JP5187844B2 - CO oxidation catalyst - Google Patents
CO oxidation catalyst Download PDFInfo
- Publication number
- JP5187844B2 JP5187844B2 JP2008313902A JP2008313902A JP5187844B2 JP 5187844 B2 JP5187844 B2 JP 5187844B2 JP 2008313902 A JP2008313902 A JP 2008313902A JP 2008313902 A JP2008313902 A JP 2008313902A JP 5187844 B2 JP5187844 B2 JP 5187844B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- nial
- reaction
- nanoparticles
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Description
本発明は、COを酸化してCO2にする触媒であって、より詳しくは、250℃以上の温度で触媒活性を示すものに関する。 The present invention relates to a catalyst that oxidizes CO to CO 2 , and more particularly relates to a catalyst that exhibits catalytic activity at a temperature of 250 ° C. or higher.
以下の特許文献示されるように、従来CO酸化触媒は主にPt,Auなどの高価な貴金属や希土類等の稀少元素が使われている。
これら貴金属の使用は、CO酸化によるCO2回収作業を困難とし地球温暖化防止の活動を阻害する要因の一つとなっていた。
The use of these precious metals has been one of the factors that make it difficult to recover CO 2 by CO oxidation and hinders activities to prevent global warming.
本願発明は、このような実情に鑑み、貴金属や希少金属を使用せず、一般に得やすいNiとAlを用いて、CO酸化機能を発現する触媒を提供することを特徴とする。 In view of such circumstances, the present invention is characterized by providing a catalyst that expresses a CO oxidation function using Ni and Al that are generally easily obtained without using noble metals or rare metals.
発明1の触媒は、 Ni−Al金属間化合物のナノ粒子からなることを特徴とする。 The catalyst of the invention 1 is characterized by comprising Ni-Al intermetallic compound nanoparticles.
発明2は、発明1の触媒において、その金属間化合物は、Ni3Al, NiAl, Ni相の少なくとも1つ以上を有することを特徴とする。 Invention 2 is characterized in that in the catalyst of Invention 1, the intermetallic compound has at least one of Ni 3 Al, NiAl, and Ni phases.
発明3は、発明1又は2の触媒において、ナノ粒子のBET比表面積が50m2/g以上であることを特徴とすることを特徴とする。 Invention 3 is characterized in that, in the catalyst of Invention 1 or 2, the nanoparticle has a BET specific surface area of 50 m 2 / g or more.
発明4は、発明1から3のいずれかの触媒において、NiAl合金インゴットを真空アークプラズマ蒸着法によりナノ粒子化されたものであることを特徴とする。 Invention 4 is characterized in that, in the catalyst according to any one of Inventions 1 to 3, a NiAl alloy ingot is nanoparticulated by a vacuum arc plasma deposition method.
本発明の触媒は、貴金属や希少元素を含有しないにもかかわらず、一酸化炭素(CO)の酸化反応に対して高い触媒活性を示した。
さらに空気中でも安定なので、従来のラネーNi触媒より取り扱いが簡単である。
The catalyst of the present invention showed high catalytic activity for the oxidation reaction of carbon monoxide (CO), although it contained no precious metal or rare element.
Furthermore, since it is stable in the air, it is easier to handle than conventional Raney Ni catalysts.
金属間化合物ナノ粒子の粒径の好ましい範囲は1nmから100nmである。その範囲のサイズの粒子は安定的に存在することが可能で、高い比表面積を有するためである。
Ni−Alの重量比の好ましい範囲は、Niは76−95重量%、Alは5−24重量%である。Ni−Alの2元状態図により、この範囲では、Ni3AlとNiAlの金属間化合物相は存在する。
この金属間化合物ナノ粒子の相構造が、Ni3Al,NiAl,Ni,NiO及びAl2O3相のすべてを有する必要がなく、触媒活性を有するNi3Al,NiAl,Niの中の1つ又1つ以上の相があれば良い。
A preferable range of the particle size of the intermetallic compound nanoparticles is 1 nm to 100 nm. This is because particles having a size within that range can exist stably and have a high specific surface area.
The preferred range of the Ni-Al weight ratio is 76-95 wt% for Ni and 5-24 wt% for Al. In this range, there is an intermetallic compound phase of Ni 3 Al and NiAl according to the Ni—Al binary phase diagram.
The phase structure of the intermetallic compound nanoparticles need not have all of the Ni 3 Al, NiAl, Ni, NiO, and Al 2 O 3 phases, and is one of Ni 3 Al, NiAl, Ni having catalytic activity. There may be more than one phase.
Ni−Al金属間化合物ナノ粒子の作製
Ni(ニッケル)とAl(アルミニウム)をアーク溶解炉で以下の組成の合金インゴットを作製した。
上記のNiAl合金インゴットを用いて、真空アークプラズマ蒸着法により、表2に示すように各組成のナノ粒子試料を作製した。粉末X線回折測定によりこれらのナノ粒子試料の相の構成を確認したところ、図1に示すように、これらのナノ粒子試料は、Ni3Al,NiAl,Ni,NiO及びAl2O3相を主相とするものであった。
なお、図中の略称は、原材料とした合金の略称を示すものである。
Production of Ni-Al Intermetallic Compound Nanoparticles An alloy ingot having the following composition was produced using Ni (nickel) and Al (aluminum) in an arc melting furnace.
Using the above-described NiAl alloy ingot, nanoparticle samples of each composition were prepared as shown in Table 2 by vacuum arc plasma deposition. When the composition of the phases of these nanoparticle samples was confirmed by powder X-ray diffraction measurement, as shown in FIG. 1, these nanoparticle samples contained Ni 3 Al, NiAl, Ni, NiO and Al 2 O 3 phases. It was the main phase.
In addition, the abbreviation in a figure shows the abbreviation of the alloy used as a raw material.
マイクロトラック粒度分布測定装置を用いてレーザー回折・散乱法により粒子全体的粒度分布を測定した。表2のNo.2のナノ粒子は1nmから600nmまでの範囲で、No.5のナノ粒子は1nmから800nmまでの範囲であることが分かった。透過電子顕微鏡(TEM)及び走査透過電子顕微鏡(STEM)により作製した表2のNo.2のナノ粒子のサイズ、形状、組成を分析した。粒子サイズは主に1nmから100nmまでの範囲に分布することが分かった(図2)。
窒素ガス吸着により比表面積を測定した。これらのナノ粒子試料の比表面積(BET法)は、50から112m2/gであることが分かった(表2)。これは、従来のラネーNi触媒に匹敵する大きな比表面積(50−100m2/g)である。
さらに、本ナノ粒子触媒はラネーNiより安定であるという大きなメリットがある。ラネーNi触媒は空気中で強烈に酸化・燃焼するため、水などの液体中に保存する必要がある。そのため、主に液体反応にしか適用できない。これに対して、本ナノ粒子触媒は空気中でも安定で燃えることはないので、取扱いが簡単で、高温ガス反応にも応用できる。
The overall particle size distribution was measured by laser diffraction / scattering method using a microtrack particle size distribution analyzer. No. in Table 2 No. 2 nanoparticles range from 1 nm to 600 nm. 5 nanoparticles were found to range from 1 nm to 800 nm. No. 1 in Table 2 prepared by a transmission electron microscope (TEM) and a scanning transmission electron microscope (STEM). The size, shape and composition of the two nanoparticles were analyzed. It was found that the particle size was distributed mainly in the range from 1 nm to 100 nm (FIG. 2).
The specific surface area was measured by nitrogen gas adsorption. The specific surface area (BET method) of these nanoparticle samples was found to be 50 to 112 m 2 / g (Table 2). This is a large specific surface area (50-100 m 2 / g) comparable to conventional Raney Ni catalysts.
Furthermore, this nanoparticle catalyst has a great merit that it is more stable than Raney Ni. Raney Ni catalyst oxidizes and burns strongly in the air, so it must be stored in a liquid such as water. Therefore, it can be mainly applied only to liquid reactions. On the other hand, the present nanoparticle catalyst is stable even in air and does not burn, so it is easy to handle and can be applied to high temperature gas reactions.
以下のCO酸化反応に対して本ナノ粒子の触媒特性を測定した。
2CO + O2 → 2CO2
反応装置システム
触媒反応は固定床流通式触媒反応装置により行った。5〜20mg程度のナノ粒子試料を内径8mmの石英反応管に導入し、試料層の上下に石英ウールを10mm厚さ程度詰めて、試料層を固定する。反応管を電気炉により加熱し、所定の温度で触媒反応を行った。温度制御は試料層に接触する熱電対により行った。反応管上部にCO+O2+Heの混合ガスのラインに接続した。反応管下部にガスクロマトグラフィ及びガス流量計に接続し、反応物の組成と生成量を測定した。図3は反応装置システムを示す。
The catalytic properties of the nanoparticles were measured for the following CO oxidation reaction.
2CO + O 2 → 2CO 2
Reactor system The catalytic reaction was carried out by a fixed bed flow type catalytic reactor. A nanoparticle sample of about 5 to 20 mg is introduced into a quartz reaction tube having an inner diameter of 8 mm, and a sample layer is fixed by filling quartz wool with a thickness of about 10 mm above and below the sample layer. The reaction tube was heated by an electric furnace to carry out a catalytic reaction at a predetermined temperature. Temperature control was performed by a thermocouple in contact with the sample layer. The upper part of the reaction tube was connected to a mixed gas line of CO + O 2 + He. A gas chromatograph and a gas flow meter were connected to the lower part of the reaction tube, and the composition and amount of the reaction product were measured. FIG. 3 shows the reactor system.
COの酸化反応における触媒活性
組成Ni22.4Al、Ni25Al及びNi27Alのナノ粒子試料をそれぞれに用いて、COの酸化反応を行った。CO,O2,Heの混合ガス(体積比CO:O2:He=1:2:97)を100 ml/minの流量で反応管に導入して、室温から575℃の温度範囲でガスクロマトグラフィにより反応管出口のCO, O2, CO2, He各ガス成分の濃度を測定した。比較のため、市販の純Pt粉末試料(フルヤ金属(株))及び回転アトマイズ法で作製したNi−25原子%Al粉末試料(高純度化学(株)作製)を用いて、同じ触媒反応を行った。Pt粉末の場合、篩で集めて粒径150μm以下の粉末0.15gを反応管に導入した。アトマイズNi3Al粉末の場合、篩で得られた粒径32〜75μmの粉末0.40gを反応管に導入した。測定した各温度でのCO、CO2の濃度から、次の式でCOの転化率を求めた。
COの転化率(%)= CO2の濃度/(COの濃度+CO2の濃度)×102
Catalytic activity in the oxidation reaction of CO The oxidation reaction of CO was performed using nanoparticle samples of compositions Ni22.4Al, Ni25Al and Ni27Al, respectively. A mixed gas of CO, O 2 and He (volume ratio CO: O 2 : He = 1: 2: 97) was introduced into the reaction tube at a flow rate of 100 ml / min, and gas chromatography was performed in a temperature range from room temperature to 575 ° C. Was used to measure the concentrations of CO, O 2 , CO 2 , and He gas components at the outlet of the reaction tube. For comparison, the same catalytic reaction was carried out using a commercially available pure Pt powder sample (Furuya Metal Co., Ltd.) and a Ni-25 atomic% Al powder sample (manufactured by High Purity Chemical Co., Ltd.) prepared by the rotary atomization method. It was. In the case of Pt powder, 0.15 g of powder having a particle size of 150 μm or less collected by a sieve was introduced into the reaction tube. In the case of atomized Ni 3 Al powder, 0.40 g of powder having a particle size of 32 to 75 μm obtained by sieving was introduced into the reaction tube. From the measured concentrations of CO and CO 2 at each temperature, the CO conversion rate was determined by the following equation.
CO conversion (%) = CO 2 concentration / (CO concentration + CO 2 concentration) × 10 2
表3は計算した各温度でのCOの転化率である。
図4はこれらのCO転化率を反応温度の関数としてグラフで示したものである。Ni22.4Al、Ni25AlとNi27Alは、250℃から活性が出始め、温度の上昇に伴い、転化率が増加し、400℃では約100%のCO転化率が得られた。
これらのNi−Alナノ粒子の触媒活性は純Pt粉末の触媒活性(図4に示す)とほぼ同じである。
一方、アトマイズで作製したNi25Alは375℃から活性が出始め、CO転化率は温度の上昇に伴い上昇するが、575℃の高温でも86%しか得られなかった。よって、本技術のナノNiAl粒子はアトマイズ法で作製したNiAl粉末より高い活性を持つことを示す。さらに、この結果から、貴金属元素を含まないNiとAlからなるナノ粒子触媒がCO酸化反応に純Pt粉末並みの活性を示すことが分かった。
Table 3 shows the calculated CO conversion at each temperature.
FIG. 4 graphically illustrates these CO conversions as a function of reaction temperature. Ni22.4Al, Ni25Al, and Ni27Al started to show activity at 250 ° C., and the conversion increased with increasing temperature, and a CO conversion of about 100% was obtained at 400 ° C.
The catalytic activity of these Ni—Al nanoparticles is almost the same as that of pure Pt powder (shown in FIG. 4).
On the other hand, Ni25Al produced by atomization started to show activity at 375 ° C., and the CO conversion increased with increasing temperature, but only 86% was obtained even at a high temperature of 575 ° C. Therefore, it shows that the nano NiAl particle | grains of this technique have higher activity than the NiAl powder produced by the atomization method. Furthermore, from this result, it was found that a nanoparticle catalyst composed of Ni and Al not containing a noble metal element exhibits an activity similar to that of pure Pt powder in the CO oxidation reaction.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008313902A JP5187844B2 (en) | 2008-12-10 | 2008-12-10 | CO oxidation catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008313902A JP5187844B2 (en) | 2008-12-10 | 2008-12-10 | CO oxidation catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010137131A JP2010137131A (en) | 2010-06-24 |
JP5187844B2 true JP5187844B2 (en) | 2013-04-24 |
Family
ID=42347735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008313902A Expired - Fee Related JP5187844B2 (en) | 2008-12-10 | 2008-12-10 | CO oxidation catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5187844B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5798425B2 (en) * | 2011-09-26 | 2015-10-21 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and method for producing the same |
WO2017185260A1 (en) * | 2016-04-27 | 2017-11-02 | 中国科学技术大学 | Preparation method for wide-temperature catalyst used for preferential oxidation of co in a hydrogen-rich atmosphere, and product and applications |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1123818A (en) * | 1977-08-05 | 1982-05-18 | Anthony Gartshore | Catalyst for purification and/or control of exhaust gases |
US5204302A (en) * | 1991-09-05 | 1993-04-20 | Technalum Research, Inc. | Catalyst composition and a method for its preparation |
JP2001220103A (en) * | 2000-02-10 | 2001-08-14 | Yusaku Takita | Hydrogen producing method by decomposition of hydrocarbon |
JP2002058924A (en) * | 2000-08-21 | 2002-02-26 | Ube Ind Ltd | Diesel particulate filter |
JP4547930B2 (en) * | 2004-02-17 | 2010-09-22 | 日産自動車株式会社 | Catalyst, catalyst preparation method and exhaust gas purification catalyst |
-
2008
- 2008-12-10 JP JP2008313902A patent/JP5187844B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010137131A (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Selective hydrogenation of the CC bond in cinnamaldehyde over an ultra-small Pd-Ag alloy catalyst | |
Liu et al. | Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas | |
Yang et al. | Properties of yolk–shell structured Ni@ SiO2 nanocatalyst and its catalytic performance in carbon dioxide reforming of methane to syngas | |
Li et al. | Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane | |
Déronzier et al. | Catalysis on nanoporous gold–silver systems: Synergistic effects toward oxidation reactions and influence of the surface composition | |
Shen et al. | Novel Fe–Ni nanoparticle catalyst for the production of CO-and CO2-free H2 and carbon nanotubes by dehydrogenation of methane | |
Yuan et al. | Silica-and titania-supported Ni–Au: Application in catalytic hydrodechlorination | |
TW200803978A (en) | Temperature-stable catalysts for gas phase oxidation, and processes for using the same | |
Yan et al. | Gold on carbon and titanium oxides composites: Highly efficient and stable acetylene hydrogenation in large excess of ethylene | |
Xu et al. | Replacement reaction-based synthesis of supported palladium catalysts with atomic dispersion for catalytic removal of benzene | |
Salipira et al. | Carbon produced by the catalytic decomposition of methane on nickel: carbon yields and carbon structure as a function of catalyst properties | |
Shubin et al. | Successful synthesis and thermal stability of immiscible metal Au–Rh, Au–Ir andAu–Ir–Rh nanoalloys | |
Liu et al. | Rational design of ethanol steam reforming catalyst based on analysis of Ni/La 2 O 3 metal–support interactions | |
Grigorieva et al. | Titania nanotubes supported platinum catalyst in CO oxidation process | |
WO2019049983A1 (en) | Hydrogen reduction catalyst for carbon dioxide and method for producing same, hydrogen reduction method for carbon dioxide, and hydrogen reduction device for carbon dioxide | |
Zhou et al. | Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2, 4-dichlorophenol | |
Gu et al. | Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas | |
Li et al. | Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation | |
JP5187844B2 (en) | CO oxidation catalyst | |
Lu et al. | The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process: The effect of precursors | |
Koutsopoulos et al. | Titania-supported Pt and Pt–Pd nanoparticle catalysts for the oxidation of sulfur dioxide | |
WO2016039361A1 (en) | Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same | |
Valendar et al. | Reduction and carburization behavior of NiO–WO3 mixtures by carbon monoxide | |
Fan et al. | Spontaneous activation behavior of Ni3Sn, an intermetallic catalyst, for hydrogen production via methanol decomposition | |
Kwak et al. | Characterizations of bimetallic NiV-supported SiO2 catalysts prepared for effectively hydrogen evolutions from ethanol steam reforming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5187844 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |