JP5162148B2 - Composite and production method thereof - Google Patents
Composite and production method thereof Download PDFInfo
- Publication number
- JP5162148B2 JP5162148B2 JP2007079116A JP2007079116A JP5162148B2 JP 5162148 B2 JP5162148 B2 JP 5162148B2 JP 2007079116 A JP2007079116 A JP 2007079116A JP 2007079116 A JP2007079116 A JP 2007079116A JP 5162148 B2 JP5162148 B2 JP 5162148B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- aluminum thin
- aluminum
- barrier type
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、真空装置に用いられる複合体およびその製造方法に関し、さらに詳しくは、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの腐食性ガスおよび酸素ガス、プラズマ、ラジカルなどの反応性ガスに対する耐食性に優れた複合体およびその製造方法に関する。 The present invention relates to a composite used in a vacuum apparatus and a method for producing the same, and more particularly to corrosion resistance against corrosive gases such as fluorine-based gas, fluorine plasma, and fluorine radicals and reactive gases such as oxygen gas, plasma, and radicals. The present invention relates to an excellent composite and a method for producing the same.
従来、液晶ディスプレイの製造過程や半導体製造プロセスなどに用いられる真空装置では、その装置内においてフッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの強力な腐食性のガスが用いられている。そのため、腐食を防止するために、フッ化物の蒸気圧が低いことから、装置にはアルミニウムやアルミニウム合金が多く用いられている。
さらにフッ素系ガスへの耐食性を向上させるためや酸素ガス、プラズマ、ラジカルなどの反応性ガスに対する耐性を向上させるために、真空装置に用いられるアルミニウムやアルミニウム合金の表面に、ポーラス型陽極酸化処理やバリア型陽極酸化処理により、陽極酸化被膜が形成されている(例えば、特許文献1参照)。
Furthermore, in order to improve the corrosion resistance to fluorine-based gases and to improve the resistance to reactive gases such as oxygen gas, plasma and radicals, the surface of aluminum or aluminum alloy used in vacuum devices is subjected to porous anodization treatment. An anodized film is formed by the barrier type anodizing treatment (see, for example, Patent Document 1).
しかしながら、アルミニウムやアルミニウム合金の表面にポーラス型陽極酸化処理を行うと、ガス放出量が処理前に比べて1000倍から10000倍に増加するという問題があった。
そこで、ガス放出量を低減するために、バリア型陽極酸化処理が用いられる。しかし、バリア型陽極酸化処理によって形成される酸化被膜は、膜厚が薄く、アルミニウムやアルミニウム合金の表面に存在する金属間化合物を全て覆い尽くすだけの厚みを確保することができないため、金属間化合物の周辺が耐食性に劣るという問題があった。
さらに、アルミニウム合金は、機械的強度がステンレス鋼などに比べると低いため、機械的強度が必要とされる箇所には、耐食性を犠牲にして、ステンレス鋼、インコネル(登録商標)、ハステロイ(登録商標)などを用いなければならないという問題があった。
However, when a porous anodizing treatment is performed on the surface of aluminum or an aluminum alloy, there is a problem that the amount of gas released increases from 1000 times to 10,000 times compared to before the treatment.
Therefore, a barrier type anodizing process is used to reduce the amount of gas released. However, since the oxide film formed by the barrier type anodizing treatment is thin, it is not possible to secure a thickness sufficient to cover all intermetallic compounds existing on the surface of aluminum or aluminum alloy. There was a problem that the periphery of the was poor in corrosion resistance.
Furthermore, since the mechanical strength of aluminum alloys is lower than that of stainless steel, stainless steel, Inconel (registered trademark), Hastelloy (registered trademark) are used at places where mechanical strength is required at the expense of corrosion resistance. ) Etc. had to be used.
本発明は、上記事情に鑑みてなされたものであって、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの腐食性ガスおよび酸素ガス、プラズマ、ラジカルなどの反応性ガスに対する耐食蝕性に優れ、かつ、十分な機械的強度を有する複合体およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is excellent in corrosion resistance to corrosive gases such as fluorine-based gas, fluorine plasma and fluorine radicals and reactive gases such as oxygen gas, plasma and radicals, and An object of the present invention is to provide a composite having sufficient mechanical strength and a method for producing the same.
本発明者等は、上記課題を解決するために鋭意研究を行った結果、真空装置などに用いられる基体の表面にアルミニウム薄膜を形成し、さらに、このアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成することにより、いかなる基体であっても耐酸化性、あるいは、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの腐食性ガスおよび酸素ガス、プラズマ、ラジカルなどの反応性ガスなどに対する耐食性に優れる最表面を形成することができることを見出し、本発明を完成するに至った。特に、基体がアルミニウム合金である場合、その表面にアルミニウム薄膜を形成することにより、基体の表面に直接、バリア型陽極酸化被膜を形成した場合よりも、基体の表面に存在する金属間化合物の露出を少なくすることができ、結果として、ピットの少ない耐食性に優れる最表面を形成することができることも見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors formed an aluminum thin film on the surface of a substrate used in a vacuum apparatus and the like, and further formed a barrier type anodic oxide coating on the surface of the aluminum thin film. By forming, the outermost surface is excellent in oxidation resistance in any substrate, or in corrosion resistance to corrosive gases such as fluorine-based gas, fluorine plasma, fluorine radicals, and reactive gases such as oxygen gas, plasma, radicals, etc. Has been found to be able to be formed, and the present invention has been completed. In particular, when the substrate is an aluminum alloy, the formation of an aluminum thin film on the surface of the substrate makes it possible to expose intermetallic compounds present on the surface of the substrate more than when a barrier type anodized film is formed directly on the surface of the substrate. As a result, it was also found that the outermost surface having few pits and excellent corrosion resistance can be formed, and the present invention has been completed.
すなわち、本発明の複合体は、基体と、該基体上に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えてなり、前記基体は、ステンレス、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上であり、前記アルミニウム薄膜は、スパッタリングにより成膜され、前記アルミニウム薄膜の厚みは0.1μm以上かつ3μm以下であり、前記バリア型陽極酸化被膜の厚みは0.1μm以上かつ1μm以下であることを特徴とする。 That is, the composite of the present invention comprises a base, an aluminum thin film formed on the base, and a barrier type anodic oxide coating formed on the aluminum thin film. The base includes stainless steel, magnesium, One or more selected from the group consisting of titanium, nickel-based alloy, copper, and carbon material, the aluminum thin film is formed by sputtering, and the thickness of the aluminum thin film is 0.1 μm or more and 3 μm or less And the thickness of the barrier type anodic oxide coating is 0.1 μm or more and 1 μm or less.
前記アルミニウム薄膜は、アルミニウムを90%以上含有していることが好ましい。 Before SL aluminum thin film preferably contains aluminum 90%.
本発明の複合体の製造方法は、基体の表面に、ステンレス、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上からなる基体の表面に、スパッタリングにより、厚みが0.1μm以上かつ3μm以下のアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面に、厚みが0.1μm以上かつ1μm以下のバリア型陽極酸化被膜を形成することを特徴とする。 In the method for producing a composite of the present invention, the surface of a substrate made of one or more selected from the group of stainless steel, magnesium, titanium, nickel-base alloy, copper, and carbon material is sputtered on the surface of the substrate. An aluminum thin film having a thickness of 0.1 μm or more and 3 μm or less is formed, and then a barrier type anodic oxide film having a thickness of 0.1 μm or more and 1 μm or less is formed on the surface of the aluminum thin film. .
本発明の複合体は、基体と、該基体上に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えてなるので、耐酸化性およびフッ素などに対する耐食性に優れている。なぜならば、アルミニウム薄膜は真空蒸着またはスパッタリングにより成膜されているので介在物や欠陥が少ない上に、このアルミニウム薄膜上に形成したバリア型陽極酸化被膜も欠陥が少ないからである。 The composite of the present invention comprises a substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film, so that the oxidation resistance and corrosion resistance against fluorine and the like are improved. Are better. This is because the aluminum thin film is formed by vacuum deposition or sputtering, so that there are few inclusions and defects, and the barrier type anodic oxide film formed on the aluminum thin film has few defects.
本発明の複合体およびその製造方法の最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the composite of the present invention and the production method thereof will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
本発明の複合体は、基体と、この基体上に形成されたアルミニウム薄膜と、このアルミニウム薄膜上に形成されたバリア型陽極酸化被膜とから概略構成されている。 The composite of the present invention is generally composed of a substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film.
基体としては、特に限定されないが、その表面に、真空蒸着あるいはスパッタリングによりアルミニウム薄膜を成膜することができる材質のものが用いられ、このようなものの中でも、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上であることが好ましい。
これらの基体の中でも、アルミニウムまたはアルミニウム合金としては、例えば、A5052合金、A6061合金、A2017、A2219、A5056、A6063、AC4A、AC4Cなどが挙げられる。
The substrate is not particularly limited, but a material capable of forming an aluminum thin film on the surface by vacuum deposition or sputtering is used. Among these, stainless steel, aluminum, aluminum alloy, magnesium, titanium It is preferable that it is 1 type, or 2 or more types selected from the group of nickel base alloy, copper, and carbon material.
Among these substrates, examples of aluminum or aluminum alloy include A5052 alloy, A6061 alloy, A2017, A2219, A5056, A6063, AC4A, and AC4C.
また、ニッケル基合金としては、ニッケルをベースとし、鉄、クロム、ニオブ、モリブデンなどの合金元素の差異によって分類されるインコネル(登録商標)、ニッケルを主成分とし、モリブデン、クロム、鉄などの合金元素の差異によって分類されるハステロイ(登録商標)などが挙げられる。
インコネル(登録商標)としては、インコネル600、インコネル625、インコネル718、インコネル750Xなどが挙げられる。
ハステロイ(登録商標)としては、ハステロイB、ハステロイC、ハステロイX、ハステロイGなどが挙げられる。
Nickel-based alloys are based on nickel and classified by differences in alloy elements such as iron, chromium, niobium, molybdenum, etc. Inconel (registered trademark), nickel as the main component, alloys such as molybdenum, chromium, iron Examples include Hastelloy (registered trademark) classified by elemental differences.
Inconel (registered trademark) includes Inconel 600, Inconel 625, Inconel 718, Inconel 750X, and the like.
Hastelloy (registered trademark) includes Hastelloy B, Hastelloy C, Hastelloy X, Hastelloy G and the like.
炭素材としては、グラッシーカーボン、カーボン−アルミ、カーボン−エポキシなどのカーボンコンポジットなどが挙げられる。 Examples of the carbon material include carbon composites such as glassy carbon, carbon-aluminum, and carbon-epoxy.
アルミニウム薄膜は、アルミニウムを90%以上含有していることが好ましい。その理由は、アルミニウムの含有率が90%未満では、基体の表面全てをアルミニウムで覆い尽くすことができなくなり、アルミニウム薄膜の表面にバリア型陽極酸化処理を施した場合、バリア型陽極酸化被膜を斑なく均一に形成することができなくなる。その結果、得られた複合体の最表面は、耐酸化性や耐食性に劣るものとなる虞がある。 The aluminum thin film preferably contains 90% or more of aluminum. The reason for this is that when the aluminum content is less than 90%, the entire surface of the substrate cannot be completely covered with aluminum. When the barrier type anodizing treatment is applied to the surface of the aluminum thin film, the barrier type anodized film is not spotted. Cannot be formed uniformly. As a result, the outermost surface of the obtained composite may be inferior in oxidation resistance and corrosion resistance.
また、アルミニウム薄膜の厚みは、特に限定されないが、0.1μm以上かつ10μm以下であることが好ましく、0.1μm以上かつ3μm以下であることがより好ましい。 The thickness of the aluminum thin film is not particularly limited, but is preferably 0.1 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 3 μm or less.
このようなアルミニウム薄膜は、真空蒸着またはスパッタリングにより成膜されることが好ましい。真空蒸着またはスパッタリングによれば、斑の少ないほぼ均一な厚みで、基体に対する密着性に優れ、介在物や欠陥が少ないアルミニウム薄膜を成膜することができる。 Such an aluminum thin film is preferably formed by vacuum deposition or sputtering. According to vacuum deposition or sputtering, an aluminum thin film having almost uniform thickness with few spots, excellent adhesion to a substrate, and few inclusions and defects can be formed.
バリア型陽極酸化被膜は、上記のアルミニウム薄膜の表面にバリア型陽極酸化処理を施すことによって形成されたものである。
アルミニウム薄膜の表面にバリア型陽極酸化処理を施し、バリア型陽極酸化被膜を形成するには、陽極酸化溶液として、ホウ酸塩、アジピン酸塩などの有機酸塩、リン酸塩などの溶液を用い、この陽極酸化溶液中において、アルミニウム薄膜を陽極で電解し、アルミニウム薄膜の表面に所定の厚みのバリア型陽極酸化被膜を形成する。
The barrier type anodized film is formed by subjecting the surface of the aluminum thin film to a barrier type anodizing treatment.
In order to perform barrier type anodizing treatment on the surface of aluminum thin film and form a barrier type anodized film, organic acid salts such as borate and adipate, and solutions such as phosphate are used as the anodizing solution. In this anodic oxidation solution, the aluminum thin film is electrolyzed with an anode to form a barrier type anodic oxide film having a predetermined thickness on the surface of the aluminum thin film.
また、バリア型陽極酸化被膜の厚みは0.1μm以上かつ1μm以下であることが好ましく、0.1μm以上かつ0.8μm以下であることがより好ましい。
バリア型陽極酸化被膜の厚みが0.1μm未満では、バリア型陽極酸化被膜の厚みが薄すぎて安定した耐食性が得られない。一方、バリア型陽極酸化被膜の厚みが1μmを超えると、電解処理中に絶縁破壊が起きる可能性が高くなり、その絶縁破壊によってバリア型陽極酸化被膜に欠陥が生じて、耐食性を悪化させる。
The thickness of the barrier type anodic oxide coating is preferably 0.1 μm or more and 1 μm or less, more preferably 0.1 μm or more and 0.8 μm or less.
If the thickness of the barrier type anodized film is less than 0.1 μm, the thickness of the barrier type anodized film is too thin to provide stable corrosion resistance. On the other hand, if the thickness of the barrier type anodic oxide coating exceeds 1 μm, there is a high possibility that dielectric breakdown will occur during the electrolytic treatment, and the dielectric breakdown will cause defects in the barrier type anodic oxide coating and deteriorate the corrosion resistance.
本発明の複合体は、基体と、この基体上に形成されたアルミニウム薄膜と、このアルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えているので、基体がアルミニウムやアルミニウム合金以外のものであっても、耐酸化性およびフッ素などに対する耐食性に優れている。なぜならば、アルミニウム薄膜は真空蒸着またはスパッタリングにより成膜されているので介在物や欠陥が少ない上に、このアルミニウム薄膜上に形成したバリア型陽極酸化被膜も欠陥が少ないからである。 Since the composite of the present invention comprises a substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film, the substrate is not made of aluminum or an aluminum alloy. Even so, it is excellent in oxidation resistance and corrosion resistance against fluorine and the like. This is because the aluminum thin film is formed by vacuum deposition or sputtering, so that there are few inclusions and defects, and the barrier type anodic oxide film formed on the aluminum thin film has few defects.
次に、本発明の複合体の製造方法について説明する。
本発明の複合体の製造方法は、基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成し、基体と、この基体上に形成されたアルミニウム薄膜と、このアルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えた複合体を製造する方法である。
Next, the manufacturing method of the composite_body | complex of this invention is demonstrated.
In the method for producing the composite of the present invention, an aluminum thin film is formed on the surface of the substrate by vacuum evaporation or sputtering, and then a barrier type anodic oxide film is formed on the surface of the aluminum thin film. And a barrier type anodic oxide film formed on the aluminum thin film.
本発明の複合体の製造方法では、基体としては、例えば、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上が挙げられる。 In the method for producing a composite of the present invention, examples of the substrate include one or more selected from the group consisting of stainless steel, aluminum, aluminum alloy, magnesium, titanium, nickel-base alloy, copper, and carbon material. .
このような基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜する。 An aluminum thin film is formed on the surface of such a substrate by vacuum deposition or sputtering.
次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化処理を施し、バリア型陽極酸化被膜を形成するには、陽極酸化溶液として、ホウ酸塩、アジピン酸塩などの有機酸塩、リン酸塩などの溶液を用い、この陽極酸化溶液中において、アルミニウム薄膜を陽極で電解し、アルミニウム薄膜の表面に所定の厚みのバリア型陽極酸化被膜を形成し、基体と、この基体上に順に形成されたアルミニウム薄膜およびバリア型陽極酸化被膜とを備えた複合体を得る。 Next, the surface of the aluminum thin film is subjected to a barrier type anodizing treatment to form a barrier type anodized film. As an anodizing solution, organic acid salts such as borate and adipate, phosphates and the like are used. In this anodic oxidation solution, an aluminum thin film is electrolyzed with an anode to form a barrier type anodic oxide coating having a predetermined thickness on the surface of the aluminum thin film, and a base and an aluminum thin film sequentially formed on the base And a composite comprising the barrier type anodic oxide coating.
上記のバリア型陽極酸化処理では、陽極酸化溶液の濃度は適宜調整されるが、0.1重量%以上かつ30重量%以下であることが好ましい。
陽極酸化溶液の濃度が0.1重量%以上かつ30重量%以下であることが好ましい理由は、陽極酸化溶液の濃度が0.1重量%未満では、緻密なバリア型陽極酸化被膜が形成され難いからであり、一方、陽極酸化溶液の濃度が30重量%を超えると、絶縁破壊が起こりやすく、欠陥の多いバリア型陽極酸化被膜が形成されてしまうからである。
In the barrier type anodizing treatment described above, the concentration of the anodizing solution is appropriately adjusted, but is preferably 0.1% by weight or more and 30% by weight or less.
The reason why the concentration of the anodizing solution is preferably 0.1% by weight or more and 30% by weight or less is that when the concentration of the anodizing solution is less than 0.1% by weight, a dense barrier type anodized film is difficult to be formed. On the other hand, if the concentration of the anodic oxidation solution exceeds 30% by weight, dielectric breakdown is likely to occur, and a barrier type anodic oxide film having many defects is formed.
また、上記のバリア型陽極酸化処理では、印加する電圧と、その電圧を印加する時間は適宜調整されるが、50V以上かつ1000V以下の電圧を、15分以上かつ360分(6時間)以下印加することが好ましい。
印加する電圧が50V以上かつ1000V以下であることが好ましい理由は、電圧が50V未満では、バリア型陽極酸化被膜の膜厚が薄いものしか得られないからであり、一方、電圧が1000Vを超えると、絶縁破壊によるバリア型陽極酸化被膜の欠陥が増加するからである。
電圧を印加する時間が15分以上かつ360分(6時間)以下であることが好ましい理由は、電圧を印加する時間が15分未満では、処理時間が短いため、連続的なバリア型陽極酸化被膜を形成しきれないからであり、一方、電圧を印加する時間が360分(6時間)を超えると、処理時間が長過ぎて、実用的ではなくなるためである。
In the barrier type anodizing treatment, the voltage to be applied and the time for which the voltage is applied are appropriately adjusted, but a voltage of 50 V or more and 1000 V or less is applied for 15 minutes or more and 360 minutes (6 hours) or less. It is preferable to do.
The reason why the applied voltage is preferably 50 V or more and 1000 V or less is that when the voltage is less than 50 V, only a thin barrier type anodic oxide film can be obtained, whereas when the voltage exceeds 1000 V, This is because defects in the barrier type anodic oxide film due to dielectric breakdown increase.
The reason why the voltage application time is preferably 15 minutes or more and 360 minutes (6 hours) or less is that, since the treatment time is short when the voltage application time is less than 15 minutes, it is a continuous barrier type anodic oxide coating. On the other hand, if the voltage application time exceeds 360 minutes (6 hours), the processing time is too long and it is not practical.
本発明の複合体の製造方法は、基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成するので、基体としてアルミニウムやアルミニウム合金以外のものを用いても、金属間化合物の露出が少ない最表面を形成することができ、結果として、欠陥が少なく、耐酸化性およびフッ素などに対する耐食性に優れた最表面を有する複合体を製造することができる。 In the method for producing the composite of the present invention, an aluminum thin film is formed on the surface of the substrate by vacuum deposition or sputtering, and then a barrier type anodic oxide film is formed on the surface of the aluminum thin film. Even when a material other than an alloy is used, the outermost surface with less exposure of intermetallic compounds can be formed, and as a result, a composite having the outermost surface with few defects and excellent oxidation resistance and corrosion resistance against fluorine and the like can be obtained. Can be manufactured.
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
「実施例1」
基体として、縦30mm×横45mm×厚み1mmのアルミニウム合金(A6061)を用い、この基体の表面に、RFマグネトロンスパッタリングにより、厚み1μmのアルミニウム薄膜を成膜した。
ここでは、アルミニウムターゲットとしては、アルミニウムの純度が99.99%のものを用いた。
次いで、アルミニウム薄膜を成膜した基体を、5重量%のアジピン酸アンモニウム溶液に浸漬し、この溶液中にて、電圧200Vを30分間印加し、アルミニウム薄膜の陽極酸化処理を行い、アルミニウム薄膜上に厚み250nmのバリア型陽極酸化被膜を形成し、基体と、この基体上に順に形成されたアルミニウム薄膜およびバリア型陽極酸化被膜とからなる複合体を得た。
"Example 1"
An aluminum alloy (A6061) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was used as a substrate, and an aluminum thin film having a thickness of 1 μm was formed on the surface of the substrate by RF magnetron sputtering.
Here, an aluminum target having an aluminum purity of 99.99% was used.
Next, the substrate on which the aluminum thin film is formed is immersed in a 5 wt% ammonium adipate solution, and a voltage of 200 V is applied for 30 minutes in this solution to perform anodization of the aluminum thin film. A barrier type anodic oxide film having a thickness of 250 nm was formed, and a composite body including a base, an aluminum thin film and a barrier type anodic oxide film sequentially formed on the base was obtained.
「実施例2」
基体として、縦30mm×横45mm×厚み1mmのステンレス(SUS304L)を用い、この基体の表面に、RFマグネトロンスパッタリングにより、厚み1μmのアルミニウム薄膜を成膜した。
ここでは、アルミニウムターゲットとしては、アルミニウムの純度が99.99%のものを用いた。
次いで、アルミニウム薄膜を成膜した基体を、5重量%のアジピン酸アンモニウム溶液に浸漬し、この溶液中にて、電圧200Vを30分間印加し、アルミニウム薄膜の陽極酸化処理を行い、アルミニウム薄膜上に厚み250nmのバリア型陽極酸化被膜を形成し、基体と、この基体上に順に形成されたアルミニウム薄膜およびバリア型陽極酸化被膜とからなる複合体を得た。
"Example 2"
Stainless steel (SUS304L) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was used as a substrate, and an aluminum thin film having a thickness of 1 μm was formed on the surface of the substrate by RF magnetron sputtering.
Here, an aluminum target having an aluminum purity of 99.99% was used.
Next, the substrate on which the aluminum thin film is formed is immersed in a 5 wt% ammonium adipate solution, and a voltage of 200 V is applied for 30 minutes in this solution to perform anodization of the aluminum thin film. A barrier type anodic oxide film having a thickness of 250 nm was formed, and a composite body including a base, an aluminum thin film and a barrier type anodic oxide film sequentially formed on the base was obtained.
「比較例1」
基体として、縦30mm×横45mm×厚み1mmのアルミニウム合金(A6061)を用い、この基体を5重量%のアジピン酸アンモニウム溶液に浸漬し、この溶液中にて、電圧200Vを30分間印加し、アルミニウム薄膜の陽極酸化処理を行い、基体の表面に厚み250nmのバリア型陽極酸化被膜を形成し、基体と、この基体の表面に形成されたバリア型陽極酸化被膜とからなる複合体を得た。
“Comparative Example 1”
An aluminum alloy (A6061) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was used as a substrate. The substrate was immersed in a 5 wt% ammonium adipate solution, and a voltage of 200 V was applied in the solution for 30 minutes. The thin film was anodized to form a barrier type anodic oxide film having a thickness of 250 nm on the surface of the substrate, and a composite comprising the substrate and the barrier type anodic oxide film formed on the surface of the substrate was obtained.
「比較例2」
基体として、縦30mm×横45mm×厚み1mmのステンレス(SUS304L)を用意した。この基体には特に表面処理を施さなかった。
"Comparative Example 2"
Stainless steel (SUS304L) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was prepared as a substrate. This substrate was not particularly surface treated.
「耐食性の評価」
実施例1の複合体、実施例2の複合体、比較例1の複合体、および、比較例2の基体を、大気中にて、550℃にて48時間加熱した。
その後、それぞれについて加熱の前後における表面の色の変化を目視により調べた。
結果を表1に示す。
"Evaluation of corrosion resistance"
The composite of Example 1, the composite of Example 2, the composite of Comparative Example 1, and the substrate of Comparative Example 2 were heated in air at 550 ° C. for 48 hours.
Thereafter, the change in the color of the surface before and after heating was examined visually.
The results are shown in Table 1.
表1の結果から、実施例1および2の複合体は、加熱の前後における表面の色の変化が全く認められなかった。
一方、比較例1の複合体は、目視により表面全面に点状の茶色の変色が認められるとともに、この点状の変色により光沢が低下していることが認められた。点状の茶色の変色は、バリア型陽極酸化被膜の欠陥部分が酸化されたことによるものである。
また、比較例2の基体では、表面全面に茶色の変色が認められ、かつ、周辺の茶色よりも一層濃い点状の茶色の変色が認められるとともに、この点状の変色により光沢が低下していることが認められた。これは、ステンレスの表面全面が酸化されたことによるものである。
このように、アルミニウムのスパッタ膜を試料の表面に形成し、その後、バリア型アノード酸化処理を行った試料は、酸化が認められず、耐食性に優れることが示された。
From the results of Table 1, the composites of Examples 1 and 2 showed no change in surface color before and after heating.
On the other hand, the composite of Comparative Example 1 was visually observed to have a spot-like brown discoloration on the entire surface, and it was recognized that the gloss was lowered due to the spot-like discoloration. The dot-like brown discoloration is due to the oxidation of the defective portion of the barrier type anodic oxide coating.
Further, in the substrate of Comparative Example 2, brown discoloration was observed on the entire surface, and a spot-like brown discoloration that was darker than the surrounding brown was also observed, and the gloss was lowered by the dot discoloration. It was recognized that This is because the entire surface of the stainless steel is oxidized.
Thus, it was shown that the sample in which the sputtered film of aluminum was formed on the surface of the sample and the barrier type anodic oxidation treatment was performed thereafter was not oxidized and was excellent in corrosion resistance.
なお、上記の実施例1および2では、アルミニウム薄膜の成膜にRFマグネトロンスパッタリングを用いたが、真空蒸着を用いても、実施例1および2と同様な効果が得られる。
また、上記の実施例1および2では、基体として、アルミニウム合金またはステンレスを用いたが、マグネシウム、チタン、インコネル(登録商標)、ハステロイ(登録商標)、銅、炭素材などを用いても、実施例1および2と同様な効果が得られる。
In Examples 1 and 2 described above, RF magnetron sputtering was used to form the aluminum thin film. However, the same effects as in Examples 1 and 2 can be obtained even if vacuum deposition is used.
In Examples 1 and 2 described above, an aluminum alloy or stainless steel was used as the substrate. However, even when magnesium, titanium, Inconel (registered trademark), Hastelloy (registered trademark), copper, carbon material, or the like was used, the present invention was implemented. The same effect as in Examples 1 and 2 can be obtained.
本発明の複合体およびその製造方法は、酸素系ガス、酸素プラズマ、酸素ラジカル、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどに耐性の必要な真空装置の防着板、電極、アース板、ヒーターなどの真空部品にも適用できる。
The composite of the present invention and the method for producing the same include an oxygen-based gas, an oxygen plasma, an oxygen radical, a fluorine-based gas, a fluorine plasma, a fluorine protective film, an electrode, a ground plate, a heater, etc. It can be applied to other vacuum parts.
Claims (3)
前記基体は、ステンレス、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上であり、
前記アルミニウム薄膜は、スパッタリングにより成膜され、前記アルミニウム薄膜の厚みは0.1μm以上かつ3μm以下であり、
前記バリア型陽極酸化被膜の厚みは0.1μm以上かつ1μm以下であることを特徴とする複合体。 A substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film,
The substrate is one or more selected from the group consisting of stainless steel, magnesium, titanium, nickel-base alloy, copper, and carbon material,
The aluminum thin film is formed by sputtering, and the thickness of the aluminum thin film is 0.1 μm or more and 3 μm or less,
The barrier type anodized film has a thickness of 0.1 μm or more and 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007079116A JP5162148B2 (en) | 2007-03-26 | 2007-03-26 | Composite and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007079116A JP5162148B2 (en) | 2007-03-26 | 2007-03-26 | Composite and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008240024A JP2008240024A (en) | 2008-10-09 |
JP5162148B2 true JP5162148B2 (en) | 2013-03-13 |
Family
ID=39911710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007079116A Active JP5162148B2 (en) | 2007-03-26 | 2007-03-26 | Composite and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5162148B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5405800B2 (en) * | 2008-11-04 | 2014-02-05 | 三菱化学株式会社 | Corrosion-resistant treatment method for aluminum or aluminum alloy |
US9850591B2 (en) * | 2013-03-14 | 2017-12-26 | Applied Materials, Inc. | High purity aluminum top coat on substrate |
US9663870B2 (en) | 2013-11-13 | 2017-05-30 | Applied Materials, Inc. | High purity metallic top coat for semiconductor manufacturing components |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01312088A (en) * | 1988-06-10 | 1989-12-15 | Showa Alum Corp | Production of electrode for dry etching device and cvd device |
JP3152960B2 (en) * | 1991-07-15 | 2001-04-03 | 三菱アルミニウム株式会社 | Manufacturing method of aluminum or aluminum alloy material for vacuum equipment |
JP3173760B2 (en) * | 1994-11-11 | 2001-06-04 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP2900820B2 (en) * | 1995-03-24 | 1999-06-02 | 株式会社神戸製鋼所 | Surface treatment method for vacuum chamber member made of Al or Al alloy |
JPH08319573A (en) * | 1995-05-22 | 1996-12-03 | Nitsukooshi Prod Kk | Anodically oxidized aluminum electrode for plasma cvd and etching |
JP3761040B2 (en) * | 1995-06-26 | 2006-03-29 | 株式会社アルバック | Structural material for vacuum apparatus and structural member for vacuum apparatus |
JP3506827B2 (en) * | 1995-12-28 | 2004-03-15 | 三菱アルミニウム株式会社 | Surface-treated aluminum material and method for producing the same |
JP3917966B2 (en) * | 2003-09-29 | 2007-05-23 | 株式会社アルバック | Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof |
US7732056B2 (en) * | 2005-01-18 | 2010-06-08 | Applied Materials, Inc. | Corrosion-resistant aluminum component having multi-layer coating |
JPWO2008081748A1 (en) * | 2006-12-28 | 2010-04-30 | 国立大学法人東北大学 | Structural member used in semiconductor or flat display manufacturing apparatus and manufacturing method thereof |
-
2007
- 2007-03-26 JP JP2007079116A patent/JP5162148B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008240024A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0034408B1 (en) | A method of forming an anticorrosive coating on a metal electrode substrate | |
CN113891960B (en) | Corrosion resistant member | |
JP6505126B2 (en) | Multilayer substrate and manufacturing method | |
WO2006123736A1 (en) | Corrosion resistance treatment method for aluminum or aluminum alloy | |
US8282807B2 (en) | Metal member having a metal oxide film and method of manufacturing the same | |
CN101994145A (en) | Highly corrosion-resistant ceramic coating solution prepared through magnesium alloy surface micro-arc oxidation and application thereof | |
JP5403816B2 (en) | DLC film coated member and method for manufacturing the same | |
JP5162148B2 (en) | Composite and production method thereof | |
EP4039845B1 (en) | Corrosion-resistant member | |
JP3803353B2 (en) | Surface-treated aluminum material and manufacturing method thereof | |
JP5369083B2 (en) | Surface-treated aluminum member having high withstand voltage and method for producing the same | |
JP2782451B2 (en) | High corrosion resistance superimposed plated steel sheet | |
JP3746878B2 (en) | Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment | |
JPH09184094A (en) | Surface treated aluminum material and its production | |
JP2018104808A (en) | Titanium material, separator, cell, and solid polymer type fuel cell | |
JPH08144089A (en) | Vacuum chamber member made of aluminum or aluminum alloy | |
US20170002476A1 (en) | Method for manufacturing a part coated with a protective coating | |
JP5452034B2 (en) | Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same | |
JP5798900B2 (en) | Method for forming oxide film and oxide film | |
JP5012384B2 (en) | Surface treatment method | |
SU1306485A3 (en) | Method for removing protective coatings | |
JP5205606B2 (en) | DLC film coated member and method for manufacturing the same | |
JP2017179429A (en) | Continuous film forming device and continuous film forming method | |
WO2025041584A1 (en) | Surface-treated aluminum material and method for producing same | |
KR20230079724A (en) | A barrier-type surface treatment method of alumium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121217 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5162148 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |