[go: up one dir, main page]

JP5147753B2 - Electromagnetic brake - Google Patents

Electromagnetic brake Download PDF

Info

Publication number
JP5147753B2
JP5147753B2 JP2009035349A JP2009035349A JP5147753B2 JP 5147753 B2 JP5147753 B2 JP 5147753B2 JP 2009035349 A JP2009035349 A JP 2009035349A JP 2009035349 A JP2009035349 A JP 2009035349A JP 5147753 B2 JP5147753 B2 JP 5147753B2
Authority
JP
Japan
Prior art keywords
coil
braking
electromagnetic
holding
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009035349A
Other languages
Japanese (ja)
Other versions
JP2010189138A (en
Inventor
正信 伊藤
章智 五十嵐
清弥 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mito Engineering Service Co Ltd
Original Assignee
Hitachi Ltd
Mito Engineering Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mito Engineering Service Co Ltd filed Critical Hitachi Ltd
Priority to JP2009035349A priority Critical patent/JP5147753B2/en
Priority to CN201010121539A priority patent/CN101804930A/en
Publication of JP2010189138A publication Critical patent/JP2010189138A/en
Application granted granted Critical
Publication of JP5147753B2 publication Critical patent/JP5147753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Landscapes

  • Braking Arrangements (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Description

本発明は、制動ばねで制動片を押圧して制動付加し、電磁石で制動解除する電磁ブレーキに関し、とくに二つの電磁コイル又はコイル部分からなる電磁石のコイル配置及び励磁方法に関する。   The present invention relates to an electromagnetic brake that applies braking by pressing a braking piece with a braking spring and releases braking with an electromagnet, and particularly relates to a coil arrangement and excitation method of an electromagnet composed of two electromagnetic coils or coil portions.

従来より、一つの電磁石を二つの電磁コイルで構成した電磁ブレーキが開示されている(例えば、特許文献1参照)。また、1個の電磁石を2個のコイルで構成し、それぞれの電磁コイルを個別の電源で励磁する方法(例えば、特許文献2参照)、1つの電源で二つの電磁コイルを励磁する方法(例えば、特許文献3参照)、1つの電源で二つの電磁コイルを切替えて励磁する方法(例えば、特許文献4参照)が開示されている。   Conventionally, an electromagnetic brake in which one electromagnet is constituted by two electromagnetic coils has been disclosed (see, for example, Patent Document 1). In addition, a method in which one electromagnet is composed of two coils and each electromagnetic coil is excited by an individual power source (see, for example, Patent Document 2), a method in which two electromagnetic coils are excited by one power source (for example, , See Patent Document 3), and a method of switching and exciting two electromagnetic coils with one power source (for example, see Patent Document 4) is disclosed.

特開平04−203628号公報Japanese Patent Laid-Open No. 04-203628 特開2008−120469号公報JP 2008-120469 A 特公昭47−26547号公報Japanese Patent Publication No. 47-26547 実開昭63−147937号公報Japanese Utility Model Publication No. 63-147937

一般に、電磁ブレーキにおいては、電磁石を構成する電磁コイルの温度上昇低減が必要となる。すなわち、電磁コイルに電流を流すと自己抵抗で発熱し、自己抵抗値が上昇するので、所要電流を流すための高い付加電圧を発生する電源が必要となる。従って、電磁コイルの温度上昇を低減することが必要である。   Generally, in an electromagnetic brake, it is necessary to reduce the temperature rise of an electromagnetic coil that constitutes an electromagnet. That is, when a current is passed through the electromagnetic coil, heat is generated by the self-resistance and the self-resistance value is increased, so that a power source that generates a high additional voltage for flowing the required current is required. Therefore, it is necessary to reduce the temperature rise of the electromagnetic coil.

しかし、前記特許文献1に提案された電磁ブレーキの電磁石は、一つの電磁石に二つの電磁コイルで構成し、一つは常時用いる主コイル、他の一つは非常時に用いる補助コイルである。二つの電磁コイルの配置として、継鉄側に半径方向に並べる、又は軸方向に並べる、又は継鉄側と可動鉄片側に一つずつ設ける場合が開示されている。この特許文献1の従来方法は、常用の主コイルと非常用の補助コイルの配置であって、常時二つの電磁コイルを用いる場合ではない。さらに、制動解除動作のための二つの電磁コイルの具体的な励磁方法及びコイルの温度上昇低減については開示されていない。   However, the electromagnet of the electromagnetic brake proposed in Patent Document 1 is composed of two electromagnets in one electromagnet, one is a main coil that is always used, and the other is an auxiliary coil that is used in an emergency. As an arrangement of the two electromagnetic coils, a case is disclosed in which they are arranged in the radial direction on the yoke side, arranged in the axial direction, or one on the yoke side and the movable iron piece side. The conventional method of Patent Document 1 is an arrangement of a regular main coil and an emergency auxiliary coil, and is not a case where two electromagnetic coils are always used. Furthermore, there is no disclosure about a specific excitation method of two electromagnetic coils and a reduction in temperature rise of the coils for the brake releasing operation.

また、前記特許文献2に提案されたエレベーター用巻上機のブレーキ制御装置は、一つの電磁石に二つの電磁コイルを用いて、一方の電磁コイルはコイル収納部の底側に配置するとともにコイル電流を帰還した電流制御回路で電流を通流し、他方の電磁コイルはコイル収納部の開口側に配置するとともに抵抗制御した回路で接点の接続、遮断で通流する方法が開示されている(特許文献2の図22乃至図26参照)。しかし、この特許文献2の従来方法では、コイルの巻方向を逆にした二つのコイル部分を形成して一つの電磁コイルとした場合及びコイルの温度上昇低減については開示されていない。   Further, the elevator hoisting machine brake control device proposed in Patent Document 2 uses two electromagnetic coils for one electromagnet, and one electromagnetic coil is arranged on the bottom side of the coil housing portion and is used as a coil current. A method is disclosed in which a current is fed back by a current control circuit that feeds back the current, and the other electromagnetic coil is placed on the opening side of the coil housing portion, and the current is passed by connecting and disconnecting contacts in a resistance-controlled circuit (Patent Literature). 2 to FIG. 22 to FIG. 26). However, the conventional method of Patent Document 2 does not disclose the case of forming two coil portions in which the winding direction of the coils is reversed to form one electromagnetic coil and the reduction in the temperature rise of the coil.

また、前記特許文献3に提案された電磁クラッチまたはブレーキは、一つの電磁石に二つの電磁コイルを用いて、一方の電磁コイルは保持コイルとしてコイル収納部の底側に配置するとともに電源で常時励磁され、他方の電磁コイルは吸引コイルとしてコイル収納部の磁極面側に配置するとともに前記電源でトランジスタにより吸引時にのみ励磁する方法が開示されている。しかし、前記特許文献2と同様に、コイルの巻方向を逆にした二つのコイル部分を形成して一つの電磁コイルとした場合及びコイルの温度上昇低減については開示されていない。   The electromagnetic clutch or brake proposed in Patent Document 3 uses two electromagnetic coils for one electromagnet, and one electromagnetic coil is arranged as a holding coil on the bottom side of the coil housing portion and is always excited by a power source. The other electromagnetic coil is disposed as a suction coil on the magnetic pole surface side of the coil housing portion, and is also excited by a transistor with the power source only during suction. However, as in the case of Patent Document 2, there is no disclosure of a case in which two coil portions are formed by reversing the winding direction of the coil to form one electromagnetic coil, and a reduction in the temperature rise of the coil.

また、前記特許文献4に提案された電磁クラッチ・ブレーキは、可動鉄片であるアーマチュアの吸引用コイルと保持用コイルを備え、この二つの電磁コイルの配置が前記特許文献3と同じで、1つの電源で可動鉄片であるアーマチュアの吸引状態によって前記2つのコイルへの通電を切替えるようになっている(特許文献4の図1、図2参照)。このため前記特許文献2、3と同様に、コイルの巻方向を逆にした二つのコイル部分を形成して一つの電磁コイルとした場合及びコイルの温度上昇低減については開示されていない。   The electromagnetic clutch and brake proposed in Patent Document 4 includes an armature suction coil and a holding coil that are movable iron pieces, and the arrangement of these two electromagnetic coils is the same as that of Patent Document 3, The energization to the two coils is switched according to the attracting state of the armature which is a movable iron piece by a power source (see FIGS. 1 and 2 of Patent Document 4). For this reason, as in the case of Patent Documents 2 and 3, the case where two coil portions are formed by reversing the winding direction of the coil to form one electromagnetic coil and the reduction in temperature rise of the coil are not disclosed.

本発明の目的は、一つの電磁石に二つの電磁コイル又はコイル部分を配置し、それぞれのコイルを個別の電源で励磁する場合に、コイルの温度上昇を低減できる電磁ブレーキを提供するにある。   An object of the present invention is to provide an electromagnetic brake capable of reducing a rise in coil temperature when two electromagnetic coils or coil portions are arranged in one electromagnet and each coil is excited by an individual power source.

上記目的を達成するために、本発明の請求項1では、被制動体に対向する制動片に押圧力を制動ばねで与えて制動力を付加する制動付加手段と、電磁コイルと継鉄とからなる電磁石で前記制動力を解除する制動解除手段とで構成され、前記電磁コイルは筒状の二つのコイル部分からなり、かつ半径方向に重なるように配置される電磁ブレーキにおいて、前記コイル部分は、1本の巻線で巻回し途中から巻方向を逆にして連続的に巻回し、巻方向の異なる二つのコイル部分を形成すると共に前記継鉄の同一のコイル収納部に配置され、前記コイル部分の一方は保持コイルとして前記継鉄のコイル収納部の半径方向の外側に配置し、前記コイル部分の他方は促進コイルとして前記保持コイルの半径方向内側に配置し、かつ、前記保持コイルは直流の可変電圧の電源で電流を調整して、制動解除動作始めから制動付加まで電流を通流するとともに、前記促進コイルは制動解除動作始めの促進期間に電流を通流したことを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a braking application means for applying a braking force by applying a pressing force to a braking piece facing a braked body by a braking spring, an electromagnetic coil and a yoke. The electromagnetic coil is composed of two cylindrical coil parts and is arranged to overlap in the radial direction. Winding with one winding and winding continuously from the middle in the reverse direction to form two coil parts with different winding directions and arranged in the same coil housing part of the yoke, the coil part one is located outside a radial direction of the coil receiving portion of the yoke as holding coil, the other of said coil portions is disposed radially inward of the holding coil as a promoter coil and the holding coil DC By adjusting the current in the power supply of the variable voltage, with flowing a current to brake the addition from the brake releasing operation started, the accelerator coil is characterized in that it flows through the current promotion period the brake releasing operation started.

この構成により、一つの電磁石に二つの電磁コイルを半径方向に重ねて配置する場合に、コイルの温度上昇を低減できる電磁ブレーキが得られる。   With this configuration, when two electromagnetic coils are arranged in a radial direction on one electromagnet, an electromagnetic brake that can reduce the temperature rise of the coil is obtained.

また、本発明の請求項2では、被制動体に対向する制動片に押圧力を制動ばねで与えて制動力を付加する制動付加手段と、電磁コイルと継鉄とからなる電磁石で前記制動力を解除する制動解除手段とで構成され、前記電磁コイルは筒状の二つのコイル部分からなり、かつ筒状の軸方向に重なるように配置される電磁ブレーキにおいて、前記コイル部分は、1本の巻線で巻回し途中から巻方向を逆にして連続的に巻回し、巻方向の異なる二つのコイル部分を形成すると共に前記継鉄の同一のコイル収納部に配置され、前記コイル部分の一方は保持コイルとして前記継鉄のコイル収納部の反磁極面側の底部に配置し、前記コイル部分の他方は促進コイルとして前記継鉄のコイル収納部磁極面側に配置し、かつ、前記保持コイルは直流の可変電圧の電源で電流を調整して、制動解除動作始めから制動付加まで電流を通流するとともに、前記促進コイルは制動解除動作始めの促進期間に電流を通流したことを特徴とする According to a second aspect of the present invention, the braking force is applied by a braking application means for applying a braking force by applying a pressing force to the braking piece facing the braked body by a braking spring, and an electromagnet comprising an electromagnetic coil and a yoke. The electromagnetic coil is composed of two cylindrical coil parts and is arranged so as to overlap the cylindrical axial direction. Winding in the middle of winding and winding continuously with the winding direction reversed, forming two coil parts with different winding directions and arranged in the same coil storage part of the yoke, one of the coil parts The holding coil is disposed at the bottom of the yoke coil housing portion on the side opposite to the magnetic pole surface, the other coil portion is disposed as an acceleration coil on the yoke coil housing portion magnetic pole surface side , and the holding coil is DC variable voltage Adjust the current source, with flowing a current to brake the addition from the brake releasing operation started, the accelerator coil is characterized in that flows through the current promotion period brake release operation start

この構成により、一つの電磁石に二つの電磁コイルを軸方向に重ねて配置する場合に、コイルの温度上昇を低減できる電磁ブレーキが得られる。   With this configuration, when two electromagnetic coils are arranged on one electromagnet in the axial direction, an electromagnetic brake capable of reducing the temperature rise of the coil can be obtained.

本発明によれば、一つの電磁石に二つの電磁コイル又はコイル部分を配置し、それぞれのコイルを個別の電源で励磁する場合に、コイルの温度上昇を低減できる電磁ブレーキを得ることができる。   According to the present invention, when two electromagnetic coils or coil portions are arranged in one electromagnet and each coil is excited by an individual power source, an electromagnetic brake that can reduce the temperature rise of the coil can be obtained.

本発明の一実施例になる例えばエレベーターの巻上機に適用した場合の電磁ブレーキの全体構成である。It is the whole structure of the electromagnetic brake at the time of applying to the hoist of an elevator which becomes one Example of this invention, for example. 二つの筒状の電磁コイルを半径方向に重ねて形成した電磁石で、図1の一対の電磁石の一方側(図1の左側)を示す側面図である。FIG. 2 is a side view showing one side (left side in FIG. 1) of a pair of electromagnets in FIG. 1, which is an electromagnet formed by overlapping two cylindrical electromagnetic coils in the radial direction. 図2の正面図でA−A視図である。It is an AA view in the front view of FIG. 図1の電磁コイルの励磁回路である。It is an excitation circuit of the electromagnetic coil of FIG. ブレーキの動作及び電磁コイルの励磁を示すタイミング図である。It is a timing diagram which shows operation | movement of a brake, and excitation of an electromagnetic coil. 本発明の第2の実施例で、一つの電磁コイルで巻方向が異なる二つのコイル部分の保持コイル、促進コイルからなる図2相当図である。FIG. 3 is a view corresponding to FIG. 2 and comprising a holding coil and an accelerating coil of two coil portions having different winding directions in one electromagnetic coil in a second embodiment of the present invention. 図6の電磁コイル30aの励磁回路で図4相当図である。FIG. 6 is a diagram equivalent to FIG. 4 in the excitation circuit of the electromagnetic coil 30a of FIG. 本発明の第3の実施例になる二つの筒状の電磁コイルを軸方向に重ねて形成した電磁石で、図1の一対の電磁石の一方側(図1の左側)を示す側面図である。FIG. 5 is a side view showing one side (left side in FIG. 1) of a pair of electromagnets in FIG. 1, which is an electromagnet formed by overlapping two cylindrical electromagnetic coils according to a third embodiment of the present invention in the axial direction. 図8の正面図でB−B視図である。It is a BB view in the front view of FIG.

以下、本発明の実施形態を図面に基き詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1乃至図5に基づいて、本発明の電磁ブレーキの一実施例を説明する。   One embodiment of the electromagnetic brake of the present invention will be described with reference to FIGS.

図1において、1はエレベーター巻上機の駆動シーブで、この駆動シーブ1に巻き掛けられた主ロープ2の一方側に乗かご3が、他方側につり合おもり4がつるべ式に吊り持ちされており、駆動シーブ1が巻上モータ5で駆動されて乗かご3及びつり合おもり4が昇降運転される。6は被制動体としてのブレーキドラムで、巻上モータ5と駆動シーブ1を結合する軸5a上に設置されている。このブレーキドラム6の制動面6aには一対の制動片7が当接するようになっている。8は一対の制動腕で、前記制動片7を中間部8cに備え一端部8aを可回転的に支持されている。9は一対の制動ばねで、前記制動片7が制動面6aに押圧力を付加するように制動腕8の他端部8bに配置される。   In FIG. 1, reference numeral 1 denotes a drive sheave of an elevator hoisting machine. A car 3 is suspended on one side of a main rope 2 wound around the drive sheave 1 and a counterweight 4 is suspended on the other side. The driving sheave 1 is driven by the hoisting motor 5 and the car 3 and the counterweight 4 are moved up and down. Reference numeral 6 denotes a brake drum as a braked body, which is installed on a shaft 5 a that connects the hoisting motor 5 and the drive sheave 1. A pair of braking pieces 7 abut on the braking surface 6 a of the brake drum 6. Reference numeral 8 denotes a pair of braking arms. The braking piece 7 is provided in the intermediate portion 8c, and the one end portion 8a is rotatably supported. Reference numeral 9 denotes a pair of braking springs, which are arranged on the other end portion 8b of the braking arm 8 so that the braking piece 7 applies a pressing force to the braking surface 6a.

10a、10bは固定される一対の電磁石で、前記制動ばね9の押圧力を解除するように、前記制動腕8の他端部8b近辺に設けられる。この電磁石10a、10bはそれぞれ、二つのコイル部分の保持コイル11a1、促進コイル11a2からなる電磁コイル11aと継鉄12a、二つのコイル部分の保持コイル11b1、促進コイル11b2からなる電磁コイル11bと継鉄12bとからなり、この電磁石10a、10bは磁極面13a、13bを有し、磁極面13a、13bに対向して可動片14a、14bが配置される。この可動片14a、14bは軸15a、15bの一端と結合し、この軸15a、15bの他端は前記制動腕8の他端部8bに連結されて制動腕8を駆動し、制動片7まで一体的に駆動するようになっており、前記軸15a、15bは継鉄12a、12bの中央部で摺動支持される。すなわち、左側の電磁石10a、制動ばね9、制動片7系及び右側の電磁石10b、制動ばね9、制動片7系の電磁ブレーキとして独立に機能する二組で構成されている。   A pair of fixed electromagnets 10a and 10b are provided in the vicinity of the other end portion 8b of the braking arm 8 so as to release the pressing force of the braking spring 9. The electromagnets 10a and 10b are respectively composed of a holding coil 11a1 having two coil portions and an electromagnetic coil 11a and a yoke 12a made up of an accelerating coil 11a2, and an electromagnetic coil 11b and a yoke made up of a holding coil 11b1 made of two coils and an accelerating coil 11b2. The electromagnets 10a and 10b have magnetic pole surfaces 13a and 13b, and movable pieces 14a and 14b are arranged to face the magnetic pole surfaces 13a and 13b. The movable pieces 14a and 14b are coupled to one ends of the shafts 15a and 15b. The other ends of the shafts 15a and 15b are connected to the other end portion 8b of the braking arm 8 to drive the braking arm 8 and to the braking piece 7. The shafts 15a and 15b are slidably supported at the central portions of the yokes 12a and 12b. That is, the left electromagnet 10a, the braking spring 9, and the braking piece 7 system and the right electromagnet 10b, the braking spring 9, and the braking piece 7 system are configured in two sets that function independently.

16はコイル励磁電源で前記一対の電磁石10a、10bの電磁コイル11a、11bに通電し電流を制御する。17は一対の前記電磁石10a、10bの電磁コイル11a、10bに通電、遮断する電磁接触器の接点である。   Reference numeral 16 denotes a coil excitation power source that controls the current by energizing the electromagnetic coils 11a and 11b of the pair of electromagnets 10a and 10b. Reference numeral 17 denotes a contact of an electromagnetic contactor that energizes and interrupts the electromagnetic coils 11a and 10b of the pair of electromagnets 10a and 10b.

図2、図3において、前記図1での一対の電磁石10a、10bは同構造、同構成であるので左側の電磁石10aで説明する。前記電磁コイル11aは筒状であり、保持コイル11a1と促進コイル11a2とで構成される。すなわち、一方側のコイルで径が大きい制動解除の保持コイル11a1と、他方側のコイルで径が小さく前記保持コイル11a1の半径方向の内側に重なる制動解除の促進コイル11a2であり、前記継鉄12aの凹部のコイル収納部12cに配置される。この保持コイル11a1、促進コイル11a2への励磁はそれぞれ制動解除の保持電源18、制動解除の促進電源19で行い、継鉄12aに発生する磁束18a、19aの方向が同一になるように励磁される。なお、前記のように可動片14aは軸15aに支持され、この軸15aは継鉄12aの中央部の孔20に設けられる軸受21によって摺動支持される。   2 and 3, since the pair of electromagnets 10a and 10b in FIG. 1 have the same structure and the same configuration, the left electromagnet 10a will be described. The electromagnetic coil 11a is cylindrical and includes a holding coil 11a1 and a promotion coil 11a2. That is, the brake release holding coil 11a1 having a large diameter on one side of the coil, and the brake release promoting coil 11a2 having a small diameter on the other side and having a small diameter on the inner side in the radial direction of the holding coil 11a1, and the yoke 12a It is arrange | positioned at the coil accommodating part 12c of a recessed part. The holding coil 11a1 and the exciting coil 11a2 are excited by the holding power source 18 for releasing the brake and the promoting power source 19 for releasing the brake, respectively, and are excited so that the directions of the magnetic fluxes 18a and 19a generated in the yoke 12a are the same. . As described above, the movable piece 14a is supported by the shaft 15a, and this shaft 15a is slidably supported by the bearing 21 provided in the hole 20 in the central portion of the yoke 12a.

図4において、前記図1の左側の電磁コイル11aの保持コイル11a1と右側の電磁コイル11bの保持コイル11b1とが並列に接続され、保持電源18で接点17aを介して励磁される。この際、保持電源18は保持コイル11a1、11b1に流す電流i1を電流検出手段22で検出し帰還して、電流指令値23で指令する一定電流出力となるように制御される。前記保持電源18は、例えばスイッチング素子で直流の可変電圧を生成し電流を調整するようになっている。同様に促進コイル11a2、11b2とが並列に接続され、促進電源19で接点17bを介して励磁される。24、25は電流制限抵抗で、電流調整のために前記保持電源18及び促進電源19の回路に必要に応じて挿入される。なお、26、27は常閉接点でエレベーターの非常停止など非常時に開となる。また、ダイオード28と抵抗29とを直列接続したものがそれぞれ保持コイル11a1、11b1及び促進コイル11a2、11b2に並列に接続され、接点26、27が開いた時に保持コイル11a1、11b1及び促進コイル11a2、11b2の還流電流を消費させる。   4, the holding coil 11a1 of the left electromagnetic coil 11a in FIG. 1 and the holding coil 11b1 of the right electromagnetic coil 11b are connected in parallel and excited by the holding power supply 18 through the contact 17a. At this time, the holding power source 18 is controlled so that the current i 1 flowing through the holding coils 11 a 1 and 11 b 1 is detected by the current detection means 22 and fed back to obtain a constant current output commanded by the current command value 23. The holding power source 18 generates a DC variable voltage by a switching element, for example, and adjusts the current. Similarly, the promotion coils 11a2 and 11b2 are connected in parallel and excited by the promotion power source 19 via the contact point 17b. Reference numerals 24 and 25 denote current limiting resistors, which are inserted into the holding power supply 18 and the accelerating power supply 19 as necessary for current adjustment. Reference numerals 26 and 27 are normally closed contacts that are opened in an emergency such as an emergency stop of the elevator. A diode 28 and a resistor 29 connected in series are connected in parallel to the holding coils 11a1, 11b1 and the promotion coils 11a2, 11b2, respectively, and when the contacts 26, 27 are opened, the holding coils 11a1, 11b1 and the promotion coil 11a2, 11b2 reflux current is consumed.

次に、前記図4を参照し図5に基づいて、この実施形態の制動解除から制動付加までの動作、すなわち、T1時点からT4時点までの動作を説明する。   Next, referring to FIG. 4 and based on FIG. 5, the operation from the release of braking to the addition of braking according to this embodiment, that is, the operation from time T1 to time T4 will be described.

T1時点で電源供給の電磁接触器の接点17a、17bが接続して、ステップ状の電流指令により保持電源18から一定電流i1が流れ、保持コイル11a1、11b1に回路の時定数に従って電流ia1、ib1の一定値が流れるとともに、促進電源19から電流i2が流れ、促進コイル11a2、11b2に回路の時定数に従って電流ia2、ib2が流れる。T2時点で接点17bが遮断して促進電源19から促進コイル11a2、11b2への電流ia2、ib2が遮断され、回路の時定数に従って電流が減少し零となり、電磁コイル11a、11bに流れる電流は保持コイル11a1、11b1の電流ia1、ib1だけとなる。そしてT3時点で保持コイル11a1、11b1の電流指令の遮断とともに接点17aが遮断して保持電源18から保持コイル11a1、11b1への電流ia1、ib1が遮断され、回路の時定数に従って電流が減少しT4時点で消滅する。   The contacts 17a and 17b of the magnetic contactor supplied with power supply are connected at time T1, a constant current i1 flows from the holding power supply 18 according to a step-like current command, and the currents ia1 and ib1 flow to the holding coils 11a1 and 11b1 according to the time constant of the circuit. Current i2 flows from the accelerating power source 19, and currents ia2 and ib2 flow through the accelerating coils 11a2 and 11b2 according to the circuit time constant. At time T2, the contact point 17b is cut off, and the currents ia2 and ib2 from the accelerating power source 19 to the accelerating coils 11a2 and 11b2 are cut off. The current decreases and becomes zero according to the time constant of the circuit, and the current flowing through the electromagnetic coils 11a and 11b is maintained. Only the currents ia1 and ib1 of the coils 11a1 and 11b1 are obtained. At time T3, the current command of the holding coils 11a1 and 11b1 is cut off, and the contact 17a is cut off to cut off the currents ia1 and ib1 from the holding power supply 18 to the holding coils 11a1 and 11b1, and the current decreases according to the time constant of the circuit. It disappears at that point.

すなわち、T1からT3の期間が制動解除動作で、このうちT1からT2の期間が制動解除の促進期間で制動解除の動作を速めるために前記保持電源18及び促進電源19の両方を有効にする。これにより保持電源18の電流ia1、ib1及び促進電源19の電流ia2、ib2で発生する磁束が加算されるので、前記図2に示した電磁石10aに大きな電磁吸引力が発生し可動片14aを吸引して制動解除の動作を速める。このT1からT2の時間はエレベーターの走行開始時の数秒程度である。   That is, the period from T1 to T3 is a braking release operation, and the period from T1 to T2 is a braking release promotion period, and both the holding power source 18 and the acceleration power source 19 are made effective in order to speed up the braking release operation. As a result, magnetic fluxes generated by the currents ia1 and ib1 of the holding power supply 18 and the currents ia2 and ib2 of the accelerating power supply 19 are added, so that a large electromagnetic attraction force is generated in the electromagnet 10a shown in FIG. To speed up the brake release operation. The time from T1 to T2 is about several seconds when the elevator starts running.

T2からT3の期間が制動解除の保持期間で前記保持電源18だけが有効で制動解除状態を保持する。つまり、可動片14aを吸着すると空隙が小さくなり磁気回路の磁気抵抗が小さくなるので、電流を小さくしても可動片14aの吸着維持ができる。このT2からT3の時間はエレベーターがほぼ定速走行し停止するまでである。前記制動解除の促進期間は数秒程度で、制動解除の保持期間と比較すると非常に短時間であり、制動解除の全期間からするとほとんど無視し得る場合が多い。   The period from T2 to T3 is a braking release holding period, and only the holding power source 18 is effective and holds the braking release state. That is, if the movable piece 14a is attracted, the gap is reduced and the magnetic resistance of the magnetic circuit is reduced. Therefore, even if the current is reduced, the movable piece 14a can be kept attracted. The time from T2 to T3 is until the elevator runs at a substantially constant speed and stops. The acceleration period of the brake release is about several seconds, which is very short compared with the brake release holding period, and is almost negligible in the entire period of brake release.

T3時点以降が制動付加動作で保持電源18側の保持イル11a1、11b1の電流ia1、ib1が消滅して、前記図1の制動ばね9により制動片7の押圧力が復帰して制動付加状態となる。   After the time T3, the braking application operation is performed and the currents ia1 and ib1 of the holding power supply 11a1 and 11b1 on the holding power supply 18 side disappear, and the pressing force of the braking piece 7 is restored by the braking spring 9 of FIG. Become.

保持コイル11a1、11b1を一定電流制御するのは、建物への引込み電源の電圧変動とくに電圧降下及び、後述のように、コイルに通電すると発熱し自己抵抗値が増大して電流値が低下する。これによって制動解除が維持できなくなり、制動片7が半開状態となってブレーキドラム6と擦って回転し、制動片7が磨耗し制動性能が低下する。このためにエレベーター走行中は制動解除を確実に維持する必要がある。   The holding coils 11a1 and 11b1 are controlled at a constant current because the voltage fluctuation of the power supply drawn into the building, particularly the voltage drop, and as will be described later, when the coil is energized, heat is generated and the self-resistance value increases and the current value decreases. As a result, the release of braking cannot be maintained, the braking piece 7 is in a half-open state and rotates by rubbing against the brake drum 6, and the braking piece 7 is worn and the braking performance is deteriorated. For this reason, it is necessary to reliably maintain the brake release during the traveling of the elevator.

要するに、前記保持電源18は、T1からT3まで一段の広幅パルス状の電流指令により、指令した電流値となるように連続的に制御して保持コイル11a1、11b1にコイル電流ia1、ib1を流す。また、前記促進電源19は制動解除初期のT1からT2までの短時間、促進コイル11a2、11b2に電流ia2、ib2を流す。そして、前記保持電源18と促進電源19との両方で制動解除を速くするコイル電流に設定し、前記保持電源18で制動解除を保持する電流に設定している。   In short, the holding power supply 18 continuously controls the current value to be the commanded current value from T1 to T3 by one-step wide pulse current command, and causes the coil currents ia1 and ib1 to flow through the holding coils 11a1 and 11b1. The accelerating power source 19 supplies currents ia2 and ib2 to the accelerating coils 11a2 and 11b2 for a short time from T1 to T2 at the initial stage of braking release. Then, both the holding power source 18 and the accelerating power source 19 are set to a coil current that speeds up the brake release, and the holding power source 18 is set to a current that holds the brake release.

ところで、前記電磁コイルの温度上昇は、発熱の(コイル電流)×コイル抵抗×時間と放熱の熱放散状態で決定される。温度上昇が大きいと耐熱の高い絶縁種の巻線及び周辺部品が必要となって高価になる問題が発生する。前記保持コイル11a1と促進コイル11a2の温度上昇を比較すると、前記の通り、コイル電流、コイル抵抗に差があるが、保持電源18で励磁される保持コイル11a1方が圧倒的に長時間通流されるので温度上昇大となる。そこで温度上昇を低下させるために、径が大きく、放熱面積が大きくて放熱効果が良いコイル収納部12cの外側に配置し、温度上昇が大となる保持コイル11a1を配置すると良好であり、高価な耐熱絶縁体を用いる必要がなくなる。 By the way, the temperature rise of the electromagnetic coil is determined by heat generation (coil current) 2 × coil resistance × time and heat dissipation state of heat dissipation. If the temperature rise is large, a highly heat-resistant insulation type winding and peripheral parts are required, resulting in an expensive problem. Comparing the temperature rises of the holding coil 11a1 and the accelerating coil 11a2, as described above, there is a difference in coil current and coil resistance, but the holding coil 11a1 excited by the holding power source 18 is overwhelmingly passed for a long time. Therefore, the temperature rises greatly. Therefore, in order to reduce the temperature rise, it is preferable to dispose the holding coil 11a1 having a large diameter, a large heat radiation area and a good heat radiation effect, and the holding coil 11a1 having a large temperature rise. There is no need to use a heat-resistant insulator.

すなわち、一つの電磁石に二つの電磁コイル部分を半径方向に重ねて配置する場合に、本実施形態では発熱量の大きい方のコイル部分の保持コイルを継鉄のコイル収納部の放熱面積の大きい半径方向の外側に配置して、前記コイル部分の他方の促進コイルは前記保持コイルの半径方向内側に配置する。この構成により、電磁コイルの発熱量の大きいコイル部分の保持コイルの温度上昇を低減でき、耐熱性の低い絶縁部品を使用できる効果が得られる。   That is, when two electromagnetic coil portions are arranged in a radial direction on one electromagnet, in this embodiment, the holding coil of the coil portion with the larger amount of heat generation is used as a radius with a large heat radiation area of the yoke coil housing portion. It arrange | positions on the outer side of a direction, and the other promotion coil of the said coil part is arrange | positioned at the radial inside of the said holding coil. With this configuration, it is possible to reduce the temperature rise of the holding coil of the coil portion where the heat generation amount of the electromagnetic coil is large, and an effect that an insulating component having low heat resistance can be used is obtained.

なお、促進電源19については電流制御無で説明したが、保持電源18と同様に電流帰還して前記図5のT1からT2の制動解除の促進期間に一定電流が流れるようにしても良い。   Although the acceleration power source 19 has been described without current control, current may be fed back in the same manner as the holding power source 18 so that a constant current flows during the braking release acceleration period from T1 to T2 in FIG.

次に、第2の実施例を図6乃至図7に示す。この実施例が前記第1の実施例と異なるのは、1本の巻線で巻回し途中から巻方向を逆にして連続的に巻回し、巻方向の異なる二つのコイル部分を形成し一つの電磁コイルとした場合である。   Next, a second embodiment is shown in FIGS. This embodiment is different from the first embodiment in that it is wound with one winding and continuously wound with the winding direction reversed in the middle to form two coil portions with different winding directions. This is a case where an electromagnetic coil is used.

図6において、前記図2と同様に、前記図1の左側の電磁石10aで説明する。前記電磁コイル30aは円筒状であり、一つの電磁コイル30aで巻線が例えば右巻きの径が小さい促進コイル30a2と逆の左巻きで径が大きく、前記促進コイル30a2の外径側に重なる保持コイル30a1との二つのコイル部分となるように、1本の巻線で連続的に巻回し、一つの電磁コイル30aとして形成される。保持コイル30a1、促進コイル30a2への励磁はそれぞれ保持電源18、促進電源19で行う。保持コイル30a1に対して、促進コイル30a2の電流方向を逆にすると、それぞれの保持コイル30a1、促進コイル30a2で発生する磁束31a1、31a2の方向は同一となり、磁束の加算となって電磁石10aの電磁吸引力が増大する。   6, description will be made with the electromagnet 10a on the left side of FIG. 1 as in FIG. The electromagnetic coil 30a has a cylindrical shape, and a winding coil is wound by one electromagnetic coil 30a, for example, a left-handed reverse rotation of the acceleration coil 30a2 having a small right-handed diameter and a large diameter, and is superposed on the outer diameter side of the acceleration coil 30a2. It is continuously wound with one winding so as to be two coil portions with 30a1, and is formed as one electromagnetic coil 30a. Excitation to the holding coil 30a1 and the promotion coil 30a2 is performed by the holding power source 18 and the promotion power source 19, respectively. If the current direction of the accelerating coil 30a2 is reversed with respect to the holding coil 30a1, the directions of the magnetic fluxes 31a1 and 31a2 generated in the holding coil 30a1 and the accelerating coil 30a2 are the same, and the addition of the magnetic flux results in the electromagnetic of the electromagnet 10a. The suction power increases.

図7において、前記図4と同様に、電磁コイル30aの保持コイル30a1と電磁コイル30bの保持コイル30b1とが並列に接続され保持電源18で接点17aを介して励磁される。この際、保持電源18は保持コイル30a1、30b1に流す電流i1を電流検出手段22で検出し帰還して、電流指令値23の一定電流出力となるように制御される。同様に促進コイル30a2、30b2とが並列に接続され促進電源19で接点17bを介して励磁される。電磁コイル30a、30bの巻方向が逆になる中間点32a、32bが保持電源18及び促進電源19の同一極性となるように接続される。そして、電流i1が保持コイル30a1、30b1にそれぞれ電流ia1、ib1が流れ、電流i2が促進コイル30a2、30b2にそれぞれ電流ia2、ib2が流れる。この結果、電磁コイル30aには電流ia1とia2による磁束が発生し、電磁コイル30bには電流ib1とib2による磁束が発生することになる。   In FIG. 7, as in FIG. 4, the holding coil 30a1 of the electromagnetic coil 30a and the holding coil 30b1 of the electromagnetic coil 30b are connected in parallel and excited by the holding power supply 18 via the contact 17a. At this time, the holding power supply 18 is controlled such that the current i1 flowing through the holding coils 30a1 and 30b1 is detected by the current detection means 22 and fed back, so that a constant current output of the current command value 23 is obtained. Similarly, the promotion coils 30a2 and 30b2 are connected in parallel and excited by the promotion power source 19 via the contact point 17b. The intermediate points 32a and 32b where the winding directions of the electromagnetic coils 30a and 30b are reversed are connected so that the holding power source 18 and the accelerating power source 19 have the same polarity. The current i1 flows through the holding coils 30a1 and 30b1, the currents ia1 and ib1, respectively, and the current i2 flows through the promotion coils 30a2 and 30b2, respectively. As a result, magnetic flux due to currents ia1 and ia2 is generated in the electromagnetic coil 30a, and magnetic flux due to currents ib1 and ib2 is generated in the electromagnetic coil 30b.

なお、保持コイル30a1、30b1及び促進コイル30a2、30b2の励磁の時間的経過は、前記図5と同様であり、それぞれ保持コイル11a1、11b1及び促進コイル11a2、11b2に相当する。また、第1の実施形態と同様に、促進電源19を電流制御しても良い。   The time course of excitation of the holding coils 30a1 and 30b1 and the promotion coils 30a2 and 30b2 is the same as that in FIG. 5 and corresponds to the holding coils 11a1 and 11b1 and the promotion coils 11a2 and 11b2, respectively. Moreover, you may carry out electric current control of the promotion power supply 19 similarly to 1st Embodiment.

この実施形態による効果は、前記の第1の実施形態と同様であるとともに、二つの個別コイルを用いることなく、1本のコイルで巻回して一つの電磁コイルを成形できるので電磁コイルの部品数を少なくできる効果が得られる。   The effect of this embodiment is the same as that of the first embodiment, and it is possible to form one electromagnetic coil by winding with one coil without using two individual coils. The effect that can be reduced is obtained.

次に、第3の実施形態を図8乃至図9に示す。この実施例が前記第1及び2の実施例と異なるのは、二つの電磁コイル又はコイル部分を軸方向に重ねて一つの電磁コイルとした場合である。   Next, a third embodiment is shown in FIGS. This embodiment is different from the first and second embodiments when two electromagnetic coils or coil portions are overlapped in the axial direction to form one electromagnetic coil.

図8、図9において、前記図1での一対の電磁石10a、10bは同構造、同構成であるので左側の電磁石10aで説明する。前記電磁コイル33aは筒状であり、保持コイル33a1と促進コイル33a2とで構成される。すなわち、他方側のコイルで継鉄12aの凹部のコイル収納部12cの磁極面13a側に配置される制動解除の促進コイル33a2と、一方側のコイルで前記コイル収納部12cの磁極面13aと反対側の底部に配置される制動解除の保持コイル33a1である。すなわち、温度上昇の大きい保持コイル33a1をコイル収納部12cの底面、内径及び外径側面と接触させる。これにより接触面積が大きくなるので温度上昇を低減できる。そして、前記保持コイル33a1、促進コイル33a2への励磁はそれぞれ制動解除の保持電源18、制動解除の促進電源19で行い、継鉄12aに発生する磁束34a1、34a2の方向が同一になるように励磁される。   8 and 9, since the pair of electromagnets 10a and 10b in FIG. 1 have the same structure and the same configuration, the left electromagnet 10a will be described. The electromagnetic coil 33a is cylindrical and includes a holding coil 33a1 and a promotion coil 33a2. That is, the brake release promoting coil 33a2 disposed on the magnetic pole surface 13a side of the coil housing portion 12c of the concave portion of the yoke 12a on the other side coil, and the opposite side of the magnetic pole surface 13a on the coil housing portion 12c on the one side coil. This is a braking release holding coil 33a1 arranged at the bottom of the side. That is, the holding coil 33a1 having a large temperature rise is brought into contact with the bottom surface, the inner diameter, and the outer diameter side surface of the coil housing portion 12c. Thereby, since a contact area becomes large, a temperature rise can be reduced. The holding coil 33a1 and the accelerating coil 33a2 are excited by the brake releasing holding power source 18 and the brake releasing promoting power source 19, respectively, so that the directions of the magnetic fluxes 34a1 and 34a2 generated in the yoke 12a are the same. Is done.

前記電磁コイル33aは前記図2及び図6で説明したのと同様に、二つの電磁コイルとしての保持コイル33a1及び促進コイル33a2において、互いに巻方向が逆であって、二つの個別コイルで一つの電磁コイル33aを形成、又は1本の巻線で例えば右巻き部分の保持コイル33a1と逆の左巻き部分の促進コイル33a2の二つのコイル部分となるように、1本の巻線で連続的に巻回し、一つの電磁コイル33aとして形成される。そして、保持コイル33a1、促進コイル33a2への励磁は、前記それぞれ保持電源18、促進電源19で行い、図4又は図7で説明したのと同様に行われる。また、保持コイル33a1及び促進コイル32a2の励磁の時間的経過は、前記図5と同様である。なお、第1及び2の実施例と同様に、促進電源19を電流制御しても良い。   2 and 6, the electromagnetic coil 33a has a holding coil 33a1 and an accelerating coil 33a2 as two electromagnetic coils whose winding directions are opposite to each other. The electromagnetic coil 33a is formed, or is wound continuously by one winding so as to form two coil portions, for example, a left-handed promotion coil 33a2 opposite to the right-handed holding coil 33a1. Rotate to form one electromagnetic coil 33a. Excitation to the holding coil 33a1 and the promotion coil 33a2 is performed by the holding power source 18 and the promotion power source 19, respectively, and is performed in the same manner as described in FIG. 4 or FIG. The time course of excitation of the holding coil 33a1 and the accelerating coil 32a2 is the same as in FIG. As in the first and second embodiments, the accelerating power source 19 may be current controlled.

この実施例による効果は前記の第1又は2の実施例と同様である。   The effect of this embodiment is the same as that of the first or second embodiment.

7 制動片
9 制動ばね
10a、10b 電磁石
11a、11b 電磁コイル
11a1、11b1 保持コイル
11a2、11b2 促進コイル
12a、12b 継鉄
12c コイル収納部
13a、13b 磁極面
23 電流指令値
30a、30b、33a 電磁コイル
30a1、30b1、33a1 保持コイル
30a2、30b2、33a2 促進コイル
7 Braking piece 9 Braking spring 10a, 10b Electromagnet 11a, 11b Electromagnetic coil 11a1, 11b1 Holding coil 11a2, 11b2 Promoting coil 12a, 12b yoke 12c Coil storage part 13a, 13b Magnetic pole surface 23 Current command value 30a, 30b, 33a Electromagnetic coil 30a1, 30b1, 33a1 Holding coil 30a2, 30b2, 33a2 Promoting coil

Claims (2)

被制動体に対向する制動片に押圧力を制動ばねで与えて制動力を付加する制動付加手段と、電磁コイルと継鉄とからなる電磁石で前記制動力を解除する制動解除手段とで構成され、前記電磁コイルは筒状の二つのコイル部分からなり、かつ半径方向に重なるように配置される電磁ブレーキにおいて、
前記コイル部分は、1本の巻線で巻回し途中から巻方向を逆にして連続的に巻回し、巻方向の異なる二つのコイル部分を形成すると共に前記継鉄の同一のコイル収納部に配置され、前記コイル部分の一方は保持コイルとして前記継鉄のコイル収納部の半径方向の外側に配置し、前記コイル部分の他方は促進コイルとして前記保持コイルの半径方向内側に配置し、かつ、前記保持コイルは直流の可変電圧の電源で電流を調整して、制動解除動作始めから制動付加まで電流を通流するとともに、前記促進コイルは制動解除動作始めの促進期間に電流を通流したことを特徴とする電磁ブレーキ。
The brake adding unit applies a braking force by applying a pressing force to the braking piece facing the brake target with a braking spring, and the brake releasing unit releases the braking force with an electromagnet including an electromagnetic coil and a yoke. In the electromagnetic brake, the electromagnetic coil is composed of two cylindrical coil portions and is arranged to overlap in the radial direction.
The coil portion is wound with a single winding and continuously wound with the winding direction reversed in the middle to form two coil portions with different winding directions and disposed in the same coil housing portion of the yoke One of the coil parts is disposed as a holding coil on the radially outer side of the coil coil receiving portion, the other coil part is disposed as an accelerating coil on the radially inner side of the holding coil , and The holding coil adjusts the current with a DC variable voltage power source to pass current from the start of braking release operation to the addition of braking, and the accelerating coil passes current during the acceleration period at the start of braking release operation. Features an electromagnetic brake.
被制動体に対向する制動片に押圧力を制動ばねで与えて制動力を付加する制動付加手段と、電磁コイルと継鉄とからなる電磁石で前記制動力を解除する制動解除手段とで構成され、前記電磁コイルは筒状の二つのコイル部分からなり、かつ筒状の軸方向に重なるように配置される電磁ブレーキにおいて、
前記コイル部分は、1本の巻線で巻回し途中から巻方向を逆にして連続的に巻回し、巻方向の異なる二つのコイル部分を形成すると共に前記継鉄の同一のコイル収納部に配置され、前記コイル部分の一方は保持コイルとして前記継鉄のコイル収納部の反磁極面側の底部に配置し、前記コイル部分の他方は促進コイルとして前記継鉄のコイル収納部磁極面側に配置し、かつ、前記保持コイルは直流の可変電圧の電源で電流を調整して、制動解除動作始めから制動付加まで電流を通流するとともに、前記促進コイルは制動解除動作始めの促進期間に電流を通流したことを特徴とする電磁ブレーキ。
The brake adding unit applies a braking force by applying a pressing force to the braking piece facing the brake target with a braking spring, and the brake releasing unit releases the braking force with an electromagnet including an electromagnetic coil and a yoke. In the electromagnetic brake, the electromagnetic coil is composed of two cylindrical coil portions and is arranged so as to overlap the cylindrical axial direction.
The coil portion is wound with a single winding and continuously wound with the winding direction reversed in the middle to form two coil portions with different winding directions and disposed in the same coil housing portion of the yoke One of the coil portions is disposed as a holding coil on the bottom side of the yoke coil housing portion on the side opposite to the magnetic pole surface, and the other coil portion is disposed on the magnetic pole surface side of the yoke coil housing portion as an accelerating coil. The holding coil adjusts the current with a DC variable voltage power source to pass the current from the start of the braking release operation to the braking addition, and the acceleration coil supplies the current during the acceleration period at the start of the braking release operation. Electromagnetic brake characterized by flowing through.
JP2009035349A 2009-02-18 2009-02-18 Electromagnetic brake Expired - Fee Related JP5147753B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009035349A JP5147753B2 (en) 2009-02-18 2009-02-18 Electromagnetic brake
CN201010121539A CN101804930A (en) 2009-02-18 2010-02-11 Electromagnetic brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035349A JP5147753B2 (en) 2009-02-18 2009-02-18 Electromagnetic brake

Publications (2)

Publication Number Publication Date
JP2010189138A JP2010189138A (en) 2010-09-02
JP5147753B2 true JP5147753B2 (en) 2013-02-20

Family

ID=42606916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035349A Expired - Fee Related JP5147753B2 (en) 2009-02-18 2009-02-18 Electromagnetic brake

Country Status (2)

Country Link
JP (1) JP5147753B2 (en)
CN (1) CN101804930A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181919A1 (en) * 2015-05-11 2016-11-17 株式会社荏原製作所 Electromagnet device, electromagnet control device, electromagnet control method, and electromagnet system
EP3321224A1 (en) * 2016-11-10 2018-05-16 Kone Corporation Electrical rescue system for rescuing passengers from an elevator car, a tool for the same, and a corresponding method
CN108529167A (en) * 2018-03-30 2018-09-14 宁波辉励铭诚汽车零部件有限公司 A kind of transport device power failure brake protection device
CN108999899A (en) * 2018-09-25 2018-12-14 日立电梯电机(广州)有限公司 brake and elevator brake structure
US12110207B2 (en) * 2019-11-14 2024-10-08 Otis Elevator Company Electromagnetic brake configured to slow deceleration rate of passenger conveyer during braking
CN113700774B (en) * 2021-08-04 2023-06-16 苏州一光仪器有限公司 Braking method for surveying instrument

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183073A (en) * 1983-03-31 1984-10-18 Sawafuji Electric Co Ltd starting device
JPH0125697Y2 (en) * 1984-11-15 1989-08-01
JPS63147937U (en) * 1987-03-19 1988-09-29
JPH01155239U (en) * 1988-04-14 1989-10-25
JP2710464B2 (en) * 1990-11-30 1998-02-10 日本オーチス・エレベータ株式会社 Electromagnetic brake
JPH0854032A (en) * 1994-08-11 1996-02-27 Toshiba Eng Co Ltd Brake device for dynamo-electric machine
JPH11122697A (en) * 1997-10-15 1999-04-30 Alpine Electron Inc Voice coil terminal processing structure for speaker
JP4363695B2 (en) * 1999-04-22 2009-11-11 シンフォニアテクノロジー株式会社 Low power consumption type non-excited electromagnetic brake or electromagnetic clutch
JP4830257B2 (en) * 2001-09-28 2011-12-07 三菱電機株式会社 Elevator brake control device
JP2004270875A (en) * 2003-03-11 2004-09-30 Yaskawa Electric Corp Direct-current electromagnetic brake
JP2006174616A (en) * 2004-12-16 2006-06-29 Juki Corp Linear actuator
JP4774282B2 (en) * 2005-11-30 2011-09-14 株式会社日立製作所 Brake control device for elevator
JP5188699B2 (en) * 2006-11-08 2013-04-24 株式会社日立製作所 Brake control device for elevator
JP5049672B2 (en) * 2007-06-27 2012-10-17 株式会社日立製作所 Brake device

Also Published As

Publication number Publication date
JP2010189138A (en) 2010-09-02
CN101804930A (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP5147753B2 (en) Electromagnetic brake
EP3097632B1 (en) Generator comprising a variable speed magnetic gear
JP5049672B2 (en) Brake device
JPH09229105A (en) Self-holding coupling device
JP2008522114A (en) Adjustable hysteresis driver
JP2021175917A (en) Failsafe brake device for robotic and other application
JP2015006126A (en) Stepping motor with integrated brake and drive circuit
JP5118090B2 (en) Electromagnetic brake
JP4958931B2 (en) Electromagnetic brake
JP2018142529A (en) Electromagnetic relay
JP5959583B2 (en) Starter
WO2013157316A1 (en) Self-holding solenoid and tooth clutch
JP6704533B1 (en) Electromagnetic braking device and hoisting machine
JP5164875B2 (en) Electromagnetic brake control device for elevator
JP2007120323A (en) Starter
JP5522187B2 (en) NEGATIVE ELECTRIC BRAKE DEVICE, ITS CONTROL METHOD, CONTROL DEVICE, AND DRIVE DEVICE
JPH09303452A (en) Electro-magnetic clutch and brake for deenergization operational type
JP6024219B2 (en) Loom drive unit
JP2005282640A (en) Electromagnetic coupling
JP2014075894A (en) Negative-acting electromagnetic brake and control method therefor and controller, drive unit
JP5955237B2 (en) Rotating electric machine with brake
JP2007145588A (en) Brake control device for elevator
WO2022032448A1 (en) Armature assembly and application thereof
JP3268691B2 (en) Electromagnetic clutch
JPH03288027A (en) Electromagnetic brake device and elevator using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5147753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees