JP5187152B2 - Vehicle power supply system and vehicle - Google Patents
Vehicle power supply system and vehicle Download PDFInfo
- Publication number
- JP5187152B2 JP5187152B2 JP2008293484A JP2008293484A JP5187152B2 JP 5187152 B2 JP5187152 B2 JP 5187152B2 JP 2008293484 A JP2008293484 A JP 2008293484A JP 2008293484 A JP2008293484 A JP 2008293484A JP 5187152 B2 JP5187152 B2 JP 5187152B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- power storage
- storage device
- voltage
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 claims description 39
- 238000001514 detection method Methods 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 12
- 230000002457 bidirectional effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 37
- 230000008569 process Effects 0.000 description 34
- 239000003990 capacitor Substances 0.000 description 29
- 238000009413 insulation Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 14
- 230000010355 oscillation Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 102100024619 Synaptotagmin-12 Human genes 0.000 description 7
- 101710161888 Synaptotagmin-12 Proteins 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 108091005487 SCARB1 Proteins 0.000 description 6
- 102100037118 Scavenger receptor class B member 1 Human genes 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 101001001462 Homo sapiens Importin subunit alpha-5 Proteins 0.000 description 5
- 102100035692 Importin subunit alpha-1 Human genes 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 101100150275 Caenorhabditis elegans srb-3 gene Proteins 0.000 description 3
- 101001001478 Homo sapiens Importin subunit alpha-3 Proteins 0.000 description 3
- 101001055444 Homo sapiens Mediator of RNA polymerase II transcription subunit 20 Proteins 0.000 description 3
- 101000687718 Homo sapiens SWI/SNF complex subunit SMARCC1 Proteins 0.000 description 3
- 102100036188 Importin subunit alpha-3 Human genes 0.000 description 3
- 102100026165 Mediator of RNA polymerase II transcription subunit 20 Human genes 0.000 description 3
- 102100024793 SWI/SNF complex subunit SMARCC1 Human genes 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 101100493897 Arabidopsis thaliana BGLU30 gene Proteins 0.000 description 2
- 101100310686 Mus musculus Spata4 gene Proteins 0.000 description 2
- 101100206899 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TIR2 gene Proteins 0.000 description 2
- 101100534242 Schizosaccharomyces pombe (strain 972 / ATCC 24843) srp2 gene Proteins 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- -1 nickel metal hydride Chemical class 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/003—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/007—Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/14—Synchronous machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/527—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/529—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/16—Driver interactions by display
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、車両の電源システムおよび車両に関し、特に複数の蓄電装置とその蓄電装置に充電を行なうための充電装置とを搭載する、車両の電源システムの制御技術に関する。 The present invention relates to a vehicle power supply system and a vehicle, and more particularly to a control technology for a vehicle power supply system that includes a plurality of power storage devices and a charging device for charging the power storage devices.
近年、環境にやさしい車両として、電気自動車、ハイブリッド自動車および燃料電池自動車等の車両が開発され実用化されている。これらの車両は、一般に、車両駆動力を発生する電動機を搭載するとともに、その電動機に駆動電力を供給するための電源システムを搭載している。電源システムは蓄電装置を備える。 In recent years, vehicles such as electric vehicles, hybrid vehicles, and fuel cell vehicles have been developed and put into practical use as environment-friendly vehicles. These vehicles are generally equipped with an electric motor that generates vehicle driving force and a power supply system for supplying driving electric power to the electric motor. The power supply system includes a power storage device.
これらの車両に搭載された蓄電装置を車両外部の電源(以下、「外部電源」とも称する)によって充電する構成が提案されている。たとえば、特開2008−109840号公報(特許文献1)は、複数個の蓄電装置(バッテリ)を並列接続した電源システムを開示する。特許文献1に開示された電源システムは、蓄電装置(バッテリ)ごとに充放電調整装置としての電圧変換器(コンバータ)を備える。
A configuration has been proposed in which a power storage device mounted on these vehicles is charged by a power source outside the vehicle (hereinafter also referred to as “external power source”). For example, Japanese Patent Laying-Open No. 2008-109840 (Patent Document 1) discloses a power supply system in which a plurality of power storage devices (batteries) are connected in parallel. The power supply system disclosed in
特許文献1は、さらに、主蓄電装置と複数の副蓄電装置とを備えた電源装置を開示する。この電源装置は、主蓄電装置に対応するコンバータと、複数の副蓄電装置により共有されるコンバータとを備える。
一般に車両は、照明等の補機、および補機への電力供給用の補機バッテリを備える。補機の動作により補機バッテリに蓄積された電力が消費されると、補機バッテリが充電される。これにより補機バッテリが上がるのを回避できる。 2. Description of the Related Art Generally, a vehicle includes auxiliary equipment such as lighting, and an auxiliary battery for supplying power to the auxiliary equipment. When the power stored in the auxiliary battery is consumed by the operation of the auxiliary machine, the auxiliary battery is charged. As a result, the auxiliary battery can be prevented from rising.
また、車両に搭載された複数の蓄電装置を外部電源により充電する場合には、充電対象の蓄電装置を順次切換えながら各蓄電装置を充電する方法が考えられる。複数の蓄電装置を同時に充電した場合、電圧が異なる2つの蓄電装置が短絡することが考えられる。この場合、高電圧の蓄電装置から低電圧の蓄電装置に短絡電流が流れる可能性がある。充電対象の蓄電装置を順次切換えることで、このような問題を回避できる。 In addition, when charging a plurality of power storage devices mounted on a vehicle with an external power source, a method of charging each power storage device while sequentially switching power storage devices to be charged can be considered. When a plurality of power storage devices are charged at the same time, two power storage devices having different voltages may be short-circuited. In this case, a short-circuit current may flow from the high-voltage power storage device to the low-voltage power storage device. Such problems can be avoided by sequentially switching the power storage devices to be charged.
ここで、補機バッテリは、車両に搭載された複数の蓄電装置を充電する間、補機に電力を供給し続ける可能性がある。補機バッテリを充電するために、複数の蓄電装置のうちの少なくとも1つを補機バッテリと接続することが考えられる。外部電源によってその蓄電装置を充電すると、補機バッテリも同時に充電される。 Here, the auxiliary battery may continue to supply power to the auxiliary machine while charging a plurality of power storage devices mounted on the vehicle. In order to charge the auxiliary battery, it is conceivable to connect at least one of the plurality of power storage devices to the auxiliary battery. When the power storage device is charged by an external power source, the auxiliary battery is also charged at the same time.
しかしながら、他の蓄電装置が充電されるときには、補機を動作させるために、補機バッテリに接続された蓄電装置の電力が消費される。したがって、補機バッテリに接続された蓄電装置の残存容量は、他の蓄電装置を充電する間に減少すると考えられる。 However, when another power storage device is charged, the power of the power storage device connected to the auxiliary battery is consumed to operate the auxiliary device. Therefore, it is considered that the remaining capacity of the power storage device connected to the auxiliary battery decreases while the other power storage device is charged.
一方、その蓄電装置から補機への電力供給を停止した場合、補機は補機バッテリに蓄積された電力を消費する。しかしながら補機バッテリの容量は車両駆動の蓄電装置の容量に比べて小さい。したがって、補機バッテリが上がる可能性がある。特開2008−109840号公報(特許文献1)には、車両の補機は具体的に示されてなく、したがって補機の動作を考慮した複数の蓄電装置の充電方法については示されていない。 On the other hand, when the power supply from the power storage device to the auxiliary machine is stopped, the auxiliary machine consumes the electric power stored in the auxiliary battery. However, the capacity of the auxiliary battery is smaller than the capacity of the power storage device driven by the vehicle. Therefore, the auxiliary battery may be increased. Japanese Patent Application Laid-Open No. 2008-109840 (Patent Document 1) does not specifically show an auxiliary device of a vehicle, and therefore does not show a charging method for a plurality of power storage devices in consideration of the operation of the auxiliary device.
本発明の目的は、補機バッテリが上がることを防ぎつつ、複数の車両駆動用蓄電装置に十分な電力が蓄えられるように各蓄電装置を充電可能な車両の電源システム、およびその電源システムを搭載した車両を提供することである。 An object of the present invention is to mount a power supply system for a vehicle that can charge each power storage device so that sufficient power can be stored in a plurality of power storage devices for driving a vehicle while preventing an auxiliary battery from rising, and the power supply system thereof Is to provide a vehicle.
本発明は要約すれば、車両の電源システムであって、第1および第2の蓄電装置と、第1の電力線と、第2の電力線と、第1の接続部と、第2の接続部と、電圧変換装置と、第3の蓄電装置と、充電装置と、制御装置とを備える。第1の電力線は、第1の蓄電装置に対応して設けられる。第2の電力線は、第2の蓄電装置に対応して設けられる。第1の接続部は、第1の蓄電装置と第1の電力線との電気的接続および遮断が可能に構成される。第2の接続部は、第2の蓄電装置と第2の電力線との電気的接続および遮断が可能に構成される。電圧変換装置は、第1の電力線と補機との間に接続されて、第1の蓄電装置から第1の接続部および第1の電力線を介して供給される電力の電圧を、補機を動作させるための所定の電圧に変換する。第3の蓄電装置は、電圧変換装置に対して補機と並列に接続されて、電圧変換装置から供給される電力を蓄積する。充電装置は、第1および第2の電力線に接続されて、第1および第2の蓄電装置を車両外部の外部電源により充電する。制御装置は、第1および第2の接続部ならびに充電装置を制御する。制御装置は、第2の蓄電装置の充電時には、第2の接続部を導通状態に設定するとともに外部電源からの電力が第2の電力線に供給されるように充電装置を制御する一方で、第1の接続部を導通状態に設定して電圧変換装置の動作を継続させる。
In summary, the present invention is a power supply system for a vehicle, which includes first and second power storage devices, a first power line, a second power line, a first connection unit, and a second connection unit. A voltage conversion device, a third power storage device, a charging device, and a control device. The first power line is provided corresponding to the first power storage device. The second power line is provided corresponding to the second power storage device. The first connection unit is configured to be capable of electrical connection and disconnection between the first power storage device and the first power line. The second connection unit is configured to be capable of electrical connection and disconnection between the second power storage device and the second power line. The voltage conversion device is connected between the first power line and the auxiliary device, and converts the voltage of power supplied from the first power storage device through the first connection portion and the first power line to the auxiliary device. The voltage is converted to a predetermined voltage for operation. The third power storage device is connected to the voltage conversion device in parallel with the auxiliary machine and accumulates electric power supplied from the voltage conversion device. The charging device is connected to the first and second power lines and charges the first and second power storage devices with an external power source outside the vehicle. The control device controls the first and second connection units and the charging device. The control device sets the second connection portion to a conductive state and charges the second power storage device, and controls the charging device so that power from the external power source is supplied to the second power line. The
好ましくは、制御装置は、第2の蓄電装置の充電に先立って第1の蓄電装置が充電され、かつ第2の蓄電装置の充電完了後には第1の蓄電装置の残存容量が所定値に達するまで第1の蓄電装置が充電されるよう、第1および第2の接続部ならびに充電装置を制御する。 Preferably, the control device charges the first power storage device prior to charging the second power storage device, and the remaining capacity of the first power storage device reaches a predetermined value after completion of charging of the second power storage device. The first and second connecting portions and the charging device are controlled so that the first power storage device is charged up to.
好ましくは、制御装置は、第1の蓄電装置の充電時において、第1および第2の接続部を導通状態および非導通状態にそれぞれ設定し、かつ第1の電力線に外部電源からの電力が供給されるように充電装置を制御する。 Preferably, the control device sets the first and second connection portions to a conductive state and a non-conductive state, respectively, and supplies power from the external power source to the first power line when charging the first power storage device. To control the charging device.
好ましくは、電源システムは、記第1の蓄電装置に直接的に接続される漏電検出器をさらに備える。制御装置は、第1の蓄電装置の充電時および第2の蓄電装置の充電時において、漏電検出器の検出結果に基づいて、電源システムにおける漏電の有無を判定する。 Preferably, the power supply system further includes a leakage detector connected directly to the first power storage device. The control device determines whether or not there is a leakage in the power supply system based on the detection result of the leakage detector during charging of the first storage device and charging of the second storage device.
好ましくは、所定の電圧は、制御装置の動作電圧として制御装置に供給される。
好ましくは、電源システムは、第3の電力線をさらに備える。充電装置は、第1の電力変換装置と、第2の電力変換装置と、充電器とを含む。第1の電力変換装置は、第1および第3の電力線に接続されて、双方向の電力変換が可能に構成される。第2の電力変換装置は、第2および第3の電力線に接続されて、双方向の電力変換が可能に構成される。充電器は、外部電源から供給される電力を第2の電力線に出力可能に構成される。
Preferably, the predetermined voltage is supplied to the control device as an operating voltage of the control device.
Preferably, the power supply system further includes a third power line. The charging device includes a first power conversion device, a second power conversion device, and a charger. The first power conversion device is connected to the first and third power lines and configured to be capable of bidirectional power conversion. The second power conversion device is connected to the second and third power lines and configured to be capable of bidirectional power conversion. The charger is configured to be able to output power supplied from an external power source to the second power line.
好ましくは、第1および第2の電力変換装置の各々は、電力用半導体スイッチング素子と、ダイオード素子とを含む。電力用半導体スイッチング素子は、第1および第2の電力線のうち対応する電力線と第3の電力線の間の電流経路に介挿接続される。ダイオード素子は、対応する電力線から第3の電力線へ向かう方向を順方向として、電力用半導体スイッチング素子と並列に接続される。制御装置は、外部電源から供給される電力を充電器を介して第1の電力線に出力する場合においては、第1および第2の電力変換装置の各々の電力用半導体スイッチング素子を導通状態に設定する一方、外部電源から充電器を介して供給される電力を第2の電力線に出力する場合においては、第1および第2の電力変換装置の各々の電力用半導体スイッチング素子を非導通状態に設定する。 Preferably, each of the first and second power conversion devices includes a power semiconductor switching element and a diode element. The power semiconductor switching element is inserted and connected to a current path between the corresponding power line and the third power line among the first and second power lines. The diode element is connected in parallel with the power semiconductor switching element, with the direction from the corresponding power line toward the third power line as the forward direction. When the power supplied from the external power source is output to the first power line via the charger, the control device sets each of the power semiconductor switching elements of the first and second power converters to a conductive state. On the other hand, when the power supplied from the external power source via the charger is output to the second power line, the power semiconductor switching elements of the first and second power converters are set in a non-conductive state. To do.
本発明の他の局面に従うと、車両であって、上述のいずれかに記載の車両の電源システムと、補機とを備える。 When the other situation of this invention is followed, it is a vehicle, Comprising: The vehicle power supply system in any one of the above-mentioned, and an auxiliary machine are provided.
この発明によれば、補機バッテリが上がることを防ぎつつ、車両駆動用の蓄電装置に十分な電力が蓄えられるように蓄電装置を充電できる。 According to the present invention, the power storage device can be charged so that sufficient power can be stored in the power storage device for driving the vehicle while preventing the auxiliary battery from rising.
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
図1は、本発明の実施の形態による電源システムを搭載した車両の一例として示されるハイブリッド車両の全体ブロック図である。 FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of a vehicle equipped with a power supply system according to an embodiment of the present invention.
図1を参照して、ハイブリッド車両1000は、エンジン2と、モータジェネレータMG1,MG2と、動力分割機構4と、車輪6とを備える。また、ハイブリッド車両1000は、主蓄電装置BAと、副蓄電装置BB1,BB2と、コンバータ10,12,14と、コンデンサCと、インバータ20,22と、補機16と、補機バッテリSBと、ECU30と、正極ラインPL1,PL2,PL3,PL4と、負極ラインNLとをさらに備える。また、ハイブリッド車両1000は、電圧センサ42,44,46,48と、電流センサ52,54,56と、温度センサ62,64,66と、接続部72,74,76と、漏電検出器80と、表示装置90と、充電器240と、インレット250とをさらに備える。
Referring to FIG. 1,
本実施の形態の電源システムは、主蓄電装置BAと、副蓄電装置BB1,BB2と、補機バッテリSBと、接続部72,74,76と、コンバータ10,12,14と、正極ラインPL1〜PL4と、負極ラインNLと、漏電検出器80と、充電器240と、インレット250と、ECU30とを含む。
Power supply system of the present embodiment includes main power storage device BA, sub power storage devices BB1 and BB2, auxiliary battery SB,
主蓄電装置BAは、本発明の「第1の蓄電装置」に対応する。副蓄電装置BB1,BB2の少なくとも1つは、本発明の「第2の蓄電装置」に対応する。補機バッテリSBは、本発明の「第3の蓄電装置」に対応する。 Main power storage device BA corresponds to the “first power storage device” of the present invention. At least one of the sub power storage devices BB1 and BB2 corresponds to the “second power storage device” of the present invention. Auxiliary battery SB corresponds to “third power storage device” of the present invention.
正極ラインPL1〜PL3は、本発明の「第1の電力線」、「第2の電力線」および「第3の電力線」にそれぞれ対応する。接続部72は、本発明の「第1の接続部」に対応する。接続部74,76の少なくとも1つは、本発明の「第2の接続部」に対応する。コンバータ14は、本発明の「電圧変換装置」に対応する。
The positive lines PL1 to PL3 correspond to the “first power line”, “second power line”, and “third power line” of the present invention, respectively. The connecting
コンバータ10,12、充電器240およびインレット250は、本発明の「充電装置」を構成する。さらにコンバータ10,12は、本発明の「第1の電力変換装置」および「第2の電力変換装置」にそれぞれ対応する。充電器240は、本発明の「充電器」に対応する。ECU30は、本発明の「制御装置」に対応する。漏電検出器80は、本発明の「漏電検出器」に対応する。
ハイブリッド車両1000は、エンジン2およびモータジェネレータMG2を動力源として走行する。動力分割機構4は、エンジン2とモータジェネレータMG1,MG2とに結合されて、これらの間で動力を分配する。動力分割機構4は、たとえばサンギヤ、キャリアおよびリングギヤの3つの回転軸を有する遊星歯車機構からなり、この3つの回転軸がエンジン2およびモータジェネレータMG1,MG2の回転軸にそれぞれ接続される。なお、モータジェネレータMG1のロータを中空にして、その中心にエンジン2のクランク軸を通すことにより、エンジン2およびモータジェネレータMG1,MG2を動力分割機構4に機械的に接続することができる。また、モータジェネレータMG2の回転軸は、図示されない減速ギヤあるいは差動ギヤによって車輪6に結合される。そして、モータジェネレータMG1は、エンジン2によって駆動される発電機として動作し、かつエンジン2の始動を行ない得る電動機として動作するものとして、ハイブリッド車両1000に組込まれる。モータジェネレータMG2は、車輪6を駆動する電動機としてハイブリッド車両1000に組込まれる。
エンジン2は、ガソリン等の燃料を燃焼させることにより、モータジェネレータMG2と並列的に、あるいはそれのみでハイブリッド車両1000を走行させることができる。
主蓄電装置BAおよび副蓄電装置BB1,BB2の各々は充放電可能な蓄電装置であり、たとえばニッケル水素やリチウムイオン等の二次電池からなる。なお、主蓄電装置BAおよび副蓄電装置BB1,BB2の少なくとも1つに大容量のキャパシタを用いてもよい。 Each of main power storage device BA and sub power storage devices BB1 and BB2 is a chargeable / dischargeable power storage device, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion. A large capacity capacitor may be used for at least one of main power storage device BA and sub power storage devices BB1 and BB2.
主蓄電装置BAは、コンバータ10へ電力を供給し、また電力回生時にはコンバータ10によって充電される。副蓄電装置BB1,BB2の各々はコンバータ12へ電力を供給し、また電力回生時にはコンバータ12によって充電される。なお、副蓄電装置BB1,BB2は接続部74,76によってコンバータ12に選択的に接続される。
Main power storage device BA supplies power to
副蓄電装置BB1,BB2の一方(以下、副蓄電装置BBと示す)と主蓄電装置BAとは、たとえば同時使用することによって正極ラインPL3および負極ラインNLに接続される電気負荷(インバータ22およびモータジェネレータMG2)に許容された最大パワーを出力可能であるように、各々の放電可能容量が設定される。これによりエンジン2を使用しないEV(Electric Vehicle)走行において最大パワーの走行が可能である。副蓄電装置BB1,BB2のうち使用中の蓄電装置の蓄電状態が悪化したら、コンバータ12に接続される蓄電装置を交換してさらに走行させればよい。そして副蓄電装置BB1,BB2に蓄積された電力が消費されてしまったら主蓄電装置BAに加えてエンジン2を使用することによって副蓄電装置BB1,BB2を使用しなくとも最大パワーの走行を可能とすることができる。
One of sub power storage devices BB1 and BB2 (hereinafter referred to as sub power storage device BB) and main power storage device BA are, for example, electric loads (
また、このような構成とすることにより、コンバータ12を複数の副蓄電装置で兼用するので、コンバータの数を副蓄電装置の数ほど増やさなくてもよい。EV走行距離をさらに延ばすには副蓄電装置BB1,BB2に並列に蓄電装置を追加すればよい。すなわち、本実施の形態では副蓄電装置の個数は2個であるが、この数に限定されるものではない。
Further, with such a configuration, since
接続部72は、主蓄電装置BAと、正極ラインPL1および負極ラインNLとの間に設けられている。接続部72は、ECU30から与えられる信号CN1に応じて導通状態(オン)/非導通状態(オフ)が制御される。接続部72がオンすると主蓄電装置BAが正極ラインPL1および負極ラインNLに接続される。一方、接続部72がオフすると主蓄電装置BAが正極ラインPL1および負極ラインNLから切離される。
接続部74は、副蓄電装置BB1と、正極ラインPL2および負極ラインNLとの間に設けられる。接続部74は、信号CN2に応じて導通状態および非導通状態のいずれかの状態となる。これにより、接続部74は、副蓄電装置BB1と正極ラインPL2および負極ラインNLとの電気的接続および遮断を行なう。
接続部76は、副蓄電装置BB2と、正極ラインPL2および負極ラインNLとの間に設けられる。接続部76は、信号CN3に応じて導通状態および非導通状態のいずれかの状態となる。これにより、接続部76は、副蓄電装置BB2と正極ラインPL2および負極ラインNLとの電気的接続および遮断を行なう。
コンバータ10は、正極ラインPL1および負極ラインNLに接続される。コンバータ10は、ECU30からの信号PWC1に基づいて主蓄電装置BAからの電圧を昇圧し、その昇圧した電圧を正極ラインPL3へ出力する。また、コンバータ10は、インバータ20,22から正極ラインPL3を介して供給される回生電力を信号PWC1に基づいて主蓄電装置BAの電圧レベルに降圧し、主蓄電装置BAを充電する。さらに、コンバータ10は、ECU30からシャットダウン信号SD1を受けるとスイッチング動作を停止する。さらに、コンバータ10は、ECU30から上アームオン信号UA1を受けると、コンバータ10に含まれる上アームおよび下アーム(後述)をオン状態およびオフ状態にそれぞれ固定する。
コンバータ12は、正極ラインPL2および負極ラインNLに接続される。そして、コンバータ12は、ECU30からの信号PWC2に基づいて副蓄電装置BBの電圧を昇圧し、その昇圧した電圧を正極ラインPL3へ出力する。また、コンバータ12は、インバータ20,22から正極ラインPL3を介して供給される回生電力を信号PWC2に基づいて副蓄電装置BBの電圧レベルに降圧し、副蓄電装置BBを充電する。さらに、コンバータ12は、ECU30からシャットダウン信号SD2を受けるとスイッチング動作を停止する。さらに、コンバータ12は、ECU30から上アームオン信号UA2を受けると、コンバータ12に含まれる上アームおよび下アーム(後述)をオン状態およびオフ状態にそれぞれ固定する。
コンデンサCは、正極ラインPL3と負極ラインNLとの間に接続され、正極ラインPL3と負極ラインNLとの間の電圧変動を平滑化する。 Capacitor C is connected between positive electrode line PL3 and negative electrode line NL, and smoothes voltage fluctuations between positive electrode line PL3 and negative electrode line NL.
インバータ20は、モータジェネレータMG1の力行動作時には、ECU30からの信号PWI1に基づいて正極ラインPL3からの直流電圧を三相交流電圧に変換し、その変換した交流電圧をモータジェネレータMG1へ出力する。また、インバータ20は、モータジェネレータMG1の発電時には、信号PWI1に基づいて、エンジン2の動力を用いてモータジェネレータMG1が発電した三相交流電圧を、直流電圧に変換し、その変換した直流電圧を正極ラインPL3へ出力する。
インバータ22は、ECU30からの信号PWI2に基づいて正極ラインPL3からの直流電圧を三相交流電圧に変換し、その変換した交流電圧をモータジェネレータMG2へ出力する。また、インバータ22は、車両の回生制動時、車輪6からの回転力を受けてモータジェネレータMG2が発電した三相交流電圧を信号PWI2に基づいて直流電圧に変換し、その変換した直流電圧を正極ラインPL3へ出力する。
モータジェネレータMG1,MG2の各々は三相交流回転電機であり、たとえば三相交流同期電動発電機からなる。モータジェネレータMG1は、インバータ20によって回生駆動され、エンジン2の動力を用いて発電した三相交流電圧をインバータ20へ出力する。また、モータジェネレータMG1は、エンジン2の始動時にインバータ20によって力行駆動されて、エンジン2をクランキングする。
Each of motor generators MG1 and MG2 is a three-phase AC rotating electric machine, for example, a three-phase AC synchronous motor generator. Motor generator MG <b> 1 is regeneratively driven by
モータジェネレータMG2はインバータ22によって力行駆動されて、車両を駆動するための駆動力を発生する。また、モータジェネレータMG2は、車両の回生制動時、インバータ22によって回生駆動されて、車輪6から受ける回転力を用いて発電した三相交流電圧をインバータ22へ出力する。
Motor generator MG2 is driven by
電圧センサ42は、主蓄電装置BAの電圧VAを検出してECU30へ出力する。電流センサ52は、主蓄電装置BAからコンバータ10へ入出力される電流IAを検出してECU30へ出力する。温度センサ62は、主蓄電装置BAの温度TAを検出してECU30へ出力する。
電圧センサ44および46は、副蓄電装置BB1の電圧VB1および副蓄電装置BB2のVB2をそれぞれ検出してECU30へ出力する。電流センサ54および56は、副蓄電装置BB1からコンバータ12へ入出力される電流IB1、および副蓄電装置BB2からコンバータ12へ入出力される電流IB2をそれぞれ検出してECU30へ出力する。温度センサ64および66は、副蓄電装置BB1の温度TB1および副蓄電装置BB2の温度TB2をそれぞれ検出してECU30へ出力する。
電圧センサ48は、コンデンサCの端子間電圧(電圧VH)を検出してECU30へ出力する。
The
コンバータ14は具体的にはDC/DCコンバータであり、ECU30からの信号PWC3に応じて正極ラインPL1の直流電圧を降圧する。コンバータ14の出力側には正極ラインPL4が接続され、補機16および補機バッテリSBは正極ラインPL4に対して並列接続される。コンバータ14からの出力電圧は補機16および補機バッテリSBに供給され、これにより補機16が動作するとともに補機バッテリSBが充電される。
Specifically,
補機16は、たとえばヘッドライト、時計、オーディオ機器等であるが特にその種類は限定されるものではない。補機バッテリSBは充放電可能な蓄電装置であり、たとえば鉛蓄電池である。補機バッテリSBはコンバータ14からの直流電圧により充電される一方、補機16に駆動電力を供給することにより放電する。また、補機バッテリSBの電圧VDは、ECU30に供給される。これによりECU30が動作する。
The
充電器240およびインレット250はハイブリッド車両1000の外部の電源により主蓄電装置BA、副蓄電装置BB1,BB2を充電するために設けられる。車両外部の電源(外部電源)から供給された電力はインレット250および充電器240を介して正極ラインPL2および負極ラインNL間に出力される。充電器240はECU30からの信号CHGに応じて動作および停止する。
ECU30は、接続部72,74,76をそれぞれ制御するための信号CN1〜CN3を生成して出力する。さらにECU30はコンバータ10を制御するための信号PWC1,SD1,UA1を生成し、これらの信号のいずれかをコンバータ10へ出力する。また、ECU30はコンバータ12を制御するための信号PWC2,SD2,UA2を生成し、これらの信号のいずれかをコンバータ12へ出力する。
The
さらに、ECU30はインバータ20,22をそれぞれ駆動するための信号PWI1,PWI2を生成し、その生成した信号PWI1,PWI2をインバータ20,22へそれぞれ出力する。さらにECU30はコンバータ14を制御するための信号PWC3を生成してコンバータ14に出力する。さらにECU30は充電器240を制御するための信号CHGを生成して充電器240に出力する。
Further,
漏電検出器80は、図1に示す車両システムにおける漏電を検出する。主蓄電装置BAおよび副蓄電装置BB1,BB2の充電中に、絶縁抵抗の低下によって漏電が生じた場合、漏電検出器80は、漏電が生じたことを示す信号をECU30に出力する。ECU30は、漏電検出器80からの信号に応じて接続部72,74,76をいずれも非導通状態に設定するとともにコンバータ10,12および充電器240を停止する。
表示装置90は、ECU30の制御により各種の情報を表示する。たとえばECU30は、図1に示す車両システムを起動するための指令IGONを受けたときに、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電が完了したことを示す情報、各蓄電装置の残存容量等の情報を表示装置90に表示させる。また、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電中に漏電が生じたために充電が中断された場合、ECU30は、指令IGONに応じて、充電が中断されたことを示す情報を表示装置90に表示させる。
The
ハイブリッド車両1000は、車両外部の電源により主蓄電装置BAおよび副蓄電装置BB1,BB2を充電可能に構成される。各蓄電装置の充電時において、ECU30は接続部72〜76、コンバータ10,12および充電器240を制御する。
図2は、図1に示したコンバータ10,12および接続部72〜76の構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of
図2を参照して、コンバータ10は、電力用半導体スイッチング素子Q1,Q2と、ダイオードD1,D2と、リアクトルL1と、コンデンサC1とを含む。
Referring to FIG. 2,
本実施の形態において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)としては、IGBT(Insulated Gate Bipolar Transistor)が適用されるものとするが、制御信号によってオン・オフを制御可能であれば任意のスイッチング素子を適用可能である。たとえば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)あるいはバイポーラトランジスタ等も適用可能である。 In the present embodiment, an IGBT (Insulated Gate Bipolar Transistor) is applied as a power semiconductor switching element (hereinafter also simply referred to as “switching element”), but can be controlled on / off by a control signal. Any switching element can be applied. For example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or a bipolar transistor can be applied.
スイッチング素子Q1,Q2は、正極ラインPL3と負極ラインNLとの間に直列に接続される。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。リアクトルL1の一方端は、スイッチング素子Q1,Q2の接続ノードに接続され、その他方端は、正極ラインPL1に接続される。コンデンサC1は、正極ラインPL1および負極ラインNLに接続される。 Switching elements Q1, Q2 are connected in series between positive electrode line PL3 and negative electrode line NL. Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively. Reactor L1 has one end connected to a connection node of switching elements Q1 and Q2, and the other end connected to positive line PL1. Capacitor C1 is connected to positive electrode line PL1 and negative electrode line NL.
コンバータ12は、コンバータ10と同様の構成を有する。コンバータ10の構成において、スイッチング素子Q1,Q2をスイッチング素子Q3,Q4にそれぞれ置き換え、ダイオードD1,D2をダイオードD3,D4にそれぞれ置き換え、リアクトルL1、コンデンサC1および正極ラインPL1をリアクトルL2、コンデンサC2および正極ラインPL2にそれぞれ置き換えた構成がコンバータ12の構成に対応する。
なお、スイッチング素子Q1およびQ3は、コンバータ10および12の上アームに対応し、スイッチング素子Q2およびQ4は、コンバータ10および12の下アームに対応する。
Switching elements Q1 and Q3 correspond to the upper arms of
コンバータ10,12は、チョッパ回路から成る。そして、コンバータ10(12)は、ECU30(図1)からの信号PWC1(PWC2)に基づいて、正極ラインPL1(PL2)の電圧をリアクトルL1(L2)を用いて昇圧し、その昇圧した電圧を正極ラインPL3へ出力する。具体的には、スイッチング素子Q1(Q3)および/またはスイッチング素子Q2(Q4)のオン・オフ期間比(デューティ)を制御することによって、主蓄電装置BA、副蓄電装置BBからの出力電圧の昇圧比を制御できる。
一方、コンバータ10(12)は、ECU30(図示せず)からの信号PWC1(PWC2)に基づいて、正極ラインPL3の電圧を降圧し、その降圧した電圧を正極ラインPL1(PL2)へ出力する。具体的には、スイッチング素子Q1(Q3)および/またはスイッチング素子Q2(Q4)のオン・オフ期間比(デューティ)を制御することによって、正極ラインPL3の電圧の降圧比を制御できる。 On the other hand, converter 10 (12) lowers the voltage of positive line PL3 based on signal PWC1 (PWC2) from ECU 30 (not shown), and outputs the reduced voltage to positive line PL1 (PL2). Specifically, the voltage step-down ratio of positive line PL3 can be controlled by controlling the on / off period ratio (duty) of switching element Q1 (Q3) and / or switching element Q2 (Q4).
接続部72は、主蓄電装置BAの正極と正極ラインPL1との間に接続されるシステムメインリレーSRB1と、主蓄電装置BAの負極と負極ラインNLとの間に接続されるシステムメインリレーSRG1と、主蓄電装置BAの負極と負極ラインNLとの間に直列に接続され、かつシステムメインリレーSRG1と並列に設けられるシステムメインリレーSRP1および制限抵抗RAとを含む。システムメインリレーSRB1,SRP1,SRG1はECU30から与えられる信号CN1によって導通状態(オン)/非導通状態(オフ)が制御される。
接続部74,76は上述した接続部72と同様の構成を有する。すなわち、上述の接続部72の構成において主蓄電装置BAを副蓄電装置BB1に置き換え、システムメインリレーSRB1,SRP1,SRG1をシステムメインリレーSRB2,SRP2,SRG2にそれぞれ置き換え、制限抵抗RAを制限抵抗RB1に置き換えた構成が接続部74の構成に対応する。接続部74に含まれる各システムメインリレーは、ECU30からの信号CN2によって導通状態および非導通状態が制御される。
The
また、上述の接続部72の構成において主蓄電装置BAを副蓄電装置BB2に置き換え、システムメインリレーSRB1,SRP1,SRG1をシステムメインリレーSRB3,SRP3,SRG3にそれぞれ置き換え、制限抵抗RAを制限抵抗RB2に置き換えた構成が接続部76の構成に対応する。接続部76に含まれる各システムメインリレーはECU30からの信号CN3に応じて導通状態および非導通状態が制御される。
In the configuration of
主蓄電装置BAおよび副蓄電装置BB1,BB2の充電時において、ECU30はコンバータ10に信号UA1またはSD1を送るとともに、コンバータ12に信号UA2またはSD2を送る。コンバータ10は信号UA1に応じて上アーム(スイッチング素子Q1)をオンするとともに、下アーム(スイッチング素子Q2)をオフする。コンバータ10は信号SD1に応じて上アームおよび下アームをオフする。コンバータ12は信号UA2に応じて上アーム(スイッチング素子Q3)をオンするとともに、下アーム(スイッチング素子Q4)をオフする。コンバータ12は信号SD2に応じて上アームおよび下アームをオフする。
When charging main power storage device BA and sub power storage devices BB1 and BB2,
さらにECU30は充電器240に信号CHGを送る。なお、各蓄電装置の充電については後ほど詳細に説明する。
Further, the
図3は、充電器240の構成および、ハイブリッド車両と外部電源との電気的接続のための構成を詳細に示す図である。
FIG. 3 is a diagram showing in detail the configuration of
図3を参照して、充電器240は、AC/DC変換回路242と、DC/AC変換回路244と、絶縁トランス246と、整流回路248とを含む。
Referring to FIG. 3,
AC/DC変換回路242は、単相ブリッジ回路から成る。AC/DC変換回路242は、ECU30からの信号CHGに基づいて、交流電力を直流電力に変換する。また、AC/DC変換回路242は、コイルをリアクトルとして用いることにより、電圧を昇圧する昇圧チョッパ回路としても機能する。
The AC /
DC/AC変換回路244は、単相ブリッジ回路から成る。DC/AC変換回路244は、ECU30からのCHGに基づいて、直流電力を高周波の交流電力に変換して絶縁トランス246へ出力する。
The DC /
絶縁トランス246は、磁性材から成るコアと、コアに巻回された一次コイルおよび二次コイルとを含む。一次コイルおよび二次コイルは、電気的に絶縁されており、それぞれDC/AC変換回路244および整流回路248に接続される。絶縁トランス246は、DC/AC変換回路244から受ける高周波の交流電力を一次コイルおよび二次コイルの巻数比に応じた電圧レベルに変換して整流回路248へ出力する。整流回路248は、絶縁トランス246から出力される交流電力を直流電力に整流する。
AC/DC変換回路242とDC/AC変換回路244との間の電圧(平滑コンデンサの端子間電圧)は、電圧センサ182により検出され、検出結果を表わす信号がECU30に入力される。また、充電器240の出力電流は、電流センサ184により検出され、検出結果を表わす信号がECU30に入力される。
A voltage between the AC /
ECU30は、車両外部の電源402により主蓄電装置BAおよび副蓄電装置BB1,BB2が充電されるとき、充電器240を駆動するための信号CHGを生成して充電器240へ出力する。
なおECU30は、充電器240の制御機能の他、充電器240のフェール検出機能を有する。電圧センサ182により検出される電圧、電流センサ184により検出される電流などがしきい値以上であると、充電器240のフェールが検出される。
The
インレット250は、たとえばハイブリッド車両の側部に設けられる。インレット250には、ハイブリッド車両と外部の電源402とを連結する充電ケーブル300のコネクタ310が接続される。
ハイブリッド車両と外部の電源402とを連結する充電ケーブル300は、コネクタ310と、プラグ320と、CCID(Charging Circuit Interrupt Device)330とを含む。
Charging
充電ケーブル300のコネクタ310は、ハイブリッド車両に設けられたインレット250に接続される。コネクタ310には、スイッチ312が設けられる。充電ケーブル300のコネクタ310が、ハイブリッド車両に設けられたインレット250に接続された状態でスイッチ312が閉じると、充電ケーブル300のコネクタ310が、ハイブリッド車両に設けられたインレット250に接続された状態であることを表わすケーブル接続信号PISWがECU30に入力される。たとえばスイッチ312は、充電ケーブル300のコネクタ310をハイブリッド車両のインレット250に係止する係止金具(図示せず)に連動して開閉する。
充電ケーブル300のプラグ320は、コンセント400に接続される。コンセント400はたとえば家屋に設けられたコンセントである。コンセント400には電源402から交流電力が供給される。
Plug 320 of charging
CCID330は、リレー332およびコントロールパイロット回路334を有する。リレー332が開いた状態では、電源402からハイブリッド車両へ電力を供給する経路が遮断される。リレー332が閉じた状態では、電源402からハイブリッド車両に電力が供給可能になる。リレー332の状態は、充電ケーブル300のコネクタ310がハイブリッド車両のインレット250に接続された状態でECU30により制御される。
The
コントロールパイロット回路334は、充電ケーブル300のプラグ320がコンセント400、すなわち外部の電源402に接続され、かつコネクタ310がインレット250に接続された状態において、コントロールパイロット線にパイロット信号(方形波信号)CPLTを送る。コントロールパイロット回路334内に設けられた発振器によって、パイロット信号CPLTは周期的に変化する。
The
コントロールパイロット回路334は、充電ケーブル300のプラグ320がコンセント400に接続された場合には、コネクタ310がインレット250から外されていても、所定のパイロット信号CPLTを出力し得る。ただし、ECU30は、コネクタ310がインレット250から外された状態で出力されたパイロット信号CPLTを、検出できない。
When the
充電ケーブル300のプラグ320がコンセント400に接続され、かつ充電ケーブル300のコネクタ310がインレット250に接続されると、コントロールパイロット回路334は、予め定められたパルス幅(デューティサイクル)のパイロット信号CPLTを生成する。
When plug 320 of charging
パイロット信号CPLTのパルス幅により、供給可能な電流容量がハイブリッド車両に通知される。たとえば、充電ケーブル300の電流容量がハイブリッド車両に通知される。パイロット信号CPLTのパルス幅は、電源402の電圧および電流に依存せずに一定である。
The hybrid vehicle is notified of the current capacity that can be supplied by the pulse width of pilot signal CPLT. For example, the current capacity of charging
一方、用いられる充電ケーブルの種類が異なれば、パイロット信号CPLTのパルス幅は異なり得る。すなわち、パイロット信号CPLTのパルス幅は、充電ケーブルの種類毎に定められ得る。 On the other hand, if the type of charging cable used is different, the pulse width of pilot signal CPLT may be different. That is, the pulse width of pilot signal CPLT can be determined for each type of charging cable.
本実施の形態においては、充電ケーブル300によりハイブリッド車両と電源402とが連結された状態において、主蓄電装置BA、副蓄電装置BB1,BB2が充電される。電源402の交流電圧VACは、ハイブリッド車両の内部に設けられた電圧センサ188により検出される。検出された電圧VACは、ECU30に送信される。
In the present embodiment, main power storage device BA and sub power storage devices BB1 and BB2 are charged in a state where hybrid vehicle and
図4は、ECU30の構成を示す機能ブロック図である。なお、図4に示した構成はハードウェアおよびソフトウェアのいずれによっても実現可能である。
FIG. 4 is a functional block diagram showing the configuration of the
図4を参照して、ECU30は、充電制御部31と、リレー制御部32と、コンバータ制御部33と、インバータ制御部34と、漏電判定部35とを含む。
Referring to FIG. 4,
充電制御部31は、主蓄電装置BAの残存容量(SOC(State of Charge)とも呼ばれる)SOC1、副蓄電装置BB1,BB2のそれぞれの残存容量SOC2,SOC3を受ける。この残存容量は、たとえば蓄電装置が満充電状態であるときに100%であると定義され、蓄電装置が完全に放電した状態であるときに0%であると定義される。なお、残存容量は、蓄電装置の電圧や充放電電流、蓄電装置の温度などを用いて種々の公知の手法により算出することができるので、ここでは詳細な説明を繰返さない。充電制御部31は、残存容量SOC1,SOC2,SOC3に基づいて信号CHGを出力することにより充電器240を動作および停止させる。また、充電制御部31は、指令IGONに応じて、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電結果を示す情報を表示装置90に表示させる。
リレー制御部32は、充電制御部31の制御処理および漏電判定部35の判定結果に基づいて、接続部72,74,76を制御するための信号CN1〜CN3を出力する。
コンバータ制御部33は、電圧センサ42によって検出された電圧VA、電圧センサ48によって検出された電圧VH、および電流センサ52によって検出された電流IAに基づいて、コンバータ10に含まれるスイッチング素子をPWM(Pulse Width Modulation)制御するための信号PWC1を生成する。コンバータ制御部33は、さらに、コンバータ10を停止するためのシャットダウン信号SD1、および、コンバータ10の上アームをオン状態に固定するための上アームオン信号UA1を生成する。
Based on voltage VA detected by
コンバータ制御部33は、同様に、電圧VB1(または電圧VB2)、電圧VH、および電流IB1(または電流IB2)に基づいて、コンバータ12に含まれるスイッチング素子を制御するための信号PWC2を生成する。さらに、コンバータ制御部33は、コンバータ12を停止するためのシャットダウン信号SD2、およびコンバータ12の上アームをオン状態に固定するための上アームオン信号UA2を生成する。
Similarly,
コンバータ制御部33は、さらに、コンバータ14をスイッチング制御するためのPWM信号PWC3を生成する。
インバータ制御部34は、モータジェネレータMG1のトルク指令値TR1、モータ電流MCRT1およびロータ回転角θ1、ならびに電圧VHに基づいて、インバータ20に含まれるスイッチング素子をオン/オフするためのPWM信号を生成し、その生成したPWM信号を信号PWI1としてインバータ20へ出力する。
インバータ制御部34は、モータジェネレータMG2のトルク指令値TR2、モータ電流MCRT2およびロータ回転角θ2、ならびに電圧VHに基づいて、インバータ22に含まれるスイッチング素子をオン・オフするためのPWM信号を生成し、その生成したPWM信号を信号PWI2としてインバータ22へ出力する。
なお、トルク指令値TR1,TR2は、たとえば、アクセル開度やブレーキ踏込量、車両速度などに基づいて、図示されない車両ECUによって算出される。また、モータ電流MCRT1,MCRT2およびロータ回転角θ1,θ2の各々は、図示されないセンサによって検出される。 Torque command values TR1 and TR2 are calculated by a vehicle ECU (not shown) based on, for example, the accelerator opening, the brake depression amount, the vehicle speed, and the like. Motor currents MCRT1 and MCRT2 and rotor rotation angles θ1 and θ2 are detected by sensors (not shown).
漏電判定部35は、漏電検出器80の検出結果に基づいて図1に示す車両システムに漏電が生じたことを判定すると、その判定結果をリレー制御部32およびコンバータ制御部33に出力する。リレー制御部32は漏電判定部35の判定結果に応じて接続部72,74,76をオフするための信号CN1〜CN3を生成して出力する。またコンバータ制御部33は、コンバータ10,12をそれぞれ停止するための信号SD1,SD2を生成して出力する。
When
さらに漏電判定部35は、蓄電装置の充電が強制終了したことを示す情報を表示装置90に送る。表示装置90は漏電判定部35からの情報を受けて蓄電装置の充電が強制終了したことを表示する。
Furthermore,
各蓄電装置の充電時においては、充電制御部31と、リレー制御部32と、コンバータ制御部33と、漏電判定部35とは、処理結果等の情報を相互にやりとりする。
At the time of charging each power storage device, the charging
次に、本実施の形態によるシステムメインリレーの制御について詳しく説明する。図5は、システムメインリレーの状態および電圧VHの変化を模式的に示す波形図である。 Next, control of the system main relay according to the present embodiment will be described in detail. FIG. 5 is a waveform diagram schematically showing changes in the state of the system main relay and the voltage VH.
図5を参照して、システムメインリレーSRBは図2に示すシステムメインリレーSRB1,SRB2,SRB3を総括的に示したものである。同様に、システムメインリレーSRGは、システムメインリレーSRG1〜SRG3を総括的に示したものであり、システムメインリレーSRPはシステムメインリレーSRP1〜SRP3を総括的に示したものである。 Referring to FIG. 5, system main relay SRB generally represents system main relays SRB1, SRB2, and SRB3 shown in FIG. Similarly, the system main relay SRG generically shows the system main relays SRG1 to SRG3, and the system main relay SRP generically shows the system main relays SRP1 to SRP3.
まず、蓄電装置(BA,BB1,BB2)を対応するコンバータ(10,12)に接続するときの接続部の動作(ECU30による接続部の接続処理)について説明する。時刻t1においてシステムメインリレーSRBがオフ状態からオン状態となる。次に時刻t2においてシステムメインリレーSRPがオン状態となる。 First, the operation of the connecting portion (connection processing of the connecting portion by the ECU 30) when connecting the power storage device (BA, BB1, BB2) to the corresponding converter (10, 12) will be described. At time t1, system main relay SRB changes from the off state to the on state. Next, at time t2, system main relay SRP is turned on.
時刻t2以前では電圧VHは0である。このため、蓄電装置が対応する電力線(正極ラインおよび負極ライン)に接続されると、蓄電装置の電圧(VA,VB1,VB2)と電圧VHとの差が大きいため電力線に大電流が流れる可能性がある。これによりシステムメインリレーが溶着するおそれがある。このため電力線に流れる電流を制限する必要がある。 Prior to time t2, voltage VH is zero. For this reason, when the power storage device is connected to the corresponding power line (positive line and negative line), a large current may flow through the power line because the difference between the voltage (VA, VB1, VB2) of the power storage device and the voltage VH is large. There is. As a result, the system main relay may be welded. For this reason, it is necessary to limit the current flowing in the power line.
したがって、蓄電装置の負極側ではシステムメインリレーSRGより先にシステムメインリレーSRPがオンする。システムメインリレーSRPがオンしている間、制限抵抗によって、蓄電装置からの出力電流が制限される。このため、電圧VHは徐々に上昇する。電圧VHが上昇して蓄電装置の電圧とほぼ等しくなるとシステムメインリレーSRGがオンし、その後にシステムメインリレーSRPがオフする(時刻t3)。時刻t2から時刻t3までの期間はコンデンサCに電荷を蓄積するための時間であるので、この期間をプリチャージ期間とも称することにする。システムメインリレーSRPがオフすると接続処理が完了する(時刻t4)。 Therefore, system main relay SRP is turned on prior to system main relay SRG on the negative electrode side of the power storage device. While the system main relay SRP is on, the output current from the power storage device is limited by the limiting resistor. For this reason, the voltage VH gradually increases. When voltage VH increases and becomes substantially equal to the voltage of the power storage device, system main relay SRG is turned on, and thereafter system main relay SRP is turned off (time t3). Since the period from time t2 to time t3 is a time for accumulating charges in the capacitor C, this period is also referred to as a precharge period. When the system main relay SRP is turned off, the connection process is completed (time t4).
次に、蓄電装置(BA,BB1,BB2)と対応するコンバータ(10,12)との接続を遮断するときの接続部の動作(ECU30による接続部の遮断処理)について説明する。なお、遮断処理は時刻t5から始まるものとする。 Next, the operation of the connecting portion (the connection portion blocking process by the ECU 30) when the connection between the power storage device (BA, BB1, BB2) and the corresponding converter (10, 12) is cut will be described. It is assumed that the blocking process starts from time t5.
時刻t5においてはシステムメインリレーSRB,SRGがオンした状態である。時刻t6において、システムメインリレーSRGがオフ状態となる。その後、コンデンサCをディスチャージするための処理が行なわれる。 At time t5, system main relays SRB and SRG are in the on state. At time t6, system main relay SRG is turned off. Thereafter, a process for discharging the capacitor C is performed.
コンデンサCに蓄積された電荷は、モータジェネレータMG1および/またはMG2によって放出される。このときに、モータジェネレータMG1および/またはMG2はトルクを発生しないように制御される。このときに実行される放電制御の一例を説明する。モータジェネレータMG1,MG2のロータ回転角(θ1,θ2)に基づいて、インバータ制御部34が放電電流のベクトル方向を決定する。すなわち、インバータ制御部34は、d軸(モータジェネレータのロータが形成する磁界の向き)と平行な方向に放電電流のベクトルが向くようにインバータ20,22を制御する。このように放電を制御することによってq軸(トルクが発生するベクトルの向き)にトルクが発生しないようにインバータ20,22を制御する。なお、この放電制御は一例であってコンデンサCに蓄積された電荷を放出するための制御であれば他の放電制御を採用することも可能である。
The electric charge accumulated in capacitor C is released by motor generators MG1 and / or MG2. At this time, motor generators MG1 and / or MG2 are controlled so as not to generate torque. An example of the discharge control executed at this time will be described. Based on the rotor rotation angles (θ1, θ2) of motor generators MG1, MG2,
時刻t7において電圧VHが0になるとシステムメインリレーSRBがオフする。これにより遮断処理が終了する。 When voltage VH becomes 0 at time t7, system main relay SRB is turned off. As a result, the blocking process ends.
なお、図5には示していないが、システムメインリレーの接続および遮断に加えてシステムメインリレーの溶着判定を行なってもよい。図5は、各システムメインリレーが正常であるときの電圧VHの変化を示しているが、システムメインリレーのいずれかが溶着した場合には、電圧VHの変化が図5に示すVHの挙動と異なる。これによって各システムメインリレーの溶着を判定することができる。 Although not shown in FIG. 5, the welding determination of the system main relay may be performed in addition to the connection and disconnection of the system main relay. FIG. 5 shows the change in the voltage VH when each system main relay is normal. However, when any of the system main relays is welded, the change in the voltage VH is the behavior of the VH shown in FIG. Different. As a result, the welding of each system main relay can be determined.
たとえば時刻t1以前には、システムメインリレーSRP,SRG(またはシステムメインリレーSRB,SRP)の溶着判定が行なわれる。また、時刻t1〜t4の期間においてシステムメインリレーSRPの溶着判定が行なわれる。また、時刻t5〜t7の期間においてシステムメインリレーSRGの溶着判定が行なわれる。 For example, before time t1, welding determination of system main relays SRP, SRG (or system main relays SRB, SRP) is performed. In addition, welding determination of system main relay SRP is performed during a period from time t1 to t4. Further, welding determination of system main relay SRG is performed during a period from time t5 to time t7.
続いて、本実施の形態に係る蓄電装置の充電制御について説明する。図6は、本実施の形態による蓄電装置の充電処理を説明するフローチャートである。なお、このフローチャートに示す処理は、所定の条件の成立時(たとえば、充電ケーブル300によって電源402とハイブリッド車両とが接続されたとき)にECU30により実行される。
Next, charging control for the power storage device according to the present embodiment will be described. FIG. 6 is a flowchart illustrating a charging process for the power storage device according to the present embodiment. The process shown in this flowchart is executed by
図6を参照して、まず主蓄電装置BAを充電するための処理が実行される(ステップS1)。次に副蓄電装置BB1を充電するための処理が行なわれる(ステップS2)。続いて、副蓄電装置BB2を充電するための処理が行なわれる(ステップS3)。なお、副蓄電装置BB1,BB2を充電する順序は図6に示したように限定されるものではない。そして、副蓄電装置BB1,BB2の充電が終了すると、主蓄電装置BAを再度充電する(ステップS4)。ステップS4の処理が終了すると、全体の処理が終了する。 Referring to FIG. 6, first, a process for charging main power storage device BA is performed (step S1). Next, a process for charging sub power storage device BB1 is performed (step S2). Subsequently, a process for charging sub power storage device BB2 is performed (step S3). The order of charging sub power storage devices BB1 and BB2 is not limited as shown in FIG. Then, when charging of sub power storage devices BB1 and BB2 is completed, main power storage device BA is charged again (step S4). When the process of step S4 ends, the entire process ends.
ステップS1では、主蓄電装置BAが予備的に充電される。ステップS1の処理は、副蓄電装置BB1,BB2の充電に先立って、主蓄電装置BAにある程度の電力を蓄積するためのものである。副蓄電装置BB1,BB2が充電される間に、主蓄電装置BAに蓄積された電力が補機等によって消費される。このためステップS4では、主蓄電装置BAが再び充電される。 In step S1, main power storage device BA is preliminarily charged. The processing in step S1 is for accumulating a certain amount of power in main power storage device BA prior to charging of sub power storage devices BB1 and BB2. While the sub power storage devices BB1 and BB2 are charged, the electric power stored in the main power storage device BA is consumed by an auxiliary machine or the like. Therefore, in step S4, main power storage device BA is charged again.
図7は、図6のフローチャートに示した処理に対応するタイミングチャートである。図7を参照して、時刻t11において主蓄電装置BAに対応するシステムメインリレー(SMR)がオフ状態からオン状態になる。なお図7においては、図5に示した接続処理をシステムメインリレー(SMR)の波形のオフからオンへの遷移として表わし、図5に示した遮断処理をシステムメインリレーの波形におけるオンからオフへの遷移で表わすものとする。 FIG. 7 is a timing chart corresponding to the processing shown in the flowchart of FIG. Referring to FIG. 7, at time t11, system main relay (SMR) corresponding to main power storage device BA changes from the off state to the on state. In FIG. 7, the connection process shown in FIG. 5 is represented as a transition from OFF to ON of the waveform of the system main relay (SMR), and the cutoff process shown in FIG. 5 is changed from ON to OFF in the waveform of the system main relay. It is expressed by the transition of.
時刻t11において主蓄電装置BA側のシステムメインリレーがオンすることによって、主蓄電装置BAが正極ラインPL1および負極ラインNLに接続される。一方、副蓄電装置BB1,BB2のシステムメインリレーはいずれもオフである。これにより、主蓄電装置BAのみが充電される。この結果、主蓄電装置BAの残存容量が初期値Aから所定値Bまで上昇する。SOCの値が所定値Bに達すると、ECU30は、主蓄電装置BAの充電が終了したと判断する。
When the system main relay on the main power storage device BA side is turned on at time t11, the main power storage device BA is connected to the positive electrode line PL1 and the negative electrode line NL. On the other hand, the system main relays of sub power storage devices BB1 and BB2 are both off. Thereby, only main power storage device BA is charged. As a result, the remaining capacity of main power storage device BA increases from initial value A to predetermined value B. When the value of SOC reaches predetermined value B,
時刻t12において副蓄電装置BB1側のシステムメインリレーがオンする。これにより、副蓄電装置BB1の充電が開始される。後述するように、主蓄電装置BAの充電完了後には、充電器240からの電力が主蓄電装置BAに供給されないようコンバータ10,12が制御される。副蓄電装置BB1の充電時に主蓄電装置BAと副蓄電装置BB1とが導通すると、これらの間に短絡電流が流れる可能性がある。コンバータ10,12を停止することによって、このような問題を防ぐことができる。また、副蓄電装置BB1の充電時に副蓄電装置BB1,BB2が導通すると、これらの間に短絡電流が流れる可能性がある。副蓄電装置BB1側のシステムメインリレーのオン時には、副蓄電装置BB2側のシステムメインリレーがオフ状態となる。したがって、副蓄電装置BB1,BB2間で短絡電流が流れることを回避できる。
At time t12, the system main relay on the sub power storage device BB1 side is turned on. Thereby, charging of sub power storage device BB1 is started. As will be described later, after completion of charging of main power storage device BA,
時刻t13において副蓄電装置BB1の充電が完了する。これにより副蓄電装置BB1側のシステムメインリレーがオフする。続いて、時刻t14において副蓄電装置BB2側のシステムメインリレーがオンとなり副蓄電装置BB2の充電が開始される。このときにも副蓄電装置BB1,BB2間で短絡電流が流れることを回避できる。時刻t15において副蓄電装置BB2の充電が完了すると、副蓄電装置BB2側のシステムメインリレーがオフする。 At time t13, charging of sub power storage device BB1 is completed. As a result, the system main relay on the sub power storage device BB1 side is turned off. Subsequently, at time t14, the system main relay on the side of sub power storage device BB2 is turned on, and charging of sub power storage device BB2 is started. Also at this time, it is possible to avoid a short-circuit current from flowing between the sub power storage devices BB1 and BB2. When charging of sub power storage device BB2 is completed at time t15, the system main relay on the side of sub power storage device BB2 is turned off.
ここで、副蓄電装置BB1,BB2を充電する期間、すなわち時刻t12〜t15の期間において、補機16の動作が継続される場合がある。たとえば補機16が時計である場合、常時動作させるために補機16への電力の供給が必要となる。さらに図1に示したように、補機バッテリSBに蓄積された電力(電圧VD)はECU30に供給される。副蓄電装置BB1,BB2を充電する間、ECU30が充電器240を制御しなければならない。したがって、この期間にも補機バッテリSBからECU30に電力が供給される。副蓄電装置BB1,BB2を充電する間に主蓄電装置BA側のシステムメインリレーをオフした場合、補機16およびECU30の電力消費によって補機バッテリSBが上がる(いわゆるバッテリ上がりが生じる)可能性がある。
Here, the operation of
この問題を防ぐために、本実施の形態では、副蓄電装置BB1,BB2が充電される間、ECU30は、主蓄電装置BA側のシステムメインリレー(接続部72)をオン状態に保つとともに、コンバータ14による電圧変換動作を継続する。これにより、主蓄電装置BAに蓄積された電力が補機16およびECU30によって消費されるので、主蓄電装置BAの残存容量は所定値Bから低下する。したがって、時刻t15において、主蓄電装置BAの再充電が開始される。再充電によって、主蓄電装置BAの残存容量は所定値Bに回復する。主蓄電装置BAの残存容量が所定値Bに達すると主蓄電装置BA側のシステムメインリレーがオフする(時刻t16)。
In order to prevent this problem, in the present embodiment, while sub power storage devices BB1 and BB2 are charged,
すなわち、時刻t11〜t12における主蓄電装置BAの充電は、副蓄電装置BB1,BB2を充電する間における補機16およびECU30の駆動電力を確保するための充電である。時刻t11〜t12における主蓄電装置BAの充電は、図6のステップS1の処理に対応する。
That is, charging of main power storage device BA at times t11 to t12 is charging for securing driving power of
時刻t12〜t13における副蓄電装置BB1の充電は、図6のステップS2の処理に対応する。時刻t14〜t15における副蓄電装置BB2の充電は、図6のステップS3の処理に対応する。 The charging of the sub power storage device BB1 at times t12 to t13 corresponds to the process of step S2 in FIG. Charging of the sub power storage device BB2 at times t14 to t15 corresponds to the process of step S3 in FIG.
時刻t15〜t16における主蓄電装置BAの充電は、副蓄電装置BB1,BB2の充電の間に消費された電力を補填するための充電である。時刻t15〜t16における主蓄電装置BAの充電は、図6のステップS4の処理に対応する。 Charging of main power storage device BA at times t15 to t16 is charging for compensating for power consumed during charging of sub power storage devices BB1 and BB2. Charging of main power storage device BA at times t15 to t16 corresponds to the process of step S4 in FIG.
このように、本実施の形態では、副蓄電装置(副蓄電装置BB1,BB2)の充電中においても主蓄電装置(主蓄電装置BA)のシステムメインリレー(接続部72)をオン状態に保つとともに、コンバータ14による電圧変換動作を継続させる。これによって、副蓄電装置の充電期間に補機(ECUも含む)の動作を継続することができるとともに、補機バッテリSBが上がることを回避することができる。仮に、補機バッテリが上がったためにECU30が停止してしまうと、副蓄電装置BB1,BB2の充電が不可能となるばかりでなく車両システムの制御にも影響が生じることが予想される。本実施の形態によれば、このような問題を回避することができる。
As described above, in the present embodiment, the system main relay (connection portion 72) of the main power storage device (main power storage device BA) is kept on even while the sub power storage devices (sub power storage devices BB1, BB2) are being charged. The voltage conversion operation by the
図8は、図6および図7に示す蓄電装置の充電処理をより詳細に説明するタイミングチャートである。 FIG. 8 is a timing chart illustrating the charging process of the power storage device shown in FIGS. 6 and 7 in more detail.
図8を参照して、時刻t11〜t16の期間は、図7に示した時刻t11〜t16の期間に対応する。また、図8においては、図7と同様に、図5に示した接続処理をシステムメインリレー(SMR)の波形のオフからオンへの遷移として表わし、図5に示した遮断処理をシステムメインリレーの波形におけるオンからオフへの遷移で表わすものとする。 Referring to FIG. 8, the period from time t11 to t16 corresponds to the period from time t11 to t16 shown in FIG. 8, the connection process shown in FIG. 5 is represented as a transition from OFF to ON of the waveform of the system main relay (SMR), and the disconnection process shown in FIG. It is represented by a transition from on to off in the waveform of.
時刻t11において、ECU30は信号CN1を接続部72に送信して、主蓄電装置BA側のシステムメインリレー(SMR)をオフ状態からオン状態にする。時刻t21において、ECU30は、パイロット信号CPLTの電位を変化させる。これによりコントロールパイロット回路334はCCID330に設けられたリレー332をオンする。時刻t22において、ECU30は、コンバータ(CNV)10に信号UA1を送信して、コンバータ10の上アームをオン状態に固定する。さらに、時刻t23においてECU30は信号CHGを充電器240に送信して、充電器240の動作を開始させる(充電器240をオンする)。これにより、主蓄電装置BAの充電が開始される。
At time t11,
ここで、図2を参照して、主蓄電装置BAが充電される場合、電源402、充電ケーブル300および充電器240を介して正極ラインPL2に電力が供給される。正極ラインPL2に供給された電力は、リアクトルL2、ダイオードD3、スイッチング素子Q1(上アーム)、リアクトルL1、正極ラインPL1および接続部72を介して主蓄電装置BAに供給される。
Here, referring to FIG. 2, when main power storage device BA is charged, power is supplied to positive line PL <b> 2 via
ECU30(充電制御部31)は、主蓄電装置BAの残存容量(SOC1)を検出する。時刻t24において主蓄電装置BAの残存容量が所定値Bに達すると、ECU30は充電器240を停止する(オフする)。そして、ECU30はコンバータ10に信号SD1を送り、コンバータ10を停止する。したがって、時刻t25において、コンバータ10の上アームはオン状態からオフ状態になる。
ECU 30 (charge control unit 31) detects the remaining capacity (SOC1) of main power storage device BA. When the remaining capacity of main power storage device BA reaches predetermined value B at time t24,
コンバータ10,12は時刻t25において停止している。その後、コンデンサCのディスチャージ(図中、DCと示す)のため、ECU30は、コンバータ12の下アームを所定期間動作させる。その後、ECU30は、コンバータ12に信号SD2を送信してコンバータ12を停止させる。
次に、時刻t12において、ECU30は信号CN2を接続部74に送信して、副蓄電装置BB1側のシステムメインリレーをオンさせる。時刻t12においても、主蓄電装置BA側のシステムメインリレーはオン状態のままである。したがって、補機16およびECU30の駆動に必要な電力を主蓄電装置BA(およびコンバータ14)により供給することができる。副蓄電装置BB1側のシステムメインリレーがオンした後に、ECU30は充電器240を動作させる(充電器240をオンさせる)。これにより副蓄電装置BB1が充電される。
Next, at time t12,
副蓄電装置BB1の充電時には、コンバータ10が停止しているので、主蓄電装置BAには電源402からの電力は供給されない。副蓄電装置BB1の残存容量(SOC2)が所定値に達すると、ECU30は、充電器240を停止させる(オフする)。その後、コンバータ12によって、コンデンサCのディスチャージが行なわれる。コンデンサCのディスチャージの終了後、ECU30は、副蓄電装置BB1側のシステムメインリレーをオフする(時刻t13)。
Since the
続いて時刻t14において、ECU30は信号CN3を接続部76に送信して、副蓄電装置BB2側のシステムメインリレーをオンさせる。時刻t14においても、主蓄電装置BA側のシステムメインリレーはオン状態のままである。したがって、補機16およびECU30の駆動に必要な電力を主蓄電装置BA(およびコンバータ14)により供給することができる。
Subsequently, at time t <b> 14,
副蓄電装置BB2側のシステムメインリレーがオンした後に、ECU30は充電器240を動作させる(充電器240をオンさせる)。これにより副蓄電装置BB2が充電される。副蓄電装置BB2の残存容量(SOC3)が所定値に達すると、ECU30は、充電器240を停止させる(オフする)。その後、コンバータ12によって、コンデンサCのディスチャージが行なわれる。コンデンサCのディスチャージの終了後、ECU30は、副蓄電装置BB2側のシステムメインリレーをオフする(時刻t15)。
After the system main relay on the sub power storage device BB2 side is turned on, the
その後、ECU30は、コンバータ10に信号UA1を送信して、コンバータ10の上アームをオンする。さらにECU30は、充電器240に信号CHGを送り、充電器240を動作させる(オンする)。これによって、時刻t22〜t25の期間と同様に、主蓄電装置BAが充電される。主蓄電装置BAの残存容量(SOC1)が所定値Bに達すると、ECU30は充電器240を停止させる(オフする)。次に、ECU30は、コンバータ10に信号SD1を送信してコンバータ10の上アームをオフする。その後、ECU30は、パイロット信号CPLTの電位を変化させる。これによりコントロールパイロット回路334は、CCID330に設けられたリレー332をオフする。時刻t16においてECU30は、主蓄電装置BA側のシステムメインリレーをオフする。
Thereafter,
さらに、本実施の形態によれば、主蓄電装置BA側に漏電検出器80が設けられる。漏電検出器80を電源(蓄電装置)の近くに設けることによって漏電の検出の精度を向上させることができる。したがって、漏電検出の上では蓄電装置ごとに漏電検出器を設けることが好ましいが、この場合コスト増を招く。したがって、本実施の形態では、主蓄電装置BAに直接的に接続される漏電検出器80のみを設ける。
Furthermore, according to the present embodiment,
主蓄電装置BAは接続部72により正極ラインPL1および負極ラインNLに接続される。これにより漏電検出器80は図1に示す車両システムに電気的に接続された状態となる。したがって、主蓄電装置BAおよび副蓄電装置BB1,BB2のいずれの充電時においても、漏電検出器80により漏電を検出することができる。
Main power storage device BA is connected to positive electrode line PL1 and negative electrode line NL by
図9は、図1に示した漏電検出器80の構成例を説明するブロック図である。
図9を参照して、回路系200は図1に示す車両システムを1つの機能ブロックにより示したものである。また、図9に示すアース1は車両においては車体に対応する。
FIG. 9 is a block diagram illustrating a configuration example of the
Referring to FIG. 9, a
漏電検出器80は、信号発生部である発振回路81と、検出抵抗82と、カップリングコンデンサ83と、バンドパスフィルタ(BPF)84と、オフセット回路および増幅回路からなる回路ブロック85と、過電圧保護用ダイオード87と、抵抗86と、コンデンサ88と、制御回路110とを備える。
The
発振回路81は、ノードNAに所定周波数(所定周期Tp)で変化するパルス信号SIGを印加する。検出抵抗82は、ノードNAおよびノードN1の間に接続される。カップリングコンデンサ83は、漏電検出対象となる主蓄電装置BA(または副蓄電装置BB1,BB2)とノードN1との間に接続される。バンドパスフィルタ84は、ノードN1に入力端子が接続され、ノードN2に出力端子が接続される。バンドパスフィルタ84の通過帯域周波数は、パルス信号SIGの周波数に合わせて設計される。
The
回路ブロック85は、ノードN2とノードN3との間に接続される。回路ブロック85は、バンドパスフィルタ84を通過したパルス信号のうち、絶縁抵抗検出時に設定されるしきい値電圧付近の電圧変化を増幅する。過電圧保護用ダイオード87は、定電圧ノードにカソードが接続され、ノードNBにアノードが接続されて、サージ電圧(高電圧,負電圧)を除去する。抵抗86はノードN3とノードNBとの間に接続される。コンデンサ88はノードNBとアース1との間に接続される。抵抗86およびコンデンサ88は、回路ブロック85から出力される信号のノイズを除去するフィルタとして機能する。
The
制御回路110は、発振回路81を制御する。また制御回路110は、ノードNBの電圧を検出して、検出電圧に基づいて絶縁抵抗Riの低下を検出する。制御回路110は、発振指令部111と、A/D変換部112と、判定部113とを含む。
The
発振指令部111は、発振回路81に対してパルス信号SIGを発生するよう指示を与えるとともに、パルス信号SIGのデューティ比を変更するよう指示する。A/D変換部112は所定のサンプリング周期Tsにより検出したノードNBの電圧(検出電圧)をA/D変換する。サンプリング周期Tsはパルス信号SIGの周期Tpよりも十分短いのでノードNBの最大電圧(ピーク電圧Vp)および最小電圧を検出できる。判定部113は、A/D変換部112から取得したピーク電圧Vpの値と、しきい値とを比較する。これにより、制御回路110は、絶縁抵抗Riの低下有無を検出する。
The
次に、絶縁抵抗Riの低下を検出する動作について説明する。
発振回路81によって発生されたパルス信号SIGは、検出抵抗82、カップリングコンデンサ83、絶縁抵抗Ri、およびバンドパスフィルタ84を含んで構成された直列回路に印加される。これにより、検出抵抗82およびカップリングコンデンサ83の接続点に相当するノードN1には、絶縁抵抗Riおよび検出抵抗82(抵抗値Rd)の分圧比:Ri/(Rd+Ri)とパルス信号SIGの振幅(電源電圧である電圧+B)との積を波高値とするパルス電圧が発生する。なお電圧+Bは、たとえば補機バッテリSBの電圧VD(図1参照)としてもよいが、電圧VDに限定されるものではない。
Next, an operation for detecting a decrease in the insulation resistance Ri will be described.
The pulse signal SIG generated by the
ノードN1に発生したパルス電圧は、バンドパスフィルタ84によってパルス信号SIGの周波数以外の成分が減衰される。バンドパスフィルタ84を通過したパルス信号SIGのうち、しきい値電圧付近の電圧変化のみが回路ブロック85によって増幅される。回路ブロック85から出力される信号はノードNBに伝達される。ノードN3からノードNBに信号が伝達されるに際して、過電圧保護用ダイオード87によりサージ電圧が除去されるとともに、抵抗86およびコンデンサ88によってノイズが除去される。
In the pulse voltage generated at the node N1, components other than the frequency of the pulse signal SIG are attenuated by the band-
絶縁抵抗Riの正常時には、Ri>>Rdである。Riが高くなるに従って、ピーク電圧Vpは電圧+Bにほぼ等しくなる。一方、絶縁抵抗Riの低下時には、分圧比:Ri/(Rd+Ri)が低下するので、ピーク電圧Vpが低下する。 When the insulation resistance Ri is normal, Ri >> Rd. As Ri increases, the peak voltage Vp becomes substantially equal to the voltage + B. On the other hand, when the insulation resistance Ri is lowered, the voltage division ratio: Ri / (Rd + Ri) is lowered, so that the peak voltage Vp is lowered.
図10は、絶縁抵抗RiとノードNBにおける最大電圧(ピーク電圧Vp)との関係を説明する図である。 FIG. 10 is a diagram illustrating the relationship between the insulation resistance Ri and the maximum voltage (peak voltage Vp) at the node NB.
図10を参照して、Riが高くなるに従ってピーク電圧Vpは高くなり、ほぼ電圧+Bに等しくなる。したがって、絶縁抵抗Riの許容下限値と検出抵抗82の抵抗値Rdとの分圧比に従ってしきい値電圧Vtを決定すれば、制御回路110において、ノードNBにおいて変化する電圧の最大値(ピーク電圧Vpの値)と、しきい値電圧Vtの値とを比較することで絶縁抵抗Riの低下を検出することができる。
Referring to FIG. 10, as Ri increases, peak voltage Vp increases, and is approximately equal to voltage + B. Therefore, if threshold voltage Vt is determined according to the voltage division ratio between the allowable lower limit value of insulation resistance Ri and resistance value Rd of
図11は、絶縁抵抗Riの低下検出時に図9の制御回路110によって検出される電圧波形を説明する図である。
FIG. 11 is a diagram for explaining voltage waveforms detected by the
図11を参照して、絶縁正常時には、ピーク電圧Vpはしきい値電圧Vtを超えて、最大電圧Vmax(この電圧はほぼ電圧+Bに等しい)に達する。一方、絶縁異常時には、ピーク電圧Vpはしきい値電圧Vtよりも小さくなる。 Referring to FIG. 11, when insulation is normal, peak voltage Vp exceeds threshold voltage Vt and reaches maximum voltage Vmax (this voltage is approximately equal to voltage + B). On the other hand, when insulation is abnormal, the peak voltage Vp is smaller than the threshold voltage Vt.
図12は、漏電検出時のECU30の処理を説明するフローチャートである。このフローチャートに示す処理は、たとえば所定の周期ごとにメインルーチンから呼出されて実行される。
FIG. 12 is a flowchart for explaining the processing of the
図12を参照して、ECU30は、漏電が発生したか否かを判定する(ステップS11)。詳細に説明すると、漏電判定部35は漏電検出器80が絶縁抵抗の低下を示す信号を出力した場合に漏電が発生したと判定する。漏電判定部35により漏電が発生していないと判定された場合(ステップS11においてNO)、全体の処理はメインルーチンに戻される。一方、漏電判定部35により漏電が発生したと判定された場合(ステップS11においてYES)、リレー制御部32は、漏電判定部35の判定結果に基づいて接続部72,74,76に含まれるすべてのシステムメインリレーをオフするための信号CN1〜CN3を生成して出力する。これによりすべてのシステムメインリレーがオフする。さらにECU30はCCID330に含まれるリレー332をオフさせる。具体的には、ECU30はパイロット信号CPLTの電位を変化させることにより、コントロールパイロット回路334にリレー332を遮断させる。(ステップS12)。
Referring to FIG. 12,
続いてコンバータ制御部33は、漏電判定部35の判定結果に基づいて、コンバータ10,12を停止するための信号SD1,SD2を生成して出力する(ステップS13)。さらに、充電制御部31は、充電器240の動作を停止するための信号CHGを生成して充電器240に出力する。これにより充電器240が停止(オフ)する(ステップS14)。ステップS14の処理が終了すると、全体の処理はメインルーチンに戻される。
Subsequently,
なお、ステップS12において接続部72,74,76に含まれるすべてのシステムメインリレーをオフするための処理が実行され、ステップS14の処理の後にCCID330に含まれるリレー332をオフするための処理が実行されてもよい。この場合には、リレー332をオフするための処理が終了すると、全体の処理がメインルーチンに戻される。
In step S12, a process for turning off all the system main relays included in
以上のように、本実施の形態によれば、副蓄電装置の充電時において、主蓄電装置BAに対応して設けられた接続部72を導通状態に設定するとともにコンバータ14による電圧変換動作を継続させる。これにより、副蓄電装置の充電中に補機バッテリのバッテリ上がりが生じることを防ぐことができる。
As described above, according to the present embodiment,
また、本実施の形態によれば、漏電検出器の個数を増やすことなく複数の蓄電装置の各々の充電時における漏電を検出することができる。 Further, according to the present embodiment, it is possible to detect a leakage during charging of each of the plurality of power storage devices without increasing the number of leakage detectors.
また、上記においては、動力分割機構4によりエンジン2の動力を分割して車輪6とモータジェネレータMG1とに伝達可能なシリーズ/パラレル型のハイブリッド車両について説明したが、本発明は、その他の形式のハイブリッド自動車にも適用可能である。たとえば、モータジェネレータMG1を駆動するためにのみエンジン2を用い、モータジェネレータMG2でのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車両や、エンジン2が生成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収されるハイブリッド車両、エンジンを主動力として必要に応じてモータがアシストするモータアシスト型のハイブリッド車両などにも本発明は適用可能である。
In the above description, the series / parallel type hybrid vehicle in which the power of the
また、本発明は、エンジン2を備えずに電力のみで走行する電気自動車や、電源として蓄電装置に加えて燃料電池をさらに備える燃料電池車にも適用可能である。
The present invention can also be applied to an electric vehicle that does not include the
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 アース、2 エンジン、4 動力分割機構、6 車輪、10,12,14 コンバータ、16 補機、20,22 インバータ、31 充電制御部、32 リレー制御部、33 コンバータ制御部、34 インバータ制御部、35 漏電判定部、42,44,46,48 電圧センサ、52,54,56 電流センサ、62,64,66 温度センサ、72,74,76 接続部、80 漏電検出器、81 発振回路、82 検出抵抗、83 カップリングコンデンサ、84 バンドパスフィルタ、85 回路ブロック、86 抵抗、87 過電圧保護用ダイオード、88 コンデンサ、90 表示装置、110 制御回路、111 発振指令部、112 A/D変換部、113 判定部、182,188 電圧センサ、184 電流センサ、200 回路系、240 充電器、242 AC/DC変換回路、244 DC/AC変換回路、246 絶縁トランス、248 整流回路、250 インレット、300 充電ケーブル、310 コネクタ、312 スイッチ、320 プラグ、330 CCID、332 リレー、334 コントロールパイロット回路、400 コンセント、402 電源、1000 ハイブリッド車両、BA 主蓄電装置、BB1,BB2 副蓄電装置、C,C1,C2 コンデンサ、D1〜D4 ダイオード、L1,L2 リアクトル、MG1,MG2 モータジェネレータ、N1〜N3,NA,NB ノード、NL 負極ライン、PL1〜PL4 正極ライン、Q1〜Q4 スイッチング素子、RA,RB1,RB2 制限抵抗、Ri 絶縁抵抗、SB 補機バッテリ、SRB1,SRP1,SRG1,SRB2,SRP2,SRG2,SRB3,SRP3,SRG3 システムメインリレー。 1 ground, 2 engine, 4 power split mechanism, 6 wheels, 10, 12, 14 converter, 16 auxiliary machine, 20, 22 inverter, 31 charge control unit, 32 relay control unit, 33 converter control unit, 34 inverter control unit, 35 Leakage determination unit, 42, 44, 46, 48 Voltage sensor, 52, 54, 56 Current sensor, 62, 64, 66 Temperature sensor, 72, 74, 76 Connection unit, 80 Leakage detector, 81 Oscillation circuit, 82 detection Resistance, 83 Coupling capacitor, 84 Bandpass filter, 85 Circuit block, 86 Resistance, 87 Overvoltage protection diode, 88 Capacitor, 90 Display device, 110 Control circuit, 111 Oscillation command section, 112 A / D conversion section, 113 judgment Part, 182, 188 voltage sensor, 184 current sensor, 200 circuit system, 40 charger, 242 AC / DC conversion circuit, 244 DC / AC conversion circuit, 246 isolation transformer, 248 rectifier circuit, 250 inlet, 300 charging cable, 310 connector, 312 switch, 320 plug, 330 CCID, 332 relay, 334 control Pilot circuit, 400 outlets, 402 power supply, 1000 hybrid vehicle, BA main power storage device, BB1, BB2 sub power storage device, C, C1, C2 capacitor, D1-D4 diode, L1, L2 reactor, MG1, MG2 motor generator, N1- N3, NA, NB node, NL negative line, PL1-PL4 positive line, Q1-Q4 switching element, RA, RB1, RB2 limiting resistance, Ri insulation resistance, SB auxiliary battery, SRB1, SR 1, SRG1, SRB2, SRP2, SRG2, SRB3, SRP3, SRG3 system main relay.
Claims (8)
前記第1の蓄電装置に対応して設けられる第1の電力線と、
前記第2の蓄電装置に対応して設けられる第2の電力線と、
前記第1の蓄電装置と前記第1の電力線との電気的接続および遮断が可能に構成された第1の接続部と、
前記第2の蓄電装置と前記第2の電力線との電気的接続および遮断が可能に構成された第2の接続部と、
前記第1の電力線と補機との間に接続されて、前記第1の蓄電装置から前記第1の接続部および前記第1の電力線を介して供給される電力の電圧を、前記補機を動作させるための所定の電圧に変換する電圧変換装置と、
前記電圧変換装置に対して前記補機と並列に接続されて、前記電圧変換装置から供給される電力を蓄積する第3の蓄電装置と、
前記第1および第2の電力線に接続されて、前記第1および第2の蓄電装置を車両外部の外部電源により充電するための充電装置と、
前記第1および第2の接続部ならびに前記充電装置を制御する制御装置とを備え、
前記制御装置は、前記第2の蓄電装置の充電時には、前記第2の接続部を導通状態に設定するとともに前記外部電源からの電力が前記第2の電力線に供給されるように前記充電装置を制御する一方で、前記第1の接続部を導通状態に設定して前記電圧変換装置の動作を継続させる、車両の電源システム。 First and second power storage devices;
A first power line provided corresponding to the first power storage device;
A second power line provided corresponding to the second power storage device;
A first connecting portion configured to be capable of electrical connection and disconnection between the first power storage device and the first power line;
A second connection portion configured to be capable of electrical connection and disconnection between the second power storage device and the second power line;
Connected between the first power line and the auxiliary machine, the voltage of the electric power supplied from the first power storage device via the first connection part and the first power line is changed to the auxiliary machine. A voltage conversion device that converts the voltage into a predetermined voltage for operation;
A third power storage device that is connected in parallel to the auxiliary device with respect to the voltage conversion device and stores electric power supplied from the voltage conversion device;
A charging device connected to the first and second power lines for charging the first and second power storage devices with an external power source outside the vehicle;
A control device for controlling the first and second connecting portions and the charging device;
The control device sets the second connection portion to a conductive state when charging the second power storage device, and controls the charging device so that power from the external power supply is supplied to the second power line. While controlling, the power supply system of a vehicle which sets the said 1st connection part to a conduction | electrical_connection state and continues operation | movement of the said voltage converter.
前記第1の蓄電装置に直接的に接続される漏電検出器をさらに備え、
前記制御装置は、前記第1の蓄電装置の充電時および前記第2の蓄電装置の充電時において、前記漏電検出器の検出結果に基づいて、前記電源システムにおける漏電の有無を判定する、請求項2または3に記載の車両の電源システム。 The power supply system includes:
A leakage detector directly connected to the first power storage device;
The said control apparatus determines the presence or absence of the electric leakage in the said power supply system based on the detection result of the said electric leakage detector at the time of charge of the said 1st electrical storage apparatus and the said 2nd electrical storage apparatus. 4. The vehicle power supply system according to 2 or 3.
第3の電力線をさらに備え、
前記充電装置は、
前記第1および第3の電力線に接続されて、双方向の電力変換が可能に構成された第1の電力変換装置と、
前記第2および第3の電力線に接続されて、双方向の電力変換が可能に構成された第2の電力変換装置と、
前記外部電源から供給される電力を前記第2の電力線に出力可能に構成された充電器とを含む、請求項1から5のいずれか1項に記載の車両の電源システム。 The power supply system includes:
Further comprising a third power line;
The charging device is:
A first power converter connected to the first and third power lines and configured to enable bidirectional power conversion;
A second power converter connected to the second and third power lines and configured to be capable of bidirectional power conversion;
6. The vehicle power supply system according to claim 1, further comprising: a charger configured to be able to output electric power supplied from the external power supply to the second power line.
前記第1および第2の電力線のうち対応する電力線と前記第3の電力線の間の電流経路に介挿接続される電力用半導体スイッチング素子と、
前記対応する電力線から前記第3の電力線へ向かう方向を順方向として、前記電力用半導体スイッチング素子と並列に接続されるダイオード素子とを含み、
前記制御装置は、前記外部電源から供給される電力を前記充電器を介して前記第1の電力線に出力する場合においては、前記第1および第2の電力変換装置の各々の前記電力用半導体スイッチング素子を導通状態に設定する一方、前記外部電源から前記充電器を介して供給される電力を前記第2の電力線に出力する場合においては、前記第1および第2の電力変換装置の各々の前記電力用半導体スイッチング素子を非導通状態に設定する、請求項6に記載の車両の電源システム。 Each of the first and second power conversion devices includes:
A power semiconductor switching element inserted and connected to a current path between a corresponding power line of the first and second power lines and the third power line;
A diode element connected in parallel with the power semiconductor switching element, with the direction from the corresponding power line toward the third power line as a forward direction,
When the control device outputs power supplied from the external power source to the first power line via the charger, the power semiconductor switching of each of the first and second power conversion devices In the case where power is supplied from the external power supply via the charger to the second power line while the element is set in a conductive state, each of the first and second power converters The vehicle power supply system according to claim 6, wherein the power semiconductor switching element is set in a non-conduction state.
前記補機とを備える、車両。 A vehicle power supply system according to any one of claims 1 to 7,
A vehicle comprising the auxiliary machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008293484A JP5187152B2 (en) | 2008-11-17 | 2008-11-17 | Vehicle power supply system and vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008293484A JP5187152B2 (en) | 2008-11-17 | 2008-11-17 | Vehicle power supply system and vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010124535A JP2010124535A (en) | 2010-06-03 |
JP5187152B2 true JP5187152B2 (en) | 2013-04-24 |
Family
ID=42325376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008293484A Active JP5187152B2 (en) | 2008-11-17 | 2008-11-17 | Vehicle power supply system and vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5187152B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5625715B2 (en) * | 2010-10-08 | 2014-11-19 | トヨタ自動車株式会社 | Vehicle control apparatus and control method |
US8378623B2 (en) * | 2010-11-05 | 2013-02-19 | General Electric Company | Apparatus and method for charging an electric vehicle |
EP2760104A1 (en) * | 2011-09-21 | 2014-07-30 | Toyota Jidosha Kabushiki Kaisha | Charging system for electric vehicle and charging control method |
JP5660102B2 (en) | 2012-10-16 | 2015-01-28 | トヨタ自動車株式会社 | Vehicle power supply |
JP5742814B2 (en) * | 2012-10-17 | 2015-07-01 | トヨタ自動車株式会社 | Vehicle power supply |
EP2919370B1 (en) * | 2012-11-07 | 2020-12-30 | Volvo Truck Corporation | Power source device |
JP6028643B2 (en) * | 2013-03-22 | 2016-11-16 | トヨタ自動車株式会社 | Electric vehicle |
JP2013258910A (en) * | 2013-10-02 | 2013-12-26 | Mitsubishi Motors Corp | Electrical system control system of electric vehicle |
JP7560715B2 (en) * | 2020-04-01 | 2024-10-03 | 株式会社今仙電機製作所 | Vehicle power supply device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06315201A (en) * | 1993-04-27 | 1994-11-08 | Toyota Motor Corp | Driver for electric automobile |
JP3890168B2 (en) * | 1999-08-03 | 2007-03-07 | 株式会社東京アールアンドデー | Electric device and charging / discharging method of battery unit thereof |
JP2008061487A (en) * | 2006-07-31 | 2008-03-13 | Toyota Motor Corp | Power supply system and vehicle equipped with the same, method for controlling temperature rise of power storage apparatus, and computer-readable recording medium with program for making computer execute temperature rise control of the power storage apparatus stored |
JP4905300B2 (en) * | 2006-09-28 | 2012-03-28 | トヨタ自動車株式会社 | Power supply system, vehicle equipped with the same, control method for power supply system, and computer-readable recording medium recording a program for causing a computer to execute the control method |
US8039987B2 (en) * | 2006-09-29 | 2011-10-18 | Toyota Jidosha Kabushiki Kaisha | Power source device and vehicle with power source device |
JP4569603B2 (en) * | 2007-01-04 | 2010-10-27 | トヨタ自動車株式会社 | Power supply system, vehicle including the same, and control method thereof |
JP4706648B2 (en) * | 2007-03-06 | 2011-06-22 | トヨタ自動車株式会社 | Electric vehicle, charging state estimation method, and computer-readable recording medium recording a program for causing a computer to execute the charging state estimation method |
JP4882850B2 (en) * | 2007-04-25 | 2012-02-22 | トヨタ自動車株式会社 | Power supply system, power supply system control method, and computer-readable recording medium storing a program for causing a computer to execute the power supply system control method |
JP4288333B1 (en) * | 2007-12-18 | 2009-07-01 | トヨタ自動車株式会社 | Vehicle power supply |
-
2008
- 2008-11-17 JP JP2008293484A patent/JP5187152B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010124535A (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228824B2 (en) | Vehicle power supply system and vehicle | |
JP5187152B2 (en) | Vehicle power supply system and vehicle | |
JP5131355B2 (en) | Hybrid vehicle | |
JP5772784B2 (en) | Vehicle, power supply system, and control method for power supply system | |
JP5660102B2 (en) | Vehicle power supply | |
EP2034583B1 (en) | Vehicle power supply apparatus and vehicle incorporating the same | |
JP5742814B2 (en) | Vehicle power supply | |
CN102202930B (en) | Electric vehicle and control method for electric vehicle | |
JP5035427B2 (en) | Vehicle charging system | |
JP4849171B2 (en) | Charge system abnormality determination device and abnormality determination method | |
CN102202929B (en) | Power supply system of electric vehicle and control method thereof | |
WO2014115209A1 (en) | Power supply system for vehicle | |
WO2010032320A1 (en) | Abnormality detector of vehicle and vehicle | |
WO2010050038A1 (en) | Power supply system for electric vehicle and control method for the same | |
JP2009296793A (en) | Vehicle mounted with energy storage device, and charging cable | |
WO2013132604A1 (en) | Electric-powered vehicle and method for controlling same | |
US20100204860A1 (en) | Control apparatus and control method for vehicle | |
JP5227230B2 (en) | Electric vehicle | |
JP5228825B2 (en) | Vehicle power supply system and vehicle | |
JP5949436B2 (en) | Vehicle, power supply system, and control method for power supply system | |
JP6028643B2 (en) | Electric vehicle | |
US10158246B2 (en) | Energy storage device, transport apparatus, and control method | |
JP2014138473A (en) | Electrical power system and vehicle equipped with the same | |
JP5299166B2 (en) | Power supply system, electric vehicle including the same, and control method of power supply system | |
JP2014155298A (en) | Power supply system, and vehicle mounting the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5187152 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |