[go: up one dir, main page]

JP5184314B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5184314B2
JP5184314B2 JP2008298549A JP2008298549A JP5184314B2 JP 5184314 B2 JP5184314 B2 JP 5184314B2 JP 2008298549 A JP2008298549 A JP 2008298549A JP 2008298549 A JP2008298549 A JP 2008298549A JP 5184314 B2 JP5184314 B2 JP 5184314B2
Authority
JP
Japan
Prior art keywords
air
cooling
heat exchanger
cooled heat
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008298549A
Other languages
Japanese (ja)
Other versions
JP2010121604A (en
Inventor
充 岩崎
雄一 回谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008298549A priority Critical patent/JP5184314B2/en
Publication of JP2010121604A publication Critical patent/JP2010121604A/en
Application granted granted Critical
Publication of JP5184314B2 publication Critical patent/JP5184314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0452Combination of units extending one behind the other with units extending one beside or one above the other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling system constructed compact and superior in on-vehicle mountability while maintaining high heat exchanging efficiency. <P>SOLUTION: The cooling system 1 includes a first air-cooled heat exchanger 5 for cooling a cooling water for a heating element 3 excluding an engine 9, a second air-cooled heat exchanger for cooling refrigerant for a vehicle room air-conditioner, and a third air-cooled heat exchanger 11 for cooling the cooling water for the engine 9. The first air-cooled heat exchanger 5 and the third air-cooled heat exchanger 11 have cores 21, 23 built up with flow path members 13, 15 and radiation fins 17, 19, and cooling water tanks 25, 27, 29, 31 communicated with each other via the flow path members 13, 15, respectively. A width W2 of the core 23 of the third air-cooled heat exchanger 11 in the direction perpendicular to cooling air is smaller than a width W1 of the core 21 of the first air-cooled heat exchanger 5. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、自動車用の冷却システムに関する。   The present invention relates to a cooling system for an automobile.

特許文献1に「ハイブリッド電気自動車の冷却装置」が記載されている。   Patent Document 1 describes a “cooling device for a hybrid electric vehicle”.

この冷却装置は、ハイブリッド電気自動車において走行用の電動機を冷却する冷却水用のサブラジエータと車室空調用冷媒を冷却する空冷コンデンサとエンジン冷却水用のラジエータとを備えており、これらは、走行中に取り入れた外気で冷却するように、車両のフロントグリルとエンジンとの間に、冷却風の流れに沿って電動機用サブラジエータと冷媒用空冷コンデンサとエンジン用ラジエータの順に配置されている。   This cooling device includes a sub-radiator for cooling water that cools an electric motor for traveling in a hybrid electric vehicle, an air-cooling condenser that cools a refrigerant for air conditioning in a passenger compartment, and a radiator for engine cooling water. An electric motor sub-radiator, a refrigerant air-cooling condenser, and an engine radiator are arranged in this order along the flow of cooling air between the front grille of the vehicle and the engine so as to be cooled by outside air taken in.

図11に示す冷却システム301はコンデンサ303とラジエータ305を備えており、コンデンサ303は冷却風の上流側に配置され、ラジエータ305は下流側に配置されている。コンデンサ303はコア307とタンク309,311を備え、ラジエータ305はコア313とタンク315,317を備えており、ラジエータ305はコア313の幅(冷却風と直交する方向の寸法)を広くし、タンク315,317の間にコンデンサ303のコア307とタンク309,311を配置することによって、コンデンサ303とラジエータ305との間隔を狭めている。   A cooling system 301 shown in FIG. 11 includes a condenser 303 and a radiator 305. The condenser 303 is arranged on the upstream side of the cooling air, and the radiator 305 is arranged on the downstream side. The condenser 303 includes a core 307 and tanks 309 and 311, and the radiator 305 includes a core 313 and tanks 315 and 317, and the radiator 305 widens the width of the core 313 (dimension in the direction perpendicular to the cooling air) By disposing the core 307 of the capacitor 303 and the tanks 309 and 311 between 315 and 317, the distance between the capacitor 303 and the radiator 305 is reduced.

また、タンク315,317が、コンデンサ303のタンク309,311より冷却風方向に長いラジエータ305の幅をコンデンサ303より広くすることによって、タンク315,317とタンク309,311との干渉を避け、間隔の短縮効果を高めている。
特開2002−276364号公報
In addition, the width of the radiator 305 that is longer in the cooling air direction than the tanks 309 and 311 of the condenser 303 by the tanks 315 and 317 is wider than the condenser 303, thereby avoiding interference between the tanks 315 and 317 and the tanks 309 and 311. The shortening effect is enhanced.
JP 2002-276364 A

特許文献1の冷却装置のように、車両の熱交換器はエンジンの前側に配置されるので、配置スペースやレイアウトや車載性の面で、コンパクトに構成することが望まれている。   Since the heat exchanger of the vehicle is arranged on the front side of the engine like the cooling device of Patent Document 1, it is desired that the vehicle is configured compactly in terms of arrangement space, layout, and vehicle mounting.

また、図11の冷却システム301のように、下流側ラジエータ305のコア313の幅を上流側コンデンサ303のコア307より広くしても、コンデンサ303を通過することによる冷却風の流速低下分を補うことは難しい上に、コア313の両端部319,319ではコア307の陰になって冷却風流量が不足するから、全体の熱交換効率がそれだけ低下する。   Moreover, even if the width of the core 313 of the downstream radiator 305 is wider than that of the core 307 of the upstream condenser 303 as in the cooling system 301 of FIG. 11, the decrease in the flow rate of the cooling air due to passing through the condenser 303 is compensated. In addition, the both ends 319 and 319 of the core 313 are behind the core 307 and the cooling air flow rate is insufficient, so that the overall heat exchange efficiency is reduced accordingly.

しかし、熱交換効率の低下を補うためにはコンデンサ303やラジエータ305を大型にする必要があり、これに伴って冷却システム301が大型になるから、配置スペースやレイアウトに対する制約が大きくなって、車載性が低下する。   However, in order to compensate for the decrease in heat exchange efficiency, it is necessary to increase the size of the condenser 303 and the radiator 305. As a result, the cooling system 301 is increased in size. Sex is reduced.

また、冷却風の風速低下を補うために、電動ファン321の電流を増やし、あるいは、電動ファン321を大型にすると、車載バッテリーの負担が増加する。   Further, if the current of the electric fan 321 is increased or the size of the electric fan 321 is increased in order to compensate for the decrease in the wind speed of the cooling air, the burden on the in-vehicle battery increases.

そこで、この発明は、熱交換効率を高く保ちながら、コンパクトに構成され車載性に優れた冷却システムの提供を目的としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a cooling system that is compact and excellent in in-vehicle performance while maintaining high heat exchange efficiency.

請求項1の冷却システムは、自動車のエンジン以外の発熱体を冷却する第1の冷却水を冷却する第1空冷熱交換器と、車室空調用の冷媒を冷却する第2空冷熱交換器と、前記エンジンを冷却する第2の冷却水を冷却する第3空冷熱交換器とを備えた冷却システムにおいて、前記第1空冷熱交換器及び第3空冷熱交換器は、各冷却水の流路となる流路部材と放熱フィンとを交互に積層してなるコアと、前記流路部材を介して連通する一対の冷却水タンクとを有し、前記第3空冷熱交換器のコアは、冷却風と直角方向の幅が、前記第1空冷熱交換器のコアの幅より狭く、前記第1空冷熱交換器の冷却風の下流側コア面と、このコア面に対して冷却風の下流側に突き出している前記タンクの側面とで形成された空間内に、前記第3空冷熱交換器の少なくとも一方のタンクの一部が配置され、前記第3空冷熱交換器は、タンクの少なくとも一方に、前記第1空冷熱交換器のタンクとの間隔が幅方向の外側に沿って広くなる斜面部と、凸部とを設け、前記凸部を、前記第1空冷熱交換器のタンクの間に配置し、前記斜面部と第1空冷熱交換器の前記タンクとを冷却風の方向にオーバーラップさせたことを特徴とする。 The cooling system according to claim 1 includes a first air-cooled heat exchanger that cools a first cooling water that cools a heating element other than an automobile engine, and a second air-cooled heat exchanger that cools a refrigerant for vehicle compartment air conditioning. A cooling system comprising a third air-cooling heat exchanger that cools the second cooling water that cools the engine, wherein the first air-cooling heat exchanger and the third air-cooling heat exchanger each have a flow path for each cooling water. And a pair of cooling water tanks that communicate with each other via the flow path member, and the core of the third air-cooled heat exchanger has a cooling structure. The width perpendicular to the wind is narrower than the width of the core of the first air cooling heat exchanger, the downstream core surface of the cooling air of the first air cooling heat exchanger, and the downstream side of the cooling air with respect to this core surface In the space formed by the side surface of the tank protruding to the bottom of the third air-cooled heat exchanger, Some of Kutomo one tank is disposed, the third air-cooled heat exchanger, at least one of the tanks, slope distance between the tank of the first air-cooled heat exchanger becomes wider along the outside of the width direction And a convex portion, the convex portion is disposed between the tanks of the first air-cooled heat exchanger, and the slope portion and the tank of the first air-cooled heat exchanger are overlaid in the direction of the cooling air. It is characterized by being wrapped.

請求項の発明は、請求項1に記載された冷却システムであって、エンジンの前方に配置され、前記第1空冷熱交換器の少なくとも一方のタンクが、コアに対し車両の後方側にオフセットされていることを特徴とする。 The invention of claim 2 is the cooling system according to claim 1 , wherein the tank is disposed in front of the engine, and at least one tank of the first air-cooled heat exchanger is offset to the rear side of the vehicle with respect to the core. It is characterized by being.

請求項の発明は、請求項1または請求項2のいずれかに記載された冷却システムであって、車室空調用の前記冷媒を冷却する水冷熱交換器が、前記第1空冷熱交換器のタンク内に配置され、前記第1の冷却水によって冷却されることを特徴とする。 Invention of Claim 3 is the cooling system described in either Claim 1 or Claim 2 , Comprising: The water cooling heat exchanger which cools the said refrigerant | coolant for vehicle interior air conditioning is a said 1st air cooling heat exchanger. And is cooled by the first cooling water.

請求項の発明は、請求項1〜請求項3のいずれかに記載された冷却システムであって、前記第1空冷熱交換器と前記第2空冷熱交換器と前記第3空冷熱交換器と前記水冷熱交換器において、それぞれの流体用配管が、車両の後方向から接続されていることを特徴とする。 Invention of Claim 4 is a cooling system in any one of Claims 1-3 , Comprising: A said 1st air cooling heat exchanger, a said 2nd air cooling heat exchanger, and a said 3rd air cooling heat exchanger In the water-cooled heat exchanger, each of the fluid pipes is connected from the rear side of the vehicle.

請求項1の冷却システムは、第3空冷熱交換器のコア幅(冷却風と直角方向の寸法)を第1空冷熱交換器のコア幅より狭くしたことにより、第3空冷熱交換器を第1空冷熱交換器の冷却水タンクの間に入れ込むことが可能になり、こうすることによって両コアの間隔Gを狭くし、冷却システムを冷却風方向に薄くしてコンパクトに構成できるから、配置スペースやレイアウトに対する制約が緩和され、車載性が向上する。   The cooling system according to claim 1 is configured such that the third air-cooled heat exchanger has the core width (dimension in the direction perpendicular to the cooling air) narrower than the core width of the first air-cooled heat exchanger. 1 It can be inserted between the cooling water tanks of the air-cooling heat exchanger. By doing so, the gap G between the two cores can be narrowed, and the cooling system can be made thin in the cooling air direction and compactly configured. The restrictions on space and layout are eased, and in-vehicle performance is improved.

また、一般に上下方向の寸法が小さい(低い)第1空冷熱交換器及び第2空冷熱交換器を同一平面上に上下配置すると共に、第3空冷熱交換器を、冷却風の下流側で、第1空冷熱交換器の冷却水タンクの間に配置すれば、従来例と異なって、冷却風の上流側に配置された第1空冷熱交換器はコア幅を広くしただけの熱交換効率向上が望める上に、第3空冷熱交換器のコアが第1空冷熱交換器の冷却水タンクの陰になることがなくなるから、冷却風の流量不足と熱交換効率の低下とが抑制される。また、第3空冷熱交換器の少なくとも一方のタンクの一部を、第1空冷熱交換器の冷却風の下流側コア面と、このコア面から冷却風の下流側に突き出しているタンクの側面とで形成される空間内に配置するこの構成では、例えば、第3空冷熱交換器のタンクを3角形断面形状にし、その頂部(凸部:タンクの一部)を前記の空間内に配置すれば、3角形の辺部(斜面部)を第1空冷熱交換器のタンクとオーバーラップさせることが可能になり、第3空冷熱交換器のコア幅をそれだけ広くして熱交換効率を向上させることができる。 In addition, the first air cooling heat exchanger and the second air cooling heat exchanger that are generally small (low) in the vertical direction are arranged vertically on the same plane, and the third air cooling heat exchanger is arranged downstream of the cooling air, If it is arranged between the cooling water tanks of the first air-cooling heat exchanger, unlike the conventional example, the first air-cooling heat exchanger arranged on the upstream side of the cooling air improves the heat exchange efficiency only by widening the core width. In addition, since the core of the third air-cooled heat exchanger does not become the shadow of the cooling water tank of the first air-cooled heat exchanger, the insufficient flow rate of cooling air and the decrease in heat exchange efficiency are suppressed. Further, a part of at least one of the tanks of the third air-cooling heat exchanger has a downstream core surface of the cooling air of the first air-cooling heat exchanger and a side surface of the tank protruding from the core surface to the downstream side of the cooling air. For example , the tank of the third air-cooled heat exchanger has a triangular cross-sectional shape, and its top (projection: part of the tank) is disposed in the space. For example, the side of the triangle (slope) can be overlapped with the tank of the first air-cooled heat exchanger, and the core width of the third air-cooled heat exchanger is increased to increase the heat exchange efficiency. be able to.

また、第3空冷熱交換器のタンクの少なくとも一方に、第1空冷熱交換器のタンクとの間隔が幅方向の外側に沿って広くなる斜面部と、凸部とを設け、この凸部を第1空冷熱交換器のタンクの間に配置すると共に、斜面部と第1空冷熱交換器のタンクとを冷却風の方向にオーバーラップさせたことによって、第1空冷熱交換器と第3空冷熱交換器は、タンク同士の干渉を避けながらコアの間隔Gを狭く保つことができると共に、第3空冷熱交換器は、コア幅を広くすることが可能になり、熱交換効率をさらに向上させることができる。従って、熱交換効率を改善するために各熱交換器を大型にする必要がなくなるから、冷却システムの大型化、配置スペースとレイアウトに対する制約の増大、車載性の低下などが避けられる。 In addition, at least one of the tanks of the third air-cooled heat exchanger is provided with a slope portion and a convex portion whose distance from the tank of the first air-cooled heat exchanger becomes wider along the outside in the width direction. The first air-cooling heat exchanger and the third air-cooling unit are disposed between the tanks of the first air-cooling heat exchanger and the slope portion and the tank of the first air-cooling heat exchanger are overlapped in the direction of the cooling air. The cold heat exchanger can keep the gap G of the core narrow while avoiding interference between tanks, and the third air-cooled heat exchanger can increase the core width, further improving the heat exchange efficiency. be able to. Therefore, since it is not necessary to increase the size of each heat exchanger in order to improve heat exchange efficiency, an increase in the size of the cooling system, an increase in restrictions on the arrangement space and layout, and a reduction in on-vehicle performance can be avoided.

また、電動ファンの大型化と消費電力の増加も回避され、車載バッテリーの負担増加が避けられる。   In addition, an increase in the size of the electric fan and an increase in power consumption can be avoided, and an increase in the burden on the in-vehicle battery can be avoided.

請求項の冷却システムは、請求項1の構成と同等の効果が得られる。 The cooling system of claim 2 can achieve the same effect as the structure of claim 1 .

また、第1空冷熱交換器の少なくとも一方のタンクをコアに対して車両の後方側へオフセットさせたことにより、タンクの前方への突き出し量がそれだけ少なくなっている上に、後方側へのオフセット分は第3空冷熱交換器を配置する空間として利用されており、オフセットさせたことによって冷却システム全体の寸法が無駄に増加することはないから、冷却システムをエンジン前方の狭いスペースに配置することができる。   Further, by offsetting at least one tank of the first air-cooled heat exchanger toward the rear side of the vehicle with respect to the core, the amount of forward protrusion of the tank is reduced by that amount, and the offset to the rear side is performed. The space is used as a space for the third air-cooled heat exchanger, and the offset does not unnecessarily increase the size of the entire cooling system, so place the cooling system in a narrow space in front of the engine. Can do.

請求項の冷却システムは、請求項1または請求項2の構成と同等の効果が得られる。 The cooling system according to the third aspect can achieve the same effects as the configuration according to the first or second aspect .

また、第1空冷熱交換器のタンク内に車室空調用の冷媒を冷却する水冷熱交換器(水冷コンデンサ)を配置したことにより、コンプレッサで圧縮された高温高圧のガス冷媒は、このタンク内で第1の冷却水によって冷却され、過熱度が減少し、あるいは、一部が飽和状態になって第2空冷熱交換器(空冷コンデンサ)に流入するから、車室空調系の性能が向上する。   In addition, since a water-cooled heat exchanger (water-cooled condenser) that cools the refrigerant for air conditioning in the passenger compartment is disposed in the tank of the first air-cooled heat exchanger, the high-temperature and high-pressure gas refrigerant compressed by the compressor is stored in the tank. In this case, it is cooled by the first cooling water, and the degree of superheat is reduced, or part of it is saturated and flows into the second air-cooled heat exchanger (air-cooled condenser), so that the performance of the passenger compartment air conditioning system is improved. .

また、水冷熱交換器を配置したことによって第1空冷熱交換器のタンクがサイズアップしても、上記のように、第3空冷熱交換器を第1空冷熱交換器の冷却水タンクの間に配置する、あるいは、コアとタンクによって形成された空間Sを第3空冷熱交換器の配置スペースとして利用する本発明では、その影響は極めて小さい。   Further, even if the tank of the first air cooling heat exchanger is increased in size by arranging the water cooling heat exchanger, the third air cooling heat exchanger is placed between the cooling water tanks of the first air cooling heat exchanger as described above. In the present invention in which the space S formed by the core and the tank is used as the space for arranging the third air-cooled heat exchanger, the influence is extremely small.

請求項の冷却システムは、請求項1〜請求項3の構成と同等の効果が得られる。 According to the cooling system of the fourth aspect , the same effect as that of the first to third aspects can be obtained.

また、冷却システムは、冷却風を最も効率的に利用するために車両の最前部に設置されるから、例えば、流出入用の配管類を車両の前面や側面から接続すると、後方へ取り回すための配管と継ぎ手とスペースなどが必要になるが、第1空冷熱交換器と第2空冷熱交換器と第3空冷熱交換器と水冷熱交換器のそれぞれの流出入用配管を車両の後方向から各タンクなどに取り付けるこの構成では、取り回し用の配管と継ぎ手とスペースなどの無駄を回避することができるから、コストアップが防止されると共に、冷却システムを配置するための必要なスペースが保全される。   In addition, since the cooling system is installed at the foremost part of the vehicle in order to use the cooling air most efficiently, for example, when the inflow / outflow piping is connected from the front or side of the vehicle, Piping, joints, and space are required, but the first air-cooling heat exchanger, the second air-cooling heat exchanger, the third air-cooling heat exchanger, and the water-cooling heat exchanger are routed to the rear of the vehicle. In this configuration, which is attached to each tank, etc., it is possible to avoid waste of piping, joints, and space for handling, thereby preventing an increase in cost and preserving the necessary space for arranging the cooling system. The

参考例
図1〜図7を参照しながら冷却システム1(本発明の参考例)の説明をする。図1のように、冷却システム1はエンジン9(内燃機関)と電動モータ3とを駆動力源とするハイブリッド電気自動車に用いられている。図1は冷却システム1の概略図、図2はサブラジエータ5とコンデンサ7とラジエータ11のレイアウトを示す冷却システム1の斜視図、図3はサブラジエータ5の斜視図、図4はサブラジエータ5のタンク29に組み込まれた水冷コンデンサ37を示す断面図、図5は水冷コンデンサ37の側面図、図6は冷却システム1の上面図、図7は冷却システム1を車両の後方から見た図面である。
< Reference example >
The cooling system 1 ( reference example of the present invention) will be described with reference to FIGS. As shown in FIG. 1, the cooling system 1 is used in a hybrid electric vehicle that uses an engine 9 (internal combustion engine) and an electric motor 3 as driving power sources. 1 is a schematic view of the cooling system 1, FIG. 2 is a perspective view of the cooling system 1 showing a layout of the sub-radiator 5, the condenser 7, and the radiator 11, FIG. 3 is a perspective view of the sub-radiator 5, and FIG. FIG. 5 is a side view of the water-cooled condenser 37, FIG. 6 is a top view of the cooling system 1, and FIG. 7 is a view of the cooling system 1 as seen from the rear of the vehicle. .

冷却システム1は、駆動モータ3及びインバータやコンバータのような制御機器(エンジン9以外の発熱体)用の第1の冷却水を冷却するサブラジエータ5(第1空冷熱交換器)と、車室空調用の冷媒を冷却するコンデンサ7(第2空冷熱交換器)と、エンジン9を冷却する第2の冷却水を冷却するラジエータ11(第3空冷熱交換器)とを備えた冷却システムであって、サブラジエータ5とラジエータ11は、第1冷却水と第2冷却水の流路となる扁平チューブ13,15(流路部材)と放熱フィン17,19とを交互に積層してなるコア21,23と、扁平チューブ13,15を介して連結された冷却水の流入側タンク25,27及び流出側タンク29,31とをそれぞれ有し、図6のように、ラジエータ11のコア23は、冷却風と直角方向の幅W2を、サブラジエータ5のコア21の幅W1より充分狭くすることにより、ラジエータ11(タンク27,31とコア23)をサブラジエータ5のタンク25,29の間に組み入れている。   The cooling system 1 includes a drive motor 3 and a sub-radiator 5 (first air-cooling heat exchanger) that cools a first cooling water for a control device (a heating element other than the engine 9) such as an inverter and a converter, The cooling system includes a condenser 7 (second air-cooling heat exchanger) that cools the air-conditioning refrigerant and a radiator 11 (third air-cooling heat exchanger) that cools the second cooling water that cools the engine 9. The sub-radiator 5 and the radiator 11 have a core 21 formed by alternately laminating flat tubes 13 and 15 (flow path members) serving as flow paths for the first cooling water and the second cooling water and heat radiation fins 17 and 19. , 23 and cooling water inflow side tanks 25, 27 and outflow side tanks 29, 31 connected via the flat tubes 13, 15, respectively, and as shown in FIG. Cooling air and direct The width W2, by sufficiently narrower than the width W1 of the core 21 of the sub-radiator 5 incorporates a radiator 11 (the tank 27, 31 and core 23) between the tank 25 and 29 of the sub-radiator 5.

また、サブラジエータ5の冷却風の下流側のコア面33と、コア面33に対して冷却風の下流側に突き出しているタンク25,29の側面34,35とで形成された空間Sの内側に、ラジエータ11のタンク31(少なくとも一方のタンク)が入り込んでいる。   Further, the inner side of the space S formed by the core surface 33 on the downstream side of the cooling air of the sub-radiator 5 and the side surfaces 34 and 35 of the tanks 25 and 29 protruding to the downstream side of the cooling air with respect to the core surface 33. In addition, a tank 31 (at least one tank) of the radiator 11 enters.

また、冷却システム1はエンジン9の前側に配置されており、サブラジエータ5のタンク29(少なくとも一方のタンク)は、コア21に対して車両の後方側へオフセット(オフセット量F)させてある。   The cooling system 1 is disposed on the front side of the engine 9, and the tank 29 (at least one tank) of the sub-radiator 5 is offset (offset amount F) from the core 21 toward the rear side of the vehicle.

また、サブラジエータ5のタンク29の内部には、車室空調用の冷媒を冷却する水冷コンデンサ37(水冷熱交換器)が配置されており、水冷コンデンサ37中を流れる車室空調用の冷媒はタンク29の中で第1の冷却水によって水冷される。   A water-cooled condenser 37 (water-cooled heat exchanger) that cools the refrigerant for air conditioning of the passenger compartment is disposed inside the tank 29 of the sub-radiator 5, and the refrigerant for air conditioning of the passenger compartment flowing through the water-cooled condenser 37 is Water is cooled in the tank 29 by the first cooling water.

また、サブラジエータ5とコンデンサ7とラジエータ11と水冷コンデンサ37では、それぞれの配管39,41,43,45,47,49,51,53(流体用配管)は車両の後方向面からそれぞれのタンク25,29,59,61,27,31とシェルチューブ69,71に接続されている。   Further, in the sub-radiator 5, the condenser 7, the radiator 11, and the water-cooled condenser 37, the pipes 39, 41, 43, 45, 47, 49, 51, 53 (fluid pipes) are respectively tanks from the rear surface of the vehicle. 25, 29, 59, 61, 27, 31 and shell tubes 69, 71.

サブラジエータ5とラジエータ11は、積層された扁平チューブ13,15の最上部と最下部にそれぞれレインフォース55,57(補強部材)を取り付けて積層方向に適度な荷重を加えた状態で、扁平チューブ13,15の両端をタンク25,29,27,31に挿入して形成されている。また、コンデンサ7は、冷媒の流入側タンク59と流出側タンク61を、扁平チューブ(流路部材)と放熱フィンを交互に積層して構成されたコアによって連通させている。   The sub-radiator 5 and the radiator 11 are flat tubes in a state in which reinforcements 55 and 57 (reinforcing members) are respectively attached to the uppermost and lowermost portions of the laminated flat tubes 13 and 15 and an appropriate load is applied in the lamination direction. 13 and 15 are formed by inserting both ends of tanks 25, 29, 27 and 31. In addition, the condenser 7 communicates the refrigerant inflow side tank 59 and the outflow side tank 61 with a core formed by alternately laminating flat tubes (flow path members) and radiating fins.

図6のように、冷却システム1は、冷却風(車両の走行中にフロントグリルから流入する外気)をサブラジエータ5に導くエアガイド63と、冷却風の吸入を促進する電動ファン65とを備えており、電動ファン65は周囲をシュラウド67によって防護されている。   As shown in FIG. 6, the cooling system 1 includes an air guide 63 that guides cooling air (outside air flowing in from the front grill while the vehicle is running) to the sub-radiator 5, and an electric fan 65 that promotes intake of the cooling air. The electric fan 65 is protected by a shroud 67 around.

上記のように、水冷コンデンサ37はサブラジエータ5の流出側タンク29に内蔵されており、図2のように、サブラジエータ5とコンデンサ7は冷却風の流れとほぼ直交する同一の面上にこの順で上下配置され、コンデンサ7はサブラジエータ5の下方に近接して配置され、冷媒は水冷コンデンサ37の上方の流入口51から流入し下方の流出口53から流出した後、コンデンサ7の流入口43に向かって流下する。また、図6のように、エンジン9用のラジエータ11は冷却風の下流に配置され、冷却風によって第2の冷却水を冷却する。   As described above, the water-cooled condenser 37 is built in the outflow side tank 29 of the sub-radiator 5, and as shown in FIG. 2, the sub-radiator 5 and the condenser 7 are arranged on the same surface substantially orthogonal to the flow of the cooling air. The condenser 7 is arranged close to the lower side of the sub-radiator 5, and the refrigerant flows in from the upper inlet 51 of the water-cooled condenser 37 and flows out of the lower outlet 53, and then the inlet of the condenser 7. It flows down toward 43. As shown in FIG. 6, the radiator 11 for the engine 9 is arranged downstream of the cooling air, and cools the second cooling water by the cooling air.

また、図4と図5のように、水冷コンデンサ37は、冷媒の流路である複数箇のシェルチューブ69,71の間に多数の溝を有するインナーフィンを挟んで鑞付けしたシェルチューブASSYを、リング状のパッチ73を挟み、さらに、互いのビード75,77を接触させることによって冷却水が通過するための隙間79を設けながら積層し鑞付けして構成されている。水冷コンデンサ37は冷媒の流れがほぼ鉛直方向になるように縦置きにされており、流入口51はコンプレッサ側に連結され、流出口53はU字管81(図2)を介してコンデンサ7の流入口43に連結されている。   4 and 5, the water-cooled condenser 37 includes a shell tube ASSY that is brazed by sandwiching inner fins having a number of grooves between a plurality of shell tubes 69 and 71 that are refrigerant flow paths. Further, the ring-shaped patch 73 is sandwiched, and the beads 75 and 77 are brought into contact with each other, and a gap 79 for allowing cooling water to pass therethrough is provided and laminated and brazed. The water-cooled condenser 37 is placed vertically so that the flow of the refrigerant is substantially vertical, the inlet 51 is connected to the compressor side, and the outlet 53 is connected to the condenser 7 via a U-shaped pipe 81 (FIG. 2). It is connected to the inflow port 43.

冷却システム1において、駆動モータ3などの冷却系では、ポンプ83によって循環する第1の冷却水は、サブラジエータ5のタンク25に流入し、各扁平チューブ13を流れる間に冷却風により放熱フィン17を介して冷却され、タンク29から流出して駆動モータ3などを冷却する。   In the cooling system 1, in the cooling system such as the drive motor 3, the first cooling water circulated by the pump 83 flows into the tank 25 of the sub-radiator 5 and flows through the flat tubes 13 by the cooling air by the cooling fins 17. Then, the refrigerant flows out of the tank 29 and cools the drive motor 3 and the like.

また、コンプレッサで圧縮され高温高圧のガス状態になった空調用冷媒は、図1と図5のように、流入口51から水冷コンデンサ37の各シェルチューブASSYに流入し、インナーフィンの溝を流下する間に、サブラジエータ5のタンク29を流れる冷却水によって冷却され、過熱度が低下した状態、あるいは、一部が飽和した状態で流出口53から流出し、U字管81を流下し、流入口43からコンデンサ7に流入し、冷却風により冷却されて凝縮し、膨張弁で減圧され、エバポレータで熱交換し、コンプレッサで圧縮されるサイクルを繰り返す。   The air-conditioning refrigerant compressed by the compressor and in a high-temperature and high-pressure gas state flows into the shell tubes ASSY of the water-cooled condenser 37 from the inlet 51 and flows down the groove of the inner fin as shown in FIGS. In the meantime, it is cooled by the cooling water flowing through the tank 29 of the sub-radiator 5 and flows out from the outlet 53 in a state where the degree of superheat is lowered or partially saturated, and flows down the U-shaped pipe 81, It flows into the condenser 7 from the inlet 43, is cooled and condensed by cooling air, is decompressed by the expansion valve, is heat-exchanged by the evaporator, and is compressed by the compressor.

また、エンジン9の冷却系では、流入口47からラジエータ11に流入した第2の冷却水は冷却風によって冷却され、流出口49から流出してエンジン9を冷却し、流入口47からラジエータ11に流入するサイクルを繰り返す。   In the cooling system of the engine 9, the second cooling water that has flowed into the radiator 11 from the inlet 47 is cooled by the cooling air, flows out of the outlet 49, cools the engine 9, and passes from the inlet 47 to the radiator 11. Repeat the inflow cycle.

次に、冷却システム1の効果を説明する。   Next, the effect of the cooling system 1 will be described.

冷却システム1は、ラジエータ11のコア23の幅W2をサブラジエータ5のコア幅W1より充分に狭くしたことにより、ラジエータ11全体をサブラジエータ5のタンク25,29の間に配置することが可能になり、こうすることによって両コア21,23の間隔G1を狭くし、冷却風の方向に薄くコンパクトに構成できるから、配置スペースやレイアウトに対する制約が緩和され、車載性が向上する。   In the cooling system 1, the width W <b> 2 of the core 23 of the radiator 11 is sufficiently narrower than the core width W <b> 1 of the sub-radiator 5, so that the entire radiator 11 can be disposed between the tanks 25 and 29 of the sub-radiator 5. As a result, the gap G1 between the cores 21 and 23 can be narrowed and the configuration can be made thin and compact in the direction of the cooling air, so that restrictions on the arrangement space and layout are eased, and the onboard performance is improved.

また、サブラジエータ5とコンデンサ7を同一平面上に上下配置し、ラジエータ11をサブラジエータ5のタンク25,29の間に配置したので、従来例と異なって、冷却風の上流側に配置されたサブラジエータ5はコア21の幅を広くしただけの熱交換効率向上を望める共に、ラジエータ11のコア23がタンク25,29の陰になることがなくなるから、冷却風の流量不足と熱交換効率の低下とが抑制される。   Further, since the sub-radiator 5 and the condenser 7 are arranged up and down on the same plane and the radiator 11 is arranged between the tanks 25 and 29 of the sub-radiator 5, unlike the conventional example, it is arranged upstream of the cooling air. The sub-radiator 5 can be improved in heat exchange efficiency only by making the width of the core 21 wide, and the core 23 of the radiator 11 is not behind the tanks 25 and 29. Decrease is suppressed.

従って、熱交換効率を改善するためにラジエータ11を大型にする必要がなくなるから、冷却システム1の大型化と、配置スペースとレイアウトに対する制約の増大、車載性の低下などが避けられる。   Therefore, since it is not necessary to increase the size of the radiator 11 in order to improve the heat exchange efficiency, it is possible to avoid an increase in the size of the cooling system 1, an increase in restrictions on the arrangement space and layout, and a reduction in on-vehicle performance.

また、電動ファン65の大型化と消費電力の増加も回避され、車載バッテリーの負担増加が避けられる。   In addition, an increase in the size of the electric fan 65 and an increase in power consumption can be avoided, and an increase in the burden on the in-vehicle battery can be avoided.

また、サブラジエータ5のタンク29をコア21に対して車両の後方側へオフセットさせたことにより、タンク29の前方への突き出し量がそれだけ少なくなっている上に、後方側のオフセット量Fはラジエータ11を配置する空間Sとして利用されており、冷却システム1は、タンク29のオフセットによって全体の寸法が無駄に増加していないから、エンジン前方の狭いスペースに配置することができる。   Further, by offsetting the tank 29 of the sub-radiator 5 toward the rear side of the vehicle with respect to the core 21, the forward protrusion amount of the tank 29 is reduced accordingly, and the offset amount F on the rear side is reduced by the radiator. 11, the cooling system 1 can be arranged in a narrow space in front of the engine because the overall dimensions of the cooling system 1 are not increased unnecessarily due to the offset of the tank 29.

また、サブラジエータ5のタンク29に車室空調冷媒用の水冷コンデンサ37を内蔵させたことにより、コンプレッサで圧縮されたガス冷媒は水冷コンデンサ37で水冷(1次冷却)されてからコンデンサ7で空冷(2次冷却)されるので、車室空調系の性能が向上する。   Further, since the water cooling condenser 37 for the passenger compartment air conditioning refrigerant is built in the tank 29 of the sub-radiator 5, the gas refrigerant compressed by the compressor is cooled by the water cooling condenser 37 (primary cooling) and then cooled by the condenser 7. Since (secondary cooling) is performed, the performance of the passenger compartment air conditioning system is improved.

また、水冷コンデンサ37を設けたことによってサブラジエータ5のタンク29がサイズアップしても、上記のように、サブラジエータ5のコア21とタンク25,29によって形成された空間Sをラジエータ11の配置スペースとして利用する冷却システム1では、その影響は極めて小さい。   Even if the tank 29 of the sub-radiator 5 is increased in size by providing the water-cooled condenser 37, the space S formed by the core 21 and the tanks 25 and 29 of the sub-radiator 5 is disposed in the radiator 11 as described above. In the cooling system 1 used as a space, the influence is extremely small.

また、冷却システム1は、冷却風を最も効率的に利用するためにエンジン9の前部に設置されているが、サブラジエータ5とコンデンサ7とラジエータ11と水冷コンデンサ37の各配管39,41,43,45,47,49,51,53を車両の後方から取り付けたことにより、配管類を車両の前面や側面に接続した場合に必要になる取り回し用の配管と継ぎ手とスペースなどが不要になってコストアップが防止されると共に、冷却システム1を配置するための必要スペースが保全される。   The cooling system 1 is installed at the front part of the engine 9 in order to use the cooling air most efficiently. However, the piping 39, 41, sub-radiator 5, condenser 7, radiator 11, and water-cooled condenser 37 are connected to each other. By attaching 43, 45, 47, 49, 51, 53 from the rear of the vehicle, the piping, joints, space, etc. required for routing when piping is connected to the front or side of the vehicle are no longer required. Thus, the cost is prevented and the necessary space for arranging the cooling system 1 is maintained.

<第実施例>
図8〜図10を参照しながら冷却システム101(第実施例)の説明をする。図8はサブラジエータ5とコンデンサ7とラジエータ103のレイアウトを示す冷却システム101の斜視図、図9は冷却システム101の上面図、図10は冷却システム101を車両の後方から見た図面である。以下、冷却システム1(参考例)と同一の機能部及び機能部材には同一の符号を付して説明し、重複する説明文は省略するが、必要に応じて参考例の説明文と図面とを参照するものとする。
<First embodiment>
The cooling system 101 ( first embodiment) will be described with reference to FIGS. 8 is a perspective view of the cooling system 101 showing the layout of the sub-radiator 5, the condenser 7, and the radiator 103. FIG. 9 is a top view of the cooling system 101. FIG. 10 is a view of the cooling system 101 as viewed from the rear of the vehicle. Hereinafter, the cooling system 1 (reference example) and the same functional unit and the functional member and are denoted by the same reference numerals, description thereof is omitted is, the description and drawings of the reference example as required Shall be referred to.

冷却システム101では、ラジエータ103(第3空冷熱交換器)は、扁平チューブ105(流路部材)と放熱フィン19とを交互に積層したコア107を介して冷却水タンク109,111を連結して構成されており、図9のように、コア107の冷却風と直角方向の幅W3を、サブラジエータ5のコア21の幅W1より狭くしてある。   In the cooling system 101, the radiator 103 (third air cooling heat exchanger) connects the cooling water tanks 109 and 111 via the core 107 in which the flat tubes 105 (flow path members) and the radiation fins 19 are alternately stacked. As shown in FIG. 9, the width W3 of the core 107 in the direction perpendicular to the cooling air is narrower than the width W1 of the core 21 of the sub radiator 5.

また、ラジエータ103のタンク109,111の一部は、サブラジエータ5の冷却風の下流側コア面33と、コア面33に対して冷却風の下流側に突き出しているタンク25,29の側面34,35とで形成された空間Sの内側に配置されている。   Further, a part of the tanks 109 and 111 of the radiator 103 includes a downstream core surface 33 of the cooling air of the sub radiator 5 and side surfaces 34 of the tanks 25 and 29 protruding to the downstream side of the cooling air with respect to the core surface 33. , 35 and the space S formed inside.

また、図9のように、ラジエータ103のタンク109は断面を3角形に形成することにより、サブラジエータ5のタンク25との間隔が幅方向の外側に沿って広くなる斜面部113(辺部)と、凸部115(頂部)とを設け、凸部115を、タンク25の内側に配置し、斜面部113とタンク25とを冷却風の方向にオーバーラップさせている。   Further, as shown in FIG. 9, the tank 109 of the radiator 103 is formed in a triangular cross section so that the inclined portion 113 (side portion) where the space between the sub radiator 5 and the tank 25 becomes wider along the outer side in the width direction. And the convex part 115 (top part) is provided, the convex part 115 is arrange | positioned inside the tank 25, and the slope part 113 and the tank 25 are made to overlap in the direction of cooling air.

また、図10のように、斜面部113はタンク25の配管39との干渉を避けるために、タンク109の上部に部分的に設けられている。   Further, as shown in FIG. 10, the slope portion 113 is partially provided on the upper portion of the tank 109 in order to avoid interference with the pipe 39 of the tank 25.

次に、冷却システム101の効果を説明する。   Next, the effect of the cooling system 101 will be described.

ラジエータ103は、コア107の幅W3をサブラジエータ5のコア21の幅W1より狭くし、コア107とタンク109,111の一部をサブラジエータ5の下流側に形成された空間Sの内側に配置し、さらに、タンク109の斜面部113とタンク25とを冷却風の方向にオーバーラップさせたことによって、コア21,107の間隔G2を冷却システム1での間隔G1よりさらに狭くすることが可能になり、従って、冷却システム101は、さらに薄くコンパクトに構成され、車載性がそれだけ向上している。   In the radiator 103, the width W3 of the core 107 is made narrower than the width W1 of the core 21 of the sub-radiator 5, and a part of the core 107 and the tanks 109 and 111 are arranged inside a space S formed on the downstream side of the sub-radiator 5. Furthermore, the gap G2 between the cores 21 and 107 can be made narrower than the gap G1 in the cooling system 1 by overlapping the inclined surface 113 of the tank 109 and the tank 25 in the direction of the cooling air. Therefore, the cooling system 101 is configured to be thinner and more compact, and the in-vehicle performance is improved accordingly.

また、斜面部113とサブラジエータ5のタンク25とをオーバーラップさせたことによって、ラジエータ103はタンク109とタンク25との干渉を避けながら、コア107の幅を広くすることが可能になり、その結果、冷却風の通過量が増加し、熱交換効率がそれだけ向上している。   Further, by overlapping the slope 113 and the tank 25 of the sub-radiator 5, the radiator 103 can increase the width of the core 107 while avoiding interference between the tank 109 and the tank 25. As a result, the passing amount of the cooling air is increased and the heat exchange efficiency is improved accordingly.

以上に加えて、冷却システム101は、互いに共通の構成において、冷却システム1と同等の効果が得られる。   In addition to the above, the cooling system 101 can obtain the same effect as the cooling system 1 in a common configuration.

[本発明の範囲に含まれる他の態様]
なお、本発明は上述した実施形態だけに限定解釈されるものではなく、本発明の技術的な範囲内で様々な変更が可能である。
[Other Embodiments Included within the Scope of the Present Invention]
Note that the present invention is not limited to the above-described embodiments, and various modifications can be made within the technical scope of the present invention.

冷却システム1の概略図である。1 is a schematic view of a cooling system 1. FIG. サブラジエータ5とコンデンサ7とラジエータ11のレイアウトを示す冷却システム1の斜視図である。1 is a perspective view of a cooling system 1 showing a layout of a sub radiator 5, a capacitor 7, and a radiator 11. FIG. サブラジエータ5の斜視図である。2 is a perspective view of a sub radiator 5. FIG. サブラジエータ5のタンク29に組み込まれた水冷コンデンサ37を示す断面図である。4 is a cross-sectional view showing a water-cooled condenser 37 incorporated in a tank 29 of the sub-radiator 5. FIG. 水冷コンデンサ37の側面図である。3 is a side view of a water-cooled condenser 37. FIG. 冷却システム1の上面図である。2 is a top view of the cooling system 1. FIG. 冷却システム1を車両の後方から見た図面である。It is drawing which looked at the cooling system 1 from the back of a vehicle. サブラジエータ5とコンデンサ7とラジエータ103のレイアウトを示す冷却システム101の斜視図である。1 is a perspective view of a cooling system 101 showing a layout of a sub radiator 5, a capacitor 7, and a radiator 103. FIG. 冷却システム101の上面図である。2 is a top view of the cooling system 101. FIG. 冷却システム101を車両の後方から見た図面である。It is drawing which looked at the cooling system 101 from the back of a vehicle. 従来例の冷却装置を示す上面図である。It is a top view which shows the cooling device of a prior art example.

符号の説明Explanation of symbols

1 冷却システム
3 駆動モータ(エンジン以外の発熱体)
5 サブラジエータ(第1空冷熱交換器)
7 コンデンサ(第2空冷熱交換器)
9 エンジン
11 ラジエータ(第3空冷熱交換器)
13,15 扁平チューブ(流路部材)
17,19 放熱フィン
21,23 コア
25,27,29,31 冷却水のタンク
33 サブラジエータ5の冷却風下流側のコア面
34,35 冷却風の下流側に突き出しているタンク25,29の側面
37 水冷コンデンサ(水冷熱交換器)
F オフセット量
G1 コア21,23の間隔
S サブラジエータ5の下流側に形成された空間
W1 サブラジエータ5のコア21の幅
W2 ラジエータ11のコア23の幅
101 冷却システム
103 ラジエータ(第3空冷熱交換器)
105 扁平チューブ(流路部材)
107 コア
109,111 冷却水のタンク
113 タンク109の斜面部
115 タンク109の凸部
G2 コア21,107の間隔
W3 ラジエータ103のコア107の幅
1 Cooling system 3 Drive motor (heating element other than engine)
5 Sub-radiator (first air-cooled heat exchanger)
7 Condenser (second air-cooled heat exchanger)
9 Engine 11 Radiator (3rd air cooling heat exchanger)
13, 15 Flat tube (channel member)
17, 19 Radiating fins 21, 23 Cores 25, 27, 29, 31 Cooling water tank 33 Core surface 34, 35 on the downstream side of the cooling air of the sub radiator 5 34, 35 Side surfaces of the tanks 25, 29 protruding downstream of the cooling air 37 Water-cooled condenser (water-cooled heat exchanger)
F Offset amount G1 Spacing between cores 21 and 23 Space W1 formed downstream of sub-radiator 5 Width W2 of core 21 of sub-radiator 5 Width 101 of core 23 of radiator 11 Cooling system 103 Radiator (third air-cooling heat exchange) vessel)
105 Flat tube (channel member)
107 Core 109, 111 Cooling water tank 113 Slope 115 of tank 109 Convex part G2 of tank 109 W3 Distance between cores 21, 107 W3 Width of core 107 of radiator 103

Claims (4)

自動車のエンジン(9)以外の発熱体(3)を冷却する第1の冷却水を冷却する第1空冷熱交換器(5)と、車室空調用の冷媒を冷却する第2空冷熱交換器(7)と、前記エンジン(9)を冷却する第2の冷却水を冷却する第3空冷熱交換器(103)とを備えた冷却システム(101)において、
前記第1空冷熱交換器(5)及び第3空冷熱交換器(103)は、各冷却水の流路となる流路部材(105)と放熱フィン(17,19)とを交互に積層してなるコア(21,107)と、前記流路部材(105)を介して連通する一対の冷却水タンク(25,29,109,111)とを有し、
前記第3空冷熱交換器(103)のコア(107)は、冷却風と直角方向の幅(W3)が、前記第1空冷熱交換器(5)のコア(21)の幅(W1)より狭く、
前記第1空冷熱交換器(5)の冷却風の下流側コア面(33)と、このコア面(33)に対して冷却風の下流側に突き出している前記タンク(25,29)の側面(34,35)とで形成された空間(S)内に、前記第3空冷熱交換器(103)の少なくとも一方のタンク(111)の一部が配置され
前記第3空冷熱交換器(103)は、タンクの少なくとも一方(109)に、前記第1空冷熱交換器(5)のタンク(25)との間隔が幅方向の外側に沿って広くなる斜面部(113)と、凸部(115)とを設け、
前記凸部(115)を、前記第1空冷熱交換器(5)のタンク(25,29)の間に配置し、前記斜面部(113)と第1空冷熱交換器(5)の前記タンク(25)とを冷却風の方向にオーバーラップさせたことを特徴とする冷却システム(101)。
A first air cooling heat exchanger (5) for cooling a first cooling water for cooling a heating element (3) other than the engine (9) of the automobile, and a second air cooling heat exchanger for cooling a refrigerant for vehicle compartment air conditioning (7) and a cooling system ( 101) comprising a third air-cooling heat exchanger ( 103) for cooling the second cooling water for cooling the engine (9),
The first air-cooled heat exchanger (5) and the third air-cooled heat exchanger (1 03) includes a radiation fin (17, 19) and alternately flow path member comprising a flow path for the cooling water (1 05) A laminated core (21 , 1007) and a pair of cooling water tanks (25 , 29 , 1009 , 111) communicating via the flow path member ( 105);
The core (10 07) of the third air-cooled heat exchanger ( 103) has a width (W3 ) in a direction perpendicular to the cooling air, which is the width of the core (21) of the first air-cooled heat exchanger (5) ( W1) Narrower,
Downstream core surface (33) of the cooling air of the first air-cooling heat exchanger (5) and side surfaces of the tank (25, 29) projecting downstream of the cooling air with respect to the core surface (33). A part of at least one tank ( 111) of the third air-cooled heat exchanger ( 103) is disposed in a space (S) formed by (34, 35) ,
The third air-cooled heat exchanger (103) has an inclined surface in which at least one of the tanks (109) is spaced apart from the tank (25) of the first air-cooled heat exchanger (5) along the outside in the width direction. A portion (113) and a convex portion (115),
The convex portion (115) is disposed between the tanks (25, 29) of the first air-cooling heat exchanger (5), and the inclined portion (113) and the tank of the first air-cooling heat exchanger (5). A cooling system (101) characterized in that (25) is overlapped in the direction of the cooling air.
請求項1に記載された冷却システム(101)であって、
エンジン(9)の前方に配置され、
前記第1空冷熱交換器(5)の少なくとも一方のタンク(29)が、コア(21)に対し車両の後方側にオフセットされていることを特徴とする冷却システム(101)。
A cooling system ( 101) according to claim 1, comprising:
Placed in front of the engine (9),
The first air-cooled heat exchanger at least one tank (5) (29), the cooling system (1 01), characterized in that to the core (21) is offset to the rear side of the vehicle.
請求項1または請求項2に記載された冷却システム(101)であって、
車室空調用の前記冷媒を冷却する水冷熱交換器(37)が、前記第1空冷熱交換器(5)のタンク(29)内に配置され、前記第1の冷却水によって冷却されることを特徴とする冷却システム(101)。
A cooling system ( 101) according to claim 1 or claim 2, comprising:
A water-cooled heat exchanger (37) for cooling the refrigerant for passenger compartment air conditioning is disposed in the tank (29) of the first air-cooled heat exchanger (5) and is cooled by the first cooling water. A cooling system ( 101) characterized by the following.
請求項1〜請求項3のいずれかに記載された冷却システム(101)であって、
前記第1空冷熱交換器(5)と前記第2空冷熱交換器(7)と前記第3空冷熱交換器(103)と前記水冷熱交換器(37)において、それぞれの流体用配管(39,41,43,45,47,49,51,53)が、車両の後方向から接続されていることを特徴とする冷却システム(101)。
A cooling system ( 101) according to any of claims 1-3,
In the first air-cooled heat exchanger (5), the second air-cooled heat exchanger (7), the third air-cooled heat exchanger ( 103), and the water-cooled heat exchanger (37), respective fluid pipes ( 39,41,43,45,47,49,51,53) is, the cooling system (1 01, characterized in that it is connected in the direction of a vehicle rear).
JP2008298549A 2008-11-21 2008-11-21 Cooling system Expired - Fee Related JP5184314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298549A JP5184314B2 (en) 2008-11-21 2008-11-21 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298549A JP5184314B2 (en) 2008-11-21 2008-11-21 Cooling system

Publications (2)

Publication Number Publication Date
JP2010121604A JP2010121604A (en) 2010-06-03
JP5184314B2 true JP5184314B2 (en) 2013-04-17

Family

ID=42323138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298549A Expired - Fee Related JP5184314B2 (en) 2008-11-21 2008-11-21 Cooling system

Country Status (1)

Country Link
JP (1) JP5184314B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422679B1 (en) 2010-12-28 2014-07-23 한라비스테온공조 주식회사 Cooling System for Electric Vehicle
US20120297820A1 (en) 2011-05-27 2012-11-29 Akira Masuda Combined heat exchanger system
JP5668610B2 (en) 2011-06-10 2015-02-12 カルソニックカンセイ株式会社 Water-cooled condenser
JP5772848B2 (en) * 2013-03-06 2015-09-02 カルソニックカンセイ株式会社 Combined heat exchanger
JP5713040B2 (en) * 2013-03-06 2015-05-07 カルソニックカンセイ株式会社 Combined heat exchanger
JP5700717B2 (en) * 2013-06-17 2015-04-15 カルソニックカンセイ株式会社 Cooling system
KR102205848B1 (en) * 2013-12-31 2021-01-21 한온시스템 주식회사 Cooling module and Cooling System for Vehicles
KR102092568B1 (en) * 2014-07-31 2020-03-25 한온시스템 주식회사 Air conditioner system for vehicle
KR102543060B1 (en) * 2015-02-24 2023-06-14 한온시스템 주식회사 Cooling module
KR102403512B1 (en) 2015-04-30 2022-05-31 삼성전자주식회사 Outdoor unit of air conditioner, control device applying the same
KR102194634B1 (en) * 2015-09-24 2020-12-24 한온시스템 주식회사 Cooling module and Cooling System for Vehicles
US11021037B2 (en) 2017-11-07 2021-06-01 Hanon Systems Thermal management system
KR102470421B1 (en) * 2017-11-07 2022-11-25 한온시스템 주식회사 thermal management system
CN115366659B (en) * 2021-05-17 2024-10-25 本田技研工业株式会社 Heat exchange device for vehicle
WO2023204487A1 (en) * 2022-04-20 2023-10-26 한온시스템 주식회사 Heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137147A (en) * 1992-10-26 1994-05-17 Nippondenso Co Ltd Cooling device for water cooling type internal combustion engine for vehicle
JPH1077851A (en) * 1996-08-30 1998-03-24 Suzuki Motor Corp Intake air cooling structure of engine
JP4078766B2 (en) * 1999-08-20 2008-04-23 株式会社デンソー Heat exchanger
JP4474780B2 (en) * 2001-03-14 2010-06-09 株式会社デンソー Hybrid electric vehicle cooling system
JP2004162944A (en) * 2002-11-11 2004-06-10 Hitachi Constr Mach Co Ltd Air-cooled type heat exchanger
JP4175918B2 (en) * 2003-02-28 2008-11-05 カルソニックカンセイ株式会社 Multi-type heat exchanger for vehicles
JP2005343221A (en) * 2004-05-31 2005-12-15 Calsonic Kansei Corp Cooling device structure of vehicle
WO2008072730A1 (en) * 2006-12-14 2008-06-19 Calsonic Kansei Corporation Compound heat exchanger and heat exchanger

Also Published As

Publication number Publication date
JP2010121604A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5184314B2 (en) Cooling system
WO2010061808A1 (en) Compound heat exchange unit
JP5668610B2 (en) Water-cooled condenser
KR101405234B1 (en) Radiator for vehicle
US9669681B2 (en) Vehicle heat exchanger
JP2008080995A (en) Cooling system
JP2005035476A (en) Vehicle cooling system
JP5486837B2 (en) Evaporator with cool storage function
JP2007232287A (en) Heat exchanger and integral type heat exchanger
WO2008072730A1 (en) Compound heat exchanger and heat exchanger
JP2019081509A (en) Vehicle cooling structure
JP2008170140A (en) Heat exchanger for vehicle
JP6296439B2 (en) Vehicle radiator
JP2012247120A (en) Combined heat exchanger system
JP2016147559A (en) Automobile
WO2020162096A1 (en) Heat exchanger
WO2020170651A1 (en) Compound heat exchanger
JP2018105535A (en) Intercooler
JP5772848B2 (en) Combined heat exchanger
JP2014126315A (en) Compound heat exchanger
JP2004338644A (en) Heat exchange device for vehicle
JP2015113747A (en) Cooling device for fan motor for heat exchanger
JP2012245866A (en) Combined heat exchanger system
JP2009074759A (en) Heat exchanger for vehicle
JP2012245865A (en) Composite heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees