JP5177761B2 - Olefin flooring - Google Patents
Olefin flooring Download PDFInfo
- Publication number
- JP5177761B2 JP5177761B2 JP2009106678A JP2009106678A JP5177761B2 JP 5177761 B2 JP5177761 B2 JP 5177761B2 JP 2009106678 A JP2009106678 A JP 2009106678A JP 2009106678 A JP2009106678 A JP 2009106678A JP 5177761 B2 JP5177761 B2 JP 5177761B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- base material
- material layer
- flooring
- olefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009408 flooring Methods 0.000 title claims description 101
- 150000001336 alkenes Chemical class 0.000 title claims description 42
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title claims description 42
- 239000010410 layer Substances 0.000 claims description 373
- 239000000463 material Substances 0.000 claims description 262
- 229920005989 resin Polymers 0.000 claims description 75
- 239000011347 resin Substances 0.000 claims description 75
- 239000000126 substance Substances 0.000 claims description 43
- 238000007639 printing Methods 0.000 claims description 28
- 239000012790 adhesive layer Substances 0.000 claims description 19
- 239000000835 fiber Substances 0.000 claims description 18
- 239000011521 glass Substances 0.000 claims description 10
- 239000011342 resin composition Substances 0.000 claims description 4
- 239000000454 talc Substances 0.000 claims description 4
- 229910052623 talc Inorganic materials 0.000 claims description 4
- 238000007373 indentation Methods 0.000 claims 1
- 206010042674 Swelling Diseases 0.000 description 18
- 230000008961 swelling Effects 0.000 description 18
- 229920005672 polyolefin resin Polymers 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 229920006026 co-polymeric resin Polymers 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- -1 polypropylene Polymers 0.000 description 14
- 238000012360 testing method Methods 0.000 description 11
- 230000008646 thermal stress Effects 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 9
- 238000011056 performance test Methods 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 6
- 239000000779 smoke Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920013640 amorphous poly alpha olefin Polymers 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical group C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Floor Finish (AREA)
- Laminated Bodies (AREA)
Description
この発明は、例えばビル、マンション、家屋、商業施設等の建築物の床材、或いは鉄道、バス等の車輌の床材等として用いられるオレフィン系床材に関する。 The present invention relates to an olefin-based flooring used as a flooring of a building such as a building, a condominium, a house, or a commercial facility, or a flooring of a vehicle such as a railway or a bus.
従来、ビル、マンション、家屋、商業施設等の建築物の床材、或いは鉄道、バス等の車輌の床材としては、塩化ビニル樹脂(PVC)からなるものが多く採用されているが、このPVC製床材は、燃焼時に多量の発煙と共に塩化水素等の有毒ガスを発生することから防災上問題があり、また、焼却廃棄処理した場合には環境汚染をもたらすという問題もあることから、近年ではオレフィン系の床材が多く用いられるようになってきている。 Conventionally, as a flooring material for buildings such as buildings, condominiums, houses, and commercial facilities, or a flooring material for vehicles such as railways and buses, those made of polyvinyl chloride resin (PVC) are often used. In recent years, flooring has a problem in terms of disaster prevention because it generates toxic gases such as hydrogen chloride along with a large amount of smoke during combustion, and it also causes environmental pollution when incinerated and discarded. Olefin-based flooring materials are increasingly used.
このような床材には、通常、模様、図柄、文字等の意匠が印刷等により付与され、例えば、ポリオレフィン系樹脂からなる基材層、印刷層、及びポリオレフィン系樹脂からなる表面層がこの順に積層されてなる積層シートの各層間を、反応性ホットメルト接着剤で接着した構成のオレフィン系床材が公知となっている。(特許文献1参照) Such a flooring is usually provided with a design such as a pattern, a pattern, or a character by printing or the like. For example, a base material layer made of a polyolefin resin, a printing layer, and a surface layer made of a polyolefin resin in this order. Olefin-based flooring having a structure in which each layer of a laminated sheet laminated is bonded with a reactive hot melt adhesive is known. (See Patent Document 1)
また、特許文献2では、オレフィン系樹脂を主成分とする、二層以上の積層構造を備えた床材であって、表面層にはワックスを均一に含有させ、裏面層には、無機充填材とロジンを均一に含有させるとともに、繊維層を埋設して繊維層を裏面層の下面に露出させた構成の床材を開示し、接着性及び寸法安定性が良好で、膨れや剥離の心配のないオレフィン系床材としている。 Moreover, in patent document 2, it is a flooring which has the laminated structure of two or more layers which have an olefin resin as a main component, Comprising: Wax is uniformly contained in a surface layer and an inorganic filler is used in a back surface layer And rosin are uniformly contained, and the flooring material is disclosed in which the fiber layer is embedded and the fiber layer is exposed on the lower surface of the back surface layer, and has good adhesiveness and dimensional stability, and there is a risk of swelling and peeling. There is no olefinic flooring.
また、出願人は特許文献3として、耐摩耗性、耐汚染性、寸法安定性、施工性に優れたノンハロゲン系床材を出願している。
しかしながら、これらの特許文献の床材では、鉄道車両のように、温度変化の激しい環境下においては、床材自身の熱膨張を床との接着強度によって抑えきれずに、使用しているうちに膨れや突き上げを生じたり、剥離を発現したりして、床材として十分なものといえるものではなかった。 However, in the flooring materials in these patent documents, the thermal expansion of the flooring material itself cannot be suppressed by the adhesive strength with the floor under an environment where the temperature changes rapidly, such as a railcar, while being used. It did not suffice as a flooring material because it caused blistering or thrusting, or developed peeling.
本発明は、かかる技術的背景に鑑みてなされたものであって、床との接着強度が十分で、寸法安定性に優れ、温度変化の激しい環境下でも膨れや突き上げの発生しないオレフィン系床材を提供することを目的とする。 The present invention has been made in view of such a technical background, and is an olefin-based flooring material that has sufficient adhesive strength with a floor, is excellent in dimensional stability, and does not swell or push up even in an environment where temperature changes are severe. The purpose is to provide.
前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
[1]オレフィン系樹脂組成物からなる床材であって、オレフィン系樹脂を含有してなる表面樹脂層と、前記表面樹脂層の下面に印刷層が積層されると共に、該印刷層の下面に接着剤層を介してオレフィン系樹脂を含有してなる基材層が積層一体化されてなり、前記表面樹脂層の引っ張り弾性率を70〜700MPaにし、前記基材層に鱗片状の無機物を添加し、前記基材層の線膨張率を5×10−5×K−1以下としたことを特徴とするオレフィン系床材。 [1] A flooring composed of an olefin resin composition, wherein a surface resin layer containing an olefin resin and a printing layer are laminated on the lower surface of the surface resin layer, and on the lower surface of the printing layer A base material layer containing an olefin resin is laminated and integrated through an adhesive layer, the tensile modulus of the surface resin layer is set to 70 to 700 MPa, and a scale-like inorganic substance is added to the base material layer. And the linear expansion coefficient of the said base material layer was made into 5 * 10 <-5> * K <-1> or less, The olefin type flooring characterized by the above-mentioned.
[2]前記基材層は、前記印刷層に近い第1基材層と、第1基材層に積層する第2基材層の二層構造からなり、前記第1基材層は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、前記第2基材層は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層からなることを特徴とする前項1に記載のオレフィン系床材。 [2] The base material layer has a two-layer structure of a first base material layer close to the print layer and a second base material layer laminated on the first base material layer. The linear expansion coefficient is 5 × 10 −5 × K −1 or less and the tensile elastic modulus is 100 to 600 MPa, and the second base material layer has a linear expansion coefficient of 10 × 10 −5 × K. The olefin-based flooring according to the preceding item 1 , comprising a layer having a tensile elastic modulus of 100 to 200 MPa, −1 to 12 × 10 −5 × K −1 .
[3]前記基材層は、前記印刷層に近い第1基材層と、第1基材層に積層する第2基材層と、第2基材層に積層する第3基材層の三層構造からなり、前記第1基材層は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとし、前記第2基材層は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、前記第3基材層は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層からなることを特徴とする前項1に記載のオレフィン系床材。 [3] The base material layer includes a first base material layer close to the print layer, a second base material layer stacked on the first base material layer, and a third base material layer stacked on the second base material layer. The first base material layer has a linear expansion coefficient of 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 and a tensile elastic modulus of 100 to 200 MPa. The base material layer has a scale-like inorganic substance added thereto, the linear expansion coefficient is 5 × 10 −5 × K −1 or less, the tensile elastic modulus is 100 to 600 MPa, and the third base material layer has a linear expansion coefficient of 10 The olefin-based flooring according to item 1 above, comprising a layer of × 10 −5 × K −1 to 12 × 10 −5 × K −1 and a tensile modulus of 100 to 200 MPa.
[4]前記鱗片状の無機物の添加量が基材層の樹脂重量100重量部に対して1〜20重量部添加したことを特徴とする前項1〜3のいずれか1項に記載のオレフィン系床材。 [4] The olefin system according to any one of items 1 to 3, wherein an addition amount of the scale-like inorganic substance is added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the resin weight of the base material layer. Flooring.
[5]前記鱗片状の無機物が、ガラス及び/またはタルクの鱗片状の無機物であることを特徴とする前項1〜4のいずれか1項に記載のオレフィン系床材。 [5] The olefin-based flooring according to any one of items 1 to 4, wherein the scale-like inorganic substance is glass and / or talc scale-like inorganic substance.
[6]前記鱗片状の無機物の厚さは10μm以下で、長径が100〜600μmであることを特徴とする前項1〜5のいずれか1項に記載のオレフィン系床材。 [6] The olefin-based flooring according to any one of items 1 to 5, wherein the scale-like inorganic material has a thickness of 10 μm or less and a major axis of 100 to 600 μm.
[7]前記オレフィン系床材の曲げ弾性率が200MPa以下であり、残留へこみ率が8.0%以下であることを特徴とする前項1〜6のいずれか1項に記載のオレフィン系床材。 [7] The olefin flooring according to any one of items 1 to 6 above, wherein the olefin flooring has a flexural modulus of 200 MPa or less and a residual dent ratio of 8.0% or less. .
[8]前記基材層の最下層に繊維層を埋設し、該繊維層の少なくとも一部が基材層の最下層裏面に露出していることを特徴とする前項1〜7のいずれか1項に記載のオレフィン系床材。 [8] Any one of items 1 to 7 above, wherein a fiber layer is embedded in the lowermost layer of the base material layer, and at least a part of the fiber layer is exposed on the back surface of the lowermost layer of the base material layer. The olefin-based flooring material according to Item.
[1]の発明では、オレフィン系樹脂組成物からなる床材であって、オレフィン系樹脂を含有してなる表面樹脂層と、前記表面樹脂層の下面に印刷層が積層されると共に、該印刷層の下面に接着剤層を介してオレフィン系樹脂を含有してなる基材層が積層一体化されてなり、前記表面樹脂層の引っ張り弾性率を70〜700MPaにし、前記基材層に鱗片状の無機物を添加し、前記基材層の線膨張率を5×10−5×K−1以下に制限することで、膨れの要因となる熱応力をさげることとなり、膨れや突き上げといった現象の発現が防止されたオレフィン系床材とすることができる。 In the invention of [1], a flooring material comprising an olefinic resin composition, comprising a surface resin layer containing an olefinic resin, and a printing layer laminated on the lower surface of the surface resin layer, the printing A base material layer containing an olefin resin is laminated and integrated on the lower surface of the layer via an adhesive layer, the tensile modulus of the surface resin layer is set to 70 to 700 MPa, and the base material layer has a scaly shape. By adding the inorganic substance and limiting the linear expansion coefficient of the base material layer to 5 × 10 −5 × K −1 or less, the thermal stress that causes the swelling is reduced, and the phenomenon of swelling and push-up occurs. The olefin-based flooring can be prevented.
[2]の発明では、前記基材層は前記印刷層に近い第1基材層と、第1基材層に積層する第2基材層の二層構造からなり、前記第1基材層は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、そして前記第2基材層は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層とするので、第1基材層は、第2基材層より線膨張率が小さいので第2基材層が膨張して伸びるのを第1基材層の側面から妨げるので、膨れや突き上げ、反りの現象を防ぐことができる。さらに、鱗片状の無機物を添加する層を前記第1基材層に限るため、鱗片状の無機物の使用量を減らすことができ経済的である。 In the invention of [2], the base material layer has a two-layer structure of a first base material layer close to the print layer and a second base material layer laminated on the first base material layer, and the first base material layer Has a linear expansion coefficient of 5 × 10 −5 × K −1 or less with a scale-like inorganic substance added, a tensile elastic modulus of 100 to 600 MPa, and the second base material layer has a linear expansion coefficient of 10 × 10 6. −5 × K −1 to 12 × 10 −5 × K −1 , and a tensile elastic modulus of 100 to 200 MPa. Therefore, the first base material layer has a smaller linear expansion coefficient than the second base material layer. Since the second base material layer is prevented from expanding and extending from the side surface of the first base material layer, the phenomenon of swelling, pushing up and warping can be prevented. Furthermore, since the layer to which the scaly inorganic substance is added is limited to the first base material layer, the amount of the scaly inorganic substance used can be reduced, which is economical.
[3]の発明では、前記基材層は前記印刷層に近い第1基材層と、第1基材層に積層する第2基材層と、第2基材層に積層する第3基材層の三層構造からなり、前記第1基材層は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとし、前記第2基材層は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、前記第3基材層は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層とするので、第1基材層と第3基材層より線膨張率が小さい第2基材層が、第1基材層と第3基材層が膨張して伸びるのを積層面の両面から妨げるので、膨れや突き上げ、反りの現象を防ぐことができる。さらに、鱗片状の無機物を添加する層を前記第2基材層に限るため、鱗片状の無機物の使用量を減らすことができ経済的である。 In the invention of [3], the base material layer is a first base material layer close to the print layer, a second base material layer laminated on the first base material layer, and a third base material laminated on the second base material layer. The first base material layer has a linear expansion coefficient of 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 and a tensile elastic modulus of 100 to 200 MPa. The second base material layer has a linear expansion coefficient of 5 × 10 −5 × K −1 or less and a tensile elastic modulus of 100 to 600 MPa by adding a scale-like inorganic substance, and the third base material layer has a linear expansion coefficient. Since the rate is 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 and the tensile elastic modulus is 100 to 200 MPa, linear expansion occurs from the first base material layer and the third base material layer. Since the second base material layer having a low rate prevents the first base material layer and the third base material layer from expanding and extending from both sides of the laminated surface, the second base material layer is swollen or pushed up, warped. Phenomenon can be prevented. Furthermore, since the layer to which the scaly inorganic substance is added is limited to the second base material layer, the amount of the scaly inorganic substance used can be reduced, which is economical.
[4]の発明では、前記鱗片状の無機物の添加量が基材層の樹脂重量100重量部に対して1〜20重量部添加しているので、鱗片状の無機物が平面方向に配向し基材層の線膨張率を5×10−5×K−1以下にすることができ、温度変化に対して寸法安定性に優れた基材層となり、膨れや突き上げといった現象の発現が防止されたオレフィン系床材とすることができる。また、固く脆い基材層でなく、柔軟なオレフィン系床材を得ることができる。 In the invention of [4], since the added amount of the scale-like inorganic substance is added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the resin weight of the base material layer, the scale-like inorganic substance is oriented in the plane direction and is based on The linear expansion coefficient of the material layer can be reduced to 5 × 10 −5 × K −1 or less, and it becomes a base material layer having excellent dimensional stability against temperature change, thereby preventing the occurrence of phenomena such as swelling and push-up. It can be an olefin-based flooring. Moreover, not a hard and brittle base material layer but a flexible olefin-based flooring can be obtained.
[5]の発明では、前記鱗片状の無機物が、ガラス及び/またはタルクの鱗片状の無機物であるので、基材層の線膨張率を5×10−5×K−1以下にすることができ、温度変化に対して寸法安定性に優れた基材層とすることができる。 In the invention of [5], since the scale-like inorganic substance is a glass-like and / or talc scale-like inorganic substance, the linear expansion coefficient of the base material layer may be 5 × 10 −5 × K −1 or less. The substrate layer can be excellent in dimensional stability against temperature changes.
[6]の発明では、前記鱗片状の無機物の厚さは10μm以下で、長径が100〜600μmであるので、基材層の樹脂に混練しやすく、安定して基材層の線膨張率を5×10−5×K−1以下に確保でき、温度変化に対して寸法安定性に優れた基材層とすることができる。 In the invention of [6], since the scale-like inorganic material has a thickness of 10 μm or less and a major axis of 100 to 600 μm, it can be easily kneaded into the resin of the base material layer, and the linear expansion coefficient of the base material layer can be stably increased. The base layer can be secured to 5 × 10 −5 × K −1 or less and has excellent dimensional stability against temperature change.
[7]の発明では、前記オレフィン系床材の曲げ弾性率が200MPa以下であり、残留へこみ率が8.0%以下であるので、床材の施工性がよく、耐摩耗性やヒール等による耐残留へこみ性に優れたオレフィン系床材とすることができる。 In the invention of [7], since the flexural modulus of the olefin-based flooring material is 200 MPa or less and the residual dent rate is 8.0% or less, the workability of the flooring material is good, and wear resistance, heel, etc. It can be set as the olefin type flooring material excellent in residual dent resistance.
[8]の発明では、前記基材層の最下層に繊維層を埋設し、該繊維層の少なくとも一部が基材層の最下層裏面に露出しているので、繊維層のアンカー効果により床との接着強度を増すことができ、使用中に膨れや突き上げといった床との接着強度の不足による不具合のないオレフィン系床材とすることができる。 In the invention of [8], since the fiber layer is embedded in the lowermost layer of the base material layer and at least a part of the fiber layer is exposed on the lowermost back surface of the base material layer, the floor is formed by the anchor effect of the fiber layer. The olefin-based flooring can be made free from problems due to insufficient adhesive strength with the floor such as swelling or pushing up during use.
この発明に係るオレフィン系床材の一実施形態を図面に基づいて説明する。この実施形態のオレフィン系床材(1)は、オレフィン系樹脂を含有してなる表面樹脂層(2)の下面に印刷層(4)が積層されると共に、該印刷層(4)の下面に接着剤層(5)を介してオレフィン系樹脂を含有してなる基材層(3)が積層一体化された積層構造で、前記表面樹脂層(2)の引っ張り弾性率を70〜700MPaにし、前記基材層(3)に鱗片状の無機物を添加し、基材層(3)の線膨張率を5×10−5×K−1以下としたものである(図1参照)。 An embodiment of an olefin-based flooring according to the present invention will be described with reference to the drawings. In the olefin-based flooring (1) of this embodiment, the printed layer (4) is laminated on the lower surface of the surface resin layer (2) containing the olefin-based resin, and the lower surface of the printed layer (4). In the laminated structure in which the base material layer (3) containing the olefin resin is laminated and integrated through the adhesive layer (5), the tensile elastic modulus of the surface resin layer (2) is set to 70 to 700 MPa, A scale-like inorganic substance is added to the base material layer (3), and the linear expansion coefficient of the base material layer (3) is 5 × 10 −5 × K −1 or less (see FIG. 1).
膨れや突き上げといった現象を説明すると、例えば温度変化の激しい鉄道車両の場合、床板であるアルミニウム板等の線膨張率に較べ樹脂製床材の線膨張率が非常に大きく、温度変化に伴ってアルミニウム板等より多く変形しようとし、樹脂製床材の周辺が金具等で固定されている場合には熱応力が発現する。該熱応力が、樹脂製床材と床板との接着力や樹脂製床材の自重を超えたときに、樹脂製床材が膨れ上がる
ことになり、膨れや突き上げといった現象が起こるものと考えられる。熱応力は引っ張り弾性率と、線膨張係数と、温度の変化量との積で近似的に示されるので、熱応力を少なくするためには、樹脂製床材の引っ張り弾性率と線膨張係数を下げればよいことになる。しかしながら、本発明の床材は、表面樹脂層と印刷層と接着剤層と基材層とからなっており、各層に引っ張り弾性率と線膨張係数の低い材料を使用すれば、熱応力の少ない床材を得られるものの、床材としての性能を確保できないことから、表面樹脂層の引っ張り弾性率を70〜700MPaに制限することと、基材層に鱗片状の無機物を添加して基材層の線膨張率を5×10−5×K−1以下とすることにより熱応力をおさえ、膨れや突き上げの現象を防ぐことができる。
For example, in the case of a railway vehicle where the temperature changes rapidly, the linear expansion coefficient of the resin flooring material is very large compared to the linear expansion coefficient of the aluminum plate or the like, which is a floor panel. If the resin floor material is to be deformed more than a plate or the like and the periphery of the resin floor material is fixed with metal fittings or the like, thermal stress appears. When the thermal stress exceeds the adhesive force between the resin floor material and the floor board or the weight of the resin floor material, the resin floor material will swell, and it is considered that phenomena such as swelling and push-up occur. . Thermal stress is approximated by the product of tensile modulus, linear expansion coefficient, and temperature change. To reduce thermal stress, the tensile modulus and linear expansion coefficient of resin flooring are You can lower it. However, the flooring of the present invention comprises a surface resin layer, a printing layer, an adhesive layer, and a base material layer. If a material having a low tensile elastic modulus and a low linear expansion coefficient is used for each layer, the thermal stress is small. Although a flooring material can be obtained, the performance as a flooring material cannot be ensured. Therefore, the tensile elastic modulus of the surface resin layer is limited to 70 to 700 MPa, and a scale-like inorganic substance is added to the base material layer. By setting the linear expansion coefficient to 5 × 10 −5 × K−1 or less, it is possible to suppress thermal stress and prevent swelling and push-up phenomenon.
さらに、図2においては、前記基材層(3)は、前記印刷層(4)に近い第1基材層(3−1)と、第1基材層(3−1)に積層する第2基材層(3−2)の二層構造からなり、前記第1基材層(3−1)は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、そして前記第2基材層(3−2)は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層とするので、第1基材層(3−1)は、第2基材層(3−2)より線膨張率が小さいので第2基材層(3−2)が膨張して伸びるのを妨げるので、膨れや突き上げ、反りの現象を防ぐことができる。 Furthermore, in FIG. 2, the said base material layer (3) is laminated | stacked on the 1st base material layer (3-1) close | similar to the said printing layer (4), and a 1st base material layer (3-1). It consists of a two-layer structure of two base material layers (3-2), and the first base material layer (3-1) has a linear expansion coefficient of 5 × 10 −5 × K −1 by adding a scale-like inorganic substance. Hereinafter, the tensile elastic modulus is 100 to 600 MPa, and the second base material layer (3-2) has a linear expansion coefficient of 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 , Since the elastic layer is a layer having a modulus of 100 to 200 MPa, the first base material layer (3-1) has a smaller linear expansion coefficient than the second base material layer (3-2), so the second base material layer (3- Since 2) prevents the expansion and expansion, it is possible to prevent the phenomenon of swelling, pushing up and warping.
また、図3においては、前記基材層(3)は、前記印刷層(4)に近い第1基材層(3−2)と、第1基材層(3−2)に積層する第2基材層(3−1)と、第2基材層(3−1)に積層する第3基材層(3−3)の三層構造からなり、前記第1基材層(3−2)は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとし、前記第2基材層(3−1)は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、前記第3基材層(3−3)は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層とするので、第1基材層(3−2)と第3基材層(3−3)より線膨張率が小さい第2基材層(3−1)が、第1基材層(3−2)と第3基材層(3−3)が膨張して伸びるのを積層面の両面から妨げるので、膨れや突き上げ、反りの現象を防ぐことができる。 Moreover, in FIG. 3, the said base material layer (3) is laminated | stacked on the 1st base material layer (3-2) close | similar to the said printing layer (4), and a 1st base material layer (3-2). It consists of a three-layer structure of two base material layers (3-1) and a third base material layer (3-3) laminated on the second base material layer (3-1), and the first base material layer (3- 2) The linear expansion coefficient is 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 , the tensile elastic modulus is 100 to 200 MPa, and the second base material layer (3-1) is A scale-like inorganic substance is added, the linear expansion coefficient is 5 × 10 −5 × K −1 or less, the tensile elastic modulus is 100 to 600 MPa, and the third base material layer (3-3) has a linear expansion coefficient of 10 × 10 -5 × K -1 ~12 × 10 -5 × K -1, because a layer which has a tensile modulus 100 to 200 MPa, the first base layer (3-2) and the third base material layer ( 3-3) Stranded wire The second base material layer (3-1) having a small tension rate prevents the first base material layer (3-2) and the third base material layer (3-3) from expanding and extending from both sides of the laminated surface. Therefore, the phenomenon of swelling, pushing up and warping can be prevented.
前記表面樹脂層(2)はオレフィン系樹脂を含有してなる。このように表面樹脂層(2)がオレフィン系樹脂を含有しているので、床材(1)は表面における耐摩耗性、耐汚染性に優れたものとなる。但し該表面樹脂層の引っ張り弾性率が70〜700MPaに制限されるので、前記オレフィン系樹脂としては、例えばポリプロピレン、ポリエチレン、エチレン−酢酸ビニル共重合体樹脂、エチレン−αオレフィン共重合体樹脂、オレフィン系熱可塑性エラストマー等が挙げられるが、常にエラストマー系の樹脂を含む構成となる。この表面樹脂層(2)は、単層からなる構造であっても良いし、複数層が積層された積層構造であっても良い。例えば表層、中間層、下層の3層構造にして、摩耗や耐薬品性能に優れたPP(ポリプロピレン)を表層、下層に配置し、中間層にHSBR(水添スチレン−ブタジエン−ラバー)を用いた構造の表面樹脂層(2)を挙げることができる。但し該表面樹脂層(2)の引っ張り弾性率は、70〜700MPaに制限される。表面樹脂層の引っ張り弾性率が70MPa未満では、表面樹脂層が柔軟になりへこみ量が大きくなるので好ましくない。また、表面樹脂層の引っ張り弾性率が700MPaを超えても、膨れの要因となる熱応力が大きくなるので好ましくない。より好ましい表面樹脂層の引っ張り弾性率は、100〜500MPaである。 The surface resin layer (2) contains an olefin resin. Thus, since the surface resin layer (2) contains the olefin resin, the flooring (1) has excellent wear resistance and contamination resistance on the surface. However, since the tensile modulus of the surface resin layer is limited to 70 to 700 MPa, examples of the olefin resin include polypropylene, polyethylene, ethylene-vinyl acetate copolymer resin, ethylene-α olefin copolymer resin, and olefin. Although a thermoplastic elastomer etc. are mentioned, it becomes a structure always containing an elastomer resin. The surface resin layer (2) may have a single layer structure or a laminated structure in which a plurality of layers are laminated. For example, the surface layer, the intermediate layer, and the lower layer have a three-layer structure, PP (polypropylene) excellent in wear and chemical resistance performance is disposed on the surface layer and the lower layer, and HSBR (hydrogenated styrene-butadiene-rubber) is used for the intermediate layer. A surface resin layer (2) having a structure can be mentioned. However, the tensile elastic modulus of the surface resin layer (2) is limited to 70 to 700 MPa. If the tensile modulus of the surface resin layer is less than 70 MPa, the surface resin layer becomes flexible and the dent amount increases, which is not preferable. Further, even if the tensile elastic modulus of the surface resin layer exceeds 700 MPa, it is not preferable because the thermal stress that causes swelling is increased. The tensile modulus of elasticity of the surface resin layer is more preferably 100 to 500 MPa.
表面樹脂層(2)の厚さは、特に限定されないが、100〜1000μmに設定されるのが好ましい。100μm以上であることで十分な耐摩耗性が得られると共に1000μm以下であることで床材(1)の谷反り発生を効果的に防止することができる。 The thickness of the surface resin layer (2) is not particularly limited, but is preferably set to 100 to 1000 μm. When the thickness is 100 μm or more, sufficient wear resistance is obtained, and when the thickness is 1000 μm or less, the generation of valley warp of the flooring (1) can be effectively prevented.
次に、前記印刷層(4)は、表面樹脂層(2)の下面に積層され、特に限定されないが、例えばグラビア印刷、オフセット印刷、スクリーン印刷、転写印刷、インクジェット印刷等の印刷手法によって形成されるものである。この印刷に用いられる印刷インキとしては、特に限定されるものではないが、例えばアクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂などの合成樹脂に、顔料、染料、着色剤、充填剤等が添加混合されたもの等を例示できる。通常、溶剤などで希釈化されているものを用いる。 Next, the printing layer (4) is laminated on the lower surface of the surface resin layer (2), and is not particularly limited, and is formed by a printing technique such as gravure printing, offset printing, screen printing, transfer printing, and ink jet printing. Is. The printing ink used for this printing is not particularly limited. For example, pigments, dyes, colorants, fillers, etc. are added to and mixed with synthetic resins such as acrylic resins, urethane resins, and polyester resins. Can be exemplified. Usually, those diluted with a solvent or the like are used.
次に、前記印刷層(4)の下面に、前記接着剤層(5)を構成する接着剤としては、カルボン酸変性プロピレン−1−ブテン共重合体樹脂及びカルボン酸変性プロピレン−エチレン−1−ブテン共重合体樹脂を含有し、かつカルボン酸変性プロピレン−1−ブテン共重合体樹脂/カルボン酸変性プロピレン−エチレン−1−ブテン共重合体樹脂の質量比が55/45〜95/5の範囲である接着剤が好ましく用いられ、表面樹脂層(2)下面の印刷層(4)と基材層(3)とが十分な接着強度で接着一体化され、各層間で剥離することのないオレフィン系床材となる。 Next, as an adhesive constituting the adhesive layer (5) on the lower surface of the printed layer (4), a carboxylic acid-modified propylene-1-butene copolymer resin and a carboxylic acid-modified propylene-ethylene-1- It contains butene copolymer resin, and the mass ratio of carboxylic acid modified propylene-1-butene copolymer resin / carboxylic acid modified propylene-ethylene-1-butene copolymer resin is in the range of 55/45 to 95/5. An olefin that is preferably used, and the printed layer (4) on the lower surface of the surface resin layer (2) and the base material layer (3) are bonded and integrated with sufficient adhesive strength, and does not peel off between the layers. It becomes a system flooring.
前記カルボン酸変性プロピレン−1−ブテン共重合体樹脂としては、マレイン酸変性プロピレン−1−ブテン共重合体樹脂を用いるのが好ましく、この場合には印刷層(4)と基材層(3)との接着強度をさらに向上させることができる。また、前記カルボン酸変性プロピレン−エチレン−1−ブテン共重合体樹脂としては、マレイン酸変性プロピレン−エチレン−1−ブテン共重合体樹脂を用いるのが好ましく、この場合には印刷層(4)と基材層(3)との接着強度をさらに向上させることができる。前記カルボン酸変性に用いられるカルボン酸としては、マレイン酸以外に、例えばアクリル酸、メタアクリル酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸等を例示できる。 As the carboxylic acid-modified propylene-1-butene copolymer resin, a maleic acid-modified propylene-1-butene copolymer resin is preferably used. In this case, the printing layer (4) and the base material layer (3) are used. The adhesive strength can be further improved. The carboxylic acid-modified propylene-ethylene-1-butene copolymer resin is preferably a maleic acid-modified propylene-ethylene-1-butene copolymer resin. In this case, the printing layer (4) and The adhesive strength with the base material layer (3) can be further improved. Examples of the carboxylic acid used for the carboxylic acid modification include acrylic acid, methacrylic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, maleic anhydride, citraconic anhydride, phthalic anhydride, and the like. It can be illustrated.
前記接着剤層(5)の付与量(目付量)は1〜10g/m2(固形分)に設定されるのが好ましい。1g/m2以上であることで十分な接着強度を確保できると共に10g/m2以下であることで軽量性を維持できる。中でも、前記接着剤層(5)の付与量は2〜5g/m2(固形分)に設定されるのが特に好ましい。また、前記接着剤層(5)の形成手法は、特に限定されるものではないが、例えば印刷法、ドライラミネート法、ウェットラミネート法などが挙げられる。 It is preferable that the application amount (weight per unit area) of the adhesive layer (5) is set to 1 to 10 g / m 2 (solid content). Sufficient adhesive strength can be ensured by being 1 g / m 2 or more, and lightweight can be maintained by being 10 g / m 2 or less. Especially, it is especially preferable that the application amount of the adhesive layer (5) is set to 2 to 5 g / m 2 (solid content). Moreover, the formation method of the said adhesive bond layer (5) is not specifically limited, For example, the printing method, the dry laminating method, the wet laminating method etc. are mentioned.
前記基材層(3)はオレフィン系樹脂と鱗片状の無機物を含有してなる。前記オレフィン系樹脂としては、特に限定されるものではないが、例えばポリプロピレン、ポリエチレン、エチレン−酢酸ビニル共重合体樹脂、エチレン−αオレフィン共重合体樹脂、オレフィン系熱可塑性エラストマー等が挙げられる。また、無機物を樹脂中に混合し寸法安定性を得ることはよく知られる技術であるが、本発明では特に、平面方向に配向性があり、平面方向の線膨張率に影響の大きい鱗片状の無機物が好ましい。本発明では該基材層(3)の線膨張率は、5×10−5×K−1以下に制限される。5×10−5×K−1を超えると、膨れの要因となる熱応力が大きくなるので好ましくない。より好ましい基材層の線膨張率は、2×10−5×K−1以下であって、鱗片状の無機物や炭酸カルシウム等の充填材の配合量の調整で線膨張率を調整することができる。 The said base material layer (3) contains an olefin resin and a scale-like inorganic substance. The olefin-based resin is not particularly limited, and examples thereof include polypropylene, polyethylene, ethylene-vinyl acetate copolymer resin, ethylene-α olefin copolymer resin, and olefin-based thermoplastic elastomer. In addition, it is a well-known technique to obtain dimensional stability by mixing an inorganic substance in a resin, but in the present invention, in particular, a scaly shape having orientation in the plane direction and having a large influence on the linear expansion coefficient in the plane direction. Inorganic substances are preferred. In this invention, the linear expansion coefficient of this base material layer (3) is restrict | limited to 5 * 10 <-5> * K <-1> or less. If it exceeds 5 × 10 −5 × K −1 , the thermal stress that causes swelling is increased, which is not preferable. More preferably, the linear expansion coefficient of the base material layer is 2 × 10 −5 × K −1 or less, and the linear expansion coefficient can be adjusted by adjusting the blending amount of fillers such as scale-like inorganic substances and calcium carbonate. it can.
さらに、前記基材層(3)は、単層からなる構造であっても良いし、複数層が積層された積層構造であっても良い。例えば、図2において、前記基材層(3)を前記印刷層(4)に近い第1基材層(3−1)と、第1基材層(3−1)に積層する第2基材層(3−2)の二層構造からなり、前記第1基材層(3−1)は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、前記第2基材層(3−2)は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層を積層一体化するので、第1基材層(3−1)は、第2基材層(3−2)よりも線膨張率が小さく、第2基材層(3−2)が膨張し伸びるのを第1基材層(3−1)が妨げるので膨れや突き上げ、反りの現象を防ぐことができる。第1基材層(3−1)の線膨張率が5×10−5×K−1を超えると、第2基材層(3−2)の線膨張率が10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとしても、第1基材層(3−1)と第2基材層(3−2)との線膨張率の差が小さくなるので、第2基材層(3−2)が膨張するのを第1基材層(3−1)が妨げる力が弱くなり、反りが発生するので好ましくなく、第1基材層(3−1)の線膨張率が5×10−5×K−1を超え、かつ第2基材層(3−2)の線膨張率が12×10−5×K−1を超えると膨れの要因となる熱応力が大きくなるので好ましくない。 Further, the base material layer (3) may have a single layer structure or a laminated structure in which a plurality of layers are laminated. For example, in FIG. 2, the base material layer (3) is laminated on the first base material layer (3-1) close to the print layer (4) and the first base material layer (3-1). It consists of a two-layer structure of a material layer (3-2), and the first base material layer (3-1) has a linear expansion coefficient of 5 × 10 −5 × K −1 or less by adding a scaly inorganic substance, The tensile elastic modulus is 100 to 600 MPa, and the second base material layer (3-2) has a linear expansion coefficient of 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 and a tensile elastic modulus. Since the layers of 100 to 200 MPa are laminated and integrated, the first base material layer (3-1) has a smaller linear expansion coefficient than the second base material layer (3-2), and the second base material layer (3 -2) is prevented from expanding and extending by the first base material layer (3-1), so that the phenomenon of swelling, pushing up and warping can be prevented. When the linear expansion coefficient of the first base material layer (3-1) exceeds 5 × 10 −5 × K −1 , the linear expansion coefficient of the second base material layer (3-2) is 10 × 10 −5 × K. −1 to 12 × 10 −5 × K −1 , and the tensile modulus of elasticity is set to 100 to 200 MPa, the linear expansion coefficient of the first base material layer (3-1) and the second base material layer (3-2) Since the difference becomes small, the force that the first base material layer (3-1) prevents the second base material layer (3-2) from expanding becomes weak and warpage occurs, which is not preferable. The linear expansion coefficient of the layer (3-1) exceeds 5 × 10 −5 × K −1 and the linear expansion coefficient of the second base material layer (3-2) exceeds 12 × 10 −5 × K −1 . This is not preferable because the thermal stress that causes swelling is increased.
また、例えば、図3において、前記基材層(3)を前記印刷層(4)に近い第1基材層(3−2)と、第1基材層(3−2)に積層する第2基材層(3−1)と、第2基材層(3−1)に積層する第3基材層(3−3)の三層構造からなり、前記第1基材層(3−2)は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとし、前記第2基材層(3−1)は、鱗片状の無機物を添加して線膨張率を5×10−5×K−1以下、引っ張り弾性率を100〜600MPaとし、前記第3基材層(3−3)は、線膨張率を10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとした層を積層一体化するので、第2基材層(3−1)は、第1基材層(3−2)と第3基材層(3−3)より線膨張率が小さく、第1基材層(3−2)と第3基材層(3−3)が膨張して伸びるのを積層面の両面から妨げるので膨れや突き上げ、反りの現象を防ぐことができる。第2基材層(3−1)の線膨張率が5×10−5×K−1を超えると、第1基材層(3−2)と第3基材層(3−3)の線膨張率が10×10−5×K−1〜12×10−5×K−1、引っ張り弾性率を100〜200MPaとしても、第2基材層(3−1)と第1基材層(3−2)と第3基材層(3−3)との線膨張率の差が小さくなるので、第1基材層(3−2)と第3基材層(3−3)が膨張するのを第2基材層(3−1)が妨げる力が弱くなり、反りが発生するので好ましくなく、第2基材層(3−1)の線膨張率が5×10−5×K−1を超え、かつ第1基材層(3−2)と第3基材層(3−3)との線膨張率が12×10−5×K−1を超えると膨れの要因となる熱応力が大きくなるので好ましくない。 For example, in FIG. 3, the base material layer (3) is laminated on the first base material layer (3-2) close to the print layer (4) and the first base material layer (3-2). It consists of a three-layer structure of two base material layers (3-1) and a third base material layer (3-3) laminated on the second base material layer (3-1), and the first base material layer (3- 2) The linear expansion coefficient is 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 , the tensile elastic modulus is 100 to 200 MPa, and the second base material layer (3-1) is A scale-like inorganic substance is added, the linear expansion coefficient is 5 × 10 −5 × K −1 or less, the tensile elastic modulus is 100 to 600 MPa, and the third base material layer (3-3) has a linear expansion coefficient of 10 X10 −5 × K −1 to 12 × 10 −5 × K −1 , a layer having a tensile elastic modulus of 100 to 200 MPa is laminated and integrated, so the second base material layer (3-1) is the first Base material layer 3-2) and the third base material layer (3-3) have a smaller linear expansion coefficient, and the first base material layer (3-2) and the third base material layer (3-3) expand and expand. Since it interferes from both sides of the laminated surface, it is possible to prevent the phenomenon of swelling, pushing up and warping. When the linear expansion coefficient of the second base material layer (3-1) exceeds 5 × 10 −5 × K −1 , the first base material layer (3-2) and the third base material layer (3-3) Even if the linear expansion coefficient is 10 × 10 −5 × K −1 to 12 × 10 −5 × K −1 and the tensile elastic modulus is 100 to 200 MPa, the second base material layer (3-1) and the first base material layer are used. Since the difference in coefficient of linear expansion between (3-2) and the third base material layer (3-3) becomes small, the first base material layer (3-2) and the third base material layer (3-3) Since the force which the 2nd base material layer (3-1) prevents expanding becomes weak and curvature generate | occur | produces, it is not preferable, and the linear expansion coefficient of the 2nd base material layer (3-1) is 5 * 10 <-5> *. When K- 1 is exceeded and the linear expansion coefficient between the first base material layer (3-2) and the third base material layer (3-3) exceeds 12 × 10 −5 × K −1 , Since the thermal stress which becomes becomes large, it is not preferable.
なお、鱗片状の無機物を添加するときに、オレフィン系樹脂との密着性をよくするために、アミノシランで鱗片状の無機物の表面処理を施すことが好ましい。アミノシラン溶液に鱗片状の無機物を浸漬し、取り出した後110〜120℃の温度で5〜10分乾燥すればよい。 In addition, when adding scale-like inorganic substance, in order to improve adhesiveness with olefin resin, it is preferable to perform the surface treatment of scale-like inorganic substance with aminosilane. What is necessary is just to dry for 5 to 10 minutes at the temperature of 110-120 degreeC after immersing a scale-like inorganic substance in an aminosilane solution and taking out.
鱗片状の無機物としては、ガラス及び/またはタルクの鱗片状の無機物であるのが好ましい。中でも鱗片状のガラスは線膨張率が特に小さいので好ましい。また、前記鱗片状の無機物の添加量は、基材層の樹脂重量100重量部に対して1〜20重量部添加するのが好ましい。1重量部を下回る添加量では基材層(3)の線膨張率が大きくなり好ましくない。また、20重量部を上回る添加量では基材層(3)が、固く、脆くなり、床材として使用できないものとなってしまう。 The scale-like inorganic substance is preferably glass and / or talc scale-like inorganic substance. Of these, scaly glass is preferable because it has a particularly small linear expansion coefficient. Moreover, it is preferable that 1-20 weight part of addition amounts of the said scale-like inorganic substance are added with respect to 100 weight part of resin weights of a base material layer. When the amount is less than 1 part by weight, the linear expansion coefficient of the base material layer (3) is increased, which is not preferable. Moreover, when the addition amount exceeds 20 parts by weight, the base material layer (3) becomes hard and brittle and cannot be used as a flooring material.
また、鱗片状の無機物の形状としての厚さは10μm以下で、長径が100〜600μmであることが好ましい。厚さが10μmを超えると径と厚みとの比(アスペクト比)が小さくなり、目的の線膨張率が得られなくなるので好ましくない。また、鱗片状の無機物の長径が100μmを下回ると基材層(3)の線膨張率が5×10−5×K−1を超え、600μmを上回ると樹脂との混練時に砕けやすくなり好ましくない。 Moreover, it is preferable that the thickness as a shape of a scale-like inorganic substance is 10 micrometers or less, and a major axis is 100-600 micrometers. If the thickness exceeds 10 μm, the ratio between the diameter and the thickness (aspect ratio) becomes small, and the desired linear expansion coefficient cannot be obtained. In addition, when the major axis of the scale-like inorganic substance is less than 100 μm, the linear expansion coefficient of the base material layer (3) exceeds 5 × 10 −5 × K −1, and when it exceeds 600 μm, it tends to be crushed during kneading with the resin. .
さらに別の形態として(図5参照)、基材層(3)を二層以上の積層構造とし、少なくとも一の層間にガラス繊維からなる布帛(ガラス繊維層3−6)が積層されている構成を挙げることができる。ガラス繊維は、熱に対する変化が特に少ない素材で、基材層(3)中に積層することによってさらに熱に対する挙動の安定した線膨張率の低い床材(1)とすることができる。ガラス繊維からなる布帛としては、織物、編物、不織布等特に限定されない。 Furthermore, as another form (refer FIG. 5), the base material layer (3) is made into the laminated structure of two or more layers, and the structure (glass fiber layer 3-6) which consists of a glass fiber is laminated | stacked between at least 1 layer. Can be mentioned. Glass fiber is a material that has a particularly small change with respect to heat, and can be made into a flooring material (1) having a low coefficient of linear expansion with a more stable behavior against heat by being laminated in the base material layer (3). The fabric made of glass fiber is not particularly limited, such as woven fabric, knitted fabric, and nonwoven fabric.
前記基材層(3)は、単層からなる構造であっても良いし、複数層が積層された積層構造であっても良いし、前記基材層(3)における表面側の位置には隠蔽樹脂層(3−4)が設けられるのが好ましく、このような隠蔽樹脂層(3−4)が印刷層(4)の背面側に配置されることで、印刷層(4)の模様、図柄等が鮮明に且つコントラスト良く視認することができる。前記隠蔽樹脂層(3−4)としては、例えば、オレフィン系樹脂に着色顔料、酸化防止剤、紫外線吸収剤が混合された組成物からなる隠蔽樹脂層を例示できるが、特にこのような構成に限定されるものではない。(図4、5参照) The base material layer (3) may have a single-layer structure, a laminated structure in which a plurality of layers are laminated, or a position on the surface side of the base material layer (3). It is preferable that a concealing resin layer (3-4) is provided, and by arranging such a concealing resin layer (3-4) on the back side of the printing layer (4), the pattern of the printing layer (4), Designs and the like can be visually recognized with high contrast. Examples of the concealing resin layer (3-4) include a concealing resin layer made of a composition in which a color pigment, an antioxidant, and an ultraviolet absorber are mixed in an olefin resin. It is not limited. (See Figs. 4 and 5)
また、別の実施形態では(図4、5参照)、繊維層(3−5)として繊維層が前記基材層(3)に含浸された状態に積層されたものを挙げることができる。該繊維層(3−5)の繊維の少なくとも一部を基材層(3)の最下層裏面に露出させることで、繊維のアンカー効果により床との接着強度を増すことができる。繊維層(3−5)としては、織物、編物、不織布、あるいは繊維の種類等特に限定されないが、価格や基材層への含浸のしやすさからポリエステル織布が好ましく使用される。 Moreover, in another embodiment (refer FIG. 4, 5), what was laminated | stacked in the state which the fiber layer impregnated to the said base material layer (3) as a fiber layer (3-5) can be mentioned. By exposing at least a part of the fibers of the fiber layer (3-5) to the bottom surface of the lowermost layer of the base material layer (3), the adhesive strength with the floor can be increased by the anchor effect of the fibers. The fiber layer (3-5) is not particularly limited, such as a woven fabric, a knitted fabric, a nonwoven fabric, or a fiber type, but a polyester woven fabric is preferably used because of its price and ease of impregnation into the base material layer.
前記基材層(3)の厚さは、特に限定されないが、1〜5mmに設定されるのが好ましい。1mm以上であることで寸法安定性が得られると共に、5mm以下であることで床材(1)としての軽量性を維持し良好なハンドリング性を確保することができる。さらに、前記基材層(3)の厚さは、特に限定されないが、床材(1)の総厚の60〜85%に設定されるのが好ましく、65〜75%に設定されるのがさらに好ましい。また、図2においては、第1基材層の厚さは、床材(1)の総厚の10〜25%に設定されるのが好ましく、15〜20%に設定されるのがさらに好ましい。第2基材層の厚さは、床材(1)の総厚の50〜60%に設定されるのが好ましく、53〜58%に設定されるのがさらに好ましい。図3においては、第1基材層の厚さは、床材(1)の総厚の5%以下に設定されるのが好ましく、3%以下に設定されるのがさらに好ましい。第2基材層の厚さは、床材(1)の総厚の10〜20%に設定されるのが好ましく、15〜17%に設定されるのがさらに好ましい。第3基材層の厚さは、床材(1)の総厚の50〜60%に設定されるのが好ましく、51〜 53%に設定されるのがさらに好ましい。このように設定することで、床材(1)の膨れや突き上げ、反りの発生を効果的に防止することができる。 Although the thickness of the said base material layer (3) is not specifically limited, It is preferable to set to 1-5 mm. When it is 1 mm or more, dimensional stability is obtained, and when it is 5 mm or less, the lightness as the flooring material (1) can be maintained and good handling properties can be secured. Furthermore, the thickness of the base material layer (3) is not particularly limited, but is preferably set to 60 to 85% of the total thickness of the flooring (1), and is set to 65 to 75%. Further preferred. In FIG. 2, the thickness of the first base material layer is preferably set to 10 to 25% of the total thickness of the flooring (1), more preferably set to 15 to 20%. . The thickness of the second base material layer is preferably set to 50 to 60% of the total thickness of the flooring (1), and more preferably set to 53 to 58%. In FIG. 3, the thickness of the first base material layer is preferably set to 5% or less of the total thickness of the flooring material (1), more preferably set to 3% or less. The thickness of the second base material layer is preferably set to 10 to 20% of the total thickness of the flooring (1), and more preferably set to 15 to 17%. The thickness of the third base material layer is preferably set to 50 to 60% of the total thickness of the flooring material (1), and more preferably set to 51 to 53%. By setting in this way, it is possible to effectively prevent the floor material (1) from being swollen or pushed up and warped.
なお、前記表面樹脂層(2)、基材層(3)および接着剤層(5)のいずれにも、酸化防止剤、紫外線吸収剤、滑剤、安定剤、光安定剤、難燃剤、着色剤、帯電防止剤、充填剤等の各種添加剤を適宜含有せしめても良い。 In addition, in any of the surface resin layer (2), the base material layer (3) and the adhesive layer (5), an antioxidant, an ultraviolet absorber, a lubricant, a stabilizer, a light stabilizer, a flame retardant, and a colorant. In addition, various additives such as an antistatic agent and a filler may be appropriately contained.
この発明のオレフィン系床材(1)の厚さは、特に限定されないが、通常2〜5mmが一般的である。また、タイル状床材として構成しても良いし、シート状床材(例えば幅600〜2500mm程度の長尺シート等)として構成しても良く、特に限定されない。 The thickness of the olefin flooring (1) of the present invention is not particularly limited, but is usually 2 to 5 mm. Moreover, you may comprise as a tile-like flooring, and you may comprise as a sheet-like flooring (for example, elongate sheet | seat etc. of width about 600-2500 mm), It does not specifically limit.
また、本発明のオレフィン系床材(1)の曲げ弾性率が200MPa以下であることが好ましい。曲げ弾性率が200MPaを超えると床材が硬くなり施工性が低下し好ましくない。さらに、本発明のオレフィン系床材(1)の残留へこみ率が8.0%以下であることが好ましい。残留へこみ率が8.0%を超えるとヒール跡が目視で確認できるようになり好ましくない。さらに好ましい床材の曲げ弾性率は150MPa以下で、残留へこみ率は6%以下である。 Moreover, it is preferable that the bending elastic modulus of the olefin type flooring material (1) of the present invention is 200 MPa or less. When the flexural modulus exceeds 200 MPa, the flooring material becomes hard and the workability is lowered, which is not preferable. Furthermore, it is preferable that the residual dent rate of the olefin flooring (1) of the present invention is 8.0% or less. If the residual dent rate exceeds 8.0%, the heel mark can be visually confirmed, which is not preferable. Further, the flexural modulus of the flooring is preferably 150 MPa or less, and the residual dent rate is 6% or less.
上記構成に係るオレフィン系床材(1)は、例えば次のようにして製造される。まず、オレフィン系樹脂を含有してなり、引っ張り弾性率を70〜700MPaとした表面樹脂層(2)の下面に合成樹脂を含有してなる印刷インキを印刷して印刷層(4)を形成する。印刷インキとして、例えばウレタン系樹脂に顔料が添加混合されたインキを用いる。 The olefin flooring (1) according to the above configuration is manufactured, for example, as follows. First, a printing layer (4) is formed by printing a printing ink containing a synthetic resin on the lower surface of a surface resin layer (2) containing an olefin resin and having a tensile elastic modulus of 70 to 700 MPa. . As the printing ink, for example, an ink in which a pigment is added and mixed in a urethane resin is used.
次に、前記印刷層(4)の下面に、カルボン酸変性プロピレン−1−ブテン共重合体樹脂/カルボン酸変性プロピレン−エチレン−1−ブテン共重合体樹脂が55/45〜95/5の質量比範囲で混合されてなる接着剤層(5)を塗布する。この接着剤層(5)は、通常、トルエン、メチルエチルケトン、イソプロピルアルコール、エタノール、キシレン等の有機溶媒で希釈されて溶液状態で塗布される。 Next, the mass of the carboxylic acid-modified propylene-1-butene copolymer resin / carboxylic acid-modified propylene-ethylene-1-butene copolymer resin is 55/45 to 95/5 on the lower surface of the printing layer (4). An adhesive layer (5) mixed in a specific range is applied. This adhesive layer (5) is usually diluted with an organic solvent such as toluene, methyl ethyl ketone, isopropyl alcohol, ethanol, xylene and applied in a solution state.
次いで、前記接着剤層(5)の塗布面に、オレフィン系樹脂を含有してなる線膨張率5×10−5×K−1以下の基材層(3)を重ね合わせて接着して積層体を得る。通常、加熱加圧することにより接着せしめる。 Next, a base material layer (3) having a linear expansion coefficient of 5 × 10 −5 × K −1 or less containing an olefin resin is superposed on the coated surface of the adhesive layer (5) and laminated. Get the body. Usually, it is adhered by heating and pressing.
しかる後、前記積層体を加熱してアニール処理する。このようなアニール処理を施すことによって、床材(1)に内在する歪みを十分に取り除くことができる。前記加熱の温度は80〜120℃に設定するのが好ましい。また加熱時間(アニール処理時間)は2〜48時間に設定するのが好ましい。 Thereafter, the laminate is heated and annealed. By applying such an annealing treatment, the distortion inherent in the floor material (1) can be sufficiently removed. The heating temperature is preferably set to 80 to 120 ° C. The heating time (annealing time) is preferably set to 2 to 48 hours.
なお、この発明に係る床材(1)は、上記例示の製造方法で製造されるものに特に限定されるものではない。 In addition, the flooring (1) according to the present invention is not particularly limited to that manufactured by the above-described exemplary manufacturing method.
さらに具体的に本発明に係る床材の製造方法を記す。 <実施例1> 表1に示すように、数平均分子量が6000の非晶性プロピレン−エチレン共重合体(非晶性ポリα−オレフィン樹脂)10重量部、数平均分子量が160000のスチレン−エチレン−ブタジエン−スチレン共重合体樹脂(SEBS)55重量部、ポリプロピレン35重量部、鱗片状のガラス(厚さ5μm、長径300μm)5重量部、炭酸カルシウム200重量部、酸化防止剤(ヒンダードフェノール系酸化防止剤)0.4重量部、滑剤(リン酸エステル系のもの)1.2重量部からなる組成物をバンバリーミキサーで混練し、カレンダー成形機を用いて厚さ1.8mmの基材層(3)を作成した。基材層(3)の線膨張率は2×10−5×K−1であった。 More specifically, a method for producing a flooring according to the present invention will be described. <Example 1> As shown in Table 1, 10 parts by weight of an amorphous propylene-ethylene copolymer (amorphous poly α-olefin resin) having a number average molecular weight of 6000, and styrene-ethylene having a number average molecular weight of 160000. -55 parts by weight of butadiene-styrene copolymer resin (SEBS), 35 parts by weight of polypropylene, 5 parts by weight of scaly glass (thickness 5 μm, major axis 300 μm), 200 parts by weight of calcium carbonate, antioxidant (hindered phenol type) A composition comprising 0.4 parts by weight of an antioxidant and 1.2 parts by weight of a lubricant (phosphate ester type) is kneaded with a Banbury mixer, and a substrate layer having a thickness of 1.8 mm using a calendar molding machine (3) was created. The linear expansion coefficient of the base material layer (3) was 2 × 10 −5 × K −1 .
一方、表面樹脂層(2)として、最表層/中間層/最下層=ポリプロピレン(PP)樹脂層/水添スチレン−ブタジエン−ラバー(HSBR)樹脂層/ポリプロピレン(PP)樹脂層の3層構造(各層は同厚さ)からなり、厚さ600μmで、引っ張り弾性率が600MPaの表面樹脂層(2)を用意し、裏面にグラビア印刷により所定の柄を印刷して、印刷層(4)を形成し、さらにその下面に、接着剤(マレイン酸変性プロピレン−1−ブテン共重合体樹脂/マレイン酸変性プロピレン−エチレン−1−ブテン共重合体樹脂=90/10)を3g/m2塗布し接着剤層(5)を形成させた。 On the other hand, as the surface resin layer (2), a three-layer structure of outermost layer / intermediate layer / lowermost layer = polypropylene (PP) resin layer / hydrogenated styrene-butadiene-rubber (HSBR) resin layer / polypropylene (PP) resin layer ( Each layer has the same thickness), a surface resin layer (2) having a thickness of 600 μm and a tensile modulus of 600 MPa is prepared, and a predetermined pattern is printed on the back surface by gravure printing to form a printed layer (4) and, further on the lower surface thereof, the adhesive (maleic acid-modified propylene-1-butene copolymer resin / maleic acid-modified propylene - ethylene-1-butene copolymer resin = 90/10) and 3 g / m 2 coated adhesive The agent layer (5) was formed.
次に、前記接着剤層(5)を形成した表面樹脂層(2)に基材層(3)を重ねて接着させて、厚さ2.4mmの床材を得た。こうして得られた床材の曲げ弾性率が100MPaで、残留へこみ率が4.0%であった。さらに、後述する方法で各種性能試験を行い、その評価結果を表3に記した。 Next, the base material layer (3) was laminated and adhered to the surface resin layer (2) on which the adhesive layer (5) was formed, to obtain a flooring material having a thickness of 2.4 mm. The flooring material thus obtained had a flexural modulus of 100 MPa and a residual dent rate of 4.0%. Furthermore, various performance tests were conducted by the methods described later, and the evaluation results are shown in Table 3.
<実施例2> 実施例1と同様にして、厚さ0.5mmの図2における基材層(3−1)を作成した。基材層(3−1)の線膨張率は2×10−5×K−1、引っ張り弾性率は400MPaであった。次に、基材層(3−1)の組成で鱗片状のガラス(厚さ5μm、長径300μm)を添加せずに作成した以外は基材層(3−1)と同様に作成し、厚さ1.3mmの図2における基材層(3−2)を作成した。基材層(3−2)の線膨張率は12×10−5×K−1、引っ張り弾性率は150MPaであった。次に、基材層(3−1)と基材層(3−2)とをカレンダー成形機を用いて積層させ厚さ1.8mmの図2における基材層(3)を得た。 <Example 2> In the same manner as in Example 1, a base material layer (3-1) in Fig. 2 having a thickness of 0.5 mm was prepared. The linear expansion coefficient of the base material layer (3-1) was 2 × 10 −5 × K −1 , and the tensile elastic modulus was 400 MPa. Next, the substrate layer (3-1) was prepared in the same manner as the substrate layer (3-1) except that it was prepared without adding scaly glass (thickness 5 μm, major axis 300 μm). A base material layer (3-2) in FIG. 2 having a thickness of 1.3 mm was prepared. The linear expansion coefficient of the base material layer (3-2) was 12 × 10 −5 × K −1 , and the tensile elastic modulus was 150 MPa. Next, the base material layer (3-1) and the base material layer (3-2) were laminated using a calendar molding machine to obtain the base material layer (3) in FIG. 2 having a thickness of 1.8 mm.
一方、表面樹脂層(2)、印刷層(4)、接着剤層(5)は実施例1と同様にして形成させた。次に、前記接着剤層(5)を形成した表面樹脂層(2)に基材層(3−1)側が表面樹脂層(2)側となるように基材層(3)を重ねて接着させて、厚さ2.4mmの床材を得た。こうして得られた床材の曲げ弾性率が80MPaで、残留へこみ率が6.0%であった。さらに、後述する方法で各種性能試験を行い、その評価結果を表3に記した。 On the other hand, the surface resin layer (2), the printing layer (4), and the adhesive layer (5) were formed in the same manner as in Example 1. Next, the base material layer (3) is laminated and bonded to the surface resin layer (2) on which the adhesive layer (5) is formed so that the base material layer (3-1) side is the surface resin layer (2) side. Thus, a flooring material having a thickness of 2.4 mm was obtained. The flooring material thus obtained had a flexural modulus of 80 MPa and a residual dent rate of 6.0%. Furthermore, various performance tests were conducted by the methods described later, and the evaluation results are shown in Table 3.
<実施例3> 実施例1と同様にして、厚さ0.5mmの図3における基材層(3−1)を作成した。基材層(3−1)の線膨張率は2×10−5×K−1、引っ張り弾性率は400MPaであった。次に、基材層(3−1)の組成で鱗片状のガラス(厚さ5μm、長径300μm)を添加せずに作成した以外は基材層(3−1)と同様に作成し、厚さ0.3mmの図3における基材層(3−2)と厚さ1.0mmの図3における基材層(3−3)とをそれぞれ作成した。基材層(3−2)と基材層(3−3)の線膨張率はともに12×10−5×K−1、引っ張り弾性率は150MPaであった。次に、基材層(3−2)、基材層(3−1)と基材層(3−3)とをこの積層順にカレンダー成形機を用いて積層させ厚さ1.8mmの図3における基材層(3)を得た。 <Example 3> In the same manner as in Example 1, a base material layer (3-1) in Fig. 3 having a thickness of 0.5 mm was prepared. The linear expansion coefficient of the base material layer (3-1) was 2 × 10 −5 × K −1 , and the tensile elastic modulus was 400 MPa. Next, the substrate layer (3-1) was prepared in the same manner as the substrate layer (3-1) except that it was prepared without adding scaly glass (thickness 5 μm, major axis 300 μm). A base material layer (3-2) in FIG. 3 having a thickness of 0.3 mm and a base material layer (3-3) in FIG. 3 having a thickness of 1.0 mm were respectively prepared. Both the base material layer (3-2) and the base material layer (3-3) had a linear expansion coefficient of 12 × 10 −5 × K −1 and a tensile elastic modulus of 150 MPa. Next, the base material layer (3-2), the base material layer (3-1), and the base material layer (3-3) are stacked in this stacking order using a calendering machine, and the thickness is 1.8 mm. The base material layer (3) was obtained.
一方、表面樹脂層(2)、印刷層(4)、接着剤層(5)は実施例1と同様にして形成させた。次に、前記接着剤層(5)を形成した表面樹脂層(2)に基材層(3−1)側が表面樹脂層(2)側となるように基材層(3)を重ねて接着させて、厚さ2.4mmの床材を得た。こうして得られた床材の曲げ弾性率が70MPaで、残留へこみ率が6.0%であった。さらに、後述する方法で各種性能試験を行い、その評価結果を表3に記した。 On the other hand, the surface resin layer (2), the printing layer (4), and the adhesive layer (5) were formed in the same manner as in Example 1. Next, the base material layer (3) is laminated and bonded to the surface resin layer (2) on which the adhesive layer (5) is formed so that the base material layer (3-1) side is the surface resin layer (2) side. Thus, a flooring material having a thickness of 2.4 mm was obtained. The flooring material thus obtained had a flexural modulus of 70 MPa and a residual dent rate of 6.0%. Furthermore, various performance tests were conducted by the methods described later, and the evaluation results are shown in Table 3.
<実施例4〜8> 各層の組成、厚さ等の条件を表1に示す構成とした以外は、実施例1と同様にして床材を得、各種性能試験を行い、その評価結果を表3に記した。なお、実施例6、7では、隠蔽層を基材層上面に積層している。また、実施例4、5、6、8では、繊維層として寒冷紗(ポリエステル織布、目付40g/m2)を基材層に含浸させて積層し、繊維の少なくとも一部を基材層の最下層裏面に露出させ床との接着強度を増した構成にした。さらに、実施例8では、基材層にガラス繊維からなる不織布(目付40g/m
2)を挿入し、線膨張率の低い(線膨張率=1×10−5×K−1)基材層としている。
<Examples 4-8> Except having set it as the structure shown in Table 1 about conditions, such as a composition of each layer, thickness, a flooring is obtained like Example 1, various performance tests are performed, and the evaluation result is shown. 3. In Examples 6 and 7, the concealing layer is laminated on the upper surface of the base material layer. Further, in Examples 4, 5, 6, and 8, as a fiber layer, cold chill (polyester woven fabric, basis weight 40 g / m 2 ) was impregnated and laminated, and at least a part of the fibers was the most of the base layer. It was exposed to the lower surface of the lower layer to increase the adhesive strength with the floor. Furthermore, in Example 8, the base material layer is a nonwoven fabric made of glass fibers (weight per unit area: 40 g / m
2 ) is inserted to form a base material layer having a low linear expansion coefficient (linear expansion coefficient = 1 × 10 −5 × K −1 ).
<比較例1> 実施例1において基材層(3)として、鱗片状のガラス(厚さ5μm、長径300μm)0.5重量部とし線膨張率を8×10−5×K−1とした以外は、実施例1と同様にして床材を得た。各種性能試験を行い、その結果を表3に記した。 As the base material layer (3) in <Comparative Example 1> Example 1, scaly glass (thickness 5 [mu] m, diameter 300 [mu] m) 0.5 parts by weight and coefficient of linear expansion and 8 × 10 -5 × K -1 Except for this, a flooring was obtained in the same manner as in Example 1. Various performance tests were conducted and the results are shown in Table 3.
<比較例2> 実施例2において基材層(3−1)を、鱗片状のガラス(厚さ5μm、長径300μm)0.5重量部とした以外は、実施例2と同様にして床材を得た。基材層(3−1)の線膨張率は8×10−5×K−1、引っ張り弾性率は200MPaであった。各種性能試験を行い、その結果を表3に記した。 <Comparative Example 2> A flooring material in the same manner as in Example 2 except that the base material layer (3-1) in Example 2 is 0.5 parts by weight of scaly glass (thickness 5 μm, major axis 300 μm). Got. The linear expansion coefficient of the base material layer (3-1) was 8 × 10 −5 × K −1 , and the tensile elastic modulus was 200 MPa. Various performance tests were conducted and the results are shown in Table 3.
<比較例3> 実施例3において基材層(3−1)を、鱗片状のガラス(厚さ5μm、長径300μm)0.5重量部とした以外は、実施例3と同様にして床材を得た。基材層(3−1)の線膨張率は8×10−5×K−1、引っ張り弾性率は200MPaであった。各種性能試験を行い、その結果を表3に記した。 <Comparative Example 3> A flooring material in the same manner as in Example 3 except that the base material layer (3-1) in Example 3 is 0.5 parts by weight of scaly glass (thickness 5 μm, major axis 300 μm). Got. The linear expansion coefficient of the base material layer (3-1) was 8 × 10 −5 × K −1 , and the tensile elastic modulus was 200 MPa. Various performance tests were conducted and the results are shown in Table 3.
<比較例4〜7> 各層の組成、厚さ等の条件を表2に示す構成とした以外は、実施例1と同様にして床材を得、各種性能試験を行い、その評価結果を表3に記した。 <Comparative Examples 4-7> Except having set it as the structure shown in Table 2 about conditions, such as a composition of each layer, thickness, flooring was obtained like Example 1, various performance tests were done, and the evaluation result is shown. 3.
表1〜3からわかるように、表面樹脂層の引張弾性率と線膨張率の規定範囲にある実施例1〜8の床材は、膨れ防止性、耐摩耗性、耐汚染性、寸法安定性、施工性、のいずれにも優れていた。これに対し、引張弾性率の規定範囲を上回っていた比較例6および7では、膨れ防止性に問題があり、曲げ弾性率も大きくなっていた。また、引張弾性率の規定範囲を下回っていた比較例5では、残留へこみ率が基準を満足することができなかった。なお、上記のようにして得られた各床材に対する各種性能試験の方法は以下のように行った。 As can be seen from Tables 1 to 3, the flooring materials of Examples 1 to 8 within the specified ranges of the tensile modulus and the linear expansion coefficient of the surface resin layer are swell prevention, abrasion resistance, contamination resistance, and dimensional stability. And workability were excellent. On the other hand, in Comparative Examples 6 and 7, which exceeded the specified range of the tensile elastic modulus, there was a problem in the swelling prevention property, and the bending elastic modulus was also large. Further, in Comparative Example 5 where the tensile modulus was below the specified range, the residual dent rate could not satisfy the standard. In addition, the method of the various performance tests with respect to each flooring obtained as mentioned above was performed as follows.
<引っ張り弾性率測定方法>JIS K6251に準じて測定した。引っ張り速度は、100mm/minとした。 <Measurement method of tensile modulus> Measured according to JIS K6251. The pulling speed was 100 mm / min.
<曲げ弾性率測定方法>JISK7171に準じて測定した。試験速度は、1.0mm/minとした。 <Method for measuring flexural modulus> Measured according to JISK7171. The test speed was 1.0 mm / min.
<線膨張率測定方法>10cm角サイズに切り出した試料を、TMA(熱機械分析装置)にセットし、25℃〜80℃まで昇温(5℃/min)させて測定した。 <Method of measuring linear expansion coefficient> A sample cut into a 10 cm square size was set in a TMA (thermomechanical analyzer) and measured by raising the temperature from 25 ° C to 80 ° C (5 ° C / min).
<残留へこみ率測定方法>JISA1454に準じて測定した。残留へこみ率が3%以下のものを「◎」とし、3〜8%のものを「○」とし、8%を超えるものを「×」とした。 <Residual dent rate measuring method> Measured according to JIS A 1454. Those having a residual dent ratio of 3% or less were evaluated as “」 ”, those having 3-8% as“ ◯ ”, and those exceeding 8% as“ X ”.
<膨れ防止性試験>40cm角サイズに切り出した試料を、平滑なアルミニウム板にゴム系接着剤で接着し(23℃の雰囲気下)、試料の四辺を金具で固定し24時間放置後、40℃、50℃、60℃と順に2時間づつ加熱し、6時間後に膨れが発生しないものを「◎」とし、膨れが発生したものを「×」とした。 <Swelling prevention test> A sample cut into a 40 cm square size was bonded to a smooth aluminum plate with a rubber adhesive (in an atmosphere of 23 ° C), and the four sides of the sample were fixed with metal fittings and allowed to stand for 24 hours. 50 ° C. and 60 ° C. were heated in order for 2 hours, and those that did not swell after 6 hours were indicated as “◎”, and those that swelled were indicated as “x”.
<耐摩耗性試験>JIS A1453による建築材料及び建築構成部分の摩擦試験方法に準じて、各床材の表面に、所定の研磨紙を巻き付けた摩耗輪を使用し、テーパ摩耗試験機にて1000回転させ、摩耗減量(g)を測定した。摩耗減量が0.25g以下のものを「◎」とし、0.25〜0.30gのものを「○」とし、0.30gを超えるものを「×」とした。 <Abrasion resistance test> According to the friction test method for building materials and building components according to JIS A1453, a wear wheel in which a predetermined abrasive paper is wound around the surface of each flooring material is used, and a taper wear tester is used. Rotated and measured for weight loss (g). Those with a weight loss of 0.25 g or less were rated as “◎”, those with 0.25 to 0.30 g were rated as “◯”, and those exceeding 0.30 g were marked as “x”.
<耐汚染性試験> JIS A5705によるビニル系床材の汚染性試験に準じて、各床材の表面に汚染材料を2mL滴下し、24時間静置して、中性洗剤を含む水で洗浄し、更にアルコールで洗浄した後、ガーゼで拭き取って、1時間放置後、目視により滴下部分の色、光沢及び膨れの変化を観察した。観察によりいずれも変化のないものを「◎」とし、少なくともいずれか1つ変化のあるものを「×」とした。 <Contamination resistance test> According to the JIS A5705 vinyl flooring contamination test, 2 mL of the contamination material was dropped on the surface of each flooring, left to stand for 24 hours, and washed with water containing a neutral detergent. Further, after washing with alcohol, wiped off with gauze, allowed to stand for 1 hour, and visually observed changes in color, gloss and swelling of the dripping part. Those that did not change by observation were marked “◎”, and those that changed at least one were marked “x”.
<寸法安定性試験>JIS A5705によるビニル系床材の加熱による長さ変化試験に準じて、各床材を80℃で6時間加熱した後、室内に1時間静置し、加熱前の長さに対する変化率を測定した。長さ変化率が1.0%未満のものを「◎」とし、同1.0〜1.5%のものを「○」とし、同1.5%を超えるものを「×」とした。 <Dimensional stability test> According to the length change test by heating of vinyl-based flooring according to JIS A5705, each flooring was heated at 80 ° C for 6 hours, then left indoors for 1 hour, and length before heating. The rate of change with respect to was measured. Those with a rate of change in length of less than 1.0% were marked with “◎”, those with 1.0-1.5% were marked with “◯”, and those with a length change rate exceeding 1.5% were marked with “x”.
<施工性試験>柔軟性に優れて施工作業性に特に優れると共に下地(施工床面)との馴染みの良いものを「◎」とし、柔軟性が良好で施工作業性が良く、下地との馴染みの良いものを「○」とし、柔軟性が不十分で施工作業性が悪く、下地との馴染みも悪いものを「×」とした。 <Workability test> Excellent flexibility and construction workability, and familiarity with the groundwork (construction floor) is "◎", flexibility is good and construction workability is good, familiarity with the groundwork Good ones were marked with “◯”, and those with poor flexibility, poor workability, and poor familiarity with the ground were given “x”.
更に、実施例1の床材について、NBS燃焼試験、防炎試験(車材燃試)を行った。これらの結果を表4に示す。 Furthermore, the flooring material of Example 1 was subjected to an NBS combustion test and a flameproof test (vehicle material combustion test). These results are shown in Table 4.
なお、NBS燃焼試験法とは、密閉した発煙箱の中に試料を垂直に置き、その正面にあるヒーターから輻射熱を当てながらバーナーの炎も当て有炎燃焼させ、発煙箱中に発生した煙に対して光電管により光透過率を測定し、この光透過率(T)から下記算出式に基づいて煙濃度(Ds)を算出するものである。 The NBS combustion test method is a method in which a sample is placed vertically in a closed smoke box, and burner flame is applied to the smoke generated in the smoke box while radiant heat is applied from the heater in front of the sample. On the other hand, the light transmittance is measured by a phototube, and the smoke density (Ds) is calculated from the light transmittance (T) based on the following calculation formula.
Ds=132log(100/T) 試験開始後4分のDs値および最大Ds値を求めた。更に、発煙箱中のガスをテフロン(登録商標)バッグに採取し、発生ガス分析を行った。 Ds = 132 log (100 / T) A Ds value and a maximum Ds value of 4 minutes after the start of the test were determined. Further, the gas in the smoke box was collected in a Teflon (registered trademark) bag, and the generated gas was analyzed.
表4から明らかなように、この発明の床材は、発煙性が低く有毒ガスもほとんど発生するものではないことが確認できた。 As can be seen from Table 4, it was confirmed that the flooring of the present invention has low fuming property and hardly generates toxic gas.
車両等に限らず、ビル、マンション、家屋、商業施設等の建築物においても、温度変化の激しい環境下で使われる床材としても十分使用することができる。 Not only for vehicles, but also for buildings such as buildings, condominiums, houses, commercial facilities, etc., it can be sufficiently used as a flooring material used in an environment where the temperature changes rapidly.
1・・・オレフィン系床材 2・・・表面樹脂層 3・・・基材層 3−1・・・無機物添加基材層 3−2・・・無機物無添加基材層 3−3・・・無機物無添加基材層 3−4・・・隠蔽層 3−5・・・繊維層 3−6・・・ガラス繊維層 4・・・印刷層 5・・・接着剤層 DESCRIPTION OF SYMBOLS 1 ... Olefin type flooring 2 ... Surface resin layer 3 ... Base material layer 3-1 ... Inorganic substance addition base material layer 3-2 ... Inorganic substance non-addition base material layer 3-3 ...・ Inorganic non-added base material layer 3-4: Hiding layer 3-5 ... Fiber layer 3-6 ... Glass fiber layer 4 ... Printing layer 5 ... Adhesive layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106678A JP5177761B2 (en) | 2008-11-07 | 2009-04-24 | Olefin flooring |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008286185 | 2008-11-07 | ||
JP2008286185 | 2008-11-07 | ||
JP2009106678A JP5177761B2 (en) | 2008-11-07 | 2009-04-24 | Olefin flooring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010133219A JP2010133219A (en) | 2010-06-17 |
JP5177761B2 true JP5177761B2 (en) | 2013-04-10 |
Family
ID=42344748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009106678A Expired - Fee Related JP5177761B2 (en) | 2008-11-07 | 2009-04-24 | Olefin flooring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5177761B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017150397A1 (en) | 2016-03-04 | 2017-09-08 | 伸興化成株式会社 | Recyclable synthetic resin tile and manufacturing method for same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201016795D0 (en) | 2010-10-06 | 2010-11-17 | Amtico Company The Ltd | Improved backing layers for floor covering |
JP6799355B2 (en) * | 2014-12-26 | 2020-12-16 | 凸版印刷株式会社 | Decorative sheet for flooring |
JP6145468B2 (en) * | 2015-03-17 | 2017-06-14 | 東リ株式会社 | Manufacturing method for flooring |
JP2016223154A (en) * | 2015-05-29 | 2016-12-28 | 住江織物株式会社 | Floor material with excellent shapability |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3451243B2 (en) * | 2000-08-07 | 2003-09-29 | 住江織物株式会社 | Non-halogen flooring |
JP2002105874A (en) * | 2000-10-03 | 2002-04-10 | Toppan Printing Co Ltd | Polyolefin floor material |
JP2002254563A (en) * | 2000-12-27 | 2002-09-11 | Mitsui Chemicals Inc | Laminate |
JP2002256686A (en) * | 2001-02-28 | 2002-09-11 | Lonseal Corp | Non-halogenic foamed floor material |
-
2009
- 2009-04-24 JP JP2009106678A patent/JP5177761B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017150397A1 (en) | 2016-03-04 | 2017-09-08 | 伸興化成株式会社 | Recyclable synthetic resin tile and manufacturing method for same |
Also Published As
Publication number | Publication date |
---|---|
JP2010133219A (en) | 2010-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5177761B2 (en) | Olefin flooring | |
WO2012053418A1 (en) | Highly flame-retardant polymer member, flame-retardant article, and flame-retarding method | |
JP6950690B2 (en) | Substrate for decorative sheet and decorative sheet | |
JP2010162748A (en) | Decorative sheet | |
JP7052731B2 (en) | Laminated stretch film, base material for decorative sheet, decorative sheet and decorative board | |
EP2750886A1 (en) | Laminate composition, film and related methods | |
JP2011255660A (en) | Flame-retardant polymer member having cigarette resistance, flame-retardant article, and flame-retarding method | |
JP5327787B2 (en) | Olefin flooring | |
WO2017170599A1 (en) | Decorative sheet and method for manufacturing decorative sheet | |
JP2010019065A (en) | Olefine based floor member | |
JP2019025917A (en) | Laminated drawn film, base material for decorative sheet, decorative sheet and decorative plate | |
KR101358511B1 (en) | Adhesive functional film | |
WO2012049887A1 (en) | Physically functional flame-retardant polymer member and chemically functional flame-retardant polymer member | |
JP4679833B2 (en) | Flexible flame retardant polyester decorative sheet composition and flexible flame retardant polyester decorative sheet | |
JP3823686B2 (en) | Decorative sheet | |
WO2022209957A1 (en) | Cosmetic sheet, cosmetic material, and method for producing cosmetic sheet | |
JP2023095981A (en) | Embossed decorative sheet | |
JP7168957B2 (en) | Floor display film, manufacturing method thereof, and vehicle floor display film provided with the floor display film | |
JP2004232334A (en) | Flame-retardant non-halogen flooring | |
JP4502869B2 (en) | Olefin flooring and method for producing the same | |
JP2020163730A (en) | Decorative sheet having adhesive layer | |
JP7597170B2 (en) | Laminated stretched film, substrate for decorative sheet, decorative sheet and decorative plate | |
JP2012106401A (en) | Antifouling flame-retardant polymer member | |
JP2005297377A (en) | Decorative laminated sheet | |
JP5287410B2 (en) | Floor decorative material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5177761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |