返送するようにし、該返送する余剰汚泥の少なくとも一部に、前記酸化剤含有排水を混合することを特徴とする請求項1又は2に記載の廃棄物処理方法。   The activated sludge treatment has an aeration process and a precipitation process, and at least a part of excess sludge obtained in the precipitation process is returned to the aeration process, and at least a part of the returned excess sludge is subjected to the oxidation. The waste treatment method according to claim 1 or 2, wherein the agent-containing waste water is mixed. 前記メタン発酵に投入する廃棄物若しくは該メタン発酵に返送するメタン発酵液を、処理系内で発生した廃熱若しくは廃アルカリにより可溶化処理することを特徴とする請求項1乃至3の何れかに記載の廃棄物処理方法。   The waste to be introduced into the methane fermentation or the methane fermentation liquid to be returned to the methane fermentation is solubilized by waste heat or waste alkali generated in the treatment system. The waste disposal method described. 前記過酸化系酸化剤が過酢酸を主成分とすることを特徴とする請求項1に記載の廃棄物処理方法。   The waste treatment method according to claim 1, wherein the peroxidation-based oxidant contains peracetic acid as a main component. 飲料叉は食品工場から排出される加工残渣をメタン発酵により処理するメタン発酵装置と、前記メタン発酵液を固液分離する固液分離装置と、該固液分離した液を活性汚泥処理する加工残渣処理系に、飲料叉は食品工場から排出される酸化剤含有排水を処理する酸化剤含有排水処理系を組み込んだ廃棄物処理システムであって、
前記加工残渣をメタン発酵工程に投入する投入ラインに混合調整槽を設け、該混合調整槽に直接若しくは固液分離工程に投入する前のメタン発酵液と共に酸化剤含有排水を投入して、該混合調整槽で前記加工残渣と酸化剤含有排水を混合させる混合ラインを備えたことを特徴とする廃棄物処理システム。
A methane fermentation apparatus for processing a processing residue discharged from a beverage or food factory by methane fermentation, a solid-liquid separation apparatus for solid-liquid separation of the methane fermentation liquid, and a processing residue for processing activated sludge for the solid-liquid separated liquid A waste treatment system that incorporates an oxidant-containing wastewater treatment system that treats oxidant-containing wastewater discharged from beverages or food factories into the treatment system,
A mixing adjustment tank is provided in the input line for supplying the processing residue to the methane fermentation process, and the oxidizer-containing wastewater is input to the mixing adjustment tank directly or together with the methane fermentation liquid before being input to the solid-liquid separation process. A waste treatment system comprising a mixing line for mixing the processing residue and oxidant-containing wastewater in a regulating tank.
前記混合調整槽に、固液分離装置で固液分離した分離汚泥の少なくとも一部を前記メタン発酵槽より上流側に返送する返送ラインを備えたことを特徴とする請求項6記載の廃棄物処理システム。   The waste treatment according to claim 6, wherein the mixing adjustment tank is provided with a return line for returning at least a part of the separated sludge solid-liquid separated by a solid-liquid separator to the upstream side of the methane fermentation tank. system. 前記メタン発酵後のメタン発酵液を固液分離した分離液を活性汚泥処理する活性汚泥処理設備を備え、
前記活性汚泥処理設備が曝気槽と沈殿槽を有し、該沈殿槽にて得られる余剰汚泥の少なくとも一部を前記曝気槽に返送する返送ラインを備えており、
前記返送ライン上に、前記余剰汚泥の少なくとも一部に前記酸化剤含有排水を混合する手段を設けたことを特徴とする請求項6又は7記載の廃棄物処理システム。
An activated sludge treatment facility for treating activated sludge with a separated liquid obtained by solid-liquid separation of the methane fermentation liquid after the methane fermentation,
The activated sludge treatment facility has an aeration tank and a settling tank, and includes a return line for returning at least a part of the excess sludge obtained in the settling tank to the aeration tank,
The waste treatment system according to claim 6 or 7, wherein means for mixing the oxidant-containing waste water with at least a part of the excess sludge is provided on the return line.
請求項6記載の廃棄物処理システム内で発生した廃熱若しくは廃アルカリを前記混合調整槽に供給して前記廃棄物若しくは前記メタン発酵液を可溶化処理することを特徴とする請求項6記載の廃棄物処理システム。   The waste heat or waste alkali generated in the waste treatment system according to claim 6 is supplied to the mixing adjustment tank to solubilize the waste or the methane fermentation liquid. Waste treatment system. 前記過酸化系酸化剤が過酢酸を主成分とすることを特徴とする請求項6記載の廃棄物処理システム。   The waste treatment system according to claim 6, wherein the peroxidic oxidant is mainly composed of peracetic acid.
JP2006160735A 2006-06-09 2006-06-09 Waste treatment method and system Active JP5192134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160735A JP5192134B2 (en) 2006-06-09 2006-06-09 Waste treatment method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160735A JP5192134B2 (en) 2006-06-09 2006-06-09 Waste treatment method and system

Publications (2)

Publication Number Publication Date
JP2007326070A JP2007326070A (en) 2007-12-20
JP5192134B2 true JP5192134B2 (en) 2013-05-08

Family

ID=38926927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160735A Active JP5192134B2 (en) 2006-06-09 2006-06-09 Waste treatment method and system

Country Status (1)

Country Link
JP (1) JP5192134B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301788B2 (en) * 2007-03-30 2013-09-25 三井造船環境エンジニアリング株式会社 Co-fermentation method
JP4610640B2 (en) * 2008-06-23 2011-01-12 関東自動車工業株式会社 Method and apparatus for treating organic wastewater
JP5371510B2 (en) * 2009-03-27 2013-12-18 大阪瓦斯株式会社 Combined treatment of wastewater and organic residue
JP5712505B2 (en) * 2010-05-19 2015-05-07 東洋製罐株式会社 Waste treatment equipment containing biodegradable resin
CN112028416B (en) * 2020-08-26 2023-03-31 沈阳理工大学 Cutting mixed catalytic oxidation sterilizer and septic tank sludge comprehensive utilization method
CN112676309A (en) * 2020-12-17 2021-04-20 玉禾田环境发展集团股份有限公司 Harmless comprehensive disposal system and process for kitchen waste

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064960B2 (en) * 1997-06-16 2000-07-12 日本電気株式会社 Method of treating wastewater containing hydrogen peroxide
JP2000350993A (en) * 1999-06-09 2000-12-19 Kurita Water Ind Ltd DMSO-containing water treatment equipment and semiconductor plant wastewater treatment equipment
JP3643287B2 (en) * 2000-03-27 2005-04-27 独立行政法人産業技術総合研究所 Food waste disposal method
JP4631162B2 (en) * 2000-12-19 2011-02-16 栗田工業株式会社 Organic waste treatment methods
JP2003103292A (en) * 2001-09-28 2003-04-08 Sadaaki Murakami Combined treatment method of wastewater and waste derived from organism
JP4147381B2 (en) * 2002-06-11 2008-09-10 株式会社神鋼環境ソリューション Method and apparatus for treating peroxide-containing wastewater

Also Published As

Publication number Publication date
JP2007326070A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP2004042043A (en) Method of treating waste by oxidation
JP5192134B2 (en) Waste treatment method and system
KR20020080285A (en) Method for advanced wastewater treatment without excess sludge using sludge disintegration
JP4075946B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
KR101267054B1 (en) Method of recovery organic waste
KR101003482B1 (en) Treatment method of high concentration organic wastewater
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP4409928B2 (en) Organic waste treatment methods
JP4631162B2 (en) Organic waste treatment methods
JP3600815B2 (en) Anaerobic fermentation system for organic waste
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3959843B2 (en) Biological treatment method for organic drainage
JP3611292B2 (en) Wastewater treatment method
JP2004041953A (en) Method and equipment for treating organic waste water
JP2017148777A (en) Method and device for methane fermentation
JP3409728B2 (en) Organic waste treatment method
JP3600566B2 (en) Method for treating organic waste and method for producing biogas
JP2008030008A (en) Method for methane fermentation treatment of organic waste
TW200521088A (en) Apparatus for anaerrobicly digesting organic waste liquid
JP2001232388A (en) Method and apparatus for treating waste liquor
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JPH11277087A (en) Method and apparatus for treating organic wastewater
JP2003053394A (en) Method and equipment for treatment of organic waste
JP2002219482A (en) Wastewater treatment equipment
JP3969144B2 (en) Biological treatment method and biological treatment apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Ref document number: 5192134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3