[go: up one dir, main page]

JP5157956B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP5157956B2
JP5157956B2 JP2009041718A JP2009041718A JP5157956B2 JP 5157956 B2 JP5157956 B2 JP 5157956B2 JP 2009041718 A JP2009041718 A JP 2009041718A JP 2009041718 A JP2009041718 A JP 2009041718A JP 5157956 B2 JP5157956 B2 JP 5157956B2
Authority
JP
Japan
Prior art keywords
core
core member
case
storage case
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041718A
Other languages
Japanese (ja)
Other versions
JP2010199257A (en
Inventor
和広 小坂
賢太郎 三田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009041718A priority Critical patent/JP5157956B2/en
Publication of JP2010199257A publication Critical patent/JP2010199257A/en
Application granted granted Critical
Publication of JP5157956B2 publication Critical patent/JP5157956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、振動やノイズを抑制しやすいリアクトルに関する。   The present invention relates to a reactor that easily suppresses vibration and noise.

従来から、図12に示す構造のリアクトル90が知られている。このリアクトル90は、樹脂の中に磁性体の粉末を分散させた磁性粉末混合樹脂からなるコア91の中に、コイル92および中芯部材93を埋設したものである。電流を流すとコイル92とコア91が発熱するため、放熱性を向上させるために中芯部材93を入れている。   Conventionally, a reactor 90 having a structure shown in FIG. 12 is known. The reactor 90 is obtained by embedding a coil 92 and a core member 93 in a core 91 made of a magnetic powder mixed resin in which a magnetic powder is dispersed in a resin. Since a coil 92 and a core 91 generate heat when an electric current is passed, a core member 93 is inserted in order to improve heat dissipation.

一方、コイル92に交流電流を流した際に、リアクトル90内に発生する磁界に起因して、コイル92およびコア91が振動する現象が知られている。この振動を抑制するために、ケース94とコア91の間にウレタン樹脂95等を介在させている。   On the other hand, it is known that the coil 92 and the core 91 vibrate due to the magnetic field generated in the reactor 90 when an alternating current is passed through the coil 92. In order to suppress this vibration, a urethane resin 95 or the like is interposed between the case 94 and the core 91.

リアクトル90を製造する際には、まずコア91と、コイル92と、中芯部材93とが一体となった部材を形成する。そして、ケース94の中に液状のウレタン樹脂95を貯留しておき、そのケース94に上記コア91等が一体になった部材を収納する。これにより、液状のウレタン樹脂95をケース94とコア91の隙間に充填させることができる。   When manufacturing the reactor 90, first, a member in which the core 91, the coil 92, and the core member 93 are integrated is formed. A liquid urethane resin 95 is stored in the case 94, and a member in which the core 91 and the like are integrated is stored in the case 94. Thereby, the liquid urethane resin 95 can be filled in the gap between the case 94 and the core 91.

特開2008−198981号公報JP 2008-198981 A

しかしながら、上記製法を使用すると、図13に示すごとく、コア91を強く押し付けた場合にコア91の底面91aとケース94の底面94aとが接触してしまい、ウレタン樹脂95の薄膜が形成されないことがある。
この場合、通電に伴ってコイル92およびコア91が振動すると、その振動がケース94の底面に伝わりノイズが発生するという問題がある。そのため、ケース底面とコア底面との間にウレタン樹脂(制振材)の薄膜を一定の厚さで形成でき、振動やノイズが発生しにくいリアクトルが求められている。
However, when the above manufacturing method is used, as shown in FIG. 13, when the core 91 is strongly pressed, the bottom surface 91a of the core 91 and the bottom surface 94a of the case 94 come into contact with each other, and a thin film of the urethane resin 95 may not be formed. is there.
In this case, when the coil 92 and the core 91 vibrate with energization, there is a problem that the vibration is transmitted to the bottom surface of the case 94 and noise is generated. Therefore, there is a demand for a reactor that can form a thin film of urethane resin (damping material) with a certain thickness between the bottom of the case and the bottom of the core, and that is less susceptible to vibration and noise.

本発明は、かかる従来の問題点に鑑みてなされたもので、ケース底面とコア底面との間に制振材の薄膜を一定の厚さで形成でき、振動やノイズが発生しにくいリアクトルを提供しようとするものである。   The present invention has been made in view of such conventional problems, and provides a reactor in which a thin film of a damping material can be formed between the bottom surface of the case and the bottom surface of the core with a constant thickness and is less likely to generate vibration and noise. It is something to try.

第1の発明は、樹脂の中に磁性体の粉末が分散した磁性粉末混合樹脂からなるコアと、
該コア内に埋設され、通電により磁束が発生するコイルと、
上記コイルの内側に位置し、該コイルの軸線方向を向く柱状に形成されるとともに、軸線方向における少なくとも一方の端面を上記コアの底面から露出させた状態で該コア内に埋設された中芯部材と、
上記コアを、上記コイルおよび上記中芯部材とともに収納する収納ケースとを備え、
該収納ケースのケース底面と上記中芯部材の上記端面が直接的又は間接的に当接していると共に、その当接部位よりも外周側において上記ケース底面と上記コア底面との間に底面側間隙が設けられており、上記収納ケースの内周面と上記コアの外周面との間には側面側間隙が設けられており、上記底面側間隙と上記側面側間隙とには、上記コアよりもヤング率が小さい材料からなる制振材が充填されており、
上記ケース底面は、上記当接部位がその外周側の部位よりも上記中芯部材側へ突出するよう構成されていることを特徴とするリアクトルにある(請求項1)。
The first invention comprises a core made of a magnetic powder mixed resin in which a magnetic powder is dispersed in a resin;
A coil embedded in the core and generating magnetic flux when energized;
A core member that is positioned inside the coil and is formed in a columnar shape facing the axial direction of the coil, and is embedded in the core with at least one end face in the axial direction exposed from the bottom surface of the core When,
A storage case for storing the core together with the coil and the core member;
The case bottom surface of the storage case and the end surface of the core member are in direct or indirect contact with each other, and a bottom side gap is provided between the case bottom surface and the core bottom surface on the outer peripheral side of the contact portion. A side-side gap is provided between the inner peripheral surface of the storage case and the outer peripheral surface of the core, and the bottom-side gap and the side-side gap are located more than the core. It is filled with a damping material made of a material with a small Young's modulus ,
The case bottom surface is in a reactor characterized in that the contact portion projects from the outer peripheral portion toward the core member (claim 1).

次に、本発明の作用効果につき説明する。
本発明では、上記ケース底面と、中芯部材の端面が当接し、その当接部位よりも外周側において、ケース底面とコア底面との間に底面側間隙が形成されるようにした。そして、この底面側間隙に制振材を充填した。
このようにすると、制振材の厚さを一定に保つことができる。すなわち、リアクトルを製造する際には、まず、上記コアと、中芯部材と、コイルとが一体になった部材を製造する。そして、収納ケースに液状の制振材を貯留し、その収納ケースに上記部材を収納する。この時、中芯部材の端面がケース底面に当接するため、コア底面とケース底面とが接触することがなくなり、この間に介在する制振材の厚さを一定に保つことができる。これにより、コイルやコアの振動を制振材によって吸収することができ、ノイズ等を抑制しやすくなる。
また、リアクトル製造時に、上記部材を収納ケースに強い力で入れて、中芯部材の端面がケース底面の当接部位に必ず当接するようにすれば、制振材が必要以上に厚くなることを防止できる。制振材が厚くなりすぎると、放熱性が低下する等の問題が生じやすくなる。
なお、本例では、側面側間隙にも制振材が充填されているため、コイル等の振動がケース側面に伝わることも防止できる。そのため、ノイズを効果的に抑制することができる。
Next, the effects of the present invention will be described.
In the present invention, the case bottom face and the end face of the core member are in contact with each other, and a bottom face side gap is formed between the case bottom face and the core bottom face on the outer peripheral side of the contact portion. The bottom gap was filled with a vibration damping material.
If it does in this way, the thickness of a damping material can be kept constant. That is, when manufacturing the reactor, first, a member in which the core, the core member, and the coil are integrated is manufactured. And a liquid damping material is stored in a storage case, and the said member is stored in the storage case. At this time, since the end surface of the core member is in contact with the case bottom surface, the core bottom surface and the case bottom surface are not in contact with each other, and the thickness of the damping material interposed therebetween can be kept constant. Thereby, the vibration of the coil and the core can be absorbed by the damping material, and noise and the like are easily suppressed.
In addition, when the reactor is manufactured, if the above member is put into the storage case with a strong force so that the end surface of the core member is always in contact with the contact portion of the bottom surface of the case, the vibration damping material becomes thicker than necessary. Can be prevented. If the damping material becomes too thick, problems such as a decrease in heat dissipation tend to occur.
In this example, since the damping material is also filled in the side surface side gap, it is possible to prevent the vibration of the coil or the like from being transmitted to the side surface of the case. Therefore, noise can be effectively suppressed.

以上のごとく本発明によれば、ケース底面とコア底面との間に制振材の薄膜を一定の厚さで形成でき、振動やノイズが発生しにくいリアクトルを提供することができる。   As described above, according to the present invention, a thin film of a damping material can be formed between the bottom surface of the case and the bottom surface of the core with a constant thickness, and a reactor that is unlikely to generate vibration and noise can be provided.

実施例1における、リアクトルの斜視図。The perspective view of the reactor in Example 1. FIG. 実施例1における、リアクトルの断面図。Sectional drawing of the reactor in Example 1. FIG. 図2の要部拡大図。The principal part enlarged view of FIG. 実施例1における、リアクトルの製造工程説明図。The manufacturing process explanatory drawing of the reactor in Example 1. FIG. 図4に続く図。The figure following FIG. 図5に続く図。The figure following FIG. 図6に続く図。The figure following FIG. 参考例1における、中芯部材を突出させたリアクトルの要部拡大図。The principal part enlarged view of the reactor which made the center core member protrude in the reference example 1. FIG. 実施例1における、底面と中芯部材を両方とも突出させた場合の断面図。Sectional drawing at the time of making both a bottom face and a core member protrude in Example 1. FIG. 参考例2における、底上げ用部材を介在させた場合の断面図。Sectional drawing at the time of interposing the member for raising a bottom in the reference example 2. FIG. 実施例1における、リアクトルを用いた回路の例。The example of the circuit which used the reactor in Example 1. FIG. 従来例における、リアクトルの断面図。Sectional drawing of the reactor in a prior art example. 従来例における、リアクトルの断面図であって、底部に制振材が形成されていない状態の説明図。It is sectional drawing of the reactor in a prior art example, Comprising: Explanatory drawing of the state by which the damping material is not formed in the bottom part.

上述した本発明における好ましい実施の形態につき説明する。
本発明において、上記ケース底面は、上記当接部位がその外周側よりも上記中芯部材側へ突出するよう構成されている。
したがって、上記当接部位が突出形成されているため、コアと、コイルと、中芯部材とが一体になった部材を収納ケースに入れた場合に、中芯部材の端面が当接部位に当接し、その外周側において底面側間隙が確実に形成される。また、当接部位の突出高さを予め定めておけば、その高さよりも制振材の厚さが薄くなることはなくなる。
A preferred embodiment of the present invention described above will be described.
In the present invention, the bottom of the case, said contact sites than the outer peripheral side thereof that is configured to protrude into the central core member.
Therefore, since the abutting portion is formed so as to protrude, when the member in which the core, the coil, and the core member are integrated is put in the storage case, the end surface of the core member contacts the abutting portion. In contact therewith, a bottom side gap is reliably formed on the outer peripheral side. Moreover, if the protrusion height of the contact part is determined in advance, the thickness of the damping material will not be thinner than that height.

また、上記中芯部材の端部は上記コア底面から突出し、該端部が上記ケース底面に接触していることが好ましい(請求項)。
このようにすると、中芯部材の端部がコア底面から突出しているため底面側間隙を形成することができる。また、端部の突出高さを予め定めておけば、その高さよりも制振材の厚さが薄くなることはなくなる。
Moreover, it is preferable that the edge part of the said core member protrudes from the said core bottom face, and this edge part is contacting the said case bottom face (Claim 2 ).
In this way, since the end portion of the central core member is protruded from the core bottom, can that form the bottom side gap. Further, if the protruding height of the end portion is determined in advance, the thickness of the damping material will not be thinner than that height.

また、上記収納ケースは、上記収納ケースの底部にコア固定用の突起部を有し、上記中芯部材は、上記突起部に嵌合する凹部を有し、上記突起部の外面と上記凹部の内面との間に、上記制振材が充填されていることが好ましい(請求項)。
このようにすると、上記突起部によってコアを収納ケースに固定できる。また、突起部の外面と凹部の内面との間に制振材が充填されている。制振材(ウレタン樹脂等)は空気よりも熱伝導率が高いため、上記構成にすると、制振材が充填されておらず、空気層が存在する場合と比較して、熱が中芯部材から収納ケースに伝わりやすくなる。そのため、放熱性を向上できる。
Further, the storage case has a core fixing projection at the bottom of the storage case, the core member has a recess that fits into the projection, and the outer surface of the projection and the recess between the inner surface, it is preferable that the damping material is filled (claim 3).
If it does in this way, a core can be fixed to a storage case with the above-mentioned projection. Further, a damping material is filled between the outer surface of the protrusion and the inner surface of the recess. Damping material (urethane resin, etc.) has a higher thermal conductivity than air. Therefore, with the above structure, the damping material is not filled and heat is the core member compared to the case where there is an air layer. It becomes easy to be transmitted from the storage case. Therefore, heat dissipation can be improved.

また、上記突起部は、上記収納ケースの底部から突出する基幹部と、該基幹部の先端側に設けられ、該基幹部よりも外径が小さい縮径部とを備え、上記凹部は、上記基幹部と上記縮径部とに各々嵌合する段形状に形成され、上記縮径部と上記中芯部材との間隙は、上記基幹部と上記中芯部材との間隙よりも狭くなっていることが好ましい(請求項)。
このようにすると、縮径部と中芯部材との間隙が狭くなっているため、コアと、中芯部材と、コイルとが一体になった部材を、収納ケースに対して正確な位置に固定することができる。これにより、上述した側面側間隙を正確に制御することができ、側面における制振材の厚さをコントロールしやすくなる。制振材が薄くなりすぎるとノイズが伝わりやすくなり、厚くなりすぎると放熱性が低下するが、上記構成にすることで、制振材の厚さをコントロールでき、ノイズ抑制効果と放熱性との双方を発揮できるようになる。
In addition, the protruding portion includes a trunk portion protruding from the bottom of the storage case, and a reduced diameter portion provided on the distal end side of the trunk portion and having a smaller outer diameter than the trunk portion, It is formed in a stepped shape that fits to each of the backbone portion and the reduced diameter portion, and the gap between the reduced diameter portion and the core member is narrower than the gap between the backbone portion and the core member. (Claim 4 ).
In this case, since the gap between the reduced diameter portion and the core member is narrow, the member in which the core, the core member, and the coil are integrated is fixed at an accurate position with respect to the storage case. can do. Thereby, the side surface side gap mentioned above can be controlled accurately, and the thickness of the damping material on the side surface can be easily controlled. If the damping material is too thin, noise will be transmitted easily, and if it is too thick, the heat dissipation will decrease.However, with the above configuration, the thickness of the damping material can be controlled, and the noise suppression effect and heat dissipation You will be able to demonstrate both.

また、本発明のリアクトルは、車両用の電力変換回路に用いることが好ましい。車両用の電力変換回路は大電流を流すので、コイルの振動の振幅が大きい。また、車両の乗員にノイズが伝わらないように、静音性に対する要求が厳しい。そのため、本発明のリアクトルを車両用の電力変換回路に使用した場合に、得られる効果が特に大きい。   Moreover, it is preferable to use the reactor of this invention for the power converter circuit for vehicles. Since the power conversion circuit for a vehicle passes a large current, the amplitude of the vibration of the coil is large. In addition, there is a strict requirement for quietness so that noise is not transmitted to vehicle occupants. Therefore, when the reactor of this invention is used for the power converter circuit for vehicles, the effect acquired is especially large.

一方、上記底面側間隙は、0.5〜2.0mmであることが好ましい。また、側面側間隙は、0.5〜2.0mmであることが好ましい。底面側間隙が0.5mm未満、または側面側間隙が0.5mm未満になると、制振材が薄くなりすぎるため、十分に振動を吸収できない場合がある。また、底面側間隙が2.0mmを越えるか、または側面側間隙が2.0mmを越えると、制振材が厚くなりすぎるため、コアの熱が収納ケースに伝わりにくくなる場合がある。   On the other hand, the bottom side gap is preferably 0.5 to 2.0 mm. Moreover, it is preferable that a side surface side gap is 0.5-2.0 mm. If the bottom surface side gap is less than 0.5 mm or the side surface side gap is less than 0.5 mm, the vibration damping material becomes too thin, and vibration may not be sufficiently absorbed. On the other hand, if the gap on the bottom side exceeds 2.0 mm or the gap on the side side exceeds 2.0 mm, the damping material becomes too thick, and the heat of the core may be difficult to be transmitted to the storage case.

(実施例1)
本発明の実施例にかかるリアクトルにつき、図1〜図12を用いて説明する。
図1は本例に係るリアクトル1の分解斜視図であり、図2は断面図である。また、図3は図2の要部拡大図である。
図1、図2に示すごとく、本例のリアクトル1は、樹脂の中に磁性体の粉末が分散した磁性粉末混合樹脂からなるコア2を備える。
また、通電により磁束が発生するコイル3がコア2内に埋設されている。
そして、図2に示すごとく、コイル3の内側に位置し、コイル3の軸線方向を向く柱状に形成されるとともに、軸線方向における少なくとも一方の端面41をコア2の底面20から露出させた状態でコア2内に埋設された中芯部材4を備える。
また、コア2を、コイル3および中芯部材4とともに収納する収納ケース5を備える。
図2、図3に示すごとく、収納ケース5のケース底面50と中芯部材4の端面41が直接的に当接している。この当接部位51よりも外周側においてケース底面50とコア底面20との間に底面側間隙10が設けられている。そして、収納ケース5の内周面52とコア2の外周面21との間には側面側間隙11(図2参照)が設けられている。底面側間隙10と側面側間隙11とには、コア2よりもヤング率が小さい材料からなる制振材6が充填されている。
以下、詳説する。
Example 1
A reactor according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an exploded perspective view of a reactor 1 according to this example, and FIG. 2 is a cross-sectional view. FIG. 3 is an enlarged view of a main part of FIG.
As shown in FIGS. 1 and 2, the reactor 1 of this example includes a core 2 made of a magnetic powder mixed resin in which a magnetic powder is dispersed in a resin.
A coil 3 that generates magnetic flux when energized is embedded in the core 2.
As shown in FIG. 2, it is located inside the coil 3, is formed in a column shape facing the axial direction of the coil 3, and at least one end surface 41 in the axial direction is exposed from the bottom surface 20 of the core 2. A core member 4 embedded in the core 2 is provided.
Further, a storage case 5 for storing the core 2 together with the coil 3 and the core member 4 is provided.
As shown in FIGS. 2 and 3, the case bottom surface 50 of the storage case 5 and the end surface 41 of the core member 4 are in direct contact with each other. A bottom surface side gap 10 is provided between the case bottom surface 50 and the core bottom surface 20 on the outer peripheral side of the contact portion 51. A side surface side gap 11 (see FIG. 2) is provided between the inner peripheral surface 52 of the storage case 5 and the outer peripheral surface 21 of the core 2. The bottom gap 10 and the side gap 11 are filled with a damping material 6 made of a material having a Young's modulus smaller than that of the core 2.
The details will be described below.

本例のリアクトル1は、車両用の電力変換回路に用いられる。コア2は、エポキシ樹脂等の熱硬化性樹脂に、鉄粉等の磁性体粉末を分散させたものが使用される。また、コイル3は銅線を巻き回してなり、収納ケース5および中芯部材4はアルミニウム合金からなる。さらに、制振材6はウレタン樹脂から構成される。   The reactor 1 of this example is used for a power conversion circuit for a vehicle. The core 2 is made by dispersing a magnetic powder such as iron powder in a thermosetting resin such as an epoxy resin. The coil 3 is formed by winding a copper wire, and the storage case 5 and the core member 4 are made of an aluminum alloy. Further, the damping material 6 is made of urethane resin.

図3に示すごとく、ケース底面50は、当接部位51がその外周側よりも突出するよう構成されている。この当接部位51に、中芯部材4の端面41が当接している。   As shown in FIG. 3, the case bottom surface 50 is configured such that the contact portion 51 protrudes from the outer peripheral side. The end surface 41 of the core member 4 is in contact with the contact portion 51.

また、図7に示すごとく、収納ケース5は、収納ケース5の底部にコア固定用の突起部7を有し、中芯部材4は、突起部7に嵌合する凹部40を有する。そして、図2に示すごとく、突起部7の外面7aと凹部40の内面40aとの間に、制振材6が充填されている。   As shown in FIG. 7, the storage case 5 has a core fixing projection 7 at the bottom of the storage case 5, and the core member 4 has a recess 40 that fits into the projection 7. As shown in FIG. 2, the damping material 6 is filled between the outer surface 7 a of the protrusion 7 and the inner surface 40 a of the recess 40.

また、図7に示すごとく、突起部7は、収納ケース5の底部から突出する基幹部70と、基幹部70の先端側に設けられ、基幹部70よりも外径が小さい縮径部71とを備えている。凹部40は、基幹部70と縮径部71とに各々嵌合する段形状に形成され、縮径部71と中芯部材4との間隙d1(図2参照)は、基幹部70と中芯部材4との間隙d2よりも狭くなっている。   Further, as shown in FIG. 7, the protruding portion 7 includes a trunk portion 70 that protrudes from the bottom of the storage case 5, and a reduced diameter portion 71 that is provided on the distal end side of the trunk portion 70 and has an outer diameter smaller than that of the trunk portion 70. It has. The recess 40 is formed in a stepped shape that fits into the core portion 70 and the reduced diameter portion 71, and the gap d <b> 1 (see FIG. 2) between the reduced diameter portion 71 and the core member 4 is defined between the core portion 70 and the core portion. It is narrower than the gap d2 with the member 4.

次に、本例のリアクトル1の製造方法について説明する。図4に示すごとく、まず、成形用の金型8(収納ケース5とは異なる)に中芯部材4とコイル3を収納する。その後、図5に示すごとく、金型8に液状のコア2を注ぐ。コア2は、上述したように熱硬化性樹脂に鉄粉等を分散させたもので、硬化前は液状になっている。
その後、所定温度で熱処理を行うと、熱硬化性樹脂が硬化し、図6に示すごとく中芯部材4と、コイル3と、コア2とが一体になった部材15が形成される。この部材15を金型8から取り出す。
Next, the manufacturing method of the reactor 1 of this example is demonstrated. As shown in FIG. 4, first, the core member 4 and the coil 3 are housed in a molding die 8 (different from the housing case 5). Thereafter, as shown in FIG. 5, the liquid core 2 is poured into the mold 8. The core 2 is obtained by dispersing iron powder or the like in a thermosetting resin as described above, and is in a liquid state before being cured.
Thereafter, when heat treatment is performed at a predetermined temperature, the thermosetting resin is cured, and a member 15 in which the core member 4, the coil 3, and the core 2 are integrated is formed as shown in FIG. The member 15 is taken out from the mold 8.

次に図7に示すごとく、収納ケース5に液状の制振材6を所定量、貯留しておく。制振材6は、上述したようにウレタン樹脂を主成分としたもので、加熱して液状にすることができる。この状態で上記部材15を収納すると、中芯部材4の端面41が収納ケース5の当接部位51に当接する。ここで、当接部位51はその外周側よりも突出しているため、コア底面20とケース底面50との間に底面側間隙10(図2参照)が形成される。この底面側間隙10と側面側間隙11に、液状の制振材6が充填される。この後、冷却して、制振材6を固化させる。   Next, as shown in FIG. 7, a predetermined amount of liquid damping material 6 is stored in the storage case 5. The damping material 6 is mainly composed of a urethane resin as described above, and can be heated to be liquid. When the member 15 is stored in this state, the end surface 41 of the core member 4 comes into contact with the contact portion 51 of the storage case 5. Here, since the contact part 51 protrudes from the outer peripheral side, the bottom face side gap 10 (see FIG. 2) is formed between the core bottom face 20 and the case bottom face 50. The bottom surface side gap 10 and the side surface side gap 11 are filled with a liquid damping material 6. Thereafter, the vibration damping material 6 is solidified by cooling.

上述したように、突起部7は基幹部70と縮径部71とを備えており、この基幹部70と中芯部材4との間隙d2(図2参照)は相対的に広く、縮径部71と中芯部材4との間隙d1は狭くなっている。より詳しくは、縮径部71と中芯部材4との間隙d1は、殆ど0になっている。そのため、強い力を加えないと凹部40が縮径部71に入らない。   As described above, the projecting portion 7 includes the basic portion 70 and the reduced diameter portion 71, and the gap d2 (see FIG. 2) between the basic portion 70 and the core member 4 is relatively wide, and the reduced diameter portion. A gap d1 between 71 and the core member 4 is narrow. More specifically, the gap d1 between the reduced diameter portion 71 and the core member 4 is almost zero. Therefore, the concave portion 40 does not enter the reduced diameter portion 71 unless a strong force is applied.

なお、部材15を収納ケース5に収納した後、ボルト80を雌螺子部43に螺合し、部材15を収納ケース5に対して固定する。   In addition, after the member 15 is stored in the storage case 5, the bolt 80 is screwed into the female screw portion 43 to fix the member 15 to the storage case 5.

また、図9に示すごとく、収納ケース5の当接部位51を、その外周側よりも突出させておき、さらに、中芯部材4の端部42がコア底面20から突出するように構成することもできる。 Further, as shown in FIG. 9, the contact portion 51 of the storage case 5 is protruded from the outer peripheral side, and the end portion 42 of the core member 4 is configured to protrude from the core bottom surface 20. You can also.

次に、本例のリアクトル1を使用した回路の例を図11に示す。リアクトル1は、車両用の電力変換回路82に用いられる。この電力変換回路82はインバータ部81とコンバータ部83とからなる。インバータ部81は、図示するごとく、複数個の半導体モジュール85から構成されている。個々の半導体モジュール85は、IGBT素子85a及びフライホイールダイオード85bを備える。また、リアクトル1は、コンバータ部83に使用されている。このコンバータ部83を使って直流電源84の電圧を昇圧し、その昇圧した電圧をインバータ部81の直流入力端子88a,88b間に印加する。IGBT素子85aをスイッチング動作させることにより、出力端子87から交流電圧を出力することができる。この交流電圧を使って三相交流モータ86を駆動し、車両を走行させる。   Next, an example of a circuit using the reactor 1 of this example is shown in FIG. Reactor 1 is used in a power conversion circuit 82 for a vehicle. The power conversion circuit 82 includes an inverter unit 81 and a converter unit 83. The inverter unit 81 is composed of a plurality of semiconductor modules 85 as shown in the figure. Each semiconductor module 85 includes an IGBT element 85a and a flywheel diode 85b. Further, the reactor 1 is used in the converter unit 83. The converter unit 83 is used to boost the voltage of the DC power supply 84, and the boosted voltage is applied between the DC input terminals 88 a and 88 b of the inverter unit 81. An alternating voltage can be output from the output terminal 87 by switching the IGBT element 85a. Using this AC voltage, the three-phase AC motor 86 is driven to run the vehicle.

次に、本例のリアクトル1の作用効果について説明する。
本例では図2、図3に示すごとく、ケース底面50と、中芯部材4の端面41が当接し、その当接部位51よりも外周側において、ケース底面50とコア底面20との間に底面側間隙10が形成されるようにした。そして、この底面側間隙10に制振材6を充填した。
このようにすると、制振材6の厚さを一定に保つことができる。すなわち、リアクトル1を製造する際には、図4〜図6に示すごとく、まずコア2と、中芯部材4と、コイル3とが一体になった部材15を製造する。そして、図7に示すごとく、収納ケース5に液状の制振材6を貯留し、その収納ケース5に部材15を収納する。この時、中芯部材4の端面41がケース底面50の当接部位51に当接するため、コア底面20とケース底面50とが接触することがなくなり、この間に介在する制振材6の厚さを一定に保つことができる。これにより、コイル3やコア2の振動を制振材6によって吸収することができ、ノイズ等を抑制しやすくなる。
また、リアクトル製造時に、部材15を収納ケース5に強い力で入れて、中芯部材4の端面41が当接部位51に必ず当接するようにすれば、制振材6が必要以上に厚くなることを防止できる。制振材6が厚くなりすぎると、放熱性が低下する等の問題が生じやすくなる。
なお、本例では、側面側間隙11にも制振材6が充填されているため、コイル3等の振動がケース側面に伝わることも防止できる。これにより、ノイズを効果的に抑制することが可能となる。
Next, the effect of the reactor 1 of this example is demonstrated.
In this example, as shown in FIGS. 2 and 3, the case bottom surface 50 and the end surface 41 of the core member 4 are in contact with each other, and the outer peripheral side of the contact portion 51 is between the case bottom surface 50 and the core bottom surface 20. A bottom side gap 10 was formed. And the damping material 6 was filled in this bottom face side gap 10.
In this way, the thickness of the damping material 6 can be kept constant. That is, when manufacturing the reactor 1, as shown in FIGS. 4 to 6, first, the member 15 in which the core 2, the core member 4, and the coil 3 are integrated is manufactured. Then, as shown in FIG. 7, the liquid damping material 6 is stored in the storage case 5, and the member 15 is stored in the storage case 5. At this time, since the end surface 41 of the core member 4 contacts the contact portion 51 of the case bottom surface 50, the core bottom surface 20 and the case bottom surface 50 do not contact each other, and the thickness of the damping material 6 interposed therebetween Can be kept constant. Thereby, the vibration of the coil 3 and the core 2 can be absorbed by the damping material 6, and noise and the like can be easily suppressed.
Further, when the reactor 15 is manufactured, if the member 15 is put into the storage case 5 with a strong force so that the end surface 41 of the core member 4 always comes into contact with the contact portion 51, the damping material 6 becomes thicker than necessary. Can be prevented. If the damping material 6 becomes too thick, problems such as a decrease in heat dissipation tend to occur.
In this example, since the damping material 6 is filled also in the side surface side gap 11, it is possible to prevent the vibration of the coil 3 and the like from being transmitted to the side surface of the case. Thereby, noise can be effectively suppressed.

また、本例では、図2、図3に示すごとく、ケース底面50は、当接部位51がその外周側よりも突出するよう構成されている。
このようにすると、当接部位51が突出形成されているため、部材15を収納ケース5に入れた場合に、中芯部材4の端面41が当接部位51に当接し、その外周側において底面側間隙10が確実に形成される。また、当接部位51の突出高さを予め定めておけば、その高さよりも制振材6の厚さが薄くなることはなくなる。
In this example, as shown in FIGS. 2 and 3, the case bottom surface 50 is configured such that the contact portion 51 protrudes from the outer peripheral side.
In this case, since the contact portion 51 is formed to protrude, when the member 15 is put in the storage case 5, the end surface 41 of the core member 4 contacts the contact portion 51, and the bottom surface on the outer peripheral side thereof The side gap 10 is reliably formed. Moreover, if the protrusion height of the contact part 51 is determined in advance, the thickness of the damping material 6 will not be thinner than that height.

また、図2、図3に示すごとく、本例のリアクトル1は、突起部7の外面7aと凹部40の内面40aとの間に、制振材6が充填されている。より詳しくは、制振材6は、基幹部70と中芯部材4との間隙d2と、さらにその上方の隙間d3にも入っている。
この構成にすると、例えば図7に示すごとく、突起部7の雌螺子部45にボルト80を挿入することにより、コア2を収納ケース5に固定できる。また、図2に示すごとく、突起部7の外面7aと凹部40の内面40aとの間に制振材6が充填されている。制振材6(ウレタン樹脂等)は空気よりも熱伝導率が高いため、上記構成にすると、制振材6が充填されておらず、空気層が存在する場合と比較して、熱が中芯部材4から収納ケース5に伝わりやすくなる。そのため、放熱性を向上できる。
As shown in FIGS. 2 and 3, the reactor 1 of this example is filled with the damping material 6 between the outer surface 7 a of the protrusion 7 and the inner surface 40 a of the recess 40. More specifically, the damping material 6 enters the gap d2 between the backbone 70 and the core member 4 and further into the gap d3 above the gap d2.
With this configuration, for example, as shown in FIG. 7, the core 2 can be fixed to the storage case 5 by inserting the bolt 80 into the female screw portion 45 of the protrusion 7. Further, as shown in FIG. 2, the damping material 6 is filled between the outer surface 7 a of the protrusion 7 and the inner surface 40 a of the recess 40. Since the vibration damping material 6 (urethane resin or the like) has a higher thermal conductivity than air, the above structure is not filled with the vibration damping material 6 and heat is moderate compared to the case where an air layer is present. It becomes easy to be transmitted from the core member 4 to the storage case 5. Therefore, heat dissipation can be improved.

また、図2に示すごとく、縮径部71と中芯部材4との間隙d1は、基幹部70と中芯部材4との間隙d2よりも狭くなっている。
このようにすると、部材15(図7参照)を、収納ケース5に対して正確な位置に固定することができる。これにより、上述した側面側間隙11を正確に制御することができ、側面における制振材6の厚さをコントロールしやすくなる。制振材6が薄くなりすぎるとノイズが伝わりやすくなり、厚くなりすぎると放熱性が低下するが、上記構成にすることで、制振材6の厚さをコントロールでき、ノイズ抑制効果と放熱性との双方を発揮できるようになる。
As shown in FIG. 2, the gap d <b> 1 between the reduced diameter portion 71 and the core member 4 is narrower than the gap d <b> 2 between the backbone 70 and the core member 4.
In this way, the member 15 (see FIG. 7) can be fixed at an accurate position with respect to the storage case 5. Thereby, the side surface side gap 11 mentioned above can be controlled accurately, and the thickness of the damping material 6 on the side surface can be easily controlled. If the damping material 6 becomes too thin, noise will be transmitted easily, and if it becomes too thick, the heat dissipation will decrease. However, by adopting the above configuration, the thickness of the damping material 6 can be controlled, and the noise suppression effect and heat dissipation will be reduced. And will be able to demonstrate both.

一方、底面側間隙10は、0.5〜2.0mmであることが好ましい。また、側面側間隙11は0.5〜2.0mmであることが好ましい。底面側間隙10が0.5mm未満、または側面側間隙11が0.5mm未満になると、制振材6が薄くなりすぎるため、十分に振動を吸収できない場合がある。また、底面側間隙10が2.0mmを越えるか、または側面側間隙11が2.0mmを越えると、制振材6が厚くなりすぎるため、コア2の熱が収納ケース5に伝わりにくくなる場合がある。   On the other hand, the bottom side gap 10 is preferably 0.5 to 2.0 mm. Moreover, it is preferable that the side surface side gap 11 is 0.5-2.0 mm. If the bottom surface side gap 10 is less than 0.5 mm or the side surface side gap 11 is less than 0.5 mm, the vibration damping material 6 becomes too thin, and vibration may not be sufficiently absorbed. In addition, when the bottom surface side gap 10 exceeds 2.0 mm or the side surface side gap 11 exceeds 2.0 mm, the damping material 6 becomes too thick, and thus the heat of the core 2 is difficult to be transmitted to the storage case 5. There is.

以上のごとく、本例によれば、ケース底面50とコア底面20との間に制振材6の薄膜を一定の厚さで形成でき、振動やノイズが発生しにくいリアクトル1を提供することができる。
(参考例1)
次に、リアクトル1の参考例を図8に示す。このリアクトル1は、中芯部材4の端部42がコア底面20から突出し、端部42がケース底面50に接触している。
このように構成すると、図2の構成と同様に、コア底面20とケース底面50とが接触することを防止でき、底面側間隙10の間隔が狭くなりすぎることを防止できる。
また、中芯部材4の端部42がコア底面20から突出しているため、ケース底面50が平らであっても、底面側間隙10を確実に形成することができる。また、端部42の突出高さを予め定めておけば、その高さよりも制振材6の厚さが薄くなることはなくなる。
(参考例2)
また、図10に示すごとく、中芯部材4と収納ケース5との間に、底上げ用部材44が介在するように構成してもよい。この底上げ用部材44は金属製であることが好ましい。金属であれば熱伝導率が高いため、中芯部材4から収納ケース5に熱が早く伝導する。これにより、コア2等から発生した熱を効果的に収納ケース5に伝えることが可能となる。
As described above, according to this example, it is possible to provide the reactor 1 in which the thin film of the damping material 6 can be formed with a certain thickness between the case bottom surface 50 and the core bottom surface 20 and vibration and noise are hardly generated. it can.
(Reference Example 1)
Next, a reference example of the reactor 1 is shown in FIG. In the reactor 1, the end portion 42 of the core member 4 protrudes from the core bottom surface 20, and the end portion 42 is in contact with the case bottom surface 50.
If comprised in this way, it can prevent that the core bottom face 20 and the case bottom face 50 contact, and can prevent that the space | interval of the bottom face side gap | interval 10 becomes too narrow similarly to the structure of FIG.
In addition, since the end portion 42 of the core member 4 protrudes from the core bottom surface 20, the bottom surface side gap 10 can be reliably formed even if the case bottom surface 50 is flat. In addition, if the protruding height of the end portion 42 is determined in advance, the thickness of the damping material 6 will not be thinner than that height.
(Reference Example 2)
Further, as shown in FIG. 10, a bottom raising member 44 may be interposed between the core member 4 and the storage case 5. The bottom raising member 44 is preferably made of metal. Since heat conductivity is high if it is a metal, heat is conducted from the core member 4 to the storage case 5 quickly. Thereby, the heat generated from the core 2 and the like can be effectively transmitted to the storage case 5.

1 リアクトル
10 底面側間隙
11 側面側間隙
2 コア
20 コア底面
3 コイル
4 中芯部材
5 収納ケース
50 ケース底面
6 制振材
DESCRIPTION OF SYMBOLS 1 Reactor 10 Bottom face side gap 11 Side face side gap 2 Core 20 Core bottom face 3 Coil 4 Core member 5 Storage case 50 Case bottom face 6 Damping material

Claims (4)

樹脂の中に磁性体の粉末が分散した磁性粉末混合樹脂からなるコアと、
該コア内に埋設され、通電により磁束が発生するコイルと、
上記コイルの内側に位置し、該コイルの軸線方向を向く柱状に形成されるとともに、軸線方向における少なくとも一方の端面を上記コアの底面から露出させた状態で該コア内に埋設された中芯部材と、
上記コアを、上記コイルおよび上記中芯部材とともに収納する収納ケースとを備え、
該収納ケースのケース底面と上記中芯部材の上記端面が直接的又は間接的に当接していると共に、その当接部位よりも外周側において上記ケース底面と上記コア底面との間に底面側間隙が設けられており、上記収納ケースの内周面と上記コアの外周面との間には側面側間隙が設けられており、上記底面側間隙と上記側面側間隙とには、上記コアよりもヤング率が小さい材料からなる制振材が充填されており、
上記ケース底面は、上記当接部位がその外周側の部位よりも上記中芯部材側へ突出するよう構成されていることを特徴とするリアクトル。
A core made of a magnetic powder mixed resin in which a magnetic powder is dispersed in a resin;
A coil embedded in the core and generating magnetic flux when energized;
A core member that is positioned inside the coil and is formed in a columnar shape facing the axial direction of the coil, and is embedded in the core with at least one end face in the axial direction exposed from the bottom surface of the core When,
A storage case for storing the core together with the coil and the core member;
The case bottom surface of the storage case and the end surface of the core member are in direct or indirect contact with each other, and a bottom side gap is provided between the case bottom surface and the core bottom surface on the outer peripheral side of the contact portion. A side-side gap is provided between the inner peripheral surface of the storage case and the outer peripheral surface of the core, and the bottom-side gap and the side-side gap are located more than the core. It is filled with a damping material made of a material with a small Young's modulus ,
The reactor is characterized in that the bottom surface of the case is configured such that the contact portion protrudes toward the core member rather than the outer peripheral portion.
請求項1において、上記中芯部材の端部は上記コア底面から突出し、該端部が上記ケース底面に接触していることを特徴とするリアクトル。 Oite to claim 1, the ends of the central core member reactor, characterized in that projecting from the core base, the end portion in contact with the bottom of the case. 請求項1又は請求項2において、上記収納ケースは、上記収納ケースの底部にコア固定用の突起部を有し、上記中芯部材は、上記突起部に嵌合する凹部を有し、上記突起部の外面と上記凹部の内面との間に、上記制振材が充填されていることを特徴とするリアクトル。 3. The storage case according to claim 1, wherein the storage case has a core fixing projection at the bottom of the storage case, and the core member has a recess that fits into the projection. A reactor in which the damping material is filled between the outer surface of the part and the inner surface of the recess. 請求項において、上記突起部は、上記収納ケースの底部から突出する基幹部と、該基幹部の先端側に設けられ、該基幹部よりも外径が小さい縮径部とを備え、上記凹部は、上記基幹部と上記縮径部とに各々嵌合する段形状に形成され、上記縮径部と上記中芯部材との間隙は、上記基幹部と上記中芯部材との間隙よりも狭くなっていることを特徴とするリアクトル。 4. The concave portion according to claim 3, wherein the protrusion includes a trunk portion protruding from a bottom portion of the storage case, and a reduced diameter portion provided on a distal end side of the trunk portion and having an outer diameter smaller than the trunk portion. Is formed in a stepped shape that fits into each of the backbone portion and the reduced diameter portion, and a gap between the reduced diameter portion and the core member is narrower than a gap between the backbone portion and the core member. Reactor characterized by becoming.
JP2009041718A 2009-02-25 2009-02-25 Reactor Active JP5157956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041718A JP5157956B2 (en) 2009-02-25 2009-02-25 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041718A JP5157956B2 (en) 2009-02-25 2009-02-25 Reactor

Publications (2)

Publication Number Publication Date
JP2010199257A JP2010199257A (en) 2010-09-09
JP5157956B2 true JP5157956B2 (en) 2013-03-06

Family

ID=42823697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041718A Active JP5157956B2 (en) 2009-02-25 2009-02-25 Reactor

Country Status (1)

Country Link
JP (1) JP5157956B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030623A (en) * 2011-07-28 2013-02-07 Denso Corp Reactor and power conversion device using the same
JP5771471B2 (en) 2011-07-28 2015-09-02 株式会社デンソー Reactor
JP6024886B2 (en) * 2011-12-19 2016-11-16 住友電気工業株式会社 Reactor, converter, and power converter
JP5697707B2 (en) * 2013-03-28 2015-04-08 トヨタ自動車株式会社 Reactor
CN112908658B (en) * 2021-02-23 2022-10-14 西安交通大学 Reactor vibration damping method and vibration damping reactor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133908U (en) * 1982-03-04 1983-09-09 ティーディーケイ株式会社 variable inductance element
JPH0528744Y2 (en) * 1986-04-27 1993-07-23
FR2630782B1 (en) * 1988-04-28 1993-05-14 Marchal Equip Auto IGNITION COIL FOR IGNITION OF INTERNAL COMBUSTION ENGINES OF MOTOR VEHICLES, AND MANUFACTURING METHOD THEREOF
JP4221844B2 (en) * 1999-10-20 2009-02-12 三菱マテリアル株式会社 Pin mirror cutter
JP4867889B2 (en) * 2007-01-18 2012-02-01 株式会社デンソー Power converter and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010199257A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4942825B2 (en) Controller-integrated rotating electrical machine
JP5245939B2 (en) Reactor
JP6268509B2 (en) Reactor device
JP5267181B2 (en) Reactor
US9184638B2 (en) Stator structure and stator manufacturing method
US10170235B2 (en) Reactor
JP5157956B2 (en) Reactor
JP5212891B2 (en) Reactor
WO2016167199A1 (en) Reactor
JP2014036058A (en) Reactor, assembly for reactor, converter, and power conversion device
JPWO2012160623A1 (en) Drive unit-integrated rotating electrical machine
JP6420596B2 (en) Reactor
JP6585359B2 (en) Terminal unit and reactor
JP6478108B2 (en) Reactor
JP2017123733A (en) Electric connection box
JP2013125857A (en) Reactor and electric power conversion apparatus
JP5983913B2 (en) Reactor, converter, and power converter
JP2015126142A (en) Reactor
JP2010118540A (en) Reactor apparatus
JP4321459B2 (en) Busbar mounting structure to heat dissipation plate
JP6016035B2 (en) Reactor
JP6651592B1 (en) Reactor cooling structure and power converter
JP7104897B2 (en) Reactor
JP2016184603A (en) Terminal unit and reactor
JP6619195B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250