JP5167753B2 - Method and apparatus for measuring trace chemical substances - Google Patents
Method and apparatus for measuring trace chemical substances Download PDFInfo
- Publication number
- JP5167753B2 JP5167753B2 JP2007269512A JP2007269512A JP5167753B2 JP 5167753 B2 JP5167753 B2 JP 5167753B2 JP 2007269512 A JP2007269512 A JP 2007269512A JP 2007269512 A JP2007269512 A JP 2007269512A JP 5167753 B2 JP5167753 B2 JP 5167753B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- trace
- bag
- liquid
- glass container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 34
- 239000000126 substance Substances 0.000 title claims description 9
- 239000007789 gas Substances 0.000 claims description 164
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 71
- 239000011521 glass Substances 0.000 claims description 42
- 239000007788 liquid Substances 0.000 claims description 40
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 230000008016 vaporization Effects 0.000 claims description 4
- 230000004931 aggregating effect Effects 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 38
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 230000002776 aggregation Effects 0.000 description 15
- 229910001873 dinitrogen Inorganic materials 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 238000004220 aggregation Methods 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- VRZJGENLTNRAIG-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]iminonaphthalen-1-one Chemical compound C1=CC(N(C)C)=CC=C1N=C1C2=CC=CC=C2C(=O)C=C1 VRZJGENLTNRAIG-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 polyfluoroethylene Polymers 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- PPWHTZKZQNXVAE-UHFFFAOYSA-N Tetracaine hydrochloride Chemical compound Cl.CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 PPWHTZKZQNXVAE-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
本発明は、ガスバッグ中の微量化学物質を、微量体積の溶液の中に捕集するに際し、ガス中に水蒸気、エタノール蒸気、メタノール蒸気、アセトン蒸気、ジクロロメタン蒸気などの凝縮性ガスを添加することにより、該微量化学物質を凝縮させるとともに溶液化させることを特徴とする微量化学物質の測定方法および装置に関するものである。 The present invention adds a condensable gas such as water vapor, ethanol vapor, methanol vapor, acetone vapor, and dichloromethane vapor to the gas when collecting the trace chemical substance in the gas bag in a small volume solution. The present invention relates to a method and an apparatus for measuring a trace chemical substance, characterized in that the trace chemical substance is condensed and converted into a solution.
従来、気体の低温による液化は、古くから知られている。
この方法は、微量ガスの捕集を目的として、低温での微量ガスの凝集を用いる方法であり、特開2001−318007号公報が提案している。すなわち、試料凝集方法として液体窒素温度下に置かれた凝縮管中に、濃縮目的のガスを通過させて、ガス中の微量有機成分を効果的に凝縮管中に凝集させる方法である。これは装置を組み上げて実施するものである。(特許文献1)
大気中の微量ガスの捕集や試料からの揮発成分の濃縮法として、前記の冷却濃縮の他に吸着カラムにガスを通じこのガス中の微量ガスを吸着剤中に捕集する方法で、特開平5−126699号公報が提案している。この方法は微量成分を脱着せるため吸着カラムを加熱する。しかしながら、ガスクロマトグラフにこの脱着ガスを注入するには、サンプルガスの体積を減らすためガスクロマトグラフ用の冷却トラップを用いて凝集させ、次いでガスクロマトグラフに注入する。この複雑なプロセスは、その操作には時間がかかり効率もよくなく、さらに目的微量成分の化学的変化の恐れの欠点があった。(特許文献2)
また、微量な皮膚ガス捕集装置として、特開2006−214747が提案されているが、この方法は開口部を有する略筒状の有底容器、およびこの容器内に保持された、前記開口部を皮膚に密着させることで皮膚表面より容器内に放散される皮膚ガスを受動的に捕集する平面状の捕集材を構成要素とするものであり、小型かつ軽量で容易に持ち運びができ、捕集時格別な動力を必要とせず、簡単な操作で皮膚ガスを放散フラックスに基づいて捕集することができるため、皮膚ガスの測定値を指標にする健康診断に有用であるが、本発明のPPMオーダーでのガスを捕集するものではなく、またその装置としての構成も異なるものであ。(特許文献3)
また、表面密閉用チャンバー、該表面密閉用チャンバーに連結されたガス流路切り替え手段、並びに該ガス流路切り替え手段に連結されたキャリヤガスパージ手段およびガス採取手段を含む表面ガス採取装置が提案され、皮膚ガス中のエタノールは約1ないし2ppmの範囲である事が示されている。この装置によれば、その表面から発せられるガスのバックグラウンドを抑えつつ採取することができるものであるが、この装置は捕集するのみであり、凝集させさらに捕集することが示されていないため、装置の構造と目的・効果が異なるものである。(特許文献4)Conventionally, gas liquefaction at low temperatures has been known for a long time.
This method uses agglomeration of trace gas at a low temperature for the purpose of collecting trace gas, and is proposed in Japanese Patent Application Laid-Open No. 2001-318007. That is, as a sample aggregating method, a gas for concentration is passed through a condensing tube placed at a liquid nitrogen temperature, and a trace organic component in the gas is effectively agglomerated in the condensing tube. This is performed by assembling the apparatus. (Patent Document 1)
As a method for collecting trace gases in the atmosphere and concentrating volatile components from a sample, in addition to the cooling concentration described above, a method is also used in which a trace gas in this gas is collected in an adsorbent by passing the gas through an adsorption column. JP-A-5-126699 proposes. This method heats the adsorption column to desorb trace components. However, in order to inject this desorption gas into the gas chromatograph, in order to reduce the volume of the sample gas, it is aggregated using a cold trap for the gas chromatograph and then injected into the gas chromatograph. This complex process is time consuming and inefficient, and has the disadvantage of chemical changes in the desired trace components. (Patent Document 2)
Japanese Patent Laid-Open No. 2006-214747 has been proposed as a minute amount of skin gas collecting device, but this method uses a substantially cylindrical bottomed container having an opening, and the opening held in the container. Is a flat collection material that passively collects skin gas released from the skin surface into the container by adhering to the skin, and is small and lightweight and can be easily carried around. Since no special power is required at the time of collection and the skin gas can be collected on the basis of the diffused flux by a simple operation, it is useful for a health check using the measured value of the skin gas as an index. It does not collect gas on the order of PPM, and the configuration of the apparatus is also different. (Patent Document 3)
Further, a surface gas sampling device including a surface sealing chamber, a gas flow path switching means connected to the surface sealing chamber, and a carrier gas purge means and a gas sampling means connected to the gas flow path switching means has been proposed, It has been shown that the ethanol in skin gas is in the range of about 1-2 ppm. According to this apparatus, it is possible to collect while suppressing the background of gas emitted from the surface, but this apparatus only collects, and does not show that it is aggregated and further collected. Therefore, the structure and purpose / effect of the apparatus are different. (Patent Document 4)
バッグ内のガスの凝集液化により、バッグ内の微量ガスの液体への捕集方法を本発明の提案は試みているが、バッグ内のガスが凝集することが肝要である。
この凝集は、たとえば乾燥窒素ガスではほとんど進行しない。乾燥空気ガスでは酸素スが窒素ガスよりも沸点が高いので、凝集が進行するが進行は遅い。この凝集の進行を早めるとともに、さらに水蒸気、エタノール、メタノール、アセトン、ジクロロメタン、クロロホルム、ベンゼンなどの凝縮性ガスを添加することにより微量ガス化学物質の凝集効率を高め、進行を早める事を課題とするものである。
また、凝縮補助ガスを用いると、バッグ内が窒素ガスであってもバッグ内のガスを液体窒素で容易に凝集することを可能とすることも課題である。Although the proposal of the present invention has attempted a method for collecting a trace amount of gas in a bag by flocculation of the gas in the bag, it is important that the gas in the bag is aggregated.
This agglomeration hardly proceeds with, for example, dry nitrogen gas. In dry air gas, oxygen has a boiling point higher than that of nitrogen gas, so that aggregation proceeds but progresses slowly. In addition to speeding up the progress of this aggregation, adding a condensable gas such as water vapor, ethanol, methanol, acetone, dichloromethane, chloroform, and benzene to increase the efficiency of agglomeration of trace gas chemicals and to accelerate the progress. Is.
Further, when the condensation auxiliary gas is used, it is a problem that the gas in the bag can be easily aggregated with liquid nitrogen even if the bag is nitrogen gas.
本発明は、かかる従来の課題を解決するものである。
バッグ内のガスの凝集は、たとえば乾燥窒素ガスではほとんど進行しない。乾燥空気ガスでは酸素ガスが窒素ガスよりも沸点が高いので、凝集が進行するが進行は遅い。しかしながら、この空気に水蒸気が存在すると、この凝集は早くなる。
さらに第三成分として、エタノール、メタノール、アセトンなどの蒸気(凝縮性補助ガスと称する)を添加すると進行が早くなる。かつアンモニア微量ガス(0.1〜1ppm)の捕集効率も水蒸気のみのときより効果的に生じる。
また、凝縮性補助ガスを用いると、バッグ内が窒素ガスであってものバッグ内のガスを液体窒素で容易に凝集することができる。
このように凝集性補助ガスの使用により、気体中に存在する微量ガスの効果的な液化や溶液化が実現できる。
また、微量ガスを含む気体を、容積50ml〜2000mlのガスバッグに入れ、小さなガラス容器中に微量ガスの捕集用溶液、0.2ml〜2ml、として適当な液体を入れ、これら小さなガラス容器とガスバッグを気密に接続し、液体窒素の中に該小さなガラス容器の底部をつけ、この部分を液体窒素の中に浸し、ガスバック中の気体をすべてこの小さなガラス管中に凝集させるとともに、ガラス管を引き上げ、窒素、酸素などを気化させることによりガラス容器に、微量ガス成分が捕集用溶液中に捕集されることを特徴とする気体中の極微量ガスの測定方法と装置である。The present invention solves this conventional problem.
Aggregation of the gas in the bag hardly proceeds with, for example, dry nitrogen gas. In dry air gas, oxygen gas has a higher boiling point than nitrogen gas, so that aggregation proceeds but progresses slowly. However, when water vapor is present in the air, this aggregation is accelerated.
Furthermore, when a vapor (such as a condensable auxiliary gas) such as ethanol, methanol, or acetone is added as a third component, the progress is accelerated. In addition, the collection efficiency of ammonia trace gas (0.1 to 1 ppm) is more effectively generated than when only water vapor is used.
Further, when the condensable auxiliary gas is used, the gas in the bag can be easily aggregated with liquid nitrogen even if the bag is nitrogen gas.
As described above, by using the cohesive auxiliary gas, it is possible to effectively liquefy or liquefy the trace gas present in the gas.
Further, a gas containing trace gas, placed in a gas bag volume 50Ml~2000ml, collecting solution of trace gas in a small glass container, 0.2Ml~2ml, as a suitable liquid placed, and these small glass containers Connect the gas bag tightly, place the bottom of the small glass container in liquid nitrogen, immerse this part in liquid nitrogen, condense all the gas in the gas bag into this small glass tube, A method and apparatus for measuring a trace amount gas in a gas, wherein a trace gas component is collected in a collection solution in a glass container by pulling up a tube and vaporizing nitrogen, oxygen, and the like.
この微量ガス捕集用溶液が0.1mlであるとき、体積倍率としてもとのガス体積が100mlのときは1000分の一、もとの体積が1000mlのときは10000分の一に凝縮できるものである。 When the amount of this trace gas collecting solution is 0.1 ml, the volume magnification can be condensed to 1000 times when the original gas volume is 100 ml, and to 10,000 times when the original volume is 1000 ml. It is.
本発明を実施例に従って説明する。なお本発明を低温ガス濃縮・溶液化法と称する。本発明の典型的な装置図を図1に示した。ポリフッ化フィルムで作成したガスバッグ、ガスバッグに接続したテフロン製ストップコック栓、小さなガラス容器、及び小さなガラス容器とストップコック栓を連結するための接続菅、及び液体窒素を溜めるための容器、さらにこれらを保持する保持台よりなる。 The present invention will be described according to examples. The present invention is referred to as a low temperature gas concentration / solution method. A typical apparatus diagram of the present invention is shown in FIG. A gas bag made of polyfluorinated film, a Teflon stopcock stopper connected to the gas bag, a small glass container, a connecting rod for connecting the small glass container and the stopcock stopper, and a container for storing liquid nitrogen, and It consists of a holding stand for holding these.
実施分析例に従って説明する。
実施例1について説明する。
▲1▼サンプルバッグに微量ガスを含む空気100mlを入れ、次いで10マイクロリットルの水を注入しガスバッグ中で気化する。ガス捕集用溶媒を入れた小さなガラス管を、接続具及び接続コックに接続する。この接続具及び接続コックにより、サンプルバッグ出入口と小さなガラス管内が直接繋がり、気密が保たれて、外気の混入を遮断する。またサンプルバッグには液体やガス体を注入するための注入口を設けた。(図1)
接続具はシリコンチューブを用い、小さなガラス管にはミクロ試験管(φ6×50mm)を使用した。
▲2▼小さなガラス管先端の10〜15mmを液体窒素中に浸し、試験管内の溶媒をあらかじめ凍らせる。より多くの気体に触れさせる為に捕集用溶媒の固化状態での表面積を大きくするために、前記小さなガラス管を回しながらその管壁に氷の膜を作る。この手順は図2に小さなガラス管の部分を拡大して示してある。
▲3▼ついでサンプルバッグのコックを開け、小さなガラス管の2/3の位置(約30mm)まで液体窒素に浸す。この操作により、サンプルバッグ内の気体が低温下で固化及び液化する。サンプルバッグ中のガスがすべて液化するとサンプルバッグが萎む。サンプルバッグの膨らんだはじめの状態の写真と小さなガラス管を液体窒素につけたことによりサンプルバッグが萎んだ状態の写真を図3に示した。この手順に要する時間は約2〜5分である。完全液化直後、液体窒素中で保持した状態で小さなガラス管を振り、中の液体を振とうしておく。
▲4▼試料ガスを含んだサンプルガスをすべて液化・固化後、小さなガラス管を液体窒素の液面上に出し液化した窒素ガスと酸素ガスを再び気化させる。ただし、急激に気化させず、約3分程度で完全気化するように液体窒素の液面上の位置を調整する。
▲5▼完全気化した後、試験管に蓋をして室温で溶媒を液化したのち、測定、定量を実施した。A description will be given according to an implementation analysis example.
Example 1 will be described.
(1) Put 100 ml of air containing a trace amount of gas into a sample bag, and then inject 10 microliters of water to vaporize in the gas bag. A small glass tube containing a gas collecting solvent is connected to a connector and a connection cock. By this connection tool and connection cock, the sample bag entrance and the inside of the small glass tube are directly connected, airtightness is maintained, and mixing of outside air is blocked. The sample bag was provided with an inlet for injecting a liquid or gas body. (Figure 1)
A silicon tube was used as a connection tool, and a micro test tube (φ6 × 50 mm) was used as a small glass tube.
(2) Dip 10-15 mm at the tip of a small glass tube in liquid nitrogen to freeze the solvent in the test tube in advance. In order to increase the surface area in the solidified state of the collection solvent in order to make it contact with more gas, an ice film is formed on the tube wall while rotating the small glass tube. This procedure is shown in an enlarged view of a small glass tube in FIG.
(3) Next, open the cock of the sample bag and immerse it in liquid nitrogen up to 2/3 of the small glass tube (about 30 mm). By this operation, the gas in the sample bag is solidified and liquefied at a low temperature. When all the gas in the sample bag is liquefied, the sample bag is deflated. FIG. 3 shows a photograph of the initial state of the sample bag inflated and a photograph of the sample bag deflated by attaching a small glass tube to liquid nitrogen. The time required for this procedure is about 2-5 minutes. Immediately after complete liquefaction, a small glass tube is shaken while being held in liquid nitrogen, and the liquid inside is shaken.
(4) After liquefying and solidifying all the sample gas containing the sample gas, a small glass tube is put on the liquid nitrogen surface and the liquefied nitrogen gas and oxygen gas are vaporized again. However, the position of the liquid nitrogen on the liquid surface is adjusted so that it does not vaporize abruptly and is completely vaporized in about 3 minutes.
(5) After complete vaporization, the test tube was capped and the solvent was liquefied at room temperature, followed by measurement and quantification.
実施例2を説明する。
微量アンモニアガスを含むサンプルガスを準備し、微量ガス捕集用溶液として1ミリモル硝酸溶液を用いる。本発明の低温ガス濃縮・溶液化法を実施して、捕集用溶液に捕集後、アンモニア濃度をインドフェノール青色吸光光度法及びイオン交換クロマトグラフィーにより定量する。その手順の場合を説明する。
サンプルバッグに微量アンモニアガスを含む空気100mlを入れ、次いで10マイクロリットルの水をサンプルバッグの注入口より注入しガスバッグ中で気化する。ガス捕集用溶媒(水、又は1mM HNO3などの液体、体積:100μl)を入れた小さなガラス管を、接続具及び接続コックに接続する。その後、ガス捕集用溶媒を固化し、ついでサンプルバッグのコックを開け、小さなガラス管の2/3の位置(約30mm)まで液体窒素に浸す。この操作により、サンプルバッグ内の気体が低温下で固化及び液化する。この手順に要する時間は約2〜4分である。試料ガスを含んだサンプルガスをすべて液化・固化後、小さなガラス管を液体窒素の液面上に出し液化した窒素ガスと酸素ガスを気化させる。完全気化した後、小さなガラス管に蓋をして室温で溶媒を液化したのち、ガス捕集用溶媒に捕集されたアンモニアの測定を実施した。A second embodiment will be described.
A sample gas containing a trace amount of ammonia gas is prepared, and a 1 mmol nitric acid solution is used as a trace gas collection solution. After carrying out the low-temperature gas concentration / solution method of the present invention and collecting in a collection solution, the ammonia concentration is quantified by indophenol blue absorptiometry and ion exchange chromatography. The case of the procedure will be described.
100 ml of air containing a trace amount of ammonia gas is put into the sample bag, and then 10 microliters of water is injected from the inlet of the sample bag and vaporized in the gas bag. A small glass tube containing a gas collection solvent (water or a liquid such as 1 mM HNO 3 , volume: 100 μl) is connected to the connector and the connection cock. Thereafter, the gas collecting solvent is solidified, then the cock of the sample bag is opened, and the sample is immersed in liquid nitrogen to a position 2/3 (about 30 mm) of a small glass tube. By this operation, the gas in the sample bag is solidified and liquefied at a low temperature. The time required for this procedure is about 2-4 minutes. After liquefying and solidifying the sample gas including the sample gas, a small glass tube is put on the liquid nitrogen surface to vaporize the liquefied nitrogen gas and oxygen gas. After complete vaporization, a small glass tube was capped to liquefy the solvent at room temperature, and then the ammonia collected in the gas collecting solvent was measured.
次にアンモニアの測定・定量について説明する。インドフェノール青色吸光光度法を用いたNH3の測定を実施した。
インドフェノール青色吸光光度法はJIS(JIS K0102 42.2)に基づき行なった。アンモニア捕集溶液は最初の100マイクロリットルに発色試薬溶液60マイクロリットルを加えたので、全体積は200マイクロリットル以下の小さな体積であるので、分光器には2x5ミリのセル窓をもつマイクロセルを作成して用いた。吸光光度測定には、島津分光光度計を用い、波長領域は800〜350nmを走査して用いた。標準アンモニアガスへの本発明の低温ガス濃縮・溶液化法による結果を図4に示した。
以上の結果について説明すると、低濃度標準アンモニアガスサンプルについて得られた測定結果を図4に示した。図4より0.1〜1.0ppmのアンモニアガスが、本発明の低温ガス濃縮・溶液化法の実施により得られた溶液を用いることにより、吸光光度法で精度よく濃度測定が実施された。Next, measurement / quantification of ammonia will be described. Measurement of NH 3 using indophenol blue absorptiometry was performed.
The indophenol blue absorptiometry was performed based on JIS (JIS K0102 42.2). Since the ammonia collection solution is 60 microliters of coloring reagent solution added to the first 100 microliters, the total volume is a small volume of 200 microliters or less. Therefore, the spectroscope has a microcell with a 2 × 5 millimeter cell window. Created and used. For the spectrophotometry, a Shimadzu spectrophotometer was used, and the wavelength region was used by scanning 800 to 350 nm. The results of the low-temperature gas concentration / solution method of the present invention to standard ammonia gas are shown in FIG.
The above results will be described. The measurement results obtained for the low concentration standard ammonia gas sample are shown in FIG. As shown in FIG. 4, 0.1 to 1.0 ppm of ammonia gas was accurately measured by absorptiometry by using a solution obtained by carrying out the low-temperature gas concentration / solution method of the present invention.
実施例3を説明する。ヒト皮膚ガスを特許公開2002195919に示されている方法で、ポリフロロエチレンシートで作成した袋を手にかぶせ、自動サンプリング装置を用いて皮膚ガスをサンプルバッグに捕集し、このサンプルガスを本提案の低温ガス濃縮・溶液化法により濃縮し、ついでインドフェノール青色吸光光度法を実施した結果、被験者3名からそれぞれ、0.244,0.294,0.211ppmのアンモニアガスが検知された。A third embodiment will be described. The human skin gas is covered with a bag made of a polyfluoroethylene sheet by the method shown in Japanese Patent Publication No. 2002195919, and the skin gas is collected in a sample bag using an automatic sampling device. As a result of performing the indophenol blue absorptiometry, 0.244, 0.294, and 0.211 ppm of ammonia gas were detected from three subjects, respectively.
実施例4を説明する。ヒト皮膚ガス中のアンモニアガスについて本発明の低温ガス濃縮・溶液化法の実施を行い、イオン交換クロマトグラフィーを用いてアンモニアの測定した場合について説明する。ヒト皮膚ガスのサンプリングガスとして窒素ガスを使用した。また凝縮性補助ガスとして水10マイクロリットルをサンプルガスバッグ中に注入し気化して用いた。本発明の低温ガス濃縮・溶液化法における捕集用溶液としては1ミリモルの硝酸溶液を用いて、アンモニアガスの溶液への捕集を実施した。ついでイオン交換クロマトグラフィーを用い、電気伝導度検出器で溶液中のNH4 +を検出し測定する。なおアンモニアガスは硝酸溶液で捕集されると溶液中ではアンモニウムイオンになる。クロマトグラムのピーク面積の比較により、濃度を定量する。分析条件は電気伝導度検出器として島津CDD−10Avp、液体ポンプとして島津LC−10Avp、陽イオン交換カラムとしてMCIGEL、SCK01(径2.1ミリ、長さ75ミリ)、溶離液として1mMのHNO3水溶液で実施した。測定したところ、男性3名、女性3名の値は、0.045、0.080、0.190、0.110,0.175、0.220ppmの値がそれぞれ得られた。Example 4 will be described. A case will be described in which ammonia gas in human skin gas is subjected to the low-temperature gas concentration / solution method of the present invention and ammonia is measured using ion exchange chromatography. Nitrogen gas was used as a sampling gas for human skin gas. Further, 10 microliters of water was injected into the sample gas bag as a condensable auxiliary gas and vaporized. As a collecting solution in the low temperature gas concentration / solution method of the present invention, 1 mmol of nitric acid solution was used to collect ammonia gas in the solution. Then, ion exchange chromatography is used to detect and measure NH 4 + in the solution with an electric conductivity detector. When ammonia gas is collected with a nitric acid solution, it becomes ammonium ions in the solution. The concentration is quantified by comparing the peak areas of the chromatogram. The analysis conditions were Shimadzu CDD-10Avp as the conductivity detector, Shimadzu LC-10Avp as the liquid pump, MCIGEL as the cation exchange column, SCK01 (diameter 2.1 mm, length 75 mm), and 1 mM HNO 3 as the eluent. Performed in aqueous solution. When measured, the values of three men and three women were 0.045, 0.080, 0.190, 0.110, 0.175, and 0.220 ppm, respectively.
実施例5を説明する。サンプルバッグ中に乾燥空気を入れ、凝縮補助ガスとして水、エタノール、メタノール、アセトン、ジクロロメタン、クロロホルム、ベンゼンの各液体5〜15マイクロリットルのひとつを注入した。注入された各液体はガスバック中で気化した。各凝縮補助ガスひとつ入れたサンプルバッグについて、低温ガス濃縮・溶液化法をおこなったところ、いずれも迅速な凝集が実施できた。 Example 5 will be described. Dry air was put into the sample bag, and 5 to 15 microliters of each liquid of water, ethanol, methanol, acetone, dichloromethane, chloroform, and benzene was injected as a condensation auxiliary gas. Each injected liquid was vaporized in the gas bag. The sample bags containing each condensation auxiliary gas were subjected to the low-temperature gas concentration / solution method, and in each case, rapid aggregation was possible.
実施例6を説明する。サンプルバッグ中に窒素ガス92mlを入れ、これに酸素ガスを8mlいれて、凝縮性補助ガスとして水10マイクロリットルを注入し気化した。低温ガス濃縮・溶液化法をおこなったところ、迅速な凝集が実施できた。 Example 6 will be described. A sample bag was charged with 92 ml of nitrogen gas, 8 ml of oxygen gas was added thereto, and 10 microliters of water was injected as a condensable auxiliary gas and vaporized. When the low-temperature gas concentration / solution method was performed, rapid aggregation was achieved.
実施例7を説明する。サンプルバッグ中に乾燥空気100mlを入れ、凝縮補助ガスとして水とエタノールの各液体10マイクロリットルを注入した。注入された各液体はガスバック中で気化した。二つの凝縮補助ガスを入れたサンプルバッグについて、低温ガス濃縮・溶液化法をおこなったところ、迅速な凝集が実施できた。 Example 7 will be described. 100 ml of dry air was placed in the sample bag, and 10 microliters of each liquid of water and ethanol was injected as a condensation auxiliary gas. Each injected liquid was vaporized in the gas bag. When a sample bag containing two condensing auxiliary gases was subjected to a low-temperature gas concentration / solution method, rapid aggregation was achieved.
実施例8を説明する。サンプルバッグ中にアンモニアガス1ppmを含む乾燥空気100mlを入れ、凝縮補助ガスとして水を10マイクロリットル入れ、さらに凝縮補助ガスとしてエタノールを各0,7,15マイクロリットル注入した3個のガスサンプルの濃縮を実施した。低温ガス濃縮・溶液化法を実施後、イオン交換クロマトグラフィーでアンモニア濃度の定量を実施したところ、アンモニアガスの捕集効率はエタノールを添加しないときは45%であったが、エタノールを7マイクロリットル添加すると52%、エタノールを15マイクロリットル添加すると65%に増加した。低濃度のガスと捕集は通常困難であるので、この結果は良好な値であり、このときに得られたクロマトグラムを図6に示した。 Example 8 will be described. 100ml of dry air containing 1ppm of ammonia gas is put into the sample bag, 10 microliters of water is added as a condensation auxiliary gas, and three gas samples are injected by injecting 0,7,15 microliters of ethanol as a condensation auxiliary gas. Carried out. After carrying out the low-temperature gas concentration / solution method, the ammonia concentration was quantified by ion exchange chromatography. The ammonia gas collection efficiency was 45% when ethanol was not added, but ethanol was 7 microliters. The addition increased to 52% and to 65% with the addition of 15 microliters of ethanol. Since low concentrations of gas and collection are usually difficult, this result is good and the chromatogram obtained at this time is shown in FIG.
実施例9を説明する。これはヒト皮膚ガス中のアセトン濃度を定量するものである。ヒト皮膚ガスのサンプル100mlをサンプルバッグに入れ、凝縮補助ガスとして水を10マイクロリットル入れ、さらに凝縮補助ガスとしてエタノールを10マイクロリットル注入し、捕集用溶液として水を0.1mlも用いて低温ガス濃縮・溶液化法を実施した後、ガスクロマトグラフでアセトン濃度の定量を実施したところ、0.5ppmのアセトン濃度が得られた。 Example 9 will be described. This quantifies the acetone concentration in human skin gas. Put 100 ml of human skin gas sample into a sample bag, put 10 microliters of water as condensation auxiliary gas, inject 10 microliters of ethanol as condensation auxiliary gas, and use 0.1 ml of water as a collecting solution at low temperature. After carrying out the gas concentration / solution method, the acetone concentration was quantified with a gas chromatograph, and an acetone concentration of 0.5 ppm was obtained.
実施例10を説明する。これはヒト皮膚ガス中のアルコール濃度を定量するものである。窒素ガスを用いてヒト皮膚ガスを3分間採集し、自動サンプリング装置により100mlをサンプルバッグに入れ、凝縮補助ガスとして水を10マイクロリットル入れ、捕集用溶液として水を0.1mlも用いて低温ガス濃縮・溶液化法を実施した後、ガスクロマトグラフでアルコール濃度の定量を実施したところ、0.3ppmのアルコール濃度が得られた。 Example 10 will be described. This quantifies the alcohol concentration in human skin gas. Human skin gas is collected using nitrogen gas for 3 minutes, 100 ml is put into a sample bag by an automatic sampling device, 10 microliters of water is added as a condensing auxiliary gas, and 0.1 ml of water is used as a collecting solution at a low temperature. After carrying out the gas concentration / solution method, the alcohol concentration was determined by gas chromatography, and an alcohol concentration of 0.3 ppm was obtained.
本発明の低温ガス濃縮・溶液化法の実施後、試料成分の測定は液体クロマトグラフの分離分析、光学分析法、電気分析、原子分光法、などに供する。 After the low-temperature gas concentration / solution method of the present invention is performed, the sample components are subjected to liquid chromatograph separation analysis, optical analysis, electrical analysis, atomic spectroscopy, and the like.
以下、本発明の好適な実施形態を説明する。微量ガスを含む気体を、容積50ml〜2000mlのガスバッグに入れ、小さなガラス容器中に適切な溶液、0.02〜0.2ml、として適当な液体を入れ、これら小さなガラス容器(内体積0.5mlから10ml)とガスバッグを気密に接続し、液体窒素の中に該小さなガラス容器の底部をつけ、この部分を液体窒素の中に浸し、ガスバック中の気体をすべてこの小さなガラス管中に凝集させるとともに、ガラス管を引き上げ、窒素、酸素などを気化させることにより微量ガス成分がガラス容器中の捕集用溶液に捕集されることを特徴とする気体中の極微量ガスの測定方法である。
この溶液が0.15mlの体積のときは、体積倍率としてもとのガス体積が100mlのときは670分の一、もとの体積が1000mlのときは6700分の一にガス中の微量成分が凝縮できる。
なお、本明細書において特に言及している事項(例えば液体窒素の使用)以外の事柄であって本発明の実施に必要な事柄(例えばエタノール添加量等)は、当該分野における当業者の設計事項として変更可能であり、発明を限定するものではない。Hereinafter, preferred embodiments of the present invention will be described. The gas containing trace gas, placed in a gas bag volume 50Ml~2000ml, a suitable solution in a small glass container, 0.02~0.2Ml put a suitable liquid as these small glass container (inner volume 0. 5 ml to 10 ml) and a gas bag are connected in an airtight manner, the bottom of the small glass container is placed in liquid nitrogen, this portion is immersed in liquid nitrogen, and all the gas in the gas bag is placed in the small glass tube. In addition to agglomeration, the glass tube is pulled up to vaporize nitrogen, oxygen, etc., so that trace gas components are collected in the collection solution in the glass container. is there.
When this solution has a volume of 0.15 ml, the minor component in the gas is 1/670 minutes when the original gas volume is 100 ml, and 1700 when the original volume is 1000 ml. Can condense.
In addition, matters other than matters specifically mentioned in the present specification (for example, use of liquid nitrogen) and matters necessary for the implementation of the present invention (for example, the amount of ethanol added, etc.) are those designed by those skilled in the art. The invention can be changed as follows, and the invention is not limited thereto.
本発明は、ガスバッグ中の微量化学物質を、微量体積の捕集用溶液の中に捕集する。
捕集する際にガス中に水蒸気、エタノール蒸気、メタノール蒸気、アセトン蒸気などの凝縮性ガスを添加することにより、迅速な凝集が不可能であった窒素ガス主体であるガス体を迅速に凝集できる。
本方法は、ガスバッグ中のガスを、簡便なセットアップで気体中の極微量ガスを濃縮し、ついで微量成分の測定を実施する。The present invention collects trace chemical substances in a gas bag in a trace volume of a collection solution.
By collecting a condensable gas such as water vapor, ethanol vapor, methanol vapor, acetone vapor, etc. in the gas during collection, the gas body mainly composed of nitrogen gas that could not be rapidly agglomerated can be rapidly agglomerated. .
In this method, the gas in the gas bag is concentrated with a simple setup and the trace gas in the gas is concentrated, and then the trace component is measured.
以上説明したように本発明は、バッグ内のガスの凝集液化により、バッグ内の微量ガスの液体への捕集方法をこの実験は試みているが、バッグ内のガスが凝集することが肝要である。
この凝集は、たとえば乾燥窒素ガスではほとんど進行しない。乾燥空気ガスでは酸素スが窒素ガスよりも沸点が高いので、凝集が進行するが進行は遅い。しかしながら、この空気に[水蒸気]が存在すると、この凝集は早くなり5分以下で進行する。
さらに第三成分として、エタノール、メタノール、アセトン、ジクロロメタン、クロロフホルム、ベンゼンの蒸気を添加すると進行ガ早くなる。かつ微量ガス(0.1〜1ppm)の捕集効率も水蒸気のみのときより効果的に生じる。
また、凝縮性補助ガスを用いると、バッグ内が窒素ガスであってもサンプルガスバッグ内のガスを液体窒素で容易に凝集することができる。
このよう凝集性補助ガスの使用により、気体中に存在する微量ガスの効果的な液化や溶液化が実現できる。As described above, the present invention is trying to collect a trace amount of gas in the bag by condensing and liquefying the gas in the bag, but it is important that the gas in the bag is aggregated. is there.
This agglomeration hardly proceeds with, for example, dry nitrogen gas. In dry air gas, oxygen has a boiling point higher than that of nitrogen gas, so that aggregation proceeds but progresses slowly. However, when [water vapor] is present in the air, this aggregation is accelerated and proceeds in 5 minutes or less.
Furthermore, when the vapor | steam of ethanol, methanol, acetone, a dichloromethane, chloroform, and benzene is added as a 3rd component, progress will be quick. And the collection efficiency of a trace gas (0.1-1 ppm) is produced more effectively than when only water vapor is used.
Further, when the condensable auxiliary gas is used, the gas in the sample gas bag can be easily aggregated with liquid nitrogen even if the bag is nitrogen gas.
By using such a coherent auxiliary gas, it is possible to realize effective liquefaction and solution of a trace gas present in the gas.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007269512A JP5167753B2 (en) | 2007-09-17 | 2007-09-17 | Method and apparatus for measuring trace chemical substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007269512A JP5167753B2 (en) | 2007-09-17 | 2007-09-17 | Method and apparatus for measuring trace chemical substances |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009069137A JP2009069137A (en) | 2009-04-02 |
JP5167753B2 true JP5167753B2 (en) | 2013-03-21 |
Family
ID=40605534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007269512A Expired - Fee Related JP5167753B2 (en) | 2007-09-17 | 2007-09-17 | Method and apparatus for measuring trace chemical substances |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5167753B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103033568B (en) * | 2011-09-29 | 2014-05-28 | 中国石油化工股份有限公司 | Quick chromatographic analysis method for trace ammonia in gas |
JP2014232051A (en) | 2013-05-29 | 2014-12-11 | 株式会社Nttドコモ | Apparatus and method for measuring skin gas |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07103975A (en) * | 1993-09-30 | 1995-04-21 | Suzuki Motor Corp | Tube for sample component of exhalation and concentrating/sampling device with the same |
JPH0829299A (en) * | 1994-07-15 | 1996-02-02 | Suzuki Motor Corp | Collecting tube of component in breathing air |
JP3177823B2 (en) * | 1996-01-30 | 2001-06-18 | 岩谷産業株式会社 | Sample gas concentrator |
JPH11347333A (en) * | 1998-06-09 | 1999-12-21 | Shimadzu Corp | Chemical substance concentration collection method |
JP4594571B2 (en) * | 2001-09-28 | 2010-12-08 | 能美防災株式会社 | Environmental condition measuring device |
JP4299837B2 (en) * | 2002-12-20 | 2009-07-22 | ザ シャーロット‐メクレンバーグ ホスピタル オーソリティ | Disposable handheld device for collection of exhaled breath condensate |
-
2007
- 2007-09-17 JP JP2007269512A patent/JP5167753B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009069137A (en) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9599547B2 (en) | Introducing an analyte into a chemical analyzer | |
CN101281178A (en) | A quantitative detection method and enrichment device for trace phosphine gas | |
Bauer et al. | Recovery of submilligram quantities of carbon dioxide from gas streams by molecular sieve for subsequent determination of isotopic carbon-13 and carbon-14 natural abundances | |
JP6039580B2 (en) | Vacuuming the sample chamber | |
CN110702495A (en) | Method for enriching and analyzing benzene series in air based on MOFs (metal-organic frameworks) material | |
JP5167753B2 (en) | Method and apparatus for measuring trace chemical substances | |
Maratta et al. | Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry | |
Wevill et al. | Automated measurement and calibration of reactive volatile halogenated organic compounds in the atmosphere | |
CN102103094B (en) | Monitoring system for element in gas in pipeline and operation method thereof | |
US10545123B2 (en) | Gaseous mercury detection systems, calibration systems, and related methods | |
CN108421280A (en) | A kind of sulfhydrylation organic-inorganic hybridization monolithic column and its preparation method and purposes | |
CN219399540U (en) | Adsorption component, high-low temperature component and pretreatment device | |
CN110873753A (en) | Enrichment method for separating gas-phase free propofol in whole blood sample | |
Yu et al. | On-line monitoring of breath by membrane extraction with sorbent interface coupled with CO2 sensor | |
97 | Thermal desorption part 1: introduction and instrumentation | |
JP2987921B2 (en) | Gas enrichment measurement method and apparatus | |
McKenzie et al. | Dynamic solid phase microextraction analysis for airborne methamphetamine: quantitation using isotopically substituted methamphetamine | |
Lewin et al. | Determination of atmospheric carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry | |
Djozan et al. | Volatile Organic Compounds Trapping from Gaseous Samples on the Basis of Co-Liquefaction with Organic Solvent for Gas Chromatographic Analysis | |
RU218361U1 (en) | DEVICE FOR SELECTION AND SUBMISSION OF SAMPLES OF LABORLY SUBSTANCES FOR CHEMICAL ANALYSIS | |
RU218361U9 (en) | DEVICE FOR SELECTION AND SUBMISSION OF SAMPLES OF LABORLY SUBSTANCES FOR CHEMICAL ANALYSIS | |
JP2909086B2 (en) | Method and apparatus for collecting impurities on semiconductor substrate surface | |
Chen | Gas chromatographic analysis of atmospheric sulfur compounds using cryogenic sampling and a modified thermal desorber | |
JPS62187250A (en) | Capillary gas chromatographic apparatus for analyzing volatile component | |
RU2420723C1 (en) | Device to sample gas medium for sorbent and method to prepare it for operation in compartment of manned spacecraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5167753 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |