[go: up one dir, main page]

JP5183649B2 - Forced cooling method for once-through boiler - Google Patents

Forced cooling method for once-through boiler Download PDF

Info

Publication number
JP5183649B2
JP5183649B2 JP2010016598A JP2010016598A JP5183649B2 JP 5183649 B2 JP5183649 B2 JP 5183649B2 JP 2010016598 A JP2010016598 A JP 2010016598A JP 2010016598 A JP2010016598 A JP 2010016598A JP 5183649 B2 JP5183649 B2 JP 5183649B2
Authority
JP
Japan
Prior art keywords
boiler
water
flow rate
forced cooling
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010016598A
Other languages
Japanese (ja)
Other versions
JP2011153786A (en
Inventor
尚志 福角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010016598A priority Critical patent/JP5183649B2/en
Publication of JP2011153786A publication Critical patent/JP2011153786A/en
Application granted granted Critical
Publication of JP5183649B2 publication Critical patent/JP5183649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、火力発電設備におけるボイラの強制冷却方法に関する。   The present invention relates to a method for forcibly cooling a boiler in a thermal power generation facility.

火力発電設備においては、ボイラにより給水を加熱・過熱し、過熱蒸気を蒸気タービンに送り込むことによって蒸気タービンに仕事をさせ、発電を行っている。ここで、火力発電設備は、消費電力量に応じて低負荷運転や運転の休止を行うことがあり、また、定期点検等を行うために、一定期間ごとに運転を休止することがある。このような、火力発電設備の運転休止時においては、ボイラ内への化石燃料の供給を停止して消火し、次いで送風、及び水管への給水の供給によりボイラを強制冷却する。ボイラの強制冷却を行う際には、過熱された設備への損傷を防止するため、温度降下率を一定以下に保つことが必要とされる。   In a thermal power generation facility, feed water is heated and superheated by a boiler, and superheated steam is sent to the steam turbine to cause the steam turbine to work to generate power. Here, the thermal power generation facility may perform low-load operation or suspension of operation according to the amount of power consumption, and may suspend operation at regular intervals in order to perform periodic inspections or the like. When the thermal power generation facility is shut down, the supply of fossil fuel into the boiler is stopped and the fire is extinguished, and then the boiler is forcibly cooled by blowing air and supplying water to the water pipe. When performing forced cooling of the boiler, it is necessary to keep the temperature drop rate below a certain level in order to prevent damage to the overheated equipment.

ところで、火力発電設備において用いられるボイラとしては、貫流ボイラ、及び循環ボイラ等が知られているが、近年最もよく用いられているボイラは貫流ボイラである。貫流ボイラはボイラ内に備えられる水管の一端から給水を供給し、給水を予熱し、蒸発させ、次いで過熱して、他端から過熱蒸気を排出する構造を有するボイラである。貫流ボイラは、ボイラ内に汽水分離を行うための蒸気ドラムを有していないため、一次過熱器に到達した余剰の給水を、蒸気タービン等を経由せずに、フラッシュタンク、次いで復水器に流通させるための起動バイパス経路を備えている。   By the way, as a boiler used in a thermal power generation facility, a once-through boiler, a circulation boiler, and the like are known, but the boiler most frequently used in recent years is a once-through boiler. The once-through boiler is a boiler having a structure in which feed water is supplied from one end of a water pipe provided in the boiler, the feed water is preheated, evaporated, then superheated, and superheated steam is discharged from the other end. Since the once-through boiler does not have a steam drum for performing brackish water separation in the boiler, surplus water that has reached the primary superheater is transferred to the flash tank and then to the condenser without passing through the steam turbine. A startup bypass path is provided for distribution.

上述したボイラの強制冷却に関しては、ボイラの種類によって、その方法は異なるものである。例えば、再循環形ボイラの強制冷却方法としては、特許文献1に、再循環形ボイラのボイラ強制冷却時、ボイラの火炉パス出口温度を検出し、該火炉パス出口温度からボイラ再循環流路のQ弁の開度をプログラム設定して再循環流量を制御すると共に、前記火炉パス出口温度が設定した温度下降率となるように前記Q弁の開度を調整することを特徴とするボイラ強制冷却制御方法が開示されている。   Regarding the forced cooling of the boiler described above, the method differs depending on the type of boiler. For example, as a forced cooling method for a recirculating boiler, Patent Document 1 discloses that a boiler path outlet temperature of a boiler is detected at the time of boiler forced cooling of the recirculating boiler, and the boiler recirculation flow path is determined from the furnace path outlet temperature. Boiler forced cooling, wherein the opening of the Q valve is set to control the recirculation flow rate, and the opening of the Q valve is adjusted so that the furnace path outlet temperature has a set temperature decrease rate A control method is disclosed.

特許文献1に記載のボイラ強制冷却制御方法によれば、火炉パス出口温度が設定した温度下降率になるようにQ弁の開度を調整して再循環流量を制御するようにしているので、ボイラの強制冷却を、安定させて安全性を保持しつつ、最短時間内において効率的に行うことができる優れた効果を奏しうるものとされる。   According to the boiler forced cooling control method described in Patent Document 1, the recirculation flow rate is controlled by adjusting the opening of the Q valve so that the furnace path outlet temperature becomes the set temperature decrease rate. The boiler can be effectively cooled in the shortest time while the forced cooling of the boiler is stabilized and the safety can be maintained.

特公平8−006981号公報Japanese Patent Publication No. 8-006981

しかしながら、特許文献1に記載の発明は、再循環流量と給水流量を制御することにより、ボイラの強制冷却の制御を行うものであり、そもそも給水の再循環を行わない貫流型ボイラに対しては適用できるものではない。また、特許文献1に記載の発明は、ボイラの温度下降率が一定以下となるように再循環流量と給水流量の制御を行っているものの、具体的に給水流量をどのような値に制御するかについては実施可能な程度に開示されておらず、このような点において、更なる検討が必要となるものである。   However, the invention described in Patent Document 1 controls the forced cooling of the boiler by controlling the recirculation flow rate and the feed water flow rate. For the once-through boiler that does not recirculate the feed water in the first place. It is not applicable. Moreover, although the invention described in Patent Document 1 controls the recirculation flow rate and the feed water flow rate so that the temperature decrease rate of the boiler is below a certain level, the feed water flow rate is specifically controlled to any value. This is not disclosed to the extent that it can be implemented, and further consideration is required in this respect.

本発明は、以上のような課題に鑑みてなされたものであり、貫流ボイラにおいて実施されるボイラの強制冷却方法であって、ボイラの温度降下率が一定以下となるように制御された強制冷却方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a forced cooling method for a boiler implemented in a once-through boiler, in which the temperature drop rate of the boiler is controlled to be a certain level or less. It aims to provide a method.

本発明者らは、火力発電設備に備えられるボイラにおいて、空冷、及び水冷によりボイラを強制冷却する際に、水管内に流通させる給水の流量を、所定の値に変動させることにより、安定してボイラを強制冷却できることを見出し、本発明を完成するに至った。   In the boiler provided in the thermal power generation facility, when the boiler is forcibly cooled by air cooling and water cooling, the flow rate of the feed water circulated in the water pipe is changed to a predetermined value, thereby stably. The present inventors have found that the boiler can be forcibly cooled and have completed the present invention.

具体的には、本発明は以下のものを目的とする。   Specifically, the present invention has the following objects.

(1) 化石燃料を燃焼させ燃焼熱を発生させるボイラと、前記ボイラ内に設けられ、給水を流通させて加熱するための節炭器と、前記ボイラ内に設けられ、前記節炭器を流通させた給水を流通させて加熱するためのボイラ水壁と、前記ボイラ内に設けられ、前記ボイラ水壁を流通させた給水を過熱して蒸気を発生させるための一次過熱器と、海水により蒸気を冷却して復水を生成するための復水器と、前記一次過熱器から前記復水器へ給水を流通させるための起動バイパス経路と、前記復水器から前記節炭器へ復水・給水を流通させるための、復水・給水管と、前記ボイラに燃焼を補助するための空気を供給する空気供給ファンと、を備える火力発電設備において、前記ボイラの消火後に行われるボイラの強制冷却方法であって、前記空気供給ファンを作動させて、継続的に一定量の空気を供給すると共に、前記ボイラの温度が180℃以上となる条件では、第一の流量の給水を前記節炭器、前記ボイラ水壁、及び前記一次過熱器、並びに前記起動バイパス経路、及び前記復水・給水管に流通させ、前記ボイラの温度が180℃未満となる条件では、第一の流量よりも小さい第二の流量の給水を前記節炭器、前記ボイラ水壁、及び前記一次過熱器、並びに前記起動バイパス経路、及び前記復水・給水管に流通させる、ボイラの強制冷却方法。   (1) A boiler that burns fossil fuel to generate combustion heat, a economizer that is provided in the boiler and circulates water for heating, and is provided in the boiler and circulates through the economizer A boiler water wall for circulating the heated feed water and heating it, a primary superheater provided in the boiler for overheating the feed water flowing through the boiler water wall to generate steam, and steam generated by seawater A condenser for generating condensate by cooling, a start-up bypass path for distributing feed water from the primary superheater to the condenser, and condensing from the condenser to the economizer In a thermal power generation facility comprising a condensate / water supply pipe for circulating water supply and an air supply fan for supplying air for assisting combustion to the boiler, forced cooling of the boiler performed after extinguishing the boiler A method wherein the air Under the condition that the supply fan is operated to supply a constant amount of air continuously and the boiler temperature is 180 ° C. or higher, the first flow rate of water is supplied to the economizer, the boiler water wall, and In a condition where the primary superheater, the startup bypass path, and the condensate / feed water pipe are circulated and the boiler temperature is less than 180 ° C., the second flow rate of water smaller than the first flow rate is A forced boiler cooling method for circulating through a economizer, the boiler water wall, the primary superheater, the startup bypass path, and the condensate / water supply pipe.

ここで、第一の流量は、例えば150T/H以上250T/H以下であり、第二の流量は、例えば130T/Hである。   Here, the first flow rate is, for example, 150 T / H or more and 250 T / H or less, and the second flow rate is, for example, 130 T / H.

(1)に記載の発明は、特に貫流ボイラにおける強制冷却方法に関するものである。貫流ボイラにおいては、水管の損傷を防ぐために、ボイラの消火後においても節炭器、ボイラ水壁、及び一次過熱器に給水を流通させなくてはならない。一方、一次過熱器で発生した蒸気を過熱するための二次過熱器や、二次過熱器で発生した蒸気の圧力により回転する蒸気タービンにおいては、蒸気のみを流通させる構造となっており、給水の流入を防ぐ必要がある。ボイラを消火した状態で、節炭器、ボイラ水壁、及び一次過熱器に給水を流通させ、更に二次過熱器、及び蒸気タービンへの給水の流入を防止するためには、一次過熱器から汽水分離を行うためのフラッシュタンクに、更に復水器へといたる起動バイパス経路に給水を流通させる必要がある。   The invention described in (1) particularly relates to a forced cooling method in a once-through boiler. In the once-through boiler, in order to prevent damage to the water pipe, the water supply must be circulated through the economizer, boiler water wall, and primary superheater even after the boiler is extinguished. On the other hand, in the secondary superheater for superheating the steam generated in the primary superheater and the steam turbine rotating by the pressure of the steam generated in the secondary superheater, only steam is circulated. It is necessary to prevent inflow. In order to prevent the inflow of feed water to the economizer, boiler water wall, and primary superheater and to prevent the inflow of feedwater to the secondary superheater and steam turbine with the boiler extinguished, from the primary superheater It is necessary to distribute the water supply to the start-up bypass route leading to the condenser and the flash tank for performing brackish water separation.

即ち、(1)に記載の発明は、ボイラの消火後において、各種熱交換器、及び起動バイパス経路に循環させる給水を利用してボイラを強制冷却するものである。これによれば、ボイラの強制冷却方法を実施するにあたって既存の設備を用いることができ、更に、給水の循環にあたっては、通常運転時や低負荷運転時に行われる制御機構を利用して循環量を制御することができるため、設備投資のコストを低減させることができる。加えて、ボイラの水冷と同時に行われるボイラの空冷は、ボイラに通常設けられている空気供給ファンを用いるため、この点においても設備投資のコストを低減させることができる。   That is, in the invention described in (1), after the boiler is extinguished, the boiler is forcibly cooled using various heat exchangers and feed water circulated to the startup bypass path. According to this, existing equipment can be used to implement the forced cooling method of the boiler, and the circulation rate can be reduced by using a control mechanism that is used during normal operation or low-load operation when supplying water. Since it can be controlled, the cost of capital investment can be reduced. In addition, since the air cooling of the boiler that is performed simultaneously with the water cooling of the boiler uses an air supply fan that is usually provided in the boiler, the cost of capital investment can be reduced also in this respect.

(1)に記載の発明においては、ボイラの温度が180以上となる条件下では、各種熱交換器、起動バイパス経路、及び復水・給水管を流通する給水の流量を第一の流量とし、180℃未満となる条件下では、各種熱交換器、起動バイパス経路、及び復水・給水管を流通する給水の流量を第一の流量よりも小さい、第二の流量とする。ボイラの強制冷却を行う際、温度が低下した条件下では、この時期に各種熱交換器を流通させる給水の流量を低減させることにより、給水系統の各種調整弁への負担を増加させることなくボイラを冷却することができる。   In the invention described in (1), under conditions where the boiler temperature is 180 or more, the flow rate of the feed water flowing through the various heat exchangers, the startup bypass path, and the condensate / feed water pipe is set as the first flow rate, Under the condition of less than 180 ° C., the flow rate of the feed water flowing through the various heat exchangers, the startup bypass path, and the condensate / feed water pipe is set to a second flow rate smaller than the first flow rate. When the boiler is forcibly cooled, under conditions where the temperature drops, reducing the flow rate of the feed water that circulates the various heat exchangers at this time reduces the boiler load without increasing the burden on the various regulating valves of the feed water system. Can be cooled.

(2) 前記ボイラの温度が180℃以上となる条件において、前記第一の流量を段階的に増加させる、(1)に記載のボイラの強制冷却方法。   (2) The forced cooling method for a boiler according to (1), wherein the first flow rate is increased stepwise under a condition where the temperature of the boiler is 180 ° C. or higher.

ボイラの温度の低下に伴い、各種熱交換器内部に大量の給水を流通させた場合、ボイラの温度の降下率が急激に増大する危険性がある。このような場合、ボイラに備えられる水管に、局部的な温度差による歪が生じ、水管を損傷する事態にもなりかねない。第一の流量を段階的に増加させることにより、ボイラの温度降下率の急激な変動を防ぐことができ、ボイラの強制冷却を安全に実施することができる。   When a large amount of feed water is circulated inside various heat exchangers with a decrease in the temperature of the boiler, there is a risk that the rate of decrease in the temperature of the boiler increases rapidly. In such a case, the water pipe provided in the boiler is distorted due to a local temperature difference, which may damage the water pipe. By increasing the first flow rate stepwise, it is possible to prevent a rapid fluctuation in the temperature drop rate of the boiler and to safely perform forced cooling of the boiler.

(3) 前記ボイラの温度が180℃以上となる条件において、給水を流通させる水圧を第一の水圧とし、前記ボイラの温度が180℃未満となる条件において、給水を流通させる水圧を第一の水圧よりも小さい第二の水圧とする、(1)又は(2)に記載のボイラの強制冷却方法。   (3) Under the condition that the boiler temperature is 180 ° C. or higher, the water pressure for supplying feed water is the first water pressure, and under the condition for the boiler temperature being less than 180 ° C., the water pressure for supplying feed water is the first water pressure. The forced cooling method for a boiler according to (1) or (2), wherein the second water pressure is smaller than the water pressure.

(4) 前記第一の水圧がボイラ定格圧力であり、前記第二の水圧が3.5MPaである(1)から(3)のいずれかに記載のボイラの強制冷却方法。   (4) The forced cooling method of the boiler according to any one of (1) to (3), wherein the first water pressure is a boiler rated pressure and the second water pressure is 3.5 MPa.

(3)及び(4)に記載の発明は、(1)に記載の発明の具体的な実施方法を規定したものである。このため、(3)及び(4)に記載の発明によれば、(1)に記載の発明と同様の効果を得ることができる。   The inventions described in (3) and (4) define a specific method for carrying out the invention described in (1). For this reason, according to the invention as described in (3) and (4), the effect similar to the invention as described in (1) can be acquired.

なお、(4)に記載の発明において、ボイラ定格圧力とは、通常の火力発電設備においては15Mpa以上25Mpa以下である。   In the invention described in (4), the boiler rated pressure is 15 Mpa or more and 25 Mpa or less in a normal thermal power generation facility.

(5) 前記空気供給ファンにより供給される空気の流量を、空気供給ファンの総出力の40%とする、(1)から(4)のいずれかに記載のボイラの強制冷却方法。   (5) The forced cooling method of the boiler according to any one of (1) to (4), wherein a flow rate of air supplied by the air supply fan is 40% of a total output of the air supply fan.

ボイラを強制冷却する際には、水管内に給水を循環させることによるボイラの水冷に加え、空気供給ファンによるボイラの空冷を行うことが好ましい。(6)に記載の発明は、ボイラの空冷の際、空気供給ファンにより供給される空気の流量を、空気供給ファンの総出力の40%とするものである。これにより、ボイラ内部を効率的に冷却することができると共に、ボイラ内部を空冷しすぎることによる、ボイラ内部の配管等の損傷を未然に防ぐことができる。また、通常用いられる空気供給ファンの出力の面からも、送風される空気の流量を上記流量とすることが好ましい。   When the boiler is forcibly cooled, it is preferable to perform air cooling of the boiler by an air supply fan in addition to water cooling of the boiler by circulating feed water in the water pipe. According to the invention described in (6), the flow rate of the air supplied by the air supply fan during air cooling of the boiler is set to 40% of the total output of the air supply fan. Thereby, while being able to cool the inside of a boiler efficiently, damage to piping etc. inside a boiler by overcooling the inside of a boiler can be prevented beforehand. Further, it is preferable that the flow rate of the air to be blown is the above flow rate also from the aspect of the output of the normally used air supply fan.

なお、通常火力発電設備において用いられる空気供給ファンの総出力は、火力発電設備が定格出力での発電を行うのに必要な燃料を燃焼するのに必要な空気量の1.1倍程度の空気を供給するのに必要な出力である。   Note that the total output of the air supply fan used in a normal thermal power generation facility is about 1.1 times the amount of air necessary for burning the fuel necessary for the thermal power generation facility to generate power at the rated output. Is the output required to supply

本発明は、貫流ボイラにおいて実施することができるボイラの強制冷却方法であり、本発明によれば、給水系統の各種調整弁に負担をかけることなく、安全にボイラを冷却することができる。   The present invention is a forced boiler cooling method that can be carried out in a once-through boiler, and according to the present invention, the boiler can be cooled safely without placing a burden on various regulating valves of the water supply system.

本発明に係る火力発電設備を示す図面である。It is drawing which shows the thermal power generation equipment which concerns on this invention. 本発明に係るボイラの強制冷却方法の概略を示す図面である。It is drawing which shows the outline of the forced cooling method of the boiler which concerns on this invention. 本発明に係るボイラの強制冷却方法の概略を示す図面である。It is drawing which shows the outline of the forced cooling method of the boiler which concerns on this invention.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<火力発電設備>
まず、本実施形態に係るボイラの強制冷却方法について説明する前に、本実施形態に係る火力発電設備について説明する。
<Thermal power generation equipment>
First, before describing the forced cooling method for the boiler according to the present embodiment, the thermal power generation facility according to the present embodiment will be described.

[火力発電設備の構成]
図1に本実施形態に係る火力発電設備を示す。本実施形態に係る火力発電設備は、化石燃料を燃焼させ燃焼熱を発生させるボイラ1と、ボイラ1内に設けられ、給水を流通させて加熱するための節炭器2と、ボイラ1内に設けられ、節炭器2を流通させた給水を流通させて加熱するためのボイラ水壁3と、ボイラ1内に設けられ、ボイラ水壁3を流通させた給水を過熱して蒸気を発生させるための一次過熱器4と、海水により蒸気を冷却して復水を生成するための復水器9と、一次過熱器4から復水器9へ給水を流通させるための起動バイパス経路18と、復水器9から節炭器2へ復水・給水を流通させるための、復水・給水管の一部である復水管12(復水器9から後述する脱気器13に至る経路)と、復水・給水管の一部である給水管16(後述する脱気器13から節炭器2に至る経路)と、ボイラ1に燃焼を補助するための空気を供給する空気供給ファン(図示せず)と、を備える。
[Configuration of thermal power generation facilities]
FIG. 1 shows a thermal power generation facility according to this embodiment. The thermal power generation facility according to the present embodiment includes a boiler 1 that burns fossil fuel to generate combustion heat, a boiler 1 that is provided with a economizer 2 that circulates water and heats it, and a boiler 1. A boiler water wall 3 is provided for circulating and heating the feed water circulated through the economizer 2, and the feed water provided in the boiler 1 and circulated through the boiler water wall 3 is heated to generate steam. A primary superheater 4 for cooling, a condenser 9 for cooling the steam with seawater to generate condensate, and a startup bypass path 18 for distributing feed water from the primary superheater 4 to the condenser 9; A condenser pipe 12 (a path from the condenser 9 to a deaerator 13 to be described later), which is a part of the condenser / feed water pipe, for circulating the condenser / feed water from the condenser 9 to the economizer 2; , A water supply pipe 16 which is a part of the condensate / water supply pipe (the process from the deaerator 13 described later to the economizer 2 Comprising a), an air supply fan for supplying air to support combustion in the boiler 1 (not shown).

また、起動バイパス経路18について、詳細に説明すると、起動バイパス経路18は、二次過熱器5、高圧・中圧タービン6、再熱器7、及び低圧タービン8を経由せずに、給水を一次過熱器4から復水器9に流通させる経路であり、起動バイパス系路上には、通常運転時に起動バイパス経路18への給水の流入を防止するための起動バイパス経路弁17と、汽水分離を行うためのフラッシュタンク(図示せず)と、を備える。   The startup bypass path 18 will be described in detail. The startup bypass path 18 primarily supplies water without passing through the secondary superheater 5, the high-pressure / intermediate-pressure turbine 6, the reheater 7, and the low-pressure turbine 8. This is a path that circulates from the superheater 4 to the condenser 9. On the startup bypass system path, a startup bypass path valve 17 for preventing inflow of water supply to the startup bypass path 18 during normal operation and brackish water separation are performed. A flash tank (not shown).

更に、本実施形態に係る火力発電設備は、一次過熱器4で発生した蒸気を加熱するための二次過熱器5と、二次過熱器5で発生した蒸気の圧力を利用して回転する高圧・中圧タービン6と、高圧・中圧タービン6から排出された蒸気を、ボイラ1で発生する熱により再過熱する再熱器7と、再熱器7で再過熱された蒸気の圧力を利用して回転する低圧タービン8と、復水に混入した空気を除去するための脱気器13と、低圧タービン8から抽気された抽気蒸気と復水との間での熱交換を行う低圧給水加熱器11と、高圧・中圧タービン6から抽気された抽気蒸気と復水との間での熱交換を行う高圧給水加熱器15と、復水を復水管12に送り出すための復水ポンプ10と、給水を給水管16に送り出すための給水ポンプ14と、を備える。   Furthermore, the thermal power generation facility according to the present embodiment has a secondary superheater 5 for heating the steam generated in the primary superheater 4 and a high pressure rotating using the pressure of the steam generated in the secondary superheater 5. Utilizing the intermediate pressure turbine 6, the reheater 7 that reheats the steam discharged from the high pressure / intermediate pressure turbine 6 by the heat generated in the boiler 1, and the pressure of the reheated steam in the reheater 7 The rotating low pressure turbine 8, the deaerator 13 for removing air mixed in the condensate, and the low pressure feed water heating for exchanging heat between the extracted steam extracted from the low pressure turbine 8 and the condensed water A high pressure feed water heater 15 for exchanging heat between the extracted steam extracted from the high pressure / intermediate pressure turbine 6 and the condensate, and a condensate pump 10 for sending the condensate to the condensate pipe 12. And a water supply pump 14 for sending water supply to the water supply pipe 16.

[火力発電設備の動作]
ここで、本実施形態に係る火力発電設備の動作について説明すると、ボイラ1において、石油、石炭等の化石燃料が燃焼して燃焼熱を発生すると、給水は給水ポンプ14により、給水管16からボイラ1内に備えられる節炭器2、ボイラ水壁3、一次過熱器4、二次過熱器5へと順次送られ、燃焼熱によって加熱(過熱)される。一次過熱器4に達した給水は、化石燃料の燃焼熱により沸騰して蒸気となり、これが二次過熱器5に送られ、更に過熱される。過熱された蒸気は、まず高圧・中圧タービン6に送られ、これを高速で回転させる。高圧・中圧タービン6で仕事を終えた蒸気は、一旦、ボイラ1内の再熱器7に戻され、そこで再び過熱されて、低圧タービン8へと送られ、低圧タービン8を高速で回転させる。低圧タービン8で仕事を終えた蒸気は、復水器9に送られて海水により冷却され、復水となる。この復水は、復水ポンプ10により、再度復水管12に送り出され、ボイラ1内の熱交換器に達する。
[Operation of thermal power generation equipment]
Here, the operation of the thermal power generation facility according to the present embodiment will be described. When fossil fuel such as oil and coal is burned in the boiler 1 to generate combustion heat, the feed water is supplied from the feed water pipe 16 by the feed water pump 14. 1 is sequentially sent to a economizer 2, boiler water wall 3, primary superheater 4, and secondary superheater 5, and is heated (superheated) by combustion heat. The feed water that has reached the primary superheater 4 is boiled by the fossil fuel combustion heat to become steam, which is sent to the secondary superheater 5 where it is further heated. The superheated steam is first sent to the high-pressure / intermediate-pressure turbine 6 and rotated at a high speed. The steam that has finished its work in the high-pressure / intermediate-pressure turbine 6 is once returned to the reheater 7 in the boiler 1, where it is superheated again and sent to the low-pressure turbine 8 to rotate the low-pressure turbine 8 at high speed. . The steam that has finished its work in the low-pressure turbine 8 is sent to the condenser 9 and cooled by seawater to become condensate. This condensate is sent again to the condensate pipe 12 by the condensate pump 10 and reaches the heat exchanger in the boiler 1.

ここで、ボイラ1内の水管には、その破損を防止するため、常時、一定以上の水量の給水を循環させる必要がある。これに対し、高圧・中圧タービン6や低圧タービン8等には、必要とされる発電量等に応じて蒸気の流量を調整しなければならない。このため、火力発電設備の起動時や低負荷運転時等においては、ボイラ1内の水管を循環させる給水の流量に対して、高圧・中圧タービン6や低圧タービン8に流通させる蒸気の流量が少なくなる事態が想定される。このような場合、ボイラ1内の水管に送り込まれた余剰の給水は、起動バイパス経路弁17を開弁して起動バイパス経路18により、復水器9等へと送り出される。   Here, in order to prevent the water pipe in the boiler 1 from being damaged, it is necessary to constantly circulate a water supply of a certain amount or more. On the other hand, for the high-pressure / medium-pressure turbine 6 and the low-pressure turbine 8, the flow rate of steam must be adjusted according to the required power generation amount. For this reason, at the time of starting the thermal power generation facility or during low-load operation, the flow rate of steam flowing through the high-pressure / intermediate-pressure turbine 6 or the low-pressure turbine 8 is higher than the flow rate of the feed water circulating through the water pipe in the boiler 1. It is assumed that there will be fewer situations. In such a case, surplus water supplied to the water pipe in the boiler 1 is sent to the condenser 9 or the like by the startup bypass path 18 by opening the startup bypass path valve 17.

これについて更に詳細に説明すると、まず、一次過熱器4に達した余剰の給水は、起動バイパス経路18により、フラッシュタンクに送り込まれる。フラッシュタンク内においては、一次過熱器4よりも圧力が低く設定されており、高温の給水の一部はここで蒸気となり、二次過熱器5へと送られる。フラッシュタンク内で蒸発せずに残った給水は、起動バイパス経路18により、更に復水器9へと送られ、復水と混合される。   This will be described in more detail. First, surplus water that has reached the primary superheater 4 is sent to the flash tank through the startup bypass path 18. In the flash tank, the pressure is set lower than that of the primary superheater 4, and a part of the hot water supply becomes steam here and is sent to the secondary superheater 5. The remaining water that has not evaporated in the flash tank is further sent to the condenser 9 via the startup bypass path 18 and mixed with the condensate.

<ボイラの強制冷却方法>
本実施形態に係るボイラ1の強制冷却方法は、空気供給ファンを作動させて、継続的に一定量の空気を供給すると共に、ボイラ1の温度が180℃以上となる条件では、第一の流量の給水を節炭器2、ボイラ水壁3、及び一次過熱器4、並びに起動バイパス経路18、復水管12、及び給水管16に流通させ、ボイラ1の温度が180℃以下となる条件では、第一の流量よりも小さい第二の流量の給水を節炭器2、ボイラ水壁3、及び一次過熱器4、並びに起動バイパス経路18、復水管12、及び給水管16に流通させるものである。
<Forced boiler cooling method>
In the forced cooling method for the boiler 1 according to the present embodiment, the air supply fan is operated to continuously supply a constant amount of air, and the first flow rate is set under the condition that the temperature of the boiler 1 is 180 ° C. or higher. In the condition where the temperature of the boiler 1 is 180 ° C. or less, the feed water is circulated through the economizer 2, the boiler water wall 3, and the primary superheater 4, and the startup bypass path 18, the condensate pipe 12, and the feed water pipe 16. The feed water having a second flow rate smaller than the first flow rate is circulated through the economizer 2, the boiler water wall 3, the primary superheater 4, and the startup bypass path 18, the condensate pipe 12, and the feed water pipe 16. .

ここで、本実施形態に係るボイラ1の強制冷却方法は、特に貫流ボイラにおける強制冷却方法に関するものである。貫流ボイラにおいては、水管の損傷を防ぐために、ボイラ1の消火後においても節炭器2、ボイラ水壁3、及び一次過熱器4に給水を流通させなくてはならない。一方、一次過熱器4で発生した蒸気を過熱するための二次過熱器5や、二次過熱器5で発生した蒸気の圧力により回転する蒸気タービンにおいては、蒸気のみを流通させる構造となっており、給水の流入を防ぐ必要がある。ボイラ1を消火した状態で、節炭器2、ボイラ水壁3、及び一次過熱器4に給水を流通させ、更に二次過熱器5、及び蒸気タービンへの給水の流入を防止するためには、一次過熱器4から汽水分離を行うためのフラッシュタンクに、更に復水器9へといたる起動バイパス経路18に給水を流通させる必要がある。   Here, the forced cooling method of the boiler 1 which concerns on this embodiment is related with the forced cooling method in a once-through boiler especially. In the once-through boiler, in order to prevent damage to the water pipe, the water supply must be circulated through the economizer 2, the boiler water wall 3, and the primary superheater 4 even after the boiler 1 is extinguished. On the other hand, in the secondary superheater 5 for superheating the steam generated in the primary superheater 4 and the steam turbine rotating by the pressure of the steam generated in the secondary superheater 5, only the steam is circulated. It is necessary to prevent the inflow of water supply. In order to prevent the inflow of feed water to the economizer 2, the boiler water wall 3, and the primary superheater 4 and further to the secondary superheater 5 and the steam turbine with the boiler 1 extinguished. It is necessary to distribute the feed water to the start-up bypass path 18 leading to the flash tank for performing brackish water separation from the primary superheater 4 and further to the condenser 9.

本実施形態に係るボイラ1の強制冷却方法は、ボイラ1の消火後において、各種熱交換器、及び起動バイパス経路18に循環させる給水を利用してボイラ1を強制冷却するものである。これによれば、ボイラ1の強制冷却方法を実施するにあたって既存の設備を用いることができ、更に、給水の循環にあたっては、通常運転時や低負荷運転時に行われる制御機構を利用して循環量を制御することができるため、設備投資のコストを低減させることができる。加えて、ボイラ1の水冷と同時に行われるボイラ1の空冷は、ボイラ1に通常設けられている空気供給ファンを用いるため、この点においても設備投資のコストを低減させることができる。   The forced cooling method of the boiler 1 which concerns on this embodiment is the forced cooling of the boiler 1 using the various heat exchangers and the feed water circulated to the starting bypass path 18 after the fire extinguishing of the boiler 1. According to this, existing equipment can be used when the forced cooling method of the boiler 1 is carried out, and further, the circulation amount is circulated using a control mechanism that is performed during normal operation or low-load operation when circulating the water supply. Therefore, the cost of capital investment can be reduced. In addition, since the air cooling of the boiler 1 that is performed simultaneously with the water cooling of the boiler 1 uses an air supply fan that is normally provided in the boiler 1, the cost of capital investment can be reduced also in this respect.

[空気供給ファンによる空気の供給]
空気供給ファンは、化石燃料等の燃焼を補助するための空気を供給するためのものであり、押込送風機等と称されるものである。空気供給ファンは、ボイラ1の消火時から、強制冷却終了時まで、一定の流量で空気を送風するものであり、これによりボイラ1内部を空冷する。空気供給ファンによりボイラ1内に送風される空気の流量は、空気供給ファンの総出力の40%であることが好ましい。これにより、ボイラ1内部を効率的に冷却することができると共に、ボイラ1内部を空冷しすぎることによる、ボイラ1内部の配管等の損傷を未然に防ぐことができる。なお、空気供給ファンの総出力は、火力発電設備が定格出力での発電を行うのに必要な燃料を燃焼するのに必要な空気量の1.1倍程度の空気を供給するのに必要な出力である。
[Air supply by air supply fan]
The air supply fan is for supplying air for assisting combustion of fossil fuel or the like, and is called a forced blower or the like. The air supply fan blows air at a constant flow rate from the time when the boiler 1 is extinguished to the time when forced cooling ends, and thereby the inside of the boiler 1 is air-cooled. The flow rate of air blown into the boiler 1 by the air supply fan is preferably 40% of the total output of the air supply fan. Thereby, while being able to cool the inside of the boiler 1 efficiently, damage to piping etc. inside the boiler 1 by overcooling the inside of the boiler 1 can be prevented beforehand. It should be noted that the total output of the air supply fan is necessary for supplying air that is about 1.1 times the amount of air necessary for burning the fuel necessary for the thermal power generation facility to generate power at the rated output. Is the output.

[給水の流通]
本実施形態に係るボイラ1の強制冷却方法においては、上述した空気供給ファンによる空気の供給を行うと共に、ボイラ1内の水管に給水を流通させてボイラ1の冷却を行う。即ち、給水は、ボイラ1の強制冷却時において、起動バイパス経路弁17が開弁されることにより、節炭器2、ボイラ水壁3、及び一次過熱器4、並びに、起動バイパス経路18、復水管12、及び給水管16に流通するものであるが、ボイラ1の温度に応じて、給水を流通させる際の流量が制御される。図2に示すように、ボイラ1の温度が180℃以上となる条件(図2の時間a以前に相当)においては、給水の流量は、第一の流量とし、ボイラ1の温度が180℃未満(図2の時間b以降に相当)となる条件では、給水の流量は第一の流量よりも小さい第二の流量とする。
[Distribution of water supply]
In the forced cooling method for the boiler 1 according to the present embodiment, air is supplied by the above-described air supply fan, and the boiler 1 is cooled by supplying water to the water pipe in the boiler 1. That is, when the boiler 1 is forcibly cooled, the start-up bypass passage valve 17 is opened to supply water to the economizer 2, the boiler water wall 3, the primary superheater 4, the start-up bypass passage 18, Although it distribute | circulates to the water pipe 12 and the water supply pipe | tube 16, according to the temperature of the boiler 1, the flow volume at the time of distribute | circulating water supply is controlled. As shown in FIG. 2, under conditions where the temperature of the boiler 1 is 180 ° C. or higher (corresponding to before the time a in FIG. 2), the flow rate of the feed water is the first flow rate, and the temperature of the boiler 1 is less than 180 ° C. Under the condition (corresponding to after time b in FIG. 2), the flow rate of the feed water is a second flow rate smaller than the first flow rate.

ここで、ボイラ1の温度が180℃以上となる条件下では、各種熱交換器、起動バイパス経路18、復水管12、及び給水管16を流通する給水の流量を第一の流量とし、ボイラ1の温度が180℃未満となる条件下では、各種熱交換器、起動バイパス経路18、復水管12、及び給水管16を流通する給水の流量を第一の流量よりも小さい、第二の流量とすることにより、ボイラ1の強制冷却を行う際、温度が低下した条件下において、給水系統の各種調整弁への負担を増加させることなくボイラを冷却することができる。   Here, under the condition that the temperature of the boiler 1 is 180 ° C. or higher, the flow rate of the feed water flowing through the various heat exchangers, the startup bypass path 18, the condensate pipe 12, and the feed water pipe 16 is set as the first flow rate, Under the condition that the temperature of the water is less than 180 ° C., the flow rate of the feed water flowing through the various heat exchangers, the startup bypass path 18, the condensate pipe 12, and the feed water pipe 16 is smaller than the first flow rate, By doing so, when performing forced cooling of the boiler 1, the boiler can be cooled without increasing the burden on various regulating valves of the water supply system under the condition that the temperature is lowered.

給水の流量を制御する手段としては、特に限定されないが、例えば給水管16上に備えられる給水ポンプ14や、各種調節弁を挙げることができる。給水ポンプ14の出力や、各種調節弁の開度を調整することにより、所望の流量の給水を、ボイラ1内の水管に流通させることができる。   The means for controlling the flow rate of the feed water is not particularly limited, and examples thereof include a feed water pump 14 provided on the feed water pipe 16 and various control valves. By adjusting the output of the feed water pump 14 and the opening of various control valves, the feed water at a desired flow rate can be circulated through the water pipe in the boiler 1.

ここで、ボイラ1内の水管に供給される給水の給水流量は、当該ボイラ1の備えられる火力発電設備の出力に応じて、異なるものであるが、一般的な火力発電設備においては、第一の流量を150T/H以上250T/Hとすることが好ましい。また、第二の流量の値は、例えば、130T/Hとすることが好ましい。ここで、第一の流量は、図3(時間a以前)に示すように、上記流量の範囲に収まる範囲内で、流量の値を段階的に増大させることが好ましい。即ち、給水の流量の急激な増加を抑えることにより、ボイラ1の温度効果率をより安定に、一定以上に維持することが可能となる。   Here, the feed water flow rate of the feed water supplied to the water pipe in the boiler 1 varies depending on the output of the thermal power generation facility provided in the boiler 1, but in a general thermal power generation facility, The flow rate is preferably 150 T / H or more and 250 T / H. Further, the value of the second flow rate is preferably set to 130 T / H, for example. Here, as shown in FIG. 3 (before time a), the first flow rate preferably increases the flow rate stepwise within the range of the flow rate. That is, by suppressing the rapid increase in the flow rate of the feed water, the temperature effect rate of the boiler 1 can be maintained more stably and at a certain level.

(給水を流通させる際の水圧)
給水を流通させる際の水圧は、ボイラ1の温度が180℃以上となる条件においては、第一の水圧とし、ボイラ1の温度が180℃未満となる条件において、第一の水圧よりも小さい第二の水圧とする。ボイラ1の温度の低下に伴って給水を流通させる水圧を低減させることにより、給水系統の各種調整弁への負担を増加させることなくボイラを冷却することができる。
(Water pressure when distributing water supply)
The water pressure when the feed water is circulated is the first water pressure when the temperature of the boiler 1 is 180 ° C. or higher, and is lower than the first water pressure when the temperature of the boiler 1 is less than 180 ° C. Second water pressure. The boiler can be cooled without increasing the burden on the various regulating valves of the water supply system by reducing the water pressure for circulating the water supply as the temperature of the boiler 1 decreases.

上記第一の水圧はボイラ定格圧力であることが好ましい。上記第二の水圧は3.5MPaであることが好ましい。ボイラ定格圧力は、通常の火力発電設備においては、例えば15Mpa以上25Mpa以下である。   The first water pressure is preferably a boiler rated pressure. The second water pressure is preferably 3.5 MPa. The boiler rated pressure is, for example, 15 Mpa or more and 25 Mpa or less in a normal thermal power generation facility.

給水の水圧を制御する手段としては、特に限定されないが、例えば給水管16上に備えられる給水ポンプ14を挙げることができる。給水ポンプ14の出力を調整することにより、所望の水圧の給水を、ボイラ1内の水管に流通させることができる。   The means for controlling the water pressure of the feed water is not particularly limited, and examples thereof include a feed water pump 14 provided on the feed water pipe 16. By adjusting the output of the feed pump 14, feed water having a desired water pressure can be circulated through the water pipe in the boiler 1.

(温度降下率)
以上のようにして実施されるボイラ1の強制冷却方法により、安定した温度降下率でボイラ1を冷却することができる。ボイラ1を強制冷却する際の温度降下率としては、火力発電設備に備えられるボイラ1の出力、ボイラ1の構成材料、及びボイラ1の構造に応じて、適宜定められるものであるが、80℃/h以上となることが好ましく、110℃/h程度となることが更に好ましい。本実施形態に係るボイラ1の強制冷却方法においては、温度降下率が上記の値となるよう、各種熱交換器、起動バイパス経路18、復水管12、及び給水管16に流通させる給水の流量を適宜、設定するものである。
(Temperature drop rate)
By the forced cooling method of the boiler 1 implemented as mentioned above, the boiler 1 can be cooled at a stable temperature drop rate. The temperature drop rate when forcibly cooling the boiler 1 is appropriately determined according to the output of the boiler 1 provided in the thermal power generation facility, the constituent material of the boiler 1, and the structure of the boiler 1, but is 80 ° C. / H or higher, preferably about 110 ° C./h. In the forced cooling method of the boiler 1 according to the present embodiment, the flow rate of the feed water to be circulated through the various heat exchangers, the startup bypass path 18, the condensate pipe 12, and the feed water pipe 16 so that the temperature drop rate becomes the above value. This is set as appropriate.

(目標の冷却温度)
本実施形態に係るボイラ1の強制冷却方法により冷却されるボイラ1は、一次過熱器4の入口において100℃以下となるまで冷却されることが好ましく、60℃以下となるまで冷却されることが更に好ましい。60℃以下となるまで冷却されることにより、例えば定期点検時においても、作業員がボイラ1内で作業を行うことも可能となる。
(Target cooling temperature)
The boiler 1 cooled by the forced cooling method of the boiler 1 according to the present embodiment is preferably cooled to 100 ° C. or lower at the inlet of the primary superheater 4, and is cooled to 60 ° C. or lower. Further preferred. By cooling to 60 ° C. or lower, for example, even during regular inspection, an operator can perform work in the boiler 1.

なお、本明細書においては貫流ボイラの強制冷却方法を例にとって、ボイラの強制冷却方法について説明したが、貫流ボイラにおける強制冷却方法に限定されず、貫流ボイラとは構成の異なるドラムボイラにおいても、ドラムの上下及びドラムの内外における温度差に注意しながら同様に冷却することにより、降水管温度が130℃程度でブローを行って、ボイラの強制冷却方法を実施することができる。   In the present specification, the forced cooling method of the once-through boiler has been described as an example, but the forced cooling method of the boiler has been described, but is not limited to the forced cooling method in the once-through boiler, and in a drum boiler having a different configuration from the once-through boiler, By cooling in the same manner while paying attention to the temperature difference between the top and bottom of the drum and the inside and outside of the drum, the forced cooling method of the boiler can be implemented by blowing at a precipitation pipe temperature of about 130 ° C.

1 ボイラ
2 節炭器
3 ボイラ水壁
4 一次過熱器
5 二次過熱器
6 高圧・中圧タービン
7 再熱器
8 低圧タービン
9 復水器
10 復水ポンプ
11 低圧給水加熱器
12 復水管
13 脱気器
14 給水ポンプ
15 高圧給水加熱器
16 給水管
17 起動バイパス経路弁
18 起動バイパス経路
1 boiler 2 economizer 3 boiler water wall 4 primary superheater 5 secondary superheater 6 high pressure / medium pressure turbine 7 reheater 8 low pressure turbine 9 condenser 10 condensate pump 11 low pressure feed water heater 12 condensate pipe 13 desorption Ventilator 14 Water supply pump 15 High-pressure feed water heater 16 Water supply pipe 17 Startup bypass path valve 18 Startup bypass path

Claims (5)

化石燃料を燃焼させ燃焼熱を発生させるボイラと、
前記ボイラ内に設けられ、給水を流通させて加熱するための節炭器と、
前記ボイラ内に設けられ、前記節炭器を流通させた給水を流通させて加熱するためのボイラ水壁と、
前記ボイラ内に設けられ、前記ボイラ水壁を流通させた給水を過熱して蒸気を発生させるための一次過熱器と、
海水により蒸気を冷却して復水を生成するための復水器と、
前記一次過熱器から前記復水器へ給水を流通させるための起動バイパス経路と、
前記復水器から前記節炭器へ復水・給水を流通させるための、復水・給水管と、
前記ボイラに燃焼を補助するための空気を供給する空気供給ファンと、を備える火力発電設備において、前記ボイラの消火後に行われる貫流ボイラの強制冷却方法であって、
前記空気供給ファンを作動させて、継続的に一定量の空気を供給すると共に、
前記ボイラの温度が180℃以上となる条件では、第一の流量の給水を前記節炭器、前記ボイラ水壁、及び前記一次過熱器、並びに前記起動バイパス経路、及び前記復水・給水管に流通させ、
前記ボイラの温度が180℃以下となる条件では、第一の流量よりも小さい第二の流量の給水を前記節炭器、前記ボイラ水壁、及び前記一次過熱器、並びに前記起動バイパス経路、及び前記復水・給水管に流通させる、貫流ボイラの強制冷却方法。
A boiler that burns fossil fuels and generates combustion heat;
A economizer that is provided in the boiler and that heats the feed water by circulating it;
A boiler water wall provided in the boiler for circulating and heating the feed water that has been circulated through the economizer;
A primary superheater that is provided in the boiler and generates steam by superheating water supplied through the boiler water wall;
A condenser for cooling steam with seawater to produce condensate,
A start-up bypass path for circulating water from the primary superheater to the condenser;
A condensate / water supply pipe for circulating condensate / water supply from the condenser to the economizer;
In a thermal power generation facility comprising an air supply fan for supplying air for assisting combustion to the boiler, a forced cooling method for a once- through boiler performed after extinguishing the boiler,
The air supply fan is operated to supply a constant amount of air continuously,
Under the condition that the temperature of the boiler is 180 ° C. or higher, feed water at a first flow rate to the economizer, the boiler water wall, the primary superheater, the startup bypass path, and the condensate / feed pipe. Circulate,
Under the condition that the temperature of the boiler is 180 ° C. or less, the feed water at a second flow rate smaller than the first flow rate is supplied to the economizer, the boiler water wall, the primary superheater, and the startup bypass path, and A forced cooling method for a once-through boiler, which is circulated through the condensate / water supply pipe.
前記ボイラの温度が180℃以上となる条件において、前記第一の流量を段階的に増加させる、請求項1に記載の貫流ボイラの強制冷却方法。 The forced cooling method for a once- through boiler according to claim 1, wherein the first flow rate is increased stepwise under a condition where the temperature of the boiler is 180 ° C or higher. 前記ボイラの温度が180℃以上となる条件において、給水を流通させる水圧を第一の水圧とし、
前記ボイラの温度が180℃未満となる条件において、給水を流通させる水圧を第一の水圧よりも小さい第二の水圧とする、請求項1又は2に記載の貫流ボイラの強制冷却方法。
Under the condition that the temperature of the boiler is 180 ° C. or higher, the water pressure for circulating the feed water is the first water pressure,
The forced cooling method of the once- through boiler according to claim 1 or 2 which makes the water pressure which distributes feed water into the 2nd water pressure smaller than the 1st water pressure on the conditions that the temperature of said boiler is less than 180 ° C.
前記第一の水圧がボイラ定格圧力であり、前記第二の水圧が3.5MPaである請求項3に記載の貫流ボイラの強制冷却方法。 The forced cooling method for a once- through boiler according to claim 3 , wherein the first water pressure is a boiler rated pressure and the second water pressure is 3.5 MPa. 前記空気供給ファンにより供給される空気の流量を、空気供給ファンの総出力の40%とする、請求項1から4のいずれかに記載の貫流ボイラの強制冷却方法。 The forced cooling method for a once- through boiler according to any one of claims 1 to 4, wherein a flow rate of air supplied by the air supply fan is 40% of a total output of the air supply fan.
JP2010016598A 2010-01-28 2010-01-28 Forced cooling method for once-through boiler Expired - Fee Related JP5183649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016598A JP5183649B2 (en) 2010-01-28 2010-01-28 Forced cooling method for once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016598A JP5183649B2 (en) 2010-01-28 2010-01-28 Forced cooling method for once-through boiler

Publications (2)

Publication Number Publication Date
JP2011153786A JP2011153786A (en) 2011-08-11
JP5183649B2 true JP5183649B2 (en) 2013-04-17

Family

ID=44539888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016598A Expired - Fee Related JP5183649B2 (en) 2010-01-28 2010-01-28 Forced cooling method for once-through boiler

Country Status (1)

Country Link
JP (1) JP5183649B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103347B2 (en) * 2012-12-05 2017-03-29 中国電力株式会社 Boiler forced cooling method after fire extinguishing of boiler in power generation equipment
JP7639550B2 (en) 2021-05-28 2025-03-05 中国電力株式会社 Boiler forced cooling method
JP7631127B2 (en) 2021-06-30 2025-02-18 三菱重工業株式会社 Boiler system cleaning method and boiler system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086891B2 (en) * 1988-03-10 1996-01-29 石川島播磨重工業株式会社 Boiler forced cooling control method
JP5164580B2 (en) * 2008-01-11 2013-03-21 中国電力株式会社 Control method of power generator when power generation is stopped

Also Published As

Publication number Publication date
JP2011153786A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
RU2538994C2 (en) Method of once-through steam generator operation at steam temperature over 650-c, and once-through steam generator
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP6224858B1 (en) Power plant and operation method thereof
JP2008032367A (en) Control method for once-through waste heat recovery boiler
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
JP5183649B2 (en) Forced cooling method for once-through boiler
JP6400779B1 (en) Power plant and operation method thereof
WO2018198836A1 (en) Power generation plant and operation method therefor
JP6342539B1 (en) Power plant and operation method thereof
EP2980475A1 (en) A method for low load operation of a power plant with a once-through boiler
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP5041941B2 (en) Once-through exhaust heat recovery boiler
CN112303608A (en) Boiler power generation equipment and control method thereof
WO2023002814A1 (en) Ammonia fuel supply unit, power generation plant, and method for operating boiler
JP4466914B2 (en) Combined power plant and starting method
JP2012102980A (en) Blow tank and method of using the same
JP2016148343A (en) Subcritical pressure high temperature thermal power generation plant and subcritical pressure high temperature variable pressure operation once-through boiler
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2019065811A (en) POWER PLANT AND ITS OPERATION METHOD
JP2021046989A (en) Feedwater heating system, power generation plant equipped with the same, and operation method of feedwater heating system
KR20230005953A (en) Operation control device of once-through boiler, operation control method, and once-through boiler
JP7150670B2 (en) BOILER, POWER PLANT INCLUDING THE SAME, AND BOILER CONTROL METHOD

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees