[go: up one dir, main page]

JP5162271B2 - Glass member with optical multilayer film and method for producing the same - Google Patents

Glass member with optical multilayer film and method for producing the same Download PDF

Info

Publication number
JP5162271B2
JP5162271B2 JP2008034678A JP2008034678A JP5162271B2 JP 5162271 B2 JP5162271 B2 JP 5162271B2 JP 2008034678 A JP2008034678 A JP 2008034678A JP 2008034678 A JP2008034678 A JP 2008034678A JP 5162271 B2 JP5162271 B2 JP 5162271B2
Authority
JP
Japan
Prior art keywords
film
optical multilayer
multilayer film
glass substrate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008034678A
Other languages
Japanese (ja)
Other versions
JP2009192919A (en
Inventor
満幸 舘村
崇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
AGC Techno Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Techno Glass Co Ltd filed Critical AGC Techno Glass Co Ltd
Priority to JP2008034678A priority Critical patent/JP5162271B2/en
Publication of JP2009192919A publication Critical patent/JP2009192919A/en
Application granted granted Critical
Publication of JP5162271B2 publication Critical patent/JP5162271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Description

本発明は光学多層膜付きガラス部材とその製造方法に関する。   The present invention relates to a glass member with an optical multilayer film and a method for producing the same.

デジタルスチルカメラやビデオカメラに利用されているCCDやCMOS等の固体撮像素子においては、視感度補正等の色調補正、赤外線のカット、光量減衰や迷光抑制のための反射防止等を目的として、各種の光学多層膜が使用されている。光学多層膜としては、酸化チタン、酸化タンタル、酸化ニオブ等からなる高屈折率膜と酸化珪素等からなる低屈折率膜とをガラス基板上に交互に積層したものが知られている。光学多層膜は高屈折率膜や低屈折率層の厚さ、層数等に基づいて光を選択的に透過もしくは遮断するものである。   For solid-state image sensors such as CCDs and CMOSs used in digital still cameras and video cameras, various kinds of color correction such as visibility correction, infrared cut, antireflection for light quantity attenuation and stray light suppression The optical multilayer film is used. As an optical multilayer film, a film in which a high refractive index film made of titanium oxide, tantalum oxide, niobium oxide or the like and a low refractive index film made of silicon oxide or the like are alternately laminated on a glass substrate is known. The optical multilayer film selectively transmits or blocks light based on the thickness, the number of layers, and the like of the high refractive index film and the low refractive index layer.

ガラス基板上への光学多層膜の形成には一般的に蒸着法が用いられている。蒸着法を適用して光学多層膜を形成した場合、成膜時の基板温度等に基づいて光学多層膜に引張応力が生じ、これにより光学多層膜にクラックが発生したり、さらには膜破壊が生じるおそれがある。このような点に対し、ガラス基板と光学多層膜との間に圧縮応力を有する酸化珪素膜を介在させ、光学多層膜の引張応力を酸化珪素膜の圧縮応力で弱めることによって、光学多層膜のクラックや破壊を抑制することが提案されている(特許文献1,2参照)。   A vapor deposition method is generally used to form an optical multilayer film on a glass substrate. When an optical multilayer film is formed by applying a vapor deposition method, tensile stress is generated in the optical multilayer film based on the substrate temperature at the time of film formation, etc., thereby causing cracks in the optical multilayer film and further causing film breakdown. May occur. For such a point, a silicon oxide film having a compressive stress is interposed between the glass substrate and the optical multilayer film, and the tensile stress of the optical multilayer film is weakened by the compressive stress of the silicon oxide film. It has been proposed to suppress cracks and breakage (see Patent Documents 1 and 2).

蒸着法で形成した光学多層膜は、経時的な膜応力変化や分光変化等の特性変化が大きく、また硬度が低くて傷が付きやすいといった問題を有している。これに対し、スパッタリング法を適用して形成した光学多層膜は、高温高湿下における分光特性変化が非常に小さく、実質的に分光変化がないノンシフト膜の実現が可能であるという利点を有する。スパッタリング法による光学多層膜は硬度が高いために傷が付きにくく、部品組込み工程等における取扱い性にも優れ、さらに膜応力変化が小さくて機械強度特性が安定している。
特開昭60−6905号公報 特開2003−114327号公報
The optical multilayer film formed by the vapor deposition method has problems that a change in characteristics such as a film stress change and a spectral change with time is large, and that the hardness is low and the film is easily scratched. On the other hand, an optical multilayer film formed by applying a sputtering method has an advantage that a non-shift film having substantially no spectral change can be realized with very little change in spectral characteristics under high temperature and high humidity. The optical multilayer film formed by sputtering is hard to be scratched due to its high hardness, is easy to handle in the component assembly process, and has a small change in film stress and stable mechanical strength characteristics.
Japanese Patent Laid-Open No. 60-6905 JP 2003-114327 A

スパッタリング法で形成した光学多層膜は、圧縮の内部応力(真応力)を有し、また膜質が硬いことから、光学特性や機械特性等が安定しており、また取扱い性に優れる等の利点を有する反面、光学多層膜付きの光学部品の作製工程、特に切断工程で膜クラックや膜剥がれが発生しやすいという問題を有している。切断工程等における膜クラックや膜剥がれの発生は光学部品の特性や品質を低下させる要因となる。   The optical multilayer film formed by sputtering has compressive internal stress (true stress), and since the film quality is hard, the optical properties and mechanical properties are stable, and the handling properties are excellent. On the other hand, there is a problem that film cracking or film peeling is likely to occur in the manufacturing process of an optical component with an optical multilayer film, particularly in the cutting process. Occurrence of film cracks or film peeling in the cutting process or the like becomes a factor of deteriorating the characteristics and quality of the optical component.

例えば、スパッタリング法で形成した光学多層膜を有するガラス基板を切断しようとすると、光学多層膜(スパッタ膜)の膜質が緻密で硬いことから、切断面に生じる微細なクラックが伸長し、これが起点となって膜剥がれが発生するおそれがある。さらに、光学多層膜(スパッタ膜)は膜応力が高いために、この応力がクラックの伸長から膜剥がれまでの現象を助長し、さらには膜応力自体がガラス基板と光学多層膜との間に剥がれを発生させる力として働くおそれもある。このように、光学多層膜(スパッタ膜)の膜応力や膜質は特性の向上に寄与する反面、切断時には逆に膜クラックや膜剥がれの発生原因となる。   For example, when trying to cut a glass substrate having an optical multilayer film formed by a sputtering method, since the film quality of the optical multilayer film (sputtered film) is dense and hard, fine cracks generated on the cut surface extend, which is the starting point. Film peeling may occur. Furthermore, since the optical multilayer film (sputtered film) has a high film stress, this stress promotes the phenomenon from crack extension to film peeling, and the film stress itself peels off between the glass substrate and the optical multilayer film. There is also a risk of working as a force to generate. As described above, the film stress and film quality of the optical multilayer film (sputtered film) contribute to the improvement of the characteristics, but on the contrary, it causes film cracking and film peeling at the time of cutting.

本発明の目的は、スパッタリング法等による圧縮応力を有する光学多層膜の切断時等における膜クラックや膜剥がれの発生を抑制し、特性、品質、信頼性等を向上させることを可能にした光学多層膜付きガラス部材とその製造方法を提供することにある。   An object of the present invention is to suppress the occurrence of film cracking or film peeling at the time of cutting an optical multilayer film having a compressive stress by a sputtering method or the like, and to improve characteristics, quality, reliability, etc. It is providing the glass member with a film | membrane and its manufacturing method.

本発明の態様に係る光学多層膜付きガラス部材は、ガラス基板と、前記ガラス基板の主表面に付着力強化層を介して形成され、圧縮応力を有する光学多層膜とを具備する光学多層膜付きガラス部材であって、前記付着力強化層は、反応性スパッタリングにおける遷移状態で成膜されたスパッタ膜であって、膜厚が50nm以上でかつ圧縮応力を有すると共に、化学量論的な偏りが生じた酸化珪素膜からなることを特徴としている。 An optical multilayer film-attached glass member according to an aspect of the present invention is provided with an optical multilayer film comprising a glass substrate and an optical multilayer film that is formed on the main surface of the glass substrate via an adhesion strengthening layer and has a compressive stress. A glass member, wherein the adhesion enhancement layer is a sputtered film formed in a transition state in reactive sputtering, has a film thickness of 50 nm or more, has a compressive stress, and has a stoichiometric bias. It is characterized in that it consists of a silicon oxide film produced.

本発明の態様に係る光学多層膜付きガラス部材の製造方法は、成膜開始時の基板温度を80℃未満としたガラス基板の主表面に、反応性スパッタリングにおける遷移状態を利用して、膜厚が50nm以上でかつ圧縮応力を有すると共に、化学量論的な偏りが生じた酸化珪素膜からなる付着力強化層をスパッタ成膜する工程と、前記付着力強化層上に圧縮応力を有する光学多層膜を形成する工程とを具備することを特徴としている。 The method for producing a glass member with an optical multilayer film according to an aspect of the present invention uses a transition state in reactive sputtering on a main surface of a glass substrate having a substrate temperature of less than 80 ° C. at the start of film formation. optical but having at 50nm or more and which has a compressive stress, a step of stoichiometric bias sputter deposited adhesion reinforcing layer formed of silicon oxide film produced, the compressive stress on the adhesion reinforcing layer And a step of forming a multilayer film.

本発明の態様に係る光学多層膜付きガラス部材およびその製造方法によれば、光学多層膜の膜クラックや膜剥がれ等を抑制することができる。従って、特性、品質、信頼性等に優れる光学多層膜付きガラス部材を再現性よく提供することが可能となる。   According to the glass member with an optical multilayer film and the method for producing the same according to the aspect of the present invention, film cracks and film peeling of the optical multilayer film can be suppressed. Therefore, it is possible to provide a glass member with an optical multilayer film excellent in characteristics, quality, reliability and the like with good reproducibility.

以下、本発明を実施するための形態について、図面を参照して説明する。図1は本発明の実施形態による光学多層膜付きガラス部材の構成を示す断面図である。図1に示す光学多層膜付きガラス部材1は、ガラス基板2と、ガラス基板2の主表面2aに付着力強化層3を介して形成された光学多層膜4とを具備している。このような光学多層膜付きガラス部材1において、付着力強化層3はガラス基板2と光学多層膜4との密着性を向上させ、膜クラックや膜剥がれの発生を抑制するものである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a glass member with an optical multilayer film according to an embodiment of the present invention. A glass member 1 with an optical multilayer film shown in FIG. 1 includes a glass substrate 2 and an optical multilayer film 4 formed on a main surface 2a of the glass substrate 2 with an adhesion strengthening layer 3 interposed therebetween. In such a glass member 1 with an optical multilayer film, the adhesion strengthening layer 3 improves the adhesion between the glass substrate 2 and the optical multilayer film 4 and suppresses the occurrence of film cracks and film peeling.

光学多層膜4は用途に応じて適宜に選択されるものであり、例えば反射防止機能を有する反射防止膜(AR膜:Anti Reflection膜)、赤外線カット膜(紫外線波長域にもカット機能を有する紫外線−赤外線カット膜を含む)、赤外線透過膜、ダイクロイック膜等が挙げられる。このような機能を有する光学多層膜4には、例えば低屈折率膜と高屈折率膜とを交互に配置した積層膜が用いられる。低屈折率膜としては酸化珪素膜等が用いられる。高屈折率膜としては酸化ニオブ、酸化チタンおよび酸化タンタルから選ばれる少なくとも1種からなる金属酸化膜等が用いられる。低屈折率膜および高屈折率膜の膜厚や積層数は要求される光学特性に応じて適宜に設定される。   The optical multilayer film 4 is appropriately selected according to the application. For example, an antireflection film having an antireflection function (AR film: Anti Reflection film), an infrared cut film (an ultraviolet ray having a cut function also in an ultraviolet wavelength region). -Including an infrared cut film), an infrared transmission film, a dichroic film, and the like. For the optical multilayer film 4 having such a function, for example, a laminated film in which low refractive index films and high refractive index films are alternately arranged is used. A silicon oxide film or the like is used as the low refractive index film. As the high refractive index film, a metal oxide film made of at least one selected from niobium oxide, titanium oxide, and tantalum oxide is used. The film thickness and the number of stacked layers of the low refractive index film and the high refractive index film are appropriately set according to the required optical characteristics.

光学多層膜4は内部応力(真応力)として圧縮応力を有している。圧縮応力を有する光学多層膜4は緻密質であり、かつ分光特性の変化を大幅に抑制することができる。さらには、実質的に分光変化がないノンシフト膜とすることも可能である。これらによって、光学多層膜4の耐候性、信頼性、耐久性等を向上させることができる。また、緻密質な光学多層膜4は膜硬度が高く、取扱い時における傷の発生等を抑制することができる。この点からも、光学多層膜4の信頼性や耐久性等を高めることが可能となる。   The optical multilayer film 4 has a compressive stress as an internal stress (true stress). The optical multilayer film 4 having a compressive stress is dense and can greatly suppress changes in spectral characteristics. Furthermore, a non-shift film having substantially no spectral change can be used. By these, the weather resistance, reliability, durability, etc. of the optical multilayer film 4 can be improved. Further, the dense optical multilayer film 4 has a high film hardness and can suppress the occurrence of scratches during handling. Also from this point, the reliability and durability of the optical multilayer film 4 can be improved.

圧縮応力を有する光学多層膜4は、例えば低屈折率膜や高屈折率膜をスパッタリング法で成膜することにより得ることができる。スパッタリング法によれば、成膜した膜(スパッタ膜)が緻密化することで、膜内部に圧縮応力が生じる。光学多層膜4は、特に反応性スパッタリングにおける遷移状態を利用して成膜することが好ましい。反応性スパッタリングにおける遷移状態を利用した成膜方法については後に詳述する。なお、圧縮応力を有する光学多層膜4の成膜方法はスパッタリング法に限られるものではなく、スパッタ成膜と同様に緻密膜の成膜が可能なイオンアシストを用いた蒸着成膜等を適用することも可能である。このような成膜方法によっても、圧縮応力を有する光学多層膜4が得られる。   The optical multilayer film 4 having a compressive stress can be obtained, for example, by forming a low refractive index film or a high refractive index film by a sputtering method. According to the sputtering method, the formed film (sputtered film) becomes dense, so that compressive stress is generated inside the film. The optical multilayer film 4 is particularly preferably formed by utilizing a transition state in reactive sputtering. A film forming method using a transition state in reactive sputtering will be described in detail later. Note that the method for forming the optical multilayer film 4 having compressive stress is not limited to the sputtering method, and vapor deposition using ion assist capable of forming a dense film is applied as in the case of sputtering. It is also possible. Also by such a film forming method, the optical multilayer film 4 having a compressive stress can be obtained.

光学多層膜4を形成するガラス基板2は5〜100×10-7/℃(0〜300℃)の範囲の熱膨張係数を有することが好ましい。さらに、ガラス基板2は付着力強化層3の熱膨張係数より大きい熱膨張係数を有することが望ましい。このような熱膨張係数を有するガラス基板2を用いることによって、後に詳述するように付着力強化層3による膜クラックや膜剥がれの抑制効果をより有効に得ることが可能となる。ガラス基板2の熱膨張係数を5〜100×10-7/℃の範囲とする上で、ガラス基板2は珪酸塩ガラスや燐酸塩ガラスで構成することが好ましい。 The glass substrate 2 on which the optical multilayer film 4 is formed preferably has a thermal expansion coefficient in the range of 5 to 100 × 10 −7 / ° C. (0 to 300 ° C.). Furthermore, it is desirable that the glass substrate 2 has a thermal expansion coefficient larger than that of the adhesion strengthening layer 3. By using the glass substrate 2 having such a thermal expansion coefficient, it is possible to more effectively obtain the effect of suppressing film cracks and film peeling by the adhesion reinforcing layer 3 as will be described in detail later. In order to make the thermal expansion coefficient of the glass substrate 2 in the range of 5 to 100 × 10 −7 / ° C., the glass substrate 2 is preferably composed of silicate glass or phosphate glass.

ガラス基板2の主面2aに圧縮応力を有する光学多層膜4を直接形成した場合、光学部品の作製工程で膜クラックや膜剥がれ等が発生しやすい。特に、切断工程で切断面に生じた微細なクラックが伸長し、これが起点となって膜剥がれが発生するおそれが高い。そこで、この実施形態ではガラス基板2と光学多層膜4との間に、膜厚が50nm以上でかつ圧縮応力を有する酸化珪素膜からなる付着力強化層3を介在させている。酸化珪素膜はガラスネットワークを形成し得る珪素(Si)の酸化物からなるため、ガラス基板2に対する親和性が高く、良好な密着性や付着力を示す。さらに、酸化珪素膜は透明であり、光学特性に対する影響も少ないため、光学多層膜4の付着力強化層3として有効である。   When the optical multilayer film 4 having a compressive stress is directly formed on the main surface 2a of the glass substrate 2, film cracks, film peeling, etc. are likely to occur in the optical component manufacturing process. In particular, there is a high possibility that fine cracks generated on the cut surface in the cutting process are elongated, and this causes the film to peel off. Therefore, in this embodiment, an adhesion strengthening layer 3 made of a silicon oxide film having a thickness of 50 nm or more and having a compressive stress is interposed between the glass substrate 2 and the optical multilayer film 4. Since the silicon oxide film is made of an oxide of silicon (Si) that can form a glass network, the silicon oxide film has high affinity for the glass substrate 2 and exhibits good adhesion and adhesion. Furthermore, since the silicon oxide film is transparent and has little influence on the optical characteristics, it is effective as the adhesion enhancing layer 3 of the optical multilayer film 4.

この実施形態では圧縮応力を有する酸化珪素膜を付着力強化層3として使用している。圧縮応力を有する付着力強化層3は光学多層膜4のノンシフト膜等としての特性に悪影響を及ぼすことがないため、光学多層膜4の膜クラックや膜剥がれ等の発生を抑制した上で、圧縮応力を有する光学多層膜4の優れた特性を維持することが可能となる。付着力強化層3が引張応力を有する場合には、ガラス基板2と付着力強化層3との間で膜剥がれが起きやすくなる等、付着力強化層3の本来の機能が損なわれる。   In this embodiment, a silicon oxide film having a compressive stress is used as the adhesion strengthening layer 3. Since the adhesion strengthening layer 3 having compressive stress does not adversely affect the characteristics of the optical multilayer film 4 as a non-shift film or the like, the occurrence of film cracking or film peeling of the optical multilayer film 4 is suppressed, and compression is performed. It is possible to maintain excellent characteristics of the optical multilayer film 4 having stress. When the adhesion strengthening layer 3 has a tensile stress, the original function of the adhesion strengthening layer 3 is impaired, for example, film peeling easily occurs between the glass substrate 2 and the adhesion strengthening layer 3.

付着力強化層3の形成方法としては、例えばスパッタリング法が用いられる。上述したように、スパッタリング法によれば圧縮応力を有する膜が得られる。付着力強化層3は、特に反応性スパッタリングにおける遷移状態を利用して成膜することが好ましい。反応性スパッタリングとは、スパッタガス(アルゴンガス等)中のイオン(Ar+イオン等)を化合物膜の原料となる金属製ターゲットに衝突させ、この衝突エネルギーに基づいて金属製ターゲットから弾き出された材料原子(スパッタ粒子)を反応性ガス(酸素ガス等)と反応させて、化合物膜(酸化物膜等)として被成膜基板上に付着させる方法である。 As a method for forming the adhesion strengthening layer 3, for example, a sputtering method is used. As described above, a film having a compressive stress can be obtained by the sputtering method. The adhesion strengthening layer 3 is preferably formed using a transition state in reactive sputtering. Reactive sputtering is a material that is made to collide with ions (Ar + ions, etc.) in a sputtering gas (argon gas, etc.) against a metal target that is a raw material for the compound film, and is ejected from the metal target based on the collision energy. This is a method in which atoms (sputtered particles) are reacted with a reactive gas (oxygen gas or the like) and deposited as a compound film (oxide film or the like) on a deposition target substrate.

反応性スパッタリングはスパッタ粒子のエネルギーが高く、また化合物膜が活性度の高い状態で被成膜基板上に堆積される。従って、付着力強化層3として反応性スパッタリングで酸化珪素膜を成膜することによって、ガラス基板2との密着性に優れる付着力強化層3を得ることができる。さらに、反応性スパッタリングにおいては成膜速度や膜質の異なるいくつかの状態が存在する。一般的には、金属状態、遷移状態、化合物状態と呼ばれる三態である。酸化珪素膜からなる付着力強化層3は、特に反応性スパッタリングにおける遷移状態を利用して形成することが望ましい。   In reactive sputtering, the energy of sputtered particles is high, and the compound film is deposited on the deposition target substrate with high activity. Therefore, by forming a silicon oxide film by reactive sputtering as the adhesion enhancing layer 3, the adhesion enhancing layer 3 having excellent adhesion with the glass substrate 2 can be obtained. Furthermore, in reactive sputtering, there are several states with different film formation rates and film qualities. Generally, there are three states called a metal state, a transition state, and a compound state. The adhesion strengthening layer 3 made of a silicon oxide film is preferably formed using a transition state in reactive sputtering.

図2に反応性スパッタリングにおける反応性ガスの導入量と成膜速度との関係を模式的に示す。これら各状態の概略を説明する。金属状態は反応性ガスが比較的少ない場合に存在し、状態としては安定である。成膜速度が非常に高いため、金属ターゲット表面が反応性ガスに汚染されない。形成される膜は不完全な化合物膜となり、金属的な性質を示す。化合物状態は反応性ガスが比較的多い場合に存在し、状態としては安定である。この状態では反応性ガスが多いため、金属ターゲットの表面が反応性ガスと反応して化合物膜で覆われた状態、すなわち金属酸化物ターゲットを用いた場合と同様になる。そのため、成膜速度は非常に小さいが、形成される膜は完全に化合物化された状態となる。   FIG. 2 schematically shows the relationship between the amount of reactive gas introduced in reactive sputtering and the film formation rate. An outline of each of these states will be described. The metal state exists when the amount of reactive gas is relatively small, and the state is stable. Since the deposition rate is very high, the metal target surface is not contaminated by the reactive gas. The formed film is an incomplete compound film and exhibits metallic properties. The compound state exists when the reactive gas is relatively large, and the state is stable. In this state, since there are many reactive gases, the surface of the metal target reacts with the reactive gas and is covered with a compound film, that is, the same as when a metal oxide target is used. Therefore, the film formation rate is very low, but the formed film is completely compounded.

遷移状態は反応性ガスが金属状態と化合物状態との中間程度であり、状態としては非常に不安定である。成膜速度は比較的早く、十分に化合された膜から不十分に化合された膜まで、条件により得られる膜質は異なる。なお、これらの現象に関しては、Berg等によるモデル的な考察(S.Berg,H−O.Blom,T.Larsson,C.Nender:J.Vac,Sci.Technol.A,5,(1987),202)や小林春洋著「スパッタ薄膜」(日刊工業新聞社)等で説明されている。   In the transition state, the reactive gas is approximately between the metal state and the compound state, and the state is very unstable. The film formation rate is relatively fast, and the film quality obtained varies depending on the conditions, from a fully combined film to an incompletely combined film. In addition, regarding these phenomena, model consideration by Berg et al. (S. Berg, H.O. Blom, T. Larsson, C. Nender: J. Vac, Sci. Technol. A, 5, (1987), 202) and Haruhiro Kobayashi “Sputtered Thin Film” (Nikkan Kogyo Shimbun).

反応性スパッタリングにおける遷移状態について詳細に述べる。図2に示すように、金属状態から酸素導入量を段階的に増加していくと、屈曲点付近で急激に成膜速度が低下し(下向き矢印で示す)、酸化のヒステリシス(履歴現象)が生じる。これは、化合物状態から酸素導入量を段階的に減少させた場合でも、同様に屈曲点付近で上向き矢印の方向に急激に成膜速度が増加する。しかし、酸素導入量を精密に制御することによって、急激な状態変化を起こさずに、特性曲線に示すような遷移状態を得ることが可能となる。   The transition state in reactive sputtering will be described in detail. As shown in FIG. 2, when the amount of oxygen introduced is increased stepwise from the metal state, the film formation rate rapidly decreases near the inflection point (indicated by a downward arrow), and oxidation hysteresis (history phenomenon) occurs. Arise. This is because, even when the amount of oxygen introduced is gradually reduced from the compound state, the film formation rate increases rapidly in the direction of the upward arrow in the vicinity of the inflection point. However, by precisely controlling the oxygen introduction amount, it is possible to obtain a transition state as shown in the characteristic curve without causing a sudden state change.

遷移状態について特性曲線を用いて説明すると、酸素導入量に対して状態が大きく変化する領域である。具体的には、成膜速度−酸素導入量やプラズマ発光強度−酸素導入量の特性曲線における化合物状態側の屈曲点(化合物状態と遷移状態との境界)と金属状態側の屈曲点(金属状態と遷移状態との境界)との間の領域をいう。なお、スパッタリング装置やターゲット材によっては、プラズマ発光強度−酸素ガス導入量の特性曲線において、屈曲点が明確でない場合もある。この場合は、スパッタ電圧−酸素ガス導入量の特性曲線等に表れる屈曲点において、同様に遷移状態であるということができる。   The transition state will be described using a characteristic curve. This is a region where the state changes greatly with respect to the amount of oxygen introduced. Specifically, the inflection point on the compound state side (boundary between the compound state and the transition state) and the inflection point on the metal state side (metal state) in the characteristic curves of film formation rate—oxygen introduction amount and plasma emission intensity—oxygen introduction amount And the boundary between transition states). Note that, depending on the sputtering apparatus and the target material, the bending point may not be clear in the characteristic curve of plasma emission intensity-oxygen gas introduction amount. In this case, it can be said that a transition state is similarly obtained at a bending point appearing in a characteristic curve of the sputtering voltage-oxygen gas introduction amount.

反応性スパッタリングで酸化珪素膜からなる付着力強化層3を形成する際に、酸素導入量等に基づいて成膜状態を遷移状態に制御することによって、十分に化合された膜と不十分に化合された膜とが混在した状態が得られる。このように、付着力強化層3の形成時の状態を遷移状態に制御し、付着力強化層3を構成する酸化珪素に化学量論的な偏りを生じさせることで、より活性な状態で酸化珪素をガラス基板1に堆積させることができる。従って、付着力強化層3とガラス基板2との密着性をより一層高めることが可能となる。   When forming the adhesion strengthening layer 3 made of a silicon oxide film by reactive sputtering, the film formation state is controlled to a transition state based on the amount of oxygen introduced, etc. As a result, a mixed state with the formed film is obtained. In this way, the state at the time of formation of the adhesion strengthening layer 3 is controlled to a transition state, and the silicon oxide constituting the adhesion strengthening layer 3 is caused to be stoichiometrically biased to be oxidized in a more active state. Silicon can be deposited on the glass substrate 1. Accordingly, it is possible to further improve the adhesion between the adhesion reinforcing layer 3 and the glass substrate 2.

反応性スパッタリングにおける遷移状態は不安定であり、図2においては逆S字カーブの屈曲点部分から遷移状態に移行できずに、化合物状態から金属状態もしくは金属状態から化合物状態(矢印で示す方向)へ瞬時に推移し、結果として反応性スパッタリングおいてはヒステリシスが構成される。このような不安定な遷移状態を安定的に制御するため、反応性スパッタリングのプラズマにおける特定波長のプラズマ発光強度をモニタリングし、そのプラズマ発光強度が一定の値となるように導入する酸素ガス量を制御する、いわゆるプラズマ・エミッション・モニタリング等の遷移制御技術を用いることが好ましい。   The transition state in reactive sputtering is unstable, and in FIG. 2, the transition from the inflection point of the inverted S-curve cannot be changed to the transition state, and the compound state is changed to the metal state or the metal state to the compound state (direction indicated by the arrow). As a result, hysteresis is formed in reactive sputtering. In order to stably control such an unstable transition state, the plasma emission intensity of a specific wavelength in the plasma of reactive sputtering is monitored, and the amount of oxygen gas introduced so that the plasma emission intensity becomes a constant value is monitored. It is preferable to use a transition control technique such as so-called plasma emission monitoring.

反応性スパッタリング装置において、プラズマ・エミッション・モニタリングを用いた場合の装置構成の概要を図3に示す。反応性スパッタリング装置10は、チャンバ11内に対向して配置されたターゲット(Siターゲット)12と被成膜基板(ガラス基板)13とを備えている。図3において、Pはプラズマシースである。反応性スパッタリング装置10において、プラズマPの発光は光ファイバ14で受光されてチャンバ11外に導かれ、特定波長を選択するためのバンドパスフィルタ(BPF)15を経由してフォトマル16で受光される。フォトマル16で受光した光強度は電気信号に変換され、そのデータは光量積分器17で積分されて適正な形で平均化される。このデータがパソコン等の演算処理装置18に送られて反応性ガスの導入量が決定される。   FIG. 3 shows an outline of the configuration of the reactive sputtering apparatus when plasma emission monitoring is used. The reactive sputtering apparatus 10 includes a target (Si target) 12 and a deposition target substrate (glass substrate) 13 that are disposed facing each other in a chamber 11. In FIG. 3, P is a plasma sheath. In the reactive sputtering apparatus 10, the light emission of the plasma P is received by the optical fiber 14, guided outside the chamber 11, and received by the photomultiplier 16 via a band pass filter (BPF) 15 for selecting a specific wavelength. The The light intensity received by the photomultiplier 16 is converted into an electric signal, and the data is integrated by the light quantity integrator 17 and averaged in an appropriate form. This data is sent to an arithmetic processing unit 18 such as a personal computer to determine the amount of reactive gas introduced.

そして、決定された反応性ガスの導入量データに基づいてマスフローコントローラ19を駆動し、チャンバ11内に導入される反応性ガス量が制御される。これらの装置を用いることで、状態として非常に不安定な遷移状態を、より安定的に制御することが可能となる。そして、遷移状態で付着力強化層3を形成することによって、ガラス基板2と付着力強化層3との密着性を向上させることができる。反応性スパッタリングのプラズマ・エミッション・モニタリングを用いて、SiをターゲットとしてSiの酸化物膜を形成する場合、付着力強化層3の形成時におけるプラズマ発光強度を酸化状態のプラズマ発光強度(100%)に対して5〜40%の範囲に制御することが好ましい。   Based on the determined reactive gas introduction amount data, the mass flow controller 19 is driven to control the reactive gas amount introduced into the chamber 11. By using these devices, it is possible to more stably control a transition state that is extremely unstable as a state. And the adhesiveness of the glass substrate 2 and the adhesive reinforcement layer 3 can be improved by forming the adhesive reinforcement layer 3 in a transition state. When using reactive sputtering plasma emission monitoring to form an Si oxide film with Si as the target, the plasma emission intensity during the formation of the adhesion enhancing layer 3 is the plasma emission intensity in the oxidized state (100%). It is preferable to control in the range of 5 to 40%.

酸化珪素膜からなる付着力強化層3は圧縮応力を有することに加えて、膜厚が50nm以上であることが重要となる。酸化珪素膜からなる付着力強化層3が圧縮応力と50nm以上の膜厚を有することによって、圧縮応力を有する光学多層膜4の切断時等における膜クラックや膜剥がれを抑制することが可能となる。付着力強化層3の膜厚が50nm未満の場合には、以下に述べる圧縮応力の緩和や応力集中点の界面近傍からの移動に基づく膜剥がれ等の抑制効果を十分に得ることができない。圧縮応力と50nm以上の膜厚を有する付着力強化層3の膜剥がれ抑制作用について以下に詳述する。   In addition to having a compressive stress, the adhesion strengthening layer 3 made of a silicon oxide film is important to have a thickness of 50 nm or more. Since the adhesion strengthening layer 3 made of a silicon oxide film has a compressive stress and a film thickness of 50 nm or more, it becomes possible to suppress film cracking and film peeling when the optical multilayer film 4 having compressive stress is cut. . When the film thickness of the adhesion strengthening layer 3 is less than 50 nm, it is not possible to sufficiently obtain the effect of suppressing the film peeling or the like based on the relaxation of the compressive stress and the movement of the stress concentration point from the vicinity of the interface described below. The film peeling suppression action of the adhesion strengthening layer 3 having a compressive stress and a film thickness of 50 nm or more will be described in detail below.

上述したように、反応性スパッタリング法、特に反応性スパッタリングにおける遷移状態を利用して成膜した酸化珪素膜(付着力強化層3)は、ガラス基板2に対して良好な密着性を示す。ただし、本発明者らが多くの検討、試験を重ねた結果、そのようなスパッタリング法を適用した場合においても膜剥がれが発生する場合があることが判明した。この現象は珪酸塩ガラス、燐酸ガラス、弗燐酸ガラス等の各種のガラス基板で生じることが明らかとなった。このような各種のガラス基板で膜剥がれが発生する条件としては、ガラス基板の表面自体が何らかの原因で脆弱化したことが考えられる。   As described above, the silicon oxide film (adhesion-strengthening layer 3) formed by using a reactive sputtering method, particularly a transition state in reactive sputtering, exhibits good adhesion to the glass substrate 2. However, as a result of many studies and tests conducted by the present inventors, it has been found that even when such a sputtering method is applied, film peeling may occur. It has been clarified that this phenomenon occurs in various glass substrates such as silicate glass, phosphate glass, and fluorophosphate glass. As conditions for such film peeling to occur on various glass substrates, it can be considered that the surface of the glass substrate itself is weakened for some reason.

本発明者らの検討、試験によると、特にアルカリ洗浄剤を使用した洗浄工程を経たガラス基板で多く見られることが分かった。ここで言うアルカリ洗浄剤とは、洗浄剤中にNaOHやKOH等のアルカリ性成分を含む洗浄剤であり、これを用いた洗浄液がpHで8以上、一般的には10以上となるような洗浄剤である。このようなアルカリ洗浄剤を用いた洗浄工程は、ガラス基板に対して優れた洗浄能力を示すことが多く、特に外観、光学特性を重視する撮像関係の基板洗浄に一般的に使用されている。   According to the examinations and tests by the present inventors, it was found that the glass substrate was often found particularly after a cleaning process using an alkali cleaning agent. The alkaline cleaning agent here is a cleaning agent containing an alkaline component such as NaOH or KOH in the cleaning agent, and the cleaning solution using this cleaning agent has a pH of 8 or more, generally 10 or more. It is. Such a cleaning process using an alkali cleaning agent often exhibits excellent cleaning ability for a glass substrate, and is generally used for imaging-related substrate cleaning in which appearance and optical characteristics are particularly important.

本発明者らの試験によれば、アルカリ洗浄はアルカリ金属成分を含むガラス基板や燐酸系のガラス基板の表面状態を組成レベルで変質させ、おそらくはこれが原因となって極端に膜剥がれが発生しやすい状態になると考えられる。なお、ガラス基板表面の組成レベルにおける変質現象は、ガラス構成成分が洗浄液に溶出することが直接の原因であると考えられることから、使用するガラス基板の性質によってはアルカリ洗浄工程以外においても同様の現象が生ずる可能性がある。つまり、本質的にはガラス基板の表面状態の変質や脆弱化が問題なのであって、アルカリ洗浄工程以外の原因であってもガラス基板の表面が変質したり、また脆弱化する場合には同様な現象が起こると考えられる。   According to the tests by the present inventors, alkali cleaning alters the surface state of a glass substrate containing an alkali metal component or a phosphoric acid-based glass substrate at the composition level, and this is extremely likely to cause film peeling. It is considered to be in a state. The alteration phenomenon at the composition level of the glass substrate surface is considered to be caused directly by the elution of the glass components into the cleaning liquid. A phenomenon may occur. In other words, the deterioration and weakness of the surface condition of the glass substrate is essentially a problem, and the same applies when the surface of the glass substrate is deteriorated or weakened even for causes other than the alkali cleaning process. The phenomenon is thought to occur.

ガラス基板表面の変質や脆弱化に対しては、表面層(脆弱層)を物理的なエッチング処理(逆スパッタ等)によって除去することが考えられる。しかし、物理的なエッチング処理は装置的に複雑になるだけでなく、カルーセル型スパッタ装置等では導入が難しく、また場合によってはその処理自体が異物の発生源となるおそれもある。このため、汎用的に使用するためには解決しなければならない問題を有する。つまり、ガラス基板表面の汚れや外観異物を嫌う用途、すなわち撮像関係の用途等では、ガラス基板の洗浄工程等に基づく膜剥がれを汎用的な手法で抑制することが求められる。   It is conceivable that the surface layer (fragile layer) is removed by physical etching (reverse sputtering or the like) for alteration or weakening of the glass substrate surface. However, the physical etching process is not only complicated in apparatus, but also difficult to introduce in a carousel type sputtering apparatus or the like, and in some cases, the process itself may become a source of foreign matter. For this reason, there is a problem that must be solved for general use. That is, in applications that dislike dirt on the surface of the glass substrate and appearance foreign matter, that is, imaging-related applications, etc., it is required to suppress film peeling based on a glass substrate cleaning process or the like by a general-purpose method.

このような点に対して、付着力強化層3としての酸化珪素膜をガラス基板2上に所定以上の物理的膜厚で成膜することによって、優れた耐膜剥がれ性を得ることが可能となる。このことは本発明者らの試験結果から明らかではあるが、その理論的考察は必ずしも十分であるとは言えない。しかし、各種の試験結果から以下に示すような作用に基づいて付着力強化層3、ひいては光学多層膜4の膜剥がれが抑制されるものと考えられる。   With respect to such a point, it is possible to obtain excellent film peeling resistance by forming a silicon oxide film as the adhesion strengthening layer 3 on the glass substrate 2 with a physical film thickness greater than or equal to a predetermined thickness. Become. This is clear from the test results of the present inventors, but the theoretical consideration is not necessarily sufficient. However, from various test results, it is considered that film peeling of the adhesion strengthening layer 3 and thus the optical multilayer film 4 is suppressed based on the following actions.

この実施形態の光学多層膜付きガラス部材1の最大の特徴は、付着力強化層3である酸化珪素膜を所定以上の膜厚とすることにある。一般的に、スパッタ成膜による緻密膜では圧縮応力が生じる。ガラス基板上に形成する膜厚が厚ければ厚いほど、圧縮応力は積算される。従って、単に膜厚を厚くする手法は、本来であれば膜剥がれを促進させやすいと考えられる。また、ガラス基板上に屈折率が近似する膜を50nm以上というように厚く形成することは、光学設計的にもほとんど意味がない。つまり、従来の考え方からは全く異なった機構が耐膜剥がれ性の向上に寄与していると考えられる。この機構を考える上で、本発明者らが行った試験結果のうち興味深い現象として以下の三点が挙げられる。   The greatest feature of the glass member 1 with an optical multilayer film of this embodiment is that the silicon oxide film which is the adhesion strengthening layer 3 has a thickness greater than or equal to a predetermined thickness. In general, a compressive stress is generated in a dense film formed by sputtering. The thicker the film is formed on the glass substrate, the more the compressive stress is integrated. Therefore, it is considered that the technique of simply increasing the film thickness is likely to promote film peeling. In addition, it is almost meaningless from the viewpoint of optical design to form a film having a refractive index close to 50 nm or more on a glass substrate. That is, it is considered that a completely different mechanism from the conventional concept contributes to the improvement of the film peeling resistance. Considering this mechanism, the following three points can be cited as interesting phenomena among the test results conducted by the present inventors.

(1)付着力強化層が極端に厚い(50nm以上、さらに100nm以上、またさらには200nm以上)場合に耐膜剥がれ性が向上する。これは一般的な光学膜の膜厚が1層あたり数nmから30nm程度であることを考えても、数倍から十倍程度の膜厚である。
(2)付着力強化層を200nmの膜厚で形成した後に厚さ5μmの光学多層膜を作製した場合と、付着力強化層を10nmの膜厚で形成した後に厚さ5μmの光学多層膜を作製した場合とを比較すると、前者の方がガラス基板の反り量が小さい。
(3)付着力強化層の成膜から光学多層膜の成膜までの工程において、初期基板温度を80℃未満にした場合に比べて、初期基板温度を80℃以上にして付着力強化層の成膜を行った場合(成膜温度変化が小さい)には、耐膜剥がれ性の向上効果が限定的となる。
(1) When the adhesion strengthening layer is extremely thick (50 nm or more, further 100 nm or more, or even 200 nm or more), film peeling resistance is improved. This is a film thickness of several times to ten times, considering that the film thickness of a general optical film is several nm to 30 nm per layer.
(2) A case where an optical multilayer film having a thickness of 5 μm is formed after forming the adhesive strength-enhancing layer with a thickness of 200 nm, and an optical multilayer film having a thickness of 5 μm after the adhesive strength-enhancing layer is formed with a thickness of 10 nm. Compared to the case of manufacturing, the former has a smaller amount of warpage of the glass substrate.
(3) In the steps from the formation of the adhesion enhancing layer to the formation of the optical multilayer film, the initial substrate temperature is set to 80 ° C. or higher compared to the case where the initial substrate temperature is less than 80 ° C. When film formation is performed (deposition temperature change is small), the effect of improving film peeling resistance is limited.

これらの試験結果から圧縮応力と50nm以上の膜厚を有する付着力強化層3に基づく膜剥がれ等の抑制機構は以下のように考えられる。膜剥がれが基板−膜間で生じる場合(実際に本発明者らの試験ではこの場合がほとんどであった)、少なくとも膜剥がれを促進する応力集中が基板−膜間の界面近傍に存在しており、これが膜剥がれの原因の大きな部分を占めると考えられる。このため、応力集中を基板−膜界面からずらせばよいことになる。これは、先に述べたガラス基板表面の脆弱層の発生とそれによる膜剥がれとを関連づけて考える場合、この界面近傍を考えることは非常に重要である。また、スパッタ成膜等による緻密膜には圧縮応力が生じるため、この圧縮応力の低減が重要になる。   From these test results, the suppression mechanism such as film peeling based on the adhesion strengthening layer 3 having a compressive stress and a film thickness of 50 nm or more is considered as follows. When film peeling occurs between the substrate and the film (in fact, this was almost the case in our tests), at least stress concentration that promotes film peeling exists in the vicinity of the interface between the substrate and the film. This is considered to occupy a large part of the cause of film peeling. For this reason, the stress concentration may be shifted from the substrate-film interface. It is very important to consider the vicinity of this interface when considering the occurrence of the fragile layer on the glass substrate surface and the film peeling caused by the above-described weakness. Further, since a compressive stress is generated in a dense film formed by sputtering film formation or the like, it is important to reduce the compressive stress.

そこで、上記した三点の現象から常温近くで付着力強化層3を形成し、この状態から成膜温度の上昇と共に光学多層膜4を形成する場合には、図4に模式的に示すような挙動を示すものと考えられる。スパッタ成膜による酸化珪素膜の熱膨張係数αは5.5×10-7/℃付近である。使用するガラス基板2の熱膨張係数が酸化珪素膜のそれより大きい場合、図4(a)に示すように常温程度のガラス基板2に付着力強化層3が形成されたものは、成膜の進行に伴う温度上昇(基板温度の上昇)によって、図4(b)に示すように付着力強化層3に対してガラス基板2の方が大きく膨張し、いわゆる熱応力による引張応力効果が付着力強化層3に生じ始める。 Therefore, in the case where the adhesion strengthening layer 3 is formed near normal temperature from the above three phenomena and the optical multilayer film 4 is formed from this state as the film forming temperature rises, as schematically shown in FIG. It is considered to show behavior. The thermal expansion coefficient α of the silicon oxide film formed by sputtering is about 5.5 × 10 −7 / ° C. When the thermal expansion coefficient of the glass substrate 2 to be used is larger than that of the silicon oxide film, as shown in FIG. The glass substrate 2 expands more greatly with respect to the adhesion strengthening layer 3 as shown in FIG. 4 (b) due to the temperature rise accompanying the progress (the substrate temperature rises), and the tensile stress effect due to the so-called thermal stress is the adhesion force. It begins to occur in the reinforcing layer 3.

成膜温度はさらに光学多層膜4の積層が進行するにつれて上昇するため、図4(c)に示すように光学多層膜4は徐々に高温状態で積層が進むことになる。スパッタリング法による緻密な光学多層膜4の内部応力は圧縮応力であり、熱応力はその成膜時点では発生しないことになるが、この場合にも成膜が進むと共に熱応力的には引張応力効果が発生し始める。そして、成膜温度の上昇と共に基板近傍ほど引張応力の影響が大きくなっていく。   Since the deposition temperature further increases as the lamination of the optical multilayer film 4 proceeds, the lamination of the optical multilayer film 4 gradually proceeds at a high temperature as shown in FIG. The internal stress of the dense optical multilayer film 4 formed by the sputtering method is a compressive stress, and no thermal stress is generated at the time of film formation. Begins to occur. As the film forming temperature rises, the influence of tensile stress increases as the substrate is closer.

このようにして形成された光学多層膜付きガラス部材1をスパッタリング装置のチャンバから取り出して常温に戻した場合、図4(d)に示すように付着力強化層3は常温付近で形成されているため、この間は付着力強化層3の内部応力(圧縮応力)のみが作用する。これに対し、高温状態で成膜された膜部分(光学多層膜4の後半部分)には、今度は基板−膜間の熱膨張係数の差異から圧縮方向の熱応力が発生する。   When the thus formed glass member 1 with an optical multilayer film is taken out from the chamber of the sputtering apparatus and returned to room temperature, the adhesion strengthening layer 3 is formed near room temperature as shown in FIG. Therefore, only the internal stress (compressive stress) of the adhesion strengthening layer 3 acts during this period. On the other hand, in the film portion formed in a high temperature state (the second half portion of the optical multilayer film 4), thermal stress in the compression direction is generated due to the difference in the thermal expansion coefficient between the substrate and the film.

圧縮方向の熱応力の程度は、基板に近い膜ほど成膜温度が低いことから小さくなる。また、成膜中に発生した引張応力的な効果は、基板からより遠い側の緻密膜による保持効果で残存すると考えることができる。このように考えると、付着力強化層3を厚くすればするほど、さらにはガラス基板2の熱膨張係数が大きい(付着力強化層3との熱膨張差が大きい)ほど、熱応力的な引張応力効果が大きくなる。   The degree of thermal stress in the compression direction becomes smaller because the film forming temperature is lower as the film is closer to the substrate. Further, it can be considered that the tensile stress effect generated during the film formation remains due to the holding effect by the dense film farther from the substrate. In this way, the thicker the adhesion-strengthening layer 3 and the larger the thermal expansion coefficient of the glass substrate 2 (the larger the difference in thermal expansion from the adhesion-strengthening layer 3), the more the thermal stress tension. The stress effect is increased.

成膜時の熱応力に基づいて基板近傍に生じる引張応力効果は、光学多層膜4や付着力強化層3の圧縮応力(内部応力)を相殺するほど大きくはないものの、付着力強化層3が本来有する圧縮応力を低減する方向に働く。このような圧縮応力の低減効果は、常温に戻った状態でも残存し、付着力強化層3の応力は総合的には圧縮応力のままだとしても、その程度を低減することができる。従って、基板−膜界面近傍における圧縮応力集中を緩和し、さらに応力集中点を付着力強化層3の内部にずらすことになる。これらによって、ガラス基板2と付着力強化層3との界面からの膜剥がれを抑制することが可能となる。   Although the tensile stress effect generated in the vicinity of the substrate based on the thermal stress at the time of film formation is not so large as to offset the compressive stress (internal stress) of the optical multilayer film 4 and the adhesion strengthening layer 3, the adhesion strengthening layer 3 It works to reduce the inherent compressive stress. Such a compressive stress reduction effect remains even when the temperature returns to room temperature, and even if the stress of the adhesion-strengthening layer 3 remains as a compressive stress as a whole, the degree can be reduced. Therefore, the compressive stress concentration in the vicinity of the substrate-film interface is relaxed, and the stress concentration point is shifted to the inside of the adhesion strengthening layer 3. By these, it becomes possible to suppress film peeling from the interface between the glass substrate 2 and the adhesion reinforcing layer 3.

図4ではガラス基板2等を平らに表現しているが、実際には応力の向きや大きさに応じて凸形状となる。図4(a)では付着力強化層3の圧縮応力により凸形状となる。図4(b)では温度上昇によるガラス基板2の膨張によって、全体では凸形状の程度が緩和される。図4(c)では光学多層膜4の圧縮応力が作用するものの、ガラス基板2の膨張もあるため、全体としては凸形状の程度が多少増加する。図4(d)では、ガラス基板2の収縮により熱応力による圧縮応力が作用するため、全体として凸形状が大きくなるものの、付着力強化層3の膜厚が厚いほど凸形状の程度は小さくなる。   In FIG. 4, the glass substrate 2 and the like are expressed flat, but in reality, a convex shape is formed according to the direction and magnitude of the stress. In FIG. 4A, a convex shape is formed due to the compressive stress of the adhesion reinforcing layer 3. In FIG. 4B, the degree of the convex shape is alleviated as a whole due to the expansion of the glass substrate 2 due to the temperature rise. In FIG. 4C, although the compressive stress of the optical multilayer film 4 acts, since the glass substrate 2 also expands, the degree of the convex shape as a whole slightly increases. In FIG. 4D, since the compressive stress due to thermal stress acts due to the shrinkage of the glass substrate 2, the convex shape increases as a whole, but the degree of the convex shape decreases as the film thickness of the adhesion strengthening layer 3 increases. .

このように、付着力強化層3の物理的膜厚が膜剥がれの抑制に対して重要な要素となる。すなわち、付着力強化層3の膜厚を50nm以上と厚くした場合に、ガラス基板2の近傍に生じる引張応力効果が大きくなるため、ガラス基板2と付着力強化層3との界面近傍における圧縮応力集中の緩和効果、および応力集中点の移動効果を得ることが可能となる。従って、膜厚が50nm以上と厚い付着力強化層3を適用することによって、ガラス基板2と付着力強化層3との界面からの膜剥がれを抑制することが可能となる。   Thus, the physical film thickness of the adhesion strengthening layer 3 is an important factor for suppressing film peeling. That is, when the thickness of the adhesion strengthening layer 3 is increased to 50 nm or more, the tensile stress effect generated in the vicinity of the glass substrate 2 is increased, so that the compressive stress in the vicinity of the interface between the glass substrate 2 and the adhesion enhancing layer 3 is increased. It is possible to obtain a concentration relaxation effect and a stress concentration point movement effect. Therefore, it is possible to suppress film peeling from the interface between the glass substrate 2 and the adhesion enhancing layer 3 by applying the thick adhesion enhancing layer 3 having a thickness of 50 nm or more.

上述した圧縮応力の緩和効果や応力集中点の移動効果をより有効に得る上で、付着力強化層3の膜厚は100nm以上とすることが好ましく、さらには200nm以上とすることがより好ましい。ただし、付着力強化層3の膜厚が厚くなりすぎると成膜温度の上昇が大きくなるため、上述した効果が不十分となる。このため、付着力強化層3の膜厚は1μm以下とすることが好ましい。また、本質的に圧縮応力を有する付着力強化層3と光学多層膜4を適用することによって、上述した圧縮応力の緩和および応力集中点の移動に基づく膜剥れの抑制効果を得ることが可能となる。   In order to more effectively obtain the above-described compressive stress relaxation effect and stress concentration point moving effect, the thickness of the adhesion strengthening layer 3 is preferably 100 nm or more, and more preferably 200 nm or more. However, if the film thickness of the adhesion strengthening layer 3 becomes too thick, the film forming temperature increases greatly, so that the above-described effect becomes insufficient. For this reason, it is preferable that the film thickness of the adhesion strengthening layer 3 be 1 μm or less. Further, by applying the adhesion strengthening layer 3 and the optical multilayer film 4 having essentially compressive stress, it is possible to obtain the effect of suppressing the film peeling based on the relaxation of the compressive stress and the movement of the stress concentration point described above. It becomes.

なお、付着力強化層3として酸化珪素膜を使用した理由は、前述したようにガラス基板2との親和性等による密着性や付着力に加えて、熱膨張係数が5.5×10-7/℃付近と低いことによる。実際に、付着力強化層3を熱膨張係数が58×10-7/℃付近である酸化ニオブ膜、熱膨張係数が75×10-7/℃付近である酸化チタン膜等で構成した場合には、上述したガラス基板2との熱膨張差に基づく圧縮応力の緩和および応力集中点の移動による膜剥がれの抑制効果は認められない。 The reason why the silicon oxide film is used as the adhesion-strengthening layer 3 is that the thermal expansion coefficient is 5.5 × 10 −7 in addition to the adhesion and adhesion due to affinity with the glass substrate 2 as described above. Due to the low value of around / ° C. Actually, when the adhesion strengthening layer 3 is composed of a niobium oxide film having a thermal expansion coefficient of about 58 × 10 −7 / ° C., a titanium oxide film having a thermal expansion coefficient of about 75 × 10 −7 / ° C., or the like. The effect of suppressing the film peeling due to the relaxation of the compressive stress based on the difference in thermal expansion from the glass substrate 2 and the movement of the stress concentration point is not recognized.

さらに、ガラス基板2は付着力強化層3との熱膨張差に基づく効果を得る上で、付着力強化層3より大きい熱膨張係数を有することが好ましい。ただし、ガラス基板2の熱膨張係数が著しく大きいと、ガラス基板2の近傍付近に発生する熱応力による引張応力効果が大きくなりすぎる。熱応力による引張応力自体が著しく大きくなる場合には、逆に膜破壊が生じやすくなる。従って、ガラス基板2の熱膨張係数は付着力強化層3のそれより大きく、かつ100×10-7/℃以下であることが好ましい。 Furthermore, it is preferable that the glass substrate 2 has a thermal expansion coefficient larger than that of the adhesion strengthening layer 3 in order to obtain an effect based on a difference in thermal expansion with the adhesion strengthening layer 3. However, when the thermal expansion coefficient of the glass substrate 2 is extremely large, the tensile stress effect due to the thermal stress generated in the vicinity of the glass substrate 2 becomes too large. On the contrary, when the tensile stress due to the thermal stress is remarkably increased, the film breaks easily. Therefore, the thermal expansion coefficient of the glass substrate 2 is preferably larger than that of the adhesion strengthening layer 3 and not more than 100 × 10 −7 / ° C.

熱膨張係数が5.5×10-7/℃未満のガラス基板2では、上記した熱応力による圧縮応力の緩和効果は期待できないものの、ガラス基板2と付着力強化層3の熱膨張係数が近いため、そのような付着力強化層3の厚さを厚くすることで、ガラス基板2との界面から大きな熱膨張係数を持つ酸化ニオブ膜や酸化チタン膜等の高屈折率膜を離すことができる。ただし、ガラス基板2の熱膨張係数が小さすぎるとそのような効果も不十分となるため、ガラス基板2の熱膨張係数は5×10-7/℃以上であることが好ましい。さらに、熱膨張係数が低いガラス基板2は洗浄による表面の脆弱化が起こりにくい、つまり耐候性が高いことから、付着力強化層3の付着力向上効果のみでも耐膜剥がれ性が向上する。 In the glass substrate 2 having a thermal expansion coefficient of less than 5.5 × 10 −7 / ° C., the above-described relaxation effect of compressive stress due to thermal stress cannot be expected, but the thermal expansion coefficients of the glass substrate 2 and the adhesion strengthening layer 3 are close. Therefore, by increasing the thickness of such an adhesion strengthening layer 3, a high refractive index film such as a niobium oxide film or a titanium oxide film having a large thermal expansion coefficient can be separated from the interface with the glass substrate 2. . However, since such an effect becomes insufficient if the thermal expansion coefficient of the glass substrate 2 is too small, the thermal expansion coefficient of the glass substrate 2 is preferably 5 × 10 −7 / ° C. or more. Furthermore, since the glass substrate 2 having a low thermal expansion coefficient is less likely to be weakened by cleaning, that is, has high weather resistance, the film peeling resistance is improved only by the effect of improving the adhesive strength of the adhesive strength reinforcing layer 3.

付着力強化層3と光学多層膜4の形成は連続して実施することが好ましい。付着力強化層3を反応性スパッタリングにおける遷移状態を利用して成膜する場合、成膜の連続性を考慮して光学多層膜4も同様な反応性スパッタリングを適用して成膜することが好ましい。その際の成膜時の条件に関しては、上述したように成膜開始時のガラス基板2の温度を80℃未満とすることが好ましい。成膜開始温度が80℃を超えると、成膜の進行に伴って成膜温度が上昇することによる効果を十分に得ることができない。付着力強化層3の成膜開始温度は40℃以下であることがより好ましい。なお、付着力強化層3と光学多層膜4の形成は別工程で実施しても同様な効果を発現する。   The formation of the adhesion enhancing layer 3 and the optical multilayer film 4 is preferably carried out continuously. When forming the adhesion strengthening layer 3 using the transition state in reactive sputtering, it is preferable to form the optical multilayer film 4 by applying the same reactive sputtering in consideration of the continuity of the film formation. . Regarding the conditions at the time of film formation at that time, it is preferable that the temperature of the glass substrate 2 at the start of film formation is less than 80 ° C. as described above. When the film formation start temperature exceeds 80 ° C., it is not possible to sufficiently obtain the effect due to the film formation temperature increasing as the film formation proceeds. The film formation start temperature of the adhesion enhancing layer 3 is more preferably 40 ° C. or lower. It should be noted that the formation of the adhesion-strengthening layer 3 and the optical multilayer film 4 exhibits the same effect even when carried out in separate steps.

なお、光学多層膜4の成膜で反応性スパッタリングにおける酸化状態の成膜をガラス基板2の近傍で多用すると、上述した効果が限定的となるか、もしくは消失する。この現象に関しては、おそらく成膜レートが低く、かつ熱源となる酸素プラズマの発生量が多いことから、成膜中の温度上昇が基板近傍で著しくなるため、熱膨張係数が極端に大きいガラス基板2を用いた同様になるものと考えられる。つまり、応力集中点が基板−膜界面の近傍に集中することを避けようとする作用から著しくずれる一例ではないかと考えられる。   In addition, if the film formation in the reactive state in the reactive sputtering is frequently used in the vicinity of the glass substrate 2 in the film formation of the optical multilayer film 4, the above-described effect is limited or disappears. Regarding this phenomenon, the glass substrate 2 has an extremely large coefficient of thermal expansion because the film formation rate is probably low and the amount of oxygen plasma generated as a heat source is large, so that the temperature rise during film formation becomes significant near the substrate. It is thought that it becomes the same using. That is, it is considered that this is an example of a significant deviation from the action of avoiding the concentration of stress concentration points in the vicinity of the substrate-film interface.

上述した付着力強化層3および光学多層膜4の成膜過程における圧縮応力の緩和効果や応力集中点の基板界面からの離間効果は、反応性スパッタリングにおける遷移状態を利用した成膜に限られるものではなく、通常の反応性スパッタリング法等においても得ることができる。さらに、付着力強化層3および光学多層膜4が共に圧縮応力を有する場合に上記した効果が得られることを考慮すると、スパッタリング法以外の圧縮応力を有する膜が得られる成膜方法を適用することも可能である。例えば、スパッタ成膜と同様の緻密膜の成膜が可能であるイオンアシストを用いた蒸着成膜等に対しても適用可能である。   The effect of reducing the compressive stress and the effect of separating the stress concentration point from the substrate interface in the process of forming the adhesion strengthening layer 3 and the optical multilayer film 4 described above are limited to the film formation using the transition state in reactive sputtering. Instead, it can also be obtained by a normal reactive sputtering method or the like. Furthermore, considering that the above-mentioned effect can be obtained when both the adhesion strengthening layer 3 and the optical multilayer film 4 have compressive stress, a film forming method that can obtain a film having compressive stress other than sputtering is applied. Is also possible. For example, the present invention can also be applied to vapor deposition film formation using ion assist that can form a dense film similar to sputtering film formation.

なお、付着力強化層3に基づく膜剥がれの抑制機構は、必ずしも十分に解明されているわけではないが、圧縮応力と50nm以上の膜厚を有する酸化珪素膜を付着力強化層3に用いた場合と膜厚が50nm未満の酸化珪素膜を付着力強化層3に用いた場合とを比較した場合に、光学多層膜4の膜剥がれの評価結果から前者が後者に比べて膜剥がれの抑制効果に優れることが明らかであり、これらは現象論的にではあるが確認されている。従って、この実施形態の光学多層膜付きガラス部材1の構成が有効であることに変りはない。   In addition, although the suppression mechanism of the film peeling based on the adhesion strengthening layer 3 is not necessarily fully elucidated, a silicon oxide film having a compressive stress and a film thickness of 50 nm or more is used for the adhesion enhancing layer 3. When the case is compared with the case where a silicon oxide film having a film thickness of less than 50 nm is used for the adhesion strengthening layer 3, the former is less effective in suppressing film peeling than the latter from the evaluation result of film peeling of the optical multilayer film 4. These are clearly phenomenologically confirmed. Therefore, the configuration of the glass member 1 with an optical multilayer film of this embodiment is still effective.

次に、本発明の具体的な実施例およびその評価結果について述べる。なお、以下の説明は本発明を限定するものではく、本発明の趣旨に沿った形での改変は可能である。   Next, specific examples of the present invention and evaluation results thereof will be described. In addition, the following description does not limit this invention, The modification | change in the form along the meaning of this invention is possible.

以下の例においては、バッチ式のカルーセル型反応性スパッタリング装置を使用した。スパッタリング装置は反応性スパッタリングにおける遷移状態を維持するための機能を有するものである。また、アルカリ洗浄を含む洗浄工程とは特に記載がない限り、表面活性剤および水酸化ナトリウム水溶液を含有するアルカリ浄剤を用いた洗浄工程を適用し、その他に水洗浄やイソプロピルアルコールによる洗浄工程等を併用したものである。さらに強い基板洗浄が必要な場合には、日本表面科学社製の強アルカリ洗浄剤・CS−718(KOHを30質量%含有)による浸漬洗浄を、上記した通常のアルカリ洗浄工程の直前に実施した。強アルカリ洗浄に関してはその都度記載する。   In the following examples, a batch type carousel type reactive sputtering apparatus was used. The sputtering apparatus has a function for maintaining a transition state in reactive sputtering. In addition, unless otherwise specified, the cleaning process including alkali cleaning applies a cleaning process using an alkaline cleaner containing a surfactant and an aqueous sodium hydroxide solution, and also includes a water cleaning process and a cleaning process using isopropyl alcohol, etc. Is used in combination. When stronger substrate cleaning is required, immersion cleaning with a strong alkali cleaner CS-718 (containing 30% by mass of KOH) manufactured by Nippon Surface Science Co., Ltd. was performed immediately before the normal alkali cleaning step described above. . For strong alkaline cleaning, it will be described each time.

また、ガラス基板上に形成した光学多層膜の耐膜剥がれ性の評価は以下のようにして実施した。まず、ガラス基板上に形成された光学多層膜の膜面に一般的なガラス切り等を用いて、間隔約2mm、長さ10mm程度のガラス基板に到達する傷を線状に数本つけ、これを格子状になるように形成する。さらに、JIS Z1522で規定された粘着テープ(幅12〜19mm)を格子状の傷上に貼り付け、この粘着テープを光学多層膜の膜面に対して垂直方向に素早く引張り、光学多層膜の膜剥がれの発生の様子を確認した。   Moreover, the evaluation of the film peeling resistance of the optical multilayer film formed on the glass substrate was carried out as follows. First, using a general glass cutting or the like on the surface of the optical multilayer film formed on the glass substrate, several scratches reaching the glass substrate with a distance of about 2 mm and a length of about 10 mm are linearly formed. Are formed in a lattice shape. Further, an adhesive tape (width: 12 to 19 mm) defined in JIS Z1522 is attached onto a lattice-shaped scratch, and this adhesive tape is quickly pulled in a direction perpendicular to the film surface of the optical multilayer film to form a film of the optical multilayer film. The state of occurrence of peeling was confirmed.

評価基準としては、膜剥がれが全くないものを◎、格子状の傷の一部を起点とした線状の剥がれがわずかに発生した物を○、格子状の傷の一部を起点とした面状の膜剥がれが部分的に発生した物を△、面状の膜剥がれがテープ面の大部分に発生した物を×、面状の膜剥がれがテープの面の多くに発生するが、部分的には膜剥がれしない部分が残っており、上記△や×の中間状態と判断できるものを△×とした。   Evaluation criteria are as follows: ◎ when there is no film peeling, ◯ when there is a slight occurrence of linear peeling starting from part of the lattice-like scratch, and surface starting from part of the lattice-like scratch △ indicates that the film-like film peeling has occurred partially, x indicates that the film-like film peeling has occurred on the majority of the tape surface, and surface film peeling occurs on most of the tape surface. A portion where the film is not peeled off remains, and a portion that can be judged as an intermediate state between Δ and × is indicated as Δ ×.

(実施例1)
まず、ガラス基板としてショット社製の硼珪酸ガラス・D263T(熱膨張係数:72×10-7/℃)を用意し、これを95×95×0.3mmの形状に切断した。このようなガラス基板を上記した強アルカリ洗浄剤に30分間浸漬洗浄した後、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。次に、アルカリ洗浄後のガラス基板上に反応性スパッタリングにおける遷移状態を利用して厚さ200nmの酸化珪素膜からなる付着力強化層を形成し、その上に酸化ニオブ/酸化珪素の交互積層膜からなるIRカット膜を形成した。IRカット膜の膜厚は約5μmとした。
Example 1
First, borosilicate glass D263T (thermal expansion coefficient: 72 × 10 −7 / ° C.) manufactured by Shot Corp. was prepared as a glass substrate, and this was cut into a shape of 95 × 95 × 0.3 mm. After such a glass substrate was immersed and washed in the above-described strong alkali cleaning agent for 30 minutes, a cleaning process including the above-described normal alkali cleaning was performed. Next, an adhesion strengthening layer made of a silicon oxide film having a thickness of 200 nm is formed on the glass substrate after the alkali cleaning by utilizing a transition state in reactive sputtering, and a niobium oxide / silicon oxide alternately laminated film is formed thereon. An IR cut film consisting of The film thickness of the IR cut film was about 5 μm.

成膜開始時点の基板温度は室温(25〜30℃)同等程度であった。成膜温度を実測した結果、成膜終了時点での基板温度は約160℃であった。酸化珪素膜からなる付着力強化層および酸化ニオブ/酸化珪素の交互積層膜からなるIRカット膜はいずれも圧縮応力を有することを確認した。このようにして作製した光学多層膜付きガラス部材を平坦な測定台上に膜面を上にして静置し、工場顕微鏡を用いて中央部の反り量(凸形状を有する)を測定した。その結果、反り量は1.042mmであった。さらに、光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は◎であった。   The substrate temperature at the start of film formation was about the same as room temperature (25 to 30 ° C.). As a result of the actual measurement of the film formation temperature, the substrate temperature at the end of film formation was about 160 ° C. It was confirmed that both the adhesion strengthening layer made of the silicon oxide film and the IR cut film made of the alternately laminated film of niobium oxide / silicon oxide had compressive stress. The glass member with an optical multilayer film produced in this way was allowed to stand on a flat measurement table with the film surface facing up, and the amount of warpage (having a convex shape) at the center was measured using a factory microscope. As a result, the amount of warpage was 1.042 mm. Furthermore, when the film peeling resistance of the glass member with an optical multilayer film was evaluated according to the method described above, the evaluation result of the film peeling resistance was ◎.

(実施例2)
AGCテクノグラス社製の硼珪酸ガラス・FP−1(熱膨張係数:52×10-7/℃)を95×95×0.3mmの形状に成形し、表面を研磨したガラス基板を、上記した強アルカリ洗浄剤に30分間浸漬洗浄した後、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。このようなガラス基板上に実施例1と同様な方法で厚さ200nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜とを形成した。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は◎であった。
(Example 2)
A glass substrate in which borosilicate glass FP-1 (thermal expansion coefficient: 52 × 10 −7 / ° C.) manufactured by AGC Techno Glass Co., Ltd. was molded into a shape of 95 × 95 × 0.3 mm and the surface was polished was described above. After immersing and washing in a strong alkaline detergent for 30 minutes, a washing process including the above-described ordinary alkali washing was performed. On such a glass substrate, an adhesion enhancing layer composed of a silicon oxide film having a thickness of 200 nm and an IR cut film having a thickness of about 5 μm were formed in the same manner as in Example 1. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the method described above, the evaluation result of the film peeling resistance was ◎.

(実施例3)
AGCテクノグラス社製の燐酸塩ガラス・C−52B(熱膨張係数:81×10-7/℃)を50×50×0.5mmの形状に成形し、表面を研磨したガラス基板に、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。このようなガラス基板上に実施例1と同様な方法で厚さ200nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜とを形成した。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は◎であった。
(Example 3)
A glass glass C-52B (coefficient of thermal expansion: 81 × 10 −7 / ° C.) manufactured by AGC Techno Glass Co., Ltd. was molded into a shape of 50 × 50 × 0.5 mm and the surface was polished as described above. A cleaning process including normal alkali cleaning was performed. On such a glass substrate, an adhesion enhancing layer composed of a silicon oxide film having a thickness of 200 nm and an IR cut film having a thickness of about 5 μm were formed in the same manner as in Example 1. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the method described above, the evaluation result of the film peeling resistance was ◎.

(実施例4)
ガラス基板としてショット社製の硼珪酸ガラス・D263T(熱膨張係数:72×10-7/℃)を用意し、これを95×95×0.3mmの形状に切断した。このようなガラス基板を上記した強アルカリ洗浄剤に30分間浸漬洗浄した後、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。このガラス基板上に実施例1と同様な方法を適用して、厚さ50nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜とを形成した。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は○であった。
Example 4
As a glass substrate, borosilicate glass D263T (thermal expansion coefficient: 72 × 10 −7 / ° C.) manufactured by Schott was prepared and cut into a shape of 95 × 95 × 0.3 mm. After such a glass substrate was immersed and washed in the above-described strong alkali cleaning agent for 30 minutes, a cleaning process including the above-described normal alkali cleaning was performed. By applying the same method as in Example 1 on this glass substrate, an adhesion enhancing layer made of a 50 nm thick silicon oxide film and an IR cut film having a thickness of about 5 μm were formed. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the above-described method, the evaluation result of the film peeling resistance was ◯.

(実施例5)
上述した実施例4において、酸化珪素膜からなる付着力強化層の膜厚を70nmとする以外は、実施例4と同様にして光学多層膜付きガラス部材を作製した。この光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は○であった。
(Example 5)
In Example 4 described above, a glass member with an optical multilayer film was produced in the same manner as in Example 4 except that the film thickness of the adhesion enhancing layer made of the silicon oxide film was set to 70 nm. When the film peeling resistance of the glass member with an optical multilayer film was evaluated according to the method described above, the evaluation result of the film peeling resistance was “good”.

(実施例6〜8)
実施例6のガラス基板としてコーニング社製の硼珪酸ガラス・Eagle2000(熱膨張係数:32×10-7/℃)、実施例7のガラス基板としてショット社製の珪酸ソーダガラス・B270(熱膨張係数:94×10-7/℃)、実施例8のガラス基板として村上開明堂社製の石英ガラス(熱膨張係数:5×10-7/℃)を用意した。これらガラス基板を95×95×0.3mmの形状に切断した後、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。なお、実施例6のガラス基板は、上記した強アルカリ洗浄剤に30分間浸漬洗浄した後、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。
(Examples 6 to 8)
Corning borosilicate glass Eagle 2000 (coefficient of thermal expansion: 32 × 10 −7 / ° C.) as the glass substrate of Example 6, and Schott silicate glass B270 (thermal expansion coefficient) as the glass substrate of Example 7 : 94 × 10 −7 / ° C.), quartz glass (thermal expansion coefficient: 5 × 10 −7 / ° C.) manufactured by Murakami Kaimeidou Co., Ltd. was prepared as the glass substrate of Example 8. After these glass substrates were cut into a shape of 95 × 95 × 0.3 mm, a cleaning process including the above-described normal alkali cleaning was performed. In addition, the glass substrate of Example 6 was immersed and washed in the above-described strong alkaline detergent for 30 minutes, and then subjected to a washing step including the above-described ordinary alkali washing.

これらガラス基板上に実施例1と同様な方法を適用して、厚さ200nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜とをそれぞれ形成した。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、実施例6の耐膜剥がれ性の評価結果は◎、実施例7の耐膜剥がれ性の評価結果は◎、実施例8の耐膜剥がれ性の評価結果は◎であった。   By applying the same method as in Example 1 on these glass substrates, an adhesion strengthening layer made of a silicon oxide film having a thickness of 200 nm and an IR cut film having a thickness of about 5 μm were formed. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the method described above, the evaluation result of the film peeling resistance of Example 6 was ◎, and the film peeling resistance of Example 7 was The evaluation result was ◎, and the evaluation result of the film peeling resistance of Example 8 was ◎.

(比較例1)
上述した実施例1において、酸化珪素膜からなる付着力強化層の膜厚を20nmとする以外は、実施例1と同様にして光学多層膜付きガラス部材を作製した。この光学多層膜付きガラス部材の中央部の反り量を実施例1と同様にして測定した。その結果、反り量は1.161mmであった。さらに、光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は△であった。
(Comparative Example 1)
In Example 1 mentioned above, the glass member with an optical multilayer film was produced like Example 1 except the film thickness of the adhesion strengthening layer which consists of a silicon oxide film having been 20 nm. The amount of warpage of the central portion of the glass member with an optical multilayer film was measured in the same manner as in Example 1. As a result, the amount of warpage was 1.161 mm. Furthermore, when the film peeling resistance of the glass member with an optical multilayer film was evaluated according to the method described above, the evaluation result of the film peeling resistance was Δ.

(比較例2)
上述した実施例2において、酸化珪素膜からなる付着力強化層の膜厚を20nmとする以外は、実施例2と同様にして光学多層膜付きガラス部材を作製した。この光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は×であった。
(Comparative Example 2)
In Example 2 described above, a glass member with an optical multilayer film was produced in the same manner as Example 2 except that the film thickness of the adhesion enhancing layer made of the silicon oxide film was 20 nm. When the film peeling resistance of the glass member with an optical multilayer film was evaluated according to the method described above, the evaluation result of the film peeling resistance was x.

(比較例3〜5)
上述した実施例6〜8と同様なガラス基板(比較例3〜5)を用いて、膜厚が20nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜とをそれぞれ形成した。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、比較例3の耐膜剥がれ性の評価結果は×、比較例4の耐膜剥がれ性の評価結果は△、比較例5の耐膜剥がれ性の評価結果は×であった。
(Comparative Examples 3-5)
Using the same glass substrate (Comparative Examples 3 to 5) as in Examples 6 to 8 described above, an adhesion strengthening layer made of a silicon oxide film having a thickness of 20 nm and an IR cut film having a thickness of about 5 μm were respectively formed. Formed. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the method described above, the evaluation result of the film peeling resistance of Comparative Example 3 was x, and the film peeling resistance of Comparative Example 4 was The evaluation result was Δ, and the evaluation result of the film peeling resistance of Comparative Example 5 was x.

(比較例6)
AGCテクノグラス社製の弗燐酸ガラス・NF−50(熱膨張係数:129×10-7/℃)からなるガラス基板に、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。このようなガラス基板上に実施例1と同様な方法を適用して、厚さ200nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜とをそれぞれ形成した。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は×であった。
(Comparative Example 6)
A cleaning step including the above-described normal alkali cleaning was performed on a glass substrate made of AGC Techno Glass Co., Ltd. made of fluorophosphate glass / NF-50 (thermal expansion coefficient: 129 × 10 −7 / ° C.). By applying the same method as in Example 1 on such a glass substrate, an adhesion strengthening layer made of a silicon oxide film having a thickness of 200 nm and an IR cut film having a thickness of about 5 μm were formed. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the method described above, the evaluation result of the film peeling resistance was x.

(参考例1)
ガラス基板としてショット社製の硼珪酸ガラス・D263T(熱膨張係数:72×10-7/℃)を用意し、これを95×95×0.3mmの形状に切断した。このようなガラス基板を上記した強アルカリ洗浄剤に30分間浸漬洗浄した後、上記した通常のアルカリ洗浄を含む洗浄工程を実施した。次に、ガラス基板上に実施例1と同様な反応性スパッタリングによって、厚さ200nmの酸化珪素膜からなる付着力強化層と膜厚が約5μmのIRカット膜を形成した。ただし、ここでは基板加熱を行って付着力強化層とIRカット膜とを成膜した。基板加熱は成膜開始時点の基板温度が160℃となるようにした。このようにして得た光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は△であった。
(Reference Example 1)
As a glass substrate, borosilicate glass D263T (thermal expansion coefficient: 72 × 10 −7 / ° C.) manufactured by Schott was prepared and cut into a shape of 95 × 95 × 0.3 mm. After such a glass substrate was immersed and washed in the above-described strong alkali cleaning agent for 30 minutes, a cleaning process including the above-described normal alkali cleaning was performed. Next, an adhesion strengthening layer made of a silicon oxide film having a thickness of 200 nm and an IR cut film having a thickness of about 5 μm were formed on the glass substrate by reactive sputtering similar to Example 1. However, here, the substrate was heated to form an adhesion strengthening layer and an IR cut film. The substrate temperature was such that the substrate temperature at the start of film formation was 160 ° C. When the film peeling resistance of the glass member with an optical multilayer film thus obtained was evaluated according to the method described above, the evaluation result of the film peeling resistance was Δ.

(参考例2)
上述した参考例1において、付着力強化層の成膜開始時点の基板温度が80℃となるように基板加熱を行う以外は、参考例1と同様にして光学多層膜付きガラス部材を作製した。この光学多層膜付きガラス部材の耐膜剥がれ性を上述した方法にしたがって評価したところ、耐膜剥がれ性の評価結果は△であった。
(Reference Example 2)
A glass member with an optical multilayer film was produced in the same manner as in Reference Example 1 except that in Example 1 described above, the substrate was heated so that the substrate temperature at the start of deposition of the adhesion-strengthening layer was 80 ° C. When the film peeling resistance of the glass member with an optical multilayer film was evaluated according to the method described above, the evaluation result of the film peeling resistance was Δ.

上述した実施例、比較例および参考例による光学多層膜付きガラス部材の構成と評価結果を表1および表2にまとめて示す。表1および表2にから明らかなように、付着力強化層として膜厚が50nm以上とした酸化珪素膜を適用することによって、光学多層膜の耐膜剥がれを高めることが可能となる。また、付着力強化層の成膜開始時の基板温度は、成膜過程による温度変化が十分に得られるように、80℃未満(より好ましくは40℃以下)とすることにより光学多層膜の耐膜剥がれ性が向上することが分かる。   Tables 1 and 2 collectively show the configurations and evaluation results of the glass members with optical multilayer films according to the above-described examples, comparative examples, and reference examples. As is apparent from Tables 1 and 2, by applying a silicon oxide film having a film thickness of 50 nm or more as the adhesion-strengthening layer, it is possible to increase the film resistance of the optical multilayer film. In addition, the substrate temperature at the start of film formation of the adhesion-enhancing layer is less than 80 ° C. (more preferably 40 ° C. or less) so that the temperature change due to the film formation process can be sufficiently obtained. It can be seen that the film peeling property is improved.

Figure 0005162271
Figure 0005162271

Figure 0005162271
Figure 0005162271

本発明の光学多層膜付きガラス部材の構成を示す模式図である。It is a schematic diagram which shows the structure of the glass member with an optical multilayer film of this invention. 反応性スパッタリングにおける三態およびヒステリシスを説明するための模式図である。It is a schematic diagram for demonstrating the three states and hysteresis in reactive sputtering. 反応性スパッタリング装置におけるプラズマ・エミッション・モニタリングシステムの構成を示す模式図である。It is a schematic diagram which shows the structure of the plasma emission monitoring system in a reactive sputtering apparatus. 付着力強化層および光学多層膜の成膜時における各構成要素の挙動を模式的に示す図である。It is a figure which shows typically the behavior of each component at the time of film-forming of an adhesive force reinforcement layer and an optical multilayer film.

符号の説明Explanation of symbols

1…光学多層膜付きガラス部材、2…ガラス基板、3…付着力強化層、4…光学多層膜、10…反応性スパッタリング装置。   DESCRIPTION OF SYMBOLS 1 ... Glass member with an optical multilayer film, 2 ... Glass substrate, 3 ... Adhesion-strengthening layer, 4 ... Optical multilayer film, 10 ... Reactive sputtering apparatus.

Claims (13)

ガラス基板と、前記ガラス基板の主表面に付着力強化層を介して形成され、圧縮応力を有する光学多層膜とを具備する光学多層膜付きガラス部材であって、
前記付着力強化層は、反応性スパッタリングにおける遷移状態で成膜されたスパッタ膜であって、膜厚が50nm以上で、かつ圧縮応力を有すると共に、化学量論的な偏りが生じた酸化珪素膜からなることを特徴とする光学多層膜付きガラス部材。
A glass member with an optical multilayer film comprising a glass substrate and an optical multilayer film formed on the main surface of the glass substrate via an adhesion strengthening layer and having a compressive stress,
The adhesion enhancing layer is a sputtered film formed in a transition state in reactive sputtering , and has a film thickness of 50 nm or more, a compressive stress, and a stoichiometrically biased silicon oxide film A glass member with an optical multilayer film, comprising:
前記光学多層膜スパッタ膜であることを特徴とする請求項1記載の光学多層膜付きガラス部材。 The glass member with an optical multilayer film according to claim 1, wherein the optical multilayer film is a sputtered film. 前記ガラス基板は5〜100×10-7/℃の範囲の熱膨張係数を有することを特徴とする請求項1または請求項記載の光学多層膜付きガラス部材。 The glass substrate according to claim 1 or claim 2 the optical multilayer film-coated glass member according characterized by having a thermal expansion coefficient in the range of 5~100 × 10 -7 / ℃. 前記ガラス基板は前記付着力強化層の熱膨張係数より大きい熱膨張係数を有することを特徴とする請求項項記載の光学多層膜付きガラス部材。 4. The glass member with an optical multilayer film according to claim 3, wherein the glass substrate has a thermal expansion coefficient larger than that of the adhesion-strengthening layer. 前記ガラス基板は珪酸塩ガラスまたは燐酸塩ガラスからなることを特徴とする請求項1ないし請求項のいずれか1項記載の光学多層膜付きガラス部材。 The glass member with an optical multilayer film according to any one of claims 1 to 4 , wherein the glass substrate is made of silicate glass or phosphate glass. 前記付着力強化層は、アルカリ洗浄剤による洗浄が施された前記ガラス基板の表面に形成されることを特徴とする請求項1ないし請求項のいずれか1項記載の光学多層膜付きガラス部材。 The glass member with an optical multilayer film according to any one of claims 1 to 5 , wherein the adhesion enhancing layer is formed on a surface of the glass substrate that has been cleaned with an alkaline cleaner. . 前記光学多層膜は、酸化珪素からなる低屈折率膜と、酸化ニオブ、酸化チタンおよび酸化タンタルから選ばれる少なくとも1種からなる高屈折率膜とが交互に配置された積層膜を備えることを特徴とする請求項1ないし請求項のいずれか1項記載の光学多層膜付きガラス部材。 The optical multilayer film includes a laminated film in which a low refractive index film made of silicon oxide and a high refractive index film made of at least one selected from niobium oxide, titanium oxide, and tantalum oxide are alternately arranged. The glass member with an optical multilayer film according to any one of claims 1 to 6 . 成膜開始時の基板温度を80℃未満としたガラス基板の主表面に、反応性スパッタリングにおける遷移状態を利用して、膜厚が50nm以上でかつ圧縮応力を有すると共に、化学量論的な偏りが生じた酸化珪素膜からなる付着力強化層をスパッタ成膜する工程と、
前記付着力強化層上に圧縮応力を有する光学多層膜を形成する工程と
を具備することを特徴とする光学多層膜付きガラス部材の製造方法。
The main surface of the glass substrate with the substrate temperature at the start of film formation being less than 80 ° C. is utilized with the transition state in reactive sputtering, has a film thickness of 50 nm or more, has compressive stress , and is stoichiometric. A step of sputter-depositing an adhesion enhancing layer made of a biased silicon oxide film;
Forming an optical multilayer film having a compressive stress on the adhesion strengthening layer. A method for producing a glass member with an optical multilayer film.
前記光学多層膜スパッタリング法で形成することを特徴とする請求項記載の光学多層膜付きガラス部材の製造方法。 The method for producing a glass member with an optical multilayer film according to claim 8, wherein the optical multilayer film is formed by a sputtering method. さらに、前記ガラス基板の表面をアルカリ洗浄剤で洗浄する工程を具備し、前記付着力強化層を前記ガラス基板の前記洗浄された表面に形成することを特徴とする請求項8または請求項記載の光学多層膜付きガラス部材の製造方法。 Further, the surface of the glass substrate comprises a step of washing with an alkaline cleaner, claim 8 or claim 9 wherein the adhesion reinforcing layer and forming on the cleaned surface of the glass substrate The manufacturing method of the glass member with an optical multilayer film of this. 前記ガラス基板は5〜100×10-7/℃の範囲の熱膨張係数を有することを特徴とする請求項ないし請求項10のいずれか1項記載の光学多層膜付きガラス部材の製造方法。 Process for producing an optical multilayer film glass member of any one of claims 8 through claim 10, wherein the glass substrate having a thermal expansion coefficient in the range of 5~100 × 10 -7 / ℃. 前記付着力強化層の形成工程と前記光学多層膜の形成工程とを連続的に実施することを特徴とする請求項ないし請求項11のいずれか1項記載の光学多層膜付きガラス部材の製造方法。 The method for producing a glass member with an optical multilayer film according to any one of claims 8 to 11 , wherein the step of forming the adhesion reinforcing layer and the process of forming the optical multilayer film are continuously performed. Method. 前記光学多層膜の形成工程は、酸化珪素からなる低屈折率膜と、酸化ニオブ、酸化チタンおよび酸化タンタルから選ばれる少なくとも1種からなる高屈折率膜とを交互に成膜する工程を備えることを特徴とする請求項ないし請求項12のいずれか1項記載の光学多層膜付きガラス部材の製造方法。 The step of forming the optical multilayer film includes a step of alternately forming a low refractive index film made of silicon oxide and a high refractive index film made of at least one selected from niobium oxide, titanium oxide, and tantalum oxide. The method for producing a glass member with an optical multilayer film according to any one of claims 8 to 12 .
JP2008034678A 2008-02-15 2008-02-15 Glass member with optical multilayer film and method for producing the same Active JP5162271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034678A JP5162271B2 (en) 2008-02-15 2008-02-15 Glass member with optical multilayer film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034678A JP5162271B2 (en) 2008-02-15 2008-02-15 Glass member with optical multilayer film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009192919A JP2009192919A (en) 2009-08-27
JP5162271B2 true JP5162271B2 (en) 2013-03-13

Family

ID=41074958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034678A Active JP5162271B2 (en) 2008-02-15 2008-02-15 Glass member with optical multilayer film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5162271B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042859A2 (en) 2006-09-29 2008-04-10 University Of Florida Research Foundation, Inc. Method and apparatus for infrared detection and display
SG185375A1 (en) 2010-05-24 2012-12-28 Univ Florida Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
EP2718974B1 (en) * 2011-06-06 2019-10-09 University of Florida Research Foundation, Inc. Infrared imaging device integrating an ir up-conversion device with a cmos image sensor
CN103733355B (en) 2011-06-30 2017-02-08 佛罗里达大学研究基金会有限公司 A method and apparatus for detecting infrared radiation with gain
US20130127202A1 (en) * 2011-11-23 2013-05-23 Shandon Dee Hart Strengthened Glass and Glass Laminates Having Asymmetric Impact Resistance
JP6383937B2 (en) * 2013-03-27 2018-09-05 パナソニックIpマネジメント株式会社 Light source device and projection display device
WO2015030015A1 (en) * 2013-08-29 2015-03-05 旭硝子株式会社 Glass member provided with optical multilayer film, near-infrared cut filter glass, and method for manufacturing glass member provided with optical multilayer film
CA2988784A1 (en) 2015-06-11 2017-03-09 University Of Florida Research Foundation, Incorporated Monodisperse, ir-absorbing nanoparticles and related methods and devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033286B2 (en) * 2001-03-19 2008-01-16 日本板硝子株式会社 High refractive index dielectric film and manufacturing method thereof
JP2003114327A (en) * 2001-10-04 2003-04-18 Olympus Optical Co Ltd Polarized light separation film and polarized light separation prism
JP3824993B2 (en) * 2002-12-25 2006-09-20 株式会社シンクロン Thin film manufacturing method and sputtering apparatus
JP2007063623A (en) * 2005-08-31 2007-03-15 Nippon Sheet Glass Co Ltd Method for manufacturing optical thin film
JP5075361B2 (en) * 2006-06-02 2012-11-21 株式会社アルバック Cold mirror manufacturing method and manufacturing apparatus thereof
JP5245251B2 (en) * 2006-12-27 2013-07-24 ソニー株式会社 OPTICAL ELEMENT, OPTICAL DEVICE, AND OPTICAL ELEMENT MANUFACTURING METHOD
JP4963436B2 (en) * 2007-03-30 2012-06-27 Agcテクノグラス株式会社 Glass member with optical multilayer film and method for producing glass member with optical multilayer film

Also Published As

Publication number Publication date
JP2009192919A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5162271B2 (en) Glass member with optical multilayer film and method for producing the same
JP4963436B2 (en) Glass member with optical multilayer film and method for producing glass member with optical multilayer film
KR101889667B1 (en) Cover glass
JP5268931B2 (en) Method for producing nanostructures on plastic surfaces
JP5509691B2 (en) Lens and manufacturing method thereof
WO2014129333A1 (en) Optical component
JP6582974B2 (en) Cover glass and manufacturing method thereof
EP1544178B1 (en) Method for making a transparent element comprising invisible electrodes
CN103403584B (en) Glass components with optical multilayer coatings and near-infrared cut filter glass
CN108929052B (en) Cover member, method for manufacturing cover member, and display device
JP2018197183A (en) Glass article, and display unit
JP5066989B2 (en) Method for producing antireflection film
JP6368941B2 (en) Method for producing glass member with optical multilayer film
JP2010027567A (en) Transparent conductive film and touch panel
AU8155201A (en) Composition for vapor deposition, method for forming antireflection film using it, and optical element
JP2003114302A (en) Antireflection film and method for manufacturing antireflective polarizing plate
JP2020148787A (en) Transparent member
JP4410367B2 (en) Metal mirror, metal rotating polygon mirror, and manufacturing method thereof
JP7098129B2 (en) Antireflection film and optical element having it
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JPH0585778A (en) Optical parts with antireflection film
JP2017191302A (en) Method for producing fingerprint prevention film and materials therefor
CN114725023B (en) Substrate assembly, display device and manufacturing method of substrate assembly
JP2007220965A (en) Substrate having laminated structure and method of manufacturing the same
JPH03187955A (en) Permselective article and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5162271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250