[go: up one dir, main page]

JP5165281B2 - Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom - Google Patents

Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom Download PDF

Info

Publication number
JP5165281B2
JP5165281B2 JP2007147459A JP2007147459A JP5165281B2 JP 5165281 B2 JP5165281 B2 JP 5165281B2 JP 2007147459 A JP2007147459 A JP 2007147459A JP 2007147459 A JP2007147459 A JP 2007147459A JP 5165281 B2 JP5165281 B2 JP 5165281B2
Authority
JP
Japan
Prior art keywords
hyaluronic acid
reactant
gel
forming agent
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007147459A
Other languages
Japanese (ja)
Other versions
JP2008295885A (en
Inventor
一 須賀井
直喜 中島
丞烋 玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioverde Inc
Original Assignee
Bioverde Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioverde Inc filed Critical Bioverde Inc
Priority to JP2007147459A priority Critical patent/JP5165281B2/en
Publication of JP2008295885A publication Critical patent/JP2008295885A/en
Application granted granted Critical
Publication of JP5165281B2 publication Critical patent/JP5165281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、変形性関節症,慢性関節リウマチ等の関節性疾患治療材、組織再生足場材やDDS用担体等の医療材料として適用される2液反応型ヒアルロン酸ゲルとその製造方法に関する。特に、第1反応成分を含有する液と、第2反応成分を含有する液とからなり、第1反応成分と第2反応成分とを混合することにより、互いに反応させてゲル状に硬化させた後、一定期間経過後に、分解・流動化し生体内の酵素により分解され代謝される医用材料に関する。   The present invention relates to a two-component reaction type hyaluronic acid gel applied as a medical material such as a therapeutic material for joint diseases such as osteoarthritis and rheumatoid arthritis, a tissue regeneration scaffold, and a carrier for DDS, and a method for producing the same. In particular, it is composed of a liquid containing the first reaction component and a liquid containing the second reaction component, and by mixing the first reaction component and the second reaction component, they are reacted with each other and cured in a gel form. The present invention relates to a medical material that is decomposed and fluidized and decomposed and metabolized by enzymes in a living body after a certain period of time.

ヒアルロン酸は、D―グルクロン酸とN−アセチル-D-グルコサミンが交互にβ-1,4結合とβ-1,3結合で結合した2糖単位の直鎖状高分子多糖である。このヒアルロン酸は哺乳動物の結合組織に分布しニワトリのとさかにも存在し、生体内に注入しても異害性を示さない生体適合性を示すことが知られている。以前はこのニワトリのとさかや動物の臍帯から抽出されていたが、最近では連鎖球菌の培養物から精製されている製品もある。ヒアルロン酸はその酸の形でも塩(ナトリウム塩やカリウム塩)の形でも水に対する溶解度が高い。ところが、ヒアルロン酸は保水力が高いものの、生体内の酵素作用を受けやすいため体内でのその半減期は非常に短く約1〜3日であり、生体内で医療材料として使用した場合は、体内滞留時間が短いことが指摘されている。このため、これまでに化学修飾をはじめ、化学架橋など、様々な方法で体内滞留時間の延長を試み、報告されてきた。これらの代表的な例として、例えば、ジビニルスルホンやビスエポキシド類及びホルムアルデヒドの様な二官能性架橋剤を使用して架橋ヒアルロン酸ゲルが報告されている(特開平7−97401)。また、ジビニルスルホン、ビスエポキシド類、ホルムアルデヒド等の二官能性試薬を架橋剤に使用して、得られた高膨潤性の架橋ヒアルロン酸ゲルを挙げることができる(米国特許第4,582,865号明細書、特公平6−37575号公報、特開平7−97401号公報、特開昭60−130601号公報参照)。また、ヒアルロン酸のテトラブチルアンモニウム塩がジメチルスルフォキシド等の有機溶媒に溶解する特徴を利用したヒアルロン酸の化学的修飾方法が開示されている(特開平3−105003号)。また、共有結合を形成する化学的試薬を使用しない方法として、ヒアルロン酸とアミノ基あるいはイミノ基を有する高分子化合物とを、ヒアルロン酸のカルボキシル基と高分子化合物のアミノ基あるいはイミノ基をイオン複合体として結合させてヒアルロン酸高分子複合体を調製する方法が開示されている(特開平6−73103号公報参照)。しかし、この様な従来の化学的な改質方法では、架橋ヒアルロン酸微粒子を生理食塩水の様な溶媒に分散させた状態で使用せざるを得ないため、目的の場所に長期間貯留させることが困難であり、また、体内貯留期間もそれほど長くはない。更に、注射器やスプレーデバイスを用いて必要な部位にその場での注入によるin situでは使用することが出来ない。しかし、本願の2液反応型ヒアルロン酸ゲルでは2液混合デバイスやスプレーデバイスを用いin situで目的とする部位で注入でき、その使用が簡単である。   Hyaluronic acid is a linear high-molecular polysaccharide composed of disaccharide units in which D-glucuronic acid and N-acetyl-D-glucosamine are alternately linked by β-1,4 bonds and β-1,3 bonds. It is known that this hyaluronic acid is distributed in the connective tissue of mammals and is present at the tip of chickens, and exhibits biocompatibility that does not show any harmful effects even when injected into a living body. Previously it was extracted from the chicken crest and animal umbilical cord, but recently some products have been purified from streptococcal cultures. Hyaluronic acid is highly soluble in water, both in its acid form and in its salt form (sodium and potassium salts). However, although hyaluronic acid has high water retention, it is susceptible to enzymatic action in the living body, so its half-life in the body is very short, about 1 to 3 days. When used as a medical material in vivo, It has been pointed out that the residence time is short. For this reason, attempts have been made to extend the residence time in the body by various methods such as chemical modification, chemical cross-linking, and the like. As typical examples of these, a crosslinked hyaluronic acid gel using a difunctional crosslinking agent such as divinyl sulfone, bisepoxides and formaldehyde has been reported (Japanese Patent Laid-Open No. 7-97401). In addition, a bifunctional reagent such as divinyl sulfone, bisepoxide, formaldehyde or the like can be used as a crosslinking agent, and the resulting highly swellable crosslinked hyaluronic acid gel can be exemplified (US Pat. No. 4,582,865). (See the specification, Japanese Patent Publication No. 6-37575, Japanese Patent Laid-Open No. 7-97401, Japanese Patent Laid-Open No. 60-130601). Further, a method for chemically modifying hyaluronic acid utilizing the feature that tetrabutylammonium salt of hyaluronic acid is dissolved in an organic solvent such as dimethyl sulfoxide is disclosed (Japanese Patent Laid-Open No. 3-105003). In addition, as a method that does not use a chemical reagent that forms a covalent bond, hyaluronic acid and a polymer compound having an amino group or imino group are ion-complexed with a carboxyl group of hyaluronic acid and an amino group or imino group of the polymer compound. A method for preparing a hyaluronic acid polymer composite by binding as a body is disclosed (see JP-A-6-73103). However, in such a conventional chemical modification method, the crosslinked hyaluronic acid fine particles must be used in a state of being dispersed in a solvent such as physiological saline. Is difficult, and the body retention period is not so long. Furthermore, it cannot be used in situ by in-situ injection at the required site using a syringe or spray device. However, the two-component reaction type hyaluronic acid gel of the present application can be injected in situ at a target site using a two-component mixing device or a spray device, and its use is simple.

近年、組織工学分野の発展に基づいた再生医療に関心が持たれている。この組織工学では種々の細胞の増殖を手助けする組織再生用足場が重要となる。ヒアルロン酸ゲルを用いた組織工学への応用として、培養皮膚、培養軟骨や顎骨再生が知られている。その例として、ヒアルロン酸とアミノ基あるいはイミノ基を有する高分子化合物とのイオン複合体からなる水不溶性の医療材料(特開平6−73103号)やヒアルロン酸と架橋剤ジ(もしくはビス)ヒドラジン又はジ(もしくはビス)ヒドラジドとの縮合反応による水不溶性の生体適合性材料(特開平9−59303号)、また、難水溶性ヒアルロン酸ゲルの軟骨組織や歯周辺組織の組織再生用基材への適用(特開2003−10308)等が提案されている。ところが、これらのヒアルロン酸ゲルはin vitroでゲルを形成した後に種々の細胞を播種して使用されているため、注射器による注入は出来ないためin situでは使用することが出来ない。   In recent years, there is an interest in regenerative medicine based on the development of the tissue engineering field. In this tissue engineering, a scaffold for tissue regeneration that helps the proliferation of various cells is important. Cultured skin, cultured cartilage and jawbone regeneration are known as applications to tissue engineering using hyaluronic acid gel. Examples thereof include water-insoluble medical materials comprising an ionic complex of hyaluronic acid and a polymer compound having an amino group or imino group (JP-A-6-73103), hyaluronic acid and a crosslinking agent di (or bis) hydrazine, A water-insoluble biocompatible material (Japanese Patent Laid-Open No. 9-59303) by a condensation reaction with di (or bis) hydrazide, and a poorly water-soluble hyaluronic acid gel to a tissue regeneration base material of cartilage tissue or tooth peripheral tissue Application (Japanese Patent Laid-Open No. 2003-10308) has been proposed. However, since these hyaluronic acid gels are used after seeding various cells after forming the gel in vitro, they cannot be used in situ because they cannot be injected with a syringe.

一方、変形性関節症,慢性関節リウマチ等の各種関節症の治療に有効な手段として、ヒアルロン酸水溶液を疾患関節部位へ注入する方法が採用されてきており、その膝関節治療剤の例としては「アルツ(商品名)」(生化学工業製、平均分子量90万)、「Hyalgan(商品名)」(Fidia 製、平均分子量<50万)や、「スベニール(商品名)」(アベンティスファーマ社/中外製薬社/電気化学工業社製、平均分子量190万)が知られている。また、ヒアルロン酸を化学的に架橋することで高分子化し粘弾性を改良した「Synvisc(商品名)」(ジェンザイム製)が開発されている。この架橋ヒアルロン酸ゲルは架橋剤ジビニルスルホンでヒアルロン酸を化学的に架橋したヒアルロン酸ゲルでハイラン(米国特許第4,713,448号)である。さらに、ヒアルロン酸をベースとする単一及び混合ゲルは、米国特許第4,582,865号及び同第4,605,691号に記載されている。これら関節治療製剤を用いた治療は、患者の関節に直接1週間毎に3〜5回の頻度で注射を行う必要があり、患者にとっては極めて苦痛であり、その軽減が望まれている。
国際公開WO2006/080523 特開2003−10308
On the other hand, as an effective means for treating various arthropathy such as osteoarthritis and rheumatoid arthritis, a method of injecting an aqueous solution of hyaluronic acid into a diseased joint site has been adopted. “Alz (trade name)” (manufactured by Seikagaku Corporation, average molecular weight 900,000), “Hyalgan (trade name)” (Fidia, average molecular weight <500,000), “Svenir (trade name)” (Aventis Pharma / Chugai Pharmaceutical Co./Electrochemical Co., Ltd., average molecular weight 1.9 million) is known. In addition, “Synvisc (trade name)” (manufactured by Genzyme) has been developed in which hyaluronic acid is chemically cross-linked and polymerized to improve viscoelasticity. This cross-linked hyaluronic acid gel is a hyaluronic acid gel obtained by chemically cross-linking hyaluronic acid with a cross-linking agent divinylsulfone, and is a high run (US Pat. No. 4,713,448). In addition, single and mixed gels based on hyaluronic acid are described in US Pat. Nos. 4,582,865 and 4,605,691. The treatment using these joint treatment preparations requires injection to the patient's joint directly at a frequency of 3 to 5 times per week, which is extremely painful for the patient, and reduction thereof is desired.
International Publication WO2006 / 080523 JP 2003-10308 A

従来の改質方法では、目的の場所に長期間貯留させることが困難であること、体内貯留期間も短いことからその改善が特に望まれていた。そこで、本発明者らは、これらの問題点を解決した新しいin situで使用できる2液反応型ヒアルロン酸ゲルを提供するものである。   The conventional reforming method has been particularly desired to be improved because it is difficult to store in a target place for a long period of time and the in-vivo storage period is short. Therefore, the present inventors provide a two-component reaction type hyaluronic acid gel that can be used in situ and solves these problems.

ヒアルロン酸そのものが本来持っている優れた生体適合性の特長を最大限生かし、安全性に優れた医用材料の医療への提供を目的とし、毒性の高い低分子の化学的架橋剤を使用することなく、またカチオン性の高分子化合物と複合体を形成することなくヒアルロン酸ゲルを提供する手段はこれまで開発されていなかった。本願の発明者らは、低分子架橋剤等を使用しないでヒアルロン酸単独からなる難水溶性ヒアルロン酸ゲルを簡便な方法で製造することを初めて見出し、この難水溶性ヒアルロン酸ゲルの関節性疾患治療材、DDS用担体や軟骨組織や歯周辺組織の組織再生用足場への適用の可能性を鋭意検討した結果、その有用性を見出し本発明を完成するに至った。   Use high-toxicity low-molecular chemical cross-linking agents to maximize the benefits of biocompatibility inherent in hyaluronic acid itself, and to provide medical materials with superior safety to medical care. In addition, a means for providing a hyaluronic acid gel without forming a complex with a cationic polymer compound has not been developed so far. The inventors of the present application have found for the first time that a water-insoluble hyaluronic acid gel comprising hyaluronic acid alone is produced by a simple method without using a low-molecular cross-linking agent or the like. As a result of intensive studies on the possibility of application to therapeutic materials, carriers for DDS, cartilage tissues, and tissue regeneration scaffolds for tissue regeneration, the present invention was completed by finding its usefulness.

本発明の2反応剤型の医療用含水ゲル形成剤は、重量平均分子量が1000〜300万であるアルデヒド化ヒアルロン酸の水溶液からなる第1反応液と、重量平均分子量が1000〜300万であるアミノ基含有ヒアルロン酸の水溶液からなる第2反応液とよりなり、前記の第1反応剤及び第2反応剤を混合した際には、pHが5.0〜8.0となることを特徴とする。   The two-reactant type hydrous gel-forming agent for medical use of the present invention has a first reaction solution comprising an aqueous solution of an aldehyded hyaluronic acid having a weight average molecular weight of 1,000 to 3,000,000 and a weight average molecular weight of 1,000 to 3,000,000. It comprises a second reaction solution comprising an aqueous solution of an amino group-containing hyaluronic acid, and when the first and second reactants are mixed, the pH is 5.0 to 8.0. To do.

本発明の2反応剤型の医療用含水ゲル形成剤は、2液混合の前または後の水溶液、または未硬化のゾルの状態で患部に適用して利用されるが、それ以外にも予め使用前にシート状、フィルム状、破砕状、スポンジ状、塊状、繊維状、又はチューブ状の含水ゲルに成型加工してから患部に適用しても良い。また、DDS用担体として利用することができ、この場合の生理活性物質としては、細胞増殖因子、例えば、インシュリン、肝細胞成長因子、トランスフォーミング成長因子、神経成長因子、上皮成長因子、血小板由来成長因子、インシュリン様成長因子、線維芽細胞成長因子、コロニー刺激因子、エリスロポイエチン、トランスフェリン、インターロイキン、及びインターフェロン等を含有させることができる。また、抗生物質、タンパク、オリゴ糖、又は核酸、婦人科疾患治療材、例えば子宮内投与薬、膣内投与薬などを、単独でまたは他の生理活性物質と組み合わせて含有させることができる。   The two-reactant type water-containing gel-forming agent for medical use of the present invention is used by applying it to the affected area in the form of an aqueous solution before or after mixing the two liquids, or in an uncured sol state. It may be applied to the affected area after being molded into a sheet-like, film-like, crushed, sponge-like, lump-like, fiber-like, or tube-like hydrated gel. It can also be used as a carrier for DDS. In this case, physiologically active substances include cell growth factors such as insulin, hepatocyte growth factor, transforming growth factor, nerve growth factor, epidermal growth factor, and platelet-derived growth. Factors, insulin-like growth factor, fibroblast growth factor, colony stimulating factor, erythropoietin, transferrin, interleukin, interferon and the like can be included. In addition, antibiotics, proteins, oligosaccharides or nucleic acids, gynecological disease treatment agents such as intrauterine drugs, intravaginal drugs and the like can be contained alone or in combination with other physiologically active substances.

本発明の医療用含水ゲルを細胞組織再生用足場として用いる場合、再生させる組織としては、関節軟骨、肋軟骨、気管軟骨、咽頭軟骨、頭蓋骨、歯槽骨、歯周組織、セメント質、歯根膜、腱、又は靱帯などを挙げることができる。すなわち、ほぼ、いずれの生体組織の再生にも利用できる。その際、軟骨細胞、幹細胞、骨髄細胞、骨芽細胞、又はES細胞などを播種して細胞を足場に培養し、増殖させた後、これらを生体組織欠損部分に充填することにより欠損組織の再生を促進させるために用いることが出来る。   When the medical hydrogel of the present invention is used as a scaffold for cell tissue regeneration, the tissues to be regenerated include articular cartilage, costal cartilage, tracheal cartilage, pharyngeal cartilage, skull, alveolar bone, periodontal tissue, cementum, periodontal ligament, A tendon, a ligament, etc. can be mentioned. That is, almost any living tissue can be regenerated. At that time, chondrocytes, stem cells, bone marrow cells, osteoblasts, ES cells, etc. are seeded, the cells are cultured on a scaffold, proliferated, and then filled into the biological tissue defect part to regenerate the defective tissue. It can be used to promote

ヒアルロン酸をゲル状態で長期間体内貯留することが可能となり、医療用材料としての応用、例えば、関節疾患治療材、癒着防止材、止血剤、創傷被覆材、褥瘡治療材、人工皮膚、生体組織再生用足場材、眼科手術補助材、およびドラッグデリバリー(DDS)用担体などに好適に適用されうる。また、外科手術用、例えば、消化器、泌尿生殖器粘膜や口腔粘膜等、あるいは美容整形外科での皮膚組織の上皮膨隆用の医用材料にも応用が期待できる。   Hyaluronic acid can be stored in the gel for a long period of time and applied as a medical material, for example, joint disease treatment material, adhesion prevention material, hemostatic agent, wound dressing material, pressure ulcer treatment material, artificial skin, biological tissue It can be suitably applied to a scaffold for regeneration, an auxiliary material for ophthalmic surgery, a carrier for drug delivery (DDS), and the like. Further, it can be expected to be applied to medical materials for surgical operation, for example, digestive organs, genitourinary mucosa and oral mucosa, or epithelial swelling of skin tissue in cosmetic surgery.

第1反応液をなすアルデヒド化ヒアルロン酸は、ヒアルロン酸を酸化してアルデヒド基を導入したものであり、重量平均分子量が1000〜200万の範囲内にあるものである。ヒアルロン酸は、ヒアルロン酸及びヒアルロネート塩、例えばヒアルロン酸ナトリウム(ナトリウム塩)、ヒアルロン酸カリウム、ヒアルロン酸マグネシウム及びヒアルロン酸カルシウムが含まれ、これらを混合して用いることも出来る。なお、アルデヒド基の導入は、一般的な過ヨウ素酸酸化法により行うことができ、1繰り返し単位あたり、好ましくは0.01〜1.0個のアルデヒド基、より好ましくは0.02〜0.8個、さらに好ましくは0.05〜0.5個のアルデヒド基が導入される。   Aldehydated hyaluronic acid forming the first reaction liquid is one in which hyaluronic acid is oxidized to introduce an aldehyde group, and has a weight average molecular weight in the range of 1,000 to 2,000,000. Hyaluronic acid includes hyaluronic acid and hyaluronate salts such as sodium hyaluronate (sodium salt), potassium hyaluronate, magnesium hyaluronate and calcium hyaluronate, and these may be used in combination. The aldehyde group can be introduced by a general periodate oxidation method, and preferably 0.01 to 1.0 aldehyde group, more preferably 0.02 to 0.0. Eight, more preferably 0.05 to 0.5 aldehyde groups are introduced.

アルデヒド化ヒアルロン酸を得るのに用いるヒアルロン酸は、重量平均分子量が、好ましくは2000〜1000万であり、より好ましくは2000〜200万である。例えば、株式会社紀文フードケミファより市販されている、化粧品用途や医薬用途を使用することができる。なお、アルデヒド化ヒアルロン酸の最適分子量は、具体的な用途によって異なり、特定の分子量ないし分子量分布のものを選択することにより、流動化するまでの期間を調整することができる。アルデヒド化ヒアルロン酸の分子量が過度に大きい場合、ゾル化が過度に遅延してしまう。また、アルデヒド化ヒアルロン酸の分子量が過度に小さい場合、ゲル化状態を維持する時間が短くなりすぎる。   The hyaluronic acid used to obtain the aldehyded hyaluronic acid has a weight average molecular weight of preferably 2000 to 10 million, more preferably 2000 to 2 million. For example, cosmetic use and pharmaceutical use commercially available from Kibun Food Chemifa Co., Ltd. can be used. The optimum molecular weight of aldehyde-modified hyaluronic acid varies depending on the specific application, and the period until fluidization can be adjusted by selecting a specific molecular weight or molecular weight distribution. When the molecular weight of the aldehyded hyaluronic acid is excessively large, the sol-formation is excessively delayed. Moreover, when the molecular weight of aldehyde-ized hyaluronic acid is too small, the time which maintains a gelled state becomes too short.

ヒアルロン酸の重量平均分子量及び分子量分布は、一般的な水系のGPC(ゲル濾過クロマトグラフィー;正式にはサイズ排除クロマトグラフィー(SEC))測定により、容易に求めることができる。具体的には、水溶性ポリマー架橋体(TOSOH TSK gel G3000PW及びG5000PW、TSK guard column PWH)からなるGPC用カラムを40℃に加温し、緩衝液(10mM KH2PO4+10mM K2HPO4)を溶離液とする測定により求めることができる。 The weight average molecular weight and molecular weight distribution of hyaluronic acid can be easily determined by a general aqueous GPC (gel filtration chromatography; formally size exclusion chromatography (SEC)) measurement. Specifically, a GPC column composed of a water-soluble polymer cross-linked product (TOSOH TSK gel G3000PW and G5000PW, TSK guard column PWH) is heated to 40 ° C., and a buffer solution (10 mM KH 2 PO 4 +10 mM K 2 HPO 4 ). Can be obtained by measurement using as an eluent.

アルデヒド化ヒアルロン酸(第1反応液)としては、過ヨウ素酸酸化によるアルデヒド基の導入の後、凍結乾燥を経て蒸留水で溶解して用いることができる。場合によっては、減圧下、または窒素等の不活性ガスを吹き込みつつ、比較的低温でスプレードライを行うことにより粉末とした後蒸留水に溶解して用いることもできる。更に、アルデヒド化ヒアルロン酸(第1反応液)を凍結乾燥し、粉末状態でも使用できる。   Aldehydated hyaluronic acid (first reaction solution) can be used after being introduced with aldehyde groups by periodate oxidation and then dissolved in distilled water via freeze-drying. In some cases, the powder can be dissolved in distilled water after being powdered by spray drying at a relatively low temperature while blowing an inert gas such as nitrogen under reduced pressure. Furthermore, aldehyde-modified hyaluronic acid (first reaction solution) can be freeze-dried and used in a powder state.

第2反応剤をなすアミノ化ヒアルロン酸は、重量平均分子量が2000〜1000万、好ましくは2000〜200万である。   The aminated hyaluronic acid constituting the second reactant has a weight average molecular weight of 2000 to 10 million, preferably 2000 to 2 million.

アミノ化ヒアルロン酸(第2反応液)としては、ヒアルロン酸のカルボキシル基をカルボジイミドで活性化し、アジピン酸ジヒドラジンと反応させた後、凍結乾燥を経て蒸留水で溶解して用いることができる。場合によっては、減圧下、または窒素等の不活性ガスを吹き込みつつ、比較的低温でスプレードライを行うことにより粉末とした後蒸留水に溶解して用いることもできる。更に、アミノ化ヒアルロン酸(第2反応液)を凍結乾燥し、粉末状態でも使用できる。第1反応剤と第2反応剤とが共に粉末の形態であっても良く、この場合、例えば、粉末同士混合された後、生体中の水分を吸ってゲル化するようにすることができる。また、第1反応剤の粉末と第2反応剤の粉末とを混合すると同時に、水を加えてゲル化するのであっても良く、第1反応剤の粉末と第2反応剤の粉末とを均一に混ぜた混合粉末に、水を加えてゲル化させるのであっても良い。第1反応剤及び第2反応剤の一方または両方を粉末の形態とすることにより保存安定性を向上することができる。   As the aminated hyaluronic acid (second reaction liquid), the carboxyl group of hyaluronic acid is activated with carbodiimide, reacted with dihydrazine adipate, and then freeze-dried and dissolved in distilled water. In some cases, the powder can be dissolved in distilled water after being powdered by spray drying at a relatively low temperature while blowing an inert gas such as nitrogen under reduced pressure. Furthermore, aminated hyaluronic acid (second reaction solution) can be freeze-dried and used in a powder state. Both the first reactant and the second reactant may be in the form of powder. In this case, for example, after the powders are mixed with each other, the moisture in the living body is sucked and gelled. Alternatively, the first reactant powder and the second reactant powder may be mixed and gelled by adding water. The first reactant powder and the second reactant powder are uniformly mixed. Water may be added to the mixed powder mixed in to form a gel. Storage stability can be improved by making one or both of the first reactant and the second reactant into a powder form.

アミノ化ヒアルロン酸の分子量が大きすぎるか、または、分子量の大きすぎる区画を過度に含むならば、流動化するまでの期間が過度に長くなる。   If the molecular weight of the aminated hyaluronic acid is too high or contains too high a molecular weight compartment, the period until fluidization becomes too long.

第1反応液及び第2反応液を混合した状態におけるアルデヒド基/アミノ基のモル比は、0.1以上5未満であり、好ましくは0.2〜4.0、より好ましくは1.0〜3.5である。アルデヒド基/アミノ基のモル比がこれらの範囲より小さい場合には、生成ゲルの分解が早すぎ、また大きい場合には速やかなゲル化が達成されない。   The molar ratio of aldehyde group / amino group in a state where the first reaction solution and the second reaction solution are mixed is 0.1 or more and less than 5, preferably 0.2 to 4.0, more preferably 1.0 to. 3.5. When the aldehyde group / amino group molar ratio is smaller than these ranges, the resulting gel decomposes too quickly, and when it is larger, rapid gelation cannot be achieved.

本発明の2反応剤型ヒアルロン酸ゲルを使用する際、第1反応液と第2反応液との混合及び塗布は種々の方法により行うことができる。例えば、第1及び第2の接着剤原液の一方を被着体表面に塗布し、続けてもう一方を塗布することで混合を行うことができる。また、第1反応液と第2反応液とが塗布装置の混合室中で混合された後に、ノズルから噴出してスプレー塗布を行うのであっても良く、また、アプリケーターのスリットから送り出されて塗布を行うのであっても良い。   When using the 2-reactant type hyaluronic acid gel of the present invention, mixing and application of the first reaction solution and the second reaction solution can be performed by various methods. For example, mixing can be performed by applying one of the first and second adhesive stock solutions to the surface of the adherend and then applying the other. Further, after the first reaction liquid and the second reaction liquid are mixed in the mixing chamber of the coating apparatus, spraying may be performed by ejecting from the nozzle, or the liquid may be fed from the slit of the applicator and applied. May be performed.

第1反応液と第2反応液とが混合されると、アルデヒド化ヒアルロン酸のアルデヒド基と、アミノ化ヒアルロン酸のアミノ基との間でシッフ結合が形成され、これが架橋点となって網目構造を有するハイドロゲルが形成される。その結果、硬化が、混合から2〜600秒、好ましくは3〜500秒、より好ましくは5〜300秒の間に生じる。混合から硬化までの好ましい時間は、用途によって多少異なる。   When the first reaction solution and the second reaction solution are mixed, a Schiff bond is formed between the aldehyde group of the aldehyded hyaluronic acid and the amino group of the aminated hyaluronic acid, and this serves as a crosslinking point to form a network structure. A hydrogel having is formed. As a result, curing occurs from 2 to 600 seconds, preferably from 3 to 500 seconds, more preferably from 5 to 300 seconds after mixing. The preferred time from mixing to curing varies somewhat depending on the application.

このような硬化反応により生成する含水ゲル状の硬化接着剤層、または含水ゲル状の樹脂は、設計液化期間を経たならば、自己分解によって液体状態に変化する。すなわち、生体内での酵素分解等を経ずとも、含水状態にあるならば、自然に分解を生じ液体状態(流動可能なゾル状態)に変換される。したがって、生体内にあっては、ある所定の期間を経過時に、速やかに吸収あるいは排泄されて消滅されるようにすることができる。設計分解期間は、数時間〜4カ月、通常は1日〜1カ月の範囲、特には2日〜2週間の範囲内で任意に設定される。   The hydrated gel-like cured adhesive layer or the hydrated gel-like resin produced by such a curing reaction changes to a liquid state by self-decomposition after the design liquefaction period. That is, even if it is in a water-containing state without undergoing enzymatic decomposition or the like in vivo, it is naturally decomposed and converted into a liquid state (flowable sol state). Therefore, in a living body, when a predetermined period is elapsed, it can be quickly absorbed or excreted and disappear. The design degradation period is arbitrarily set within a range of several hours to 4 months, usually within a range of 1 day to 1 month, particularly within a range of 2 days to 2 weeks.

これに対して、生体内で酵素分解のみによって分解吸収される既存の生体分解樹脂の場合には、分解期間にばらつきが大きく、必要な接着力保持期間を経た後に速やかに分解されるようにするのは困難であったのである。   In contrast, in the case of an existing biodegradable resin that is decomposed and absorbed only by enzymatic decomposition in the living body, the decomposition period varies greatly, and it is rapidly decomposed after a necessary adhesion holding period. It was difficult.

自己分解による分解期間は、アルデヒド化ヒアルロン酸及び/またはアミノ化ヒアルロン酸の分子量ないしその分布の選択ないしは調整、及び、2液混合時のpHの調整などによって、任意に調整し、設定することができる。すなわち、分解され吸収される期間を、2液接着剤の構成の調整により、任意に設計しておくことができる。   The decomposition period by self-decomposition can be arbitrarily adjusted and set by selecting or adjusting the molecular weight or distribution of aldehyded hyaluronic acid and / or aminated hyaluronic acid, and adjusting the pH when mixing two liquids. it can. In other words, the period of decomposition and absorption can be arbitrarily designed by adjusting the configuration of the two-component adhesive.

酵素分解によらない自己分解の機構は、明らかでないが、アルデヒド化ヒアルロン酸のアルデヒド基が、アミノ基と結合してシッフ塩基を形成した場合、シッフ塩基に隣接するグルコシド結合が含水状態にて分解を受けやすくなったものと考えている。   The mechanism of autolysis without enzymatic degradation is not clear, but when the aldehyde group of aldehyde-modified hyaluronic acid binds to an amino group to form a Schiff base, the glucoside bond adjacent to the Schiff base is degraded in a hydrous state. We think that it became easy to receive.

また、第2反応液をなすアミノ基含有高分子化合物としては、アミノ化ヒアルロン酸に代えて、コラーゲン、ゼラチン、アルブミン、キトサン、または、末端にアミノ基を導入した多分岐ポリエチレングリコールなどを用いることもできる。ここで、第1反応剤と第2反応剤の水溶液同士または粉−液の混合によるゲル化の反応速度を高めるため、コラーゲン、ゼラチン、アルブミン、キトサンなどの高分子鎖に、より多くのアミノ基を導入することもできる。更に、多分岐ポリエチレングリコールとしては、分岐の数(エチレンオキシドを付加させる出発物質における官能基の数)が2〜32であって、重量平均分子量が2、000〜200、000のものを用いることができる。   In addition, as the amino group-containing polymer compound that forms the second reaction solution, collagen, gelatin, albumin, chitosan, or multi-branched polyethylene glycol having an amino group introduced at the end thereof may be used instead of aminated hyaluronic acid. You can also. Here, in order to increase the reaction rate of gelation by mixing aqueous solutions of the first and second reactants or by mixing powder-liquid, more amino groups are added to the polymer chain such as collagen, gelatin, albumin and chitosan. Can also be introduced. Furthermore, as the multi-branched polyethylene glycol, one having a branch number (the number of functional groups in the starting material to which ethylene oxide is added) of 2 to 32 and a weight average molecular weight of 2,000 to 200,000 is used. it can.

本発明の2液反応型含水ゲル形成剤により得られるヒアルロン酸ゲルは、医療用材料として、関節疾患治療材、癒着防止材、止血剤、創傷被覆材、褥瘡治療材、人工皮膚、生体組織再生用足場材、眼科手術補助材、およびドラッグデリバリー(DDS)用担体などに好適に適用されうる。また、外科手術用、例えば、皮膚、あるいは消化器、泌尿生殖器粘膜や口腔粘膜等、さらに美容整形外科での上皮膨隆用の医用材料にも応用できる。以下、本発明を実施例により具体的に示すが、本発明はこれらの実施例に限定されるものではない。   The hyaluronic acid gel obtained from the two-component reactive hydrogel of the present invention is used as a medical material as a joint disease treatment material, an adhesion prevention material, a hemostatic agent, a wound dressing material, a pressure ulcer treatment material, artificial skin, and biological tissue regeneration. The present invention can be suitably applied to scaffolds for ophthalmic use, ophthalmic surgery aids, drug delivery (DDS) carriers, and the like. It can also be applied to medical materials for surgery, for example, skin, digestive organs, genitourinary mucosa and oral mucosa, and epithelial swelling in cosmetic surgery. EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

分子量100,000のヒアルロン酸ナトリウム(株式会社紀文フードケミファ、FCH−SU、ロット番号:5108)2gを200mlの蒸留水に溶解させた。次に、0.2gの過ヨウ素酸ナトリウム(分子量213.89)を添加し、50℃で3時間撹拌しながら反応させた。そして、反応後の溶液を蒸留水で24時間透析(分画分子量14,000の透析膜使用)した後、凍結乾燥し、1.89gのアルデヒド化ヒアルロン酸を得た。   2 g of sodium hyaluronate having a molecular weight of 100,000 (Kibun Food Chemifa, FCH-SU, lot number: 5108) was dissolved in 200 ml of distilled water. Next, 0.2 g of sodium periodate (molecular weight: 213.89) was added and reacted at 50 ° C. with stirring for 3 hours. The solution after the reaction was dialyzed against distilled water for 24 hours (using a dialysis membrane having a molecular weight cut off of 14,000) and then freeze-dried to obtain 1.89 g of aldehyde-modified hyaluronic acid.

分子量100,000のヒアルロン酸ナトリウム(株式会社紀文フードケミファ、FCH−SU、ロット番号:5108)1gを100mlの蒸留水に溶解させた。次に9.44gのアジピン酸ジヒドラジド(分子量174.2)を添加し、溶液のpHを4.75に調整した。そこに2.08gの1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド(分子量191.7)を添加して溶液のpHを4.75に保ち、25℃で2時間攪拌しながら反応させた。そして、反応後の溶液を蒸留水で24時間透析(分画分子量14,000の透析膜使用)した後、凍結乾燥し、0.700gのアミノ化ヒアルロン酸を得た。   1 g of sodium hyaluronate having a molecular weight of 100,000 (Kibun Food Chemifa, FCH-SU, lot number: 5108) was dissolved in 100 ml of distilled water. Next, 9.44 g of adipic acid dihydrazide (molecular weight 174.2) was added to adjust the pH of the solution to 4.75. To this, 2.08 g of 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide (molecular weight 191.7) was added to keep the pH of the solution at 4.75, and the reaction was conducted while stirring at 25 ° C. for 2 hours. I let you. The solution after the reaction was dialyzed against distilled water for 24 hours (using a dialysis membrane having a molecular weight cut off of 14,000) and then freeze-dried to obtain 0.700 g of aminated hyaluronic acid.

実施例1で得られたアルデヒド化ヒアルロン酸は、蒸留水に溶解して10重量%の水溶液を調製し、実施例3で得られたアミノ化ヒアルロン酸は、蒸留水に溶解して1重量%の水溶液を調製した。これらを直径15mmのガラス製試験管に1mlずつ加えてボルテックスミキサーで混和した。   Aldehydated hyaluronic acid obtained in Example 1 was dissolved in distilled water to prepare a 10% by weight aqueous solution, and aminated hyaluronic acid obtained in Example 3 was dissolved in distilled water to give 1% by weight. An aqueous solution of was prepared. 1 ml of each of these was added to a glass test tube having a diameter of 15 mm and mixed with a vortex mixer.

実施例1で得られたアルデヒド化ヒアルロン酸は、蒸留水に溶解して5重量%の水溶液を調製し、実施例3で得られたアミノ化ヒアルロン酸は、蒸留水に溶解して0.5重量%の水溶液を調製した。これらを直径15mmのガラス製試験管に1mlずつ加えてボルテックスミキサーで混和した。   Aldehydated hyaluronic acid obtained in Example 1 was dissolved in distilled water to prepare a 5 wt% aqueous solution, and aminated hyaluronic acid obtained in Example 3 was dissolved in distilled water to give 0.5%. A weight percent aqueous solution was prepared. 1 ml of each of these was added to a glass test tube having a diameter of 15 mm and mixed with a vortex mixer.

実施例1で得られたアルデヒド化ヒアルロン酸は、蒸留水に溶解して2.5重量%の水溶液を調製し、実施例3で得られたアミノ化ヒアルロン酸は、蒸留水に溶解して0.25重量%の水溶液を調製した。これらを直径15mmのガラス製試験管に1mlずつ加えてボルテックスミキサーで混和した。   Aldehydated hyaluronic acid obtained in Example 1 was dissolved in distilled water to prepare a 2.5% by weight aqueous solution, and aminated hyaluronic acid obtained in Example 3 was dissolved in distilled water to obtain 0%. A 25 wt% aqueous solution was prepared. 1 ml of each of these was added to a glass test tube having a diameter of 15 mm and mixed with a vortex mixer.

実施例1で得られたアルデヒド化ヒアルロン酸は、蒸留水に溶解して1.25重量%の水溶液を調製し、実施例3で得られたアミノ化ヒアルロン酸は、蒸留水に溶解して0.125重量%の水溶液を調製した。これらを直径15mmのガラス製試験管に1mlずつ加えてボルテックスミキサーで混和した。   Aldehydated hyaluronic acid obtained in Example 1 was dissolved in distilled water to prepare a 1.25 wt% aqueous solution, and aminated hyaluronic acid obtained in Example 3 was dissolved in distilled water to obtain 0%. A 125 wt% aqueous solution was prepared. 1 ml of each of these was added to a glass test tube having a diameter of 15 mm and mixed with a vortex mixer.

実施例4から7までで2液を混合した時のゲル化時間と25℃でゲルからゾルに形態変化するまでの時間を目視にて調べた。その結果を表1に示す。

Figure 0005165281
The gelation time when the two liquids were mixed in Examples 4 to 7 and the time until the shape changed from gel to sol at 25 ° C. were examined visually. The results are shown in Table 1.
Figure 0005165281

表1より、2液の濃度が高い場合はゲル化時間が短くゾル化時間が長くなる傾向が認められた。即ち、高濃度の場合、架橋密度が高くなるためゾル化までの時間も遅延される。従来のヒアルロン酸の架橋では1ヶ月以上形態を維持していることは出来なかったのに対して、本発明では28日以上ゲル状態を保つ事が出来た。   From Table 1, when the concentration of the two liquids is high, the gelation time tends to be short and the solation time tends to be long. That is, when the concentration is high, the crosslinking density increases, so the time until sol formation is also delayed. In contrast to the conventional hyaluronic acid cross-linking, the morphology could not be maintained for more than one month, whereas in the present invention the gel state could be maintained for more than 28 days.

生体組織再生用足場として、12週齢のウサギの骨髄から採取した細胞(約2×108細胞個)を実施例2で作成したアミノ化ヒアルロン酸水溶液に入れ、実施例1のアルデヒド化ヒアルロン酸水溶液とをミキシングデバイスを用い、生後5ヶ月の雌日本白色ウサギの膝関節の大腿骨側の欠損軟骨に注入した。その結果、12週間後には軟骨、及びその他の骨の顕著な再生が観察された。 As a scaffold for biological tissue regeneration, cells (about 2 × 10 8 cells) collected from the bone marrow of a 12-week-old rabbit were placed in the aminated hyaluronic acid aqueous solution prepared in Example 2, and the aldehyde-modified hyaluronic acid of Example 1 was used. The aqueous solution was injected into the defect cartilage on the femoral side of the knee joint of a female Japanese white rabbit 5 months old using a mixing device. As a result, significant regeneration of cartilage and other bones was observed after 12 weeks.

骨髄由来間葉系幹細胞(約2×108細胞個)を実施例8と同じようにアミノ化ヒアルロン酸水溶液に入れ、アルデヒド化ヒアルロン酸水溶液とをミキシングデバイスを用い、ビーグル犬歯槽骨欠損部へ移植した。その結果、3ヵ月後には顕著な歯槽骨とセメント質及び歯周靭帯の再生が観察された。 Bone marrow-derived mesenchymal stem cells (approximately 2 × 10 8 cells) are placed in an aminated hyaluronic acid aqueous solution in the same manner as in Example 8, and the aldehyde-treated hyaluronic acid aqueous solution is mixed with the beagle canine alveolar bone defect using a mixing device. Transplanted. As a result, remarkable alveolar bone, cementum and periodontal ligament regeneration were observed after 3 months.

DDS用単体として、子宮内膜症治療ダナゾールを実施例2で作成したアミノ化ヒアルロン酸水溶液にケン濁させ、実施例1のアルデヒド化ヒアルロン酸水溶液とをミキシングデバイスを用い押し出すことにより、ダナゾール含有環状リング状のヒアルロン酸ゲル製剤を作成した。得られた婦人科疾患治療剤に含まれる薬剤(ダナゾール)のin vitro徐放試験を10単位/mlの牛睾丸ヒアルロニダーゼを含有する0.14mol/L リン酸緩衝液(pH7.4)3L中に置き、37℃で数十日間攪拌し、液中への1日毎に放出されるダナゾール量を液体クロマトグラフィー法により測定した。その結果、約200μg/日で安定に放出は持続した。   As a simple substance for DDS, danazol for treating endometriosis is suspended in the aminated hyaluronic acid aqueous solution prepared in Example 2, and the aldehyde-containing hyaluronic acid aqueous solution of Example 1 is extruded using a mixing device, whereby danazol-containing cyclic A ring-shaped hyaluronic acid gel preparation was prepared. An in vitro sustained release test of a drug (danazol) contained in the obtained gynecological disease treatment agent was conducted in 3 L of 0.14 mol / L phosphate buffer (pH 7.4) containing 10 units / ml of bovine testicular hyaluronidase. The mixture was stirred at 37 ° C. for several tens of days, and the amount of danazol released into the liquid every day was measured by a liquid chromatography method. As a result, the release was stably maintained at about 200 μg / day.

2液反応型ヒアルロン酸ゲルの関節内治療材としての効能効果を確認するため、日本白色家兎5羽(体重約3kg)を麻酔し右膝の関節に、実施例2で作成したアミノ化ヒアルロン酸水溶液と実施例1のアルデヒド化ヒアルロン酸水溶液とをミキシングデバイスを用いて注入した。4週後に全例屠殺しヒアルロン酸水溶液を注入した膝関節部分を観察したところ全ての膝関節内にヒアルロン酸ゲルが残存していた。   In order to confirm the efficacy of the two-component reactive hyaluronic acid gel as an intra-articular treatment, 5 Japanese white rabbits (weight approximately 3 kg) were anesthetized and the aminated hyaluronic acid prepared in Example 2 was applied to the right knee joint. The acid aqueous solution and the aldehyde-treated hyaluronic acid aqueous solution of Example 1 were injected using a mixing device. Four weeks later, all the cases were sacrificed and the knee joint portion into which the hyaluronic acid aqueous solution was injected was observed. As a result, hyaluronic acid gel remained in all knee joints.

以上に説明したように、本発明の2液反応型ヒアルロン酸ゲルは、生体適合性と安全性に優れ、2液混合デバイスやスプレーデバイスを用いin situで目的とする部位で注入でき、その使用が簡単であるため、医療用材料として、関節疾患治療材、癒着防止材、止血剤、創傷被覆材、褥瘡治療材、人工皮膚、生体組織再生用足場材、眼科手術補助材、およびドラッグデリバリー(DDS)用担体などに好適に適用されうる。また、外科手術用、例えば、皮膚、あるいは消化器、泌尿生殖器粘膜や口腔粘膜等、さらに美容整形外科での上皮膨隆用の医用材料にも応用できる。   As described above, the two-component reactive hyaluronic acid gel of the present invention is excellent in biocompatibility and safety, and can be injected in situ at a target site using a two-component mixing device or a spray device. As a medical material, joint materials, anti-adhesion materials, hemostatic agents, wound dressings, pressure ulcer treatment materials, artificial skin, biological tissue regeneration scaffolds, ophthalmic surgical aids, and drug delivery ( It can be suitably applied to a carrier for DDS). It can also be applied to medical materials for surgery, for example, skin, digestive organs, genitourinary mucosa and oral mucosa, and epithelial swelling in cosmetic surgery.

Claims (9)

重量平均分子量が1000〜300万であるアルデヒド化ヒアルロン酸からなる第1反応剤と、重量平均分子量が1000〜300万であるアミノ基含有ヒアルロン酸からなる第2反応剤とよりなり、前記の第1反応剤第2反応剤水の存在下で反応させることで含水ゲルを形成可能であることを特徴とする2反応剤型の医療用含水ゲル形成剤。 A first reactant comprising an aldehyde-treated hyaluronic acid having a weight average molecular weight of 1,000 to 3,000,000 and a second reactant comprising an amino group-containing hyaluronic acid having a weight average molecular weight of 1,000 to 3,000,000. 1 reactant and 2 reactant type medical hydrogel forming agent, characterized in that the second reactant is capable of forming a hydrogel by reacting in the presence of water. 前記アルデヒド化ヒアルロン酸は、重量平均分子量が1000〜300万のヒアルロン酸を過ヨウ素酸または過ヨウ素酸塩で酸化して、アルデヒド基を導入したものであることを特徴とする請求項1に記載の2反応剤型の医療用含水ゲル形成剤。   The aldehyde-modified hyaluronic acid is obtained by oxidizing hyaluronic acid having a weight average molecular weight of 1000 to 3 million with periodic acid or periodate to introduce an aldehyde group. A two-agent type water-containing gel-forming agent for medical use. 前記アミノ基含有ヒアルロン酸は、重量平均分子量が1000〜300万のヒアルロン酸をアジピン酸ジヒドラジドまたはその他のジヒドラジド化合物を用いてアミノ基を導入したものであることを特徴とする請求項1および2に記載の2反応剤型の医療用含水ゲル形成剤。 The amino group-containing hyaluronic acid is obtained by introducing an amino group into hyaluronic acid having a weight average molecular weight of 1,000 to 3,000,000 using adipic acid dihydrazide or other dihydrazide compounds. The two-reagent-type medical hydrogel forming agent as described. 重量平均分子量が1000〜300万であるアルデヒド化ヒアルロン酸からなる第1反応剤と、重量平均分子量が1000〜300万であるアミノ化ヒアルロン酸からなる第2反応剤とを水の存在下で反応させて得られる含水ゲル状の医療用樹脂であって、含水状態で保存されたならば、設定可能なゲル状態保持期間を経た後には、自己分解によってゾル状態に変化することを特徴とする医療用樹脂。 A first reactant made of aldehyded hyaluronic acid having a weight average molecular weight of 1,000 to 3,000,000 and a second reactant made of aminated hyaluronic acid having a weight average molecular weight of 1,000 to 3,000,000 are reacted in the presence of water. A water-containing gel-like medical resin obtained by the treatment, and if stored in a water-containing state, after passing through a settable gel state holding period, it is changed into a sol state by self-decomposition. Resin. 前記の第1反応剤及び第2反応剤について、10〜50KGyの電子線を照射して滅菌したことを特徴とする請求項1〜3のいずれかに記載の2反応剤型の医療用含水ゲル形成剤。 The two-reagent-type medical hydrogel according to any one of claims 1 to 3, wherein the first and second reactants are sterilized by irradiation with an electron beam of 10 to 50 KGy. Forming agent. 第1反応剤と第2反応剤がともに水溶液であるか、第1反応剤が粉で第2反応剤が液体であるか、または、第1反応剤と第2反応剤がともに粉(粉−粉)である請求項1〜3及び5のいずれかに記載の2反応剤型の医療用含水ゲル形成剤。 The first reactant and the second reactant are both aqueous solutions, the first reactant is powder and the second reactant is liquid, or both the first reactant and second reactant are powder (powder- The two-reactant type hydrous gel-forming agent for medical use according to any one of claims 1 to 3 and 5 . 第1反応剤の粉末と第2反応剤の粉末とを混ぜた混合粉末の形態である請求項1〜3及び5のいずれかに記載の2反応剤型の医療用含水ゲル形成剤。 The two-reactant type hydrous gel-forming agent for medical use according to any one of claims 1 to 3, which is in the form of a mixed powder obtained by mixing a powder of the first reactant and a powder of the second reactant . アルデヒド化ヒアルロン酸には、1繰り返し単位あたり0.01〜1.0個のアルデヒド基が導入されており、アルデヒド基/アミノ基のモル比が0.1以上5未満である請求項1〜3及び5〜7のいずれかに記載の2反応剤型の医療用含水ゲル形成剤。 The aldehyde-modified hyaluronic acid has 0.01 to 1.0 aldehyde groups introduced per repeating unit, and the molar ratio of aldehyde groups / amino groups is 0.1 or more and less than 5. And a two-reactant type hydrous gel-forming agent for medical use according to any one of 5 to 7 . 請求項1〜3及び5〜8のいずれかの医療用含水ゲル形成剤から得られ、関節疾患治療材、癒着防止材、止血剤、創傷被覆材、褥瘡治療材、人工皮膚、生体組織再生用足場材、眼科手術補助材、およびドラッグデリバリー(DDS)用担体のいずれかとして用いられる含水ゲル。 It is obtained from the medical hydrous gel-forming agent according to any one of claims 1 to 3 and 5 to 8, and is used for joint disease treatment material, adhesion prevention material, hemostatic agent, wound dressing material, pressure ulcer treatment material, artificial skin, and biological tissue regeneration. A hydrogel used as a scaffold, an ophthalmic surgical aid, or a drug delivery (DDS) carrier.
JP2007147459A 2007-06-01 2007-06-01 Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom Expired - Fee Related JP5165281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147459A JP5165281B2 (en) 2007-06-01 2007-06-01 Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147459A JP5165281B2 (en) 2007-06-01 2007-06-01 Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom

Publications (2)

Publication Number Publication Date
JP2008295885A JP2008295885A (en) 2008-12-11
JP5165281B2 true JP5165281B2 (en) 2013-03-21

Family

ID=40169969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147459A Expired - Fee Related JP5165281B2 (en) 2007-06-01 2007-06-01 Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom

Country Status (1)

Country Link
JP (1) JP5165281B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1395392B1 (en) * 2009-08-27 2012-09-14 Fidia Farmaceutici VISCOELASTIC FROSTS LIKE NEW FILLERS
CZ2009836A3 (en) * 2009-12-11 2011-06-22 Contipro C A.S. Hyaluronic acid derivative oxidized in position 6 of saccharide glucosamine portion selectively to aldehyde, process of its preparation and modification method thereof
CZ302503B6 (en) 2009-12-11 2011-06-22 Contipro C A.S. Process for preparing hyaluronic acid derivative oxidized in position 6 of polysaccharide glucosamine portion to aldehyde and modification process thereof
US8197849B2 (en) * 2010-02-12 2012-06-12 National Health Research Institutes Cross-linked oxidated hyaluronic acid for use as a vitreous substitute
CN102321248B (en) * 2011-06-10 2013-04-24 冯淑芹 Injectable temperature sensitive gel used for filling and repairing damaged tissues
CZ2012136A3 (en) 2012-02-28 2013-06-05 Contipro Biotech S.R.O. Derivatives based on hyaluronic acid capable of forming hydrogels, process of their preparation, hydrogels based on these derivatives, process of their preparation and use
CZ304512B6 (en) 2012-08-08 2014-06-11 Contipro Biotech S.R.O. Hyaluronic acid derivative, process for its preparation, modification process and use thereof
CZ304654B6 (en) 2012-11-27 2014-08-20 Contipro Biotech S.R.O. C6-C18-acylated hyaluronate-based nanomicellar composition, process for preparing C6-C18-acylated hyaluronate, process for preparing nanomicellar composition and stabilized nanomicellar composition as well as use thereof
CZ2014150A3 (en) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Conjugates of hyaluronic acid oligomer or salts thereof, process of their preparation and use
CZ2014451A3 (en) 2014-06-30 2016-01-13 Contipro Pharma A.S. Antitumor composition based on hyaluronic acid and inorganic nanoparticles, process of its preparation and use
CZ309295B6 (en) 2015-03-09 2022-08-10 Contipro A.S. Self-supporting, biodegradable film based on hydrophobized hyaluronic acid, method of its preparation and use
CZ306479B6 (en) 2015-06-15 2017-02-08 Contipro A.S. A method of crosslinking polysaccharides by using photolabile protecting groups
CZ306662B6 (en) 2015-06-26 2017-04-26 Contipro A.S. Sulphated polysaccharides derivatives, the method of their preparation, the method of their modification and the use
CZ308106B6 (en) 2016-06-27 2020-01-08 Contipro A.S. Unsaturated derivatives of polysaccharides, preparing and using them
US10842741B2 (en) 2016-07-27 2020-11-24 Ritapharma, Co., Ltd. Oral mucosa application material and method for producing same therefor
CN113384754B (en) * 2021-08-06 2022-06-28 暨南大学附属第一医院(广州华侨医院) A kind of preparation method of injectable self-healing hydrogel for promoting periodontal tissue regeneration
CN114632445B (en) * 2022-02-25 2023-04-28 湖南益安生物科技有限公司 Composite medical biopolymer material and preparation method thereof
CN115068684A (en) * 2022-06-30 2022-09-20 华南理工大学 Curcumin-loaded hydrogel for chronic diabetic wound repair and preparation method thereof
CN119894534A (en) * 2022-09-20 2025-04-25 丘比株式会社 Gel-forming material and gel composition
CN119280474A (en) * 2024-09-29 2025-01-10 湖南朗晶医疗科技有限公司 Vitreous gel and its preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959303A (en) * 1995-08-22 1997-03-04 Shiseido Co Ltd Biocompatible hyaluronic acid gel and its application
KR20040009891A (en) * 2002-07-26 2004-01-31 주식회사 엘지생명과학 Hyaluronic Acid Derivative Gel and Method for Preparing the Same
DE602005027862D1 (en) * 2004-10-07 2011-06-16 Du Pont POLYMER BASED ON POLYSACCHARIDE FOR TISSUE ADHESIVES FOR MEDICAL USE

Also Published As

Publication number Publication date
JP2008295885A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5165281B2 (en) Two-reactor type water-containing medical gel-forming agent and hyaluronic acid gel obtained therefrom
US11173230B2 (en) Polymer-clay composite and organoclay
CN107708675B (en) Compositions and kits for pseudoplastic microgel matrices
CA2810590C (en) Mercapto-modified biocompatible macromolecule derivatives with low degree of mercapto-modification and the cross-linked materials and uses thereof
JP6143269B2 (en) Self-assembled composite ultra-small peptide polymer hydrogel
JP3094074B2 (en) Polysaccharide gel composition
JP5657545B2 (en) Method for preparing an injectable hydrogel crosslinked in an injectable container
CA2467049C (en) Composition and method to homogeneously modify or cross-link chitosan under neutral conditions
JP5744104B2 (en) Bioresorbable polymer matrix and methods of making and using the same
ES2725207T3 (en) Preparation and / or formulation of crosslinked proteins with polysaccharides
Chen et al. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review
US20080138416A1 (en) Method and systems for using biopolymer-based beads and hydrogels
Mellati et al. Injectable hydrogels: A review of injectability mechanisms and biomedical applications
KR101379380B1 (en) Drug Delivery Composition Comprising Biocompatible Crosslinked Hyaluronic Acid
KR102004861B1 (en) Preparation method of calcium peroxide-mediated in situ crosslinkable hydrogel as a sustained oxygen-generating matrix, and biomedical use thereof
Upadhyay Use of polysaccharide hydrogels in drug delivery and tissue engineering
Singh et al. Alginate-based hydrogels: synthesis, characterization, and biomedical applications
Balakrishnan et al. Injectable hydrogels for biomedical applications
KR102727149B1 (en) Preparation method of zinc peroxide-mediated gelatin based in situ crosslinkable hydrogel as a sustained zinc ion-releasing matrix, and biomedical use thereof
Keshavarz et al. Progress in injectable hydrogels for hard tissue regeneration in the last decade
Cassano et al. Polysaccharides and proteins-based hydrogels for tissue engineering applications
JP2017528296A (en) Composition comprising glycosaminoglycan and protein
Mir Hybrid Polymeric Nanobiomaterials for Applications in Drug Delivery Systems and Tissue Engineering
Maria Bermudez et al. Recent advances in thermosensitive hydrogels as drug delivery systems: A review
Ugli et al. POLYSACCHARIDE-BASED CROSSLINKED GEL MATERIALS AND THEIR PROPERTIES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees