[go: up one dir, main page]

JP5143782B2 - Elastic composition-forming material and elastic composition - Google Patents

Elastic composition-forming material and elastic composition Download PDF

Info

Publication number
JP5143782B2
JP5143782B2 JP2009113253A JP2009113253A JP5143782B2 JP 5143782 B2 JP5143782 B2 JP 5143782B2 JP 2009113253 A JP2009113253 A JP 2009113253A JP 2009113253 A JP2009113253 A JP 2009113253A JP 5143782 B2 JP5143782 B2 JP 5143782B2
Authority
JP
Japan
Prior art keywords
elastic composition
titanium
forming material
pva
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009113253A
Other languages
Japanese (ja)
Other versions
JP2010260968A (en
Inventor
隆行 樋口
崇 佐々木
一行 水島
秀朗 石田
亮悦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009113253A priority Critical patent/JP5143782B2/en
Publication of JP2010260968A publication Critical patent/JP2010260968A/en
Application granted granted Critical
Publication of JP5143782B2 publication Critical patent/JP5143782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、主に、土木・建築分野などにおいて使用される弾性組成物形成材料および弾性組成物に関する。   The present invention mainly relates to an elastic composition forming material and an elastic composition used in the civil engineering / architecture field.

地下構造物の周囲をポリビニルアルコール系ヒドロゲルで改質することで、地震による地下構造物の被害を軽減する技術が検討されている。ポリビニルアルコール系ヒドロゲルとして、ポリビニルアルコールとチタンラクテートを用いた組成物が提案されている。(特許文献1)。
コンクリート構造物の漏水箇所に弾性組成物を注入して止水する技術が検討されている。弾性組成物として、ポリビニルアルコール、チタンラクテート、カルシウムアルミネート化合物からなる組成物が提案されている(特許文献2)。また、チタンペルオキソ化合物とポリビニルアルコールを含有する水溶液が開示されている(特許文献3)。
Techniques to reduce the damage of underground structures due to earthquakes by modifying the surroundings of underground structures with polyvinyl alcohol hydrogel are being studied. A composition using polyvinyl alcohol and titanium lactate has been proposed as a polyvinyl alcohol-based hydrogel. (Patent Document 1).
A technique for stopping water by injecting an elastic composition into a water leakage point of a concrete structure has been studied. As an elastic composition, a composition comprising polyvinyl alcohol, titanium lactate, and a calcium aluminate compound has been proposed (Patent Document 2). Moreover, the aqueous solution containing a titanium peroxo compound and polyvinyl alcohol is disclosed (patent document 3).

特開2006−22145号公報JP 2006-22145 A 特開2007−31662号公報JP 2007-31662 A 特開2008−184502号公報JP 2008-184502 A

一般的にチタンラクテートを配合したポリビニルアルコール水溶液は、液性をアルカリ性にして増粘させる。しかし従来のチタンラクテートは、ポリビニルアルコール水溶液と混合すると液性が酸性領域であっても徐々に増粘し、数日後には流動性が損なわれるため、施工直前に添加する必要があった。また、カルシウムアルミネートを配合すると弾力性や圧縮強度が良好な弾性組成物となるが、長期間に渡る弾力性の維持向上が求められていた。   In general, an aqueous polyvinyl alcohol solution containing titanium lactate increases the viscosity by making the liquid property alkaline. However, when conventional titanium lactate is mixed with an aqueous polyvinyl alcohol solution, the viscosity gradually increases even in the acidic region, and the fluidity is impaired after several days. Further, when calcium aluminate is blended, an elastic composition having good elasticity and compressive strength is obtained, but maintenance and improvement of elasticity over a long period of time have been demanded.

本発明者らは種々の実験検討を通して、チタン化合物を配合したポリビニルアルコール水溶液の安定性向上と、カルシウムアルミネートを配合した弾性組成物の弾力性維持の向上を検討し、本発明を完成するに至った。   Through various experimental studies, the present inventors have studied the improvement of the stability of an aqueous polyvinyl alcohol solution containing a titanium compound and the improvement of the elasticity maintenance of an elastic composition containing a calcium aluminate to complete the present invention. It came.

すなわち、本発明は、(1)チタンラクテートナトリウム塩とポリビニルアルコールを含有する水溶液である弾性組成物形成材料、(2)チタン1モルに対するナトリウムのモル比が0.5〜1.5のチタンラクテートナトリウム塩を用いる(1)の弾性組成物形成材料、(3)ポリビニルアルコールの固形分濃度が4〜10質量%、チタン濃度が0.5〜3.2質量%である(1)または(2)の弾性組成物形成材料、(4)(1)〜(3)のいずれかの弾性組成物形成材料にカルシウムアルミネート化合物および潜在水硬性物質を含有してなる弾性組成物、(5)ポリビニルアルコール固形分の体積がカルシウムアルミネート化合物および潜在水硬性物質の体積よりも大きい(4)の弾性組成物、(6)さらに、フィラーを含有することを特徴とする(4)または(5)の弾性組成物、である。 That is, the present invention includes (1) an elastic composition-forming material that is an aqueous solution containing titanium lactate sodium salt and polyvinyl alcohol, and (2) titanium lactate having a molar ratio of sodium to 0.5 mole of titanium of 0.5 to 1.5. (1) Elastic composition-forming material using sodium salt, (3) Solid content concentration of polyvinyl alcohol is 4 to 10% by mass, and titanium concentration is 0.5 to 3.2 % by mass (1) or (2 (4) An elastic composition comprising the elastic composition-forming material of any one of (1) to (3) and a calcium aluminate compound and a latent hydraulic substance, (5) Polyvinyl The volume of alcohol solids is larger than the volume of the calcium aluminate compound and the latent hydraulic substance, (4) the elastic composition, (6) and further contains a filler Elastic composition characterized (4) or (5) a.

本発明の弾性組成物形成材料は、チタン化合物を配合したポリビニルアルコール水溶液が安定性に優れるためあらかじめ混合することができ、施工現場での計量の手間や計量ミスを軽減できる。また、弾性組成物形成材料にカルシウムアルミネート化合物および潜在水硬性物質を配合することによって、長期間に亘って弾力性に優れる弾性組成物を提供することができる。   The elastic composition-forming material of the present invention can be mixed in advance because the polyvinyl alcohol aqueous solution blended with the titanium compound is excellent in stability, and can reduce the time and error of measurement at the construction site. Moreover, the elastic composition which is excellent in elasticity over a long period of time can be provided by mix | blending a calcium aluminate compound and a latent hydraulic substance with an elastic composition formation material.

本発明で使用する部、%は、特に規定しない限り質量基準である。   Unless otherwise specified, parts and% used in the present invention are based on mass.

本発明で使用するポリビニルアルコール(以下、PVAと略記)は、完全ケン化型PVA、部分ケン化型PVAが挙げられる。水酸基を有し実質的に水溶性を保持しているものであれば、アクリル酸、クロトン酸、マレイン酸、アクリルアミド等を付加した各種変性PVAを用いることもできる。本発明に使用するPVAの平均重合度は、500〜3000が好ましい。PVAの重合度が500未満では弾性組成物の弾力性が充分でない場合があり、3000以上ではPVA水溶液の粘度が著しく高くなり、チタンラクテートナトリウム塩やカルシウムアルミネート化合物および高炉水砕スラグと均一に混合できない場合がある。また、PVAの鹸化度は80mol%以上が好ましい。PVAの鹸化度が前記範囲外の場合には、弾性組成物の弾力性が不十分になる場合がある。   Polyvinyl alcohol (hereinafter abbreviated as PVA) used in the present invention includes fully saponified PVA and partially saponified PVA. Any modified PVA to which acrylic acid, crotonic acid, maleic acid, acrylamide or the like is added may be used as long as it has a hydroxyl group and substantially retains water solubility. As for the average degree of polymerization of PVA used for this invention, 500-3000 are preferable. If the degree of polymerization of PVA is less than 500, the elasticity of the elastic composition may not be sufficient, and if it is 3000 or more, the viscosity of the PVA aqueous solution becomes remarkably high, and is uniform with titanium lactate sodium salt, calcium aluminate compound and blast furnace granulated slag. May not be able to mix. The saponification degree of PVA is preferably 80 mol% or more. If the degree of saponification of PVA is outside the above range, the elasticity of the elastic composition may be insufficient.

本発明で使用するチタンラクテートナトリウム塩は、特に限定されるものではないが、例えば、チタンアルコキシドにヒドロキシカルボン酸である乳酸と水酸化ナトリウムを反応させたものが好ましく、PVA水溶液との混合液の安定性に優れる。なお、乳酸の代わりに他のヒドロキシカルボン酸を用いることもできる。チタン1モルに対するナトリウムのモル比は0.5〜1.5が好ましい。0.5モル未満ではPVA水溶液との混合安定性が損なわれる場合があり、1.5モル以上ではナトリウム含有量が多くなりすぎ、PVA水溶液に混合した際に溶解していたPVAが析出する場合がある。   The titanium lactate sodium salt used in the present invention is not particularly limited. For example, a titanium alkoxide obtained by reacting hydroxycarboxylic acid lactic acid with sodium hydroxide is preferable. Excellent stability. In addition, other hydroxycarboxylic acid can also be used instead of lactic acid. The molar ratio of sodium to 1 mol of titanium is preferably 0.5 to 1.5. When the amount is less than 0.5 mol, the mixing stability with the PVA aqueous solution may be impaired, and when the amount is 1.5 mol or more, the sodium content becomes excessive, and the PVA that has been dissolved when mixed in the PVA aqueous solution is precipitated. There is.

本発明では、PVAとチタンラクテートナトリウム塩は、それぞれ予め水溶液としてから混合することが望ましい。チタンラクテートナトリウム塩とPVAを含有する水溶液である弾性組成物形成材料中のPVAの固形分濃度は、4〜12%が好ましく、6〜10%がより好ましい。4%未満では弾性組成物の弾力性が不足する場合があり、12%を超えると水溶液の粘度が著しく高くなり、カルシウムアルミネート化合物および潜在水硬性物質と均一に混合できない場合がある。また弾性組成物形成材料中のチタン濃度は0.5〜3.2%が好ましく、1.0〜2.6%がより好ましい。0.5%未満では十分な弾力性が得られない場合があり、3.2%を超えると更なる弾力性の向上がみられず不経済になる場合がある。   In the present invention, it is desirable that the PVA and the titanium lactate sodium salt are mixed as an aqueous solution in advance. The solid content concentration of PVA in the elastic composition-forming material, which is an aqueous solution containing titanium lactate sodium salt and PVA, is preferably 4 to 12%, more preferably 6 to 10%. If it is less than 4%, the elasticity of the elastic composition may be insufficient. If it exceeds 12%, the viscosity of the aqueous solution may be extremely high, and the calcium aluminate compound and the latent hydraulic material may not be mixed uniformly. Further, the titanium concentration in the elastic composition forming material is preferably 0.5 to 3.2%, more preferably 1.0 to 2.6%. If it is less than 0.5%, sufficient elasticity may not be obtained, and if it exceeds 3.2%, further improvement in elasticity may not be observed, which may be uneconomical.

チタンラクテートナトリウム塩とPVAを含有する水溶液には、防錆剤、防腐剤や消泡剤を併用することが可能である。   In the aqueous solution containing titanium lactate sodium salt and PVA, it is possible to use a rust inhibitor, a preservative, and an antifoaming agent in combination.

本発明で使用するカルシウムアルミネート化合物(以下、CA化合物という)は、CaOとAlを主成分とする物質である。CA化合物を得る方法としては、CaO原料とAl原料を所定の割合で配合し、熱処理し、粉砕して得る方法が挙げられる。
CaO原料としては、例えば、石灰石や貝殻等の炭酸カルシウム、消石灰等の水酸化カルシウム、生石灰等の酸化カルシウム等が挙げられる。Al原料としては、ボーキサイト、アルミ残灰、アルミ粉等が挙げられる。
熱処理するための焼成設備としては、ロータリーキルンや電気炉等が使用可能である。
The calcium aluminate compound (hereinafter referred to as CA compound) used in the present invention is a substance mainly composed of CaO and Al 2 O 3 . Examples of a method for obtaining the CA compound include a method in which a CaO raw material and an Al 2 O 3 raw material are blended at a predetermined ratio, heat-treated, and pulverized.
Examples of the CaO raw material include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, calcium oxide such as quick lime, and the like. Examples of the Al 2 O 3 raw material include bauxite, aluminum residue ash, and aluminum powder.
A rotary kiln, an electric furnace, or the like can be used as a firing facility for heat treatment.

CA化合物のガラス化率は、特に限定されるものではなく、結晶質でも非晶質でも使用可能である。結晶質のCA化合物としては、3CaO・Al、12CaO・7Al、CaO・Al、3CaO・5Al、CaO・2Al、CaO・6Al等が挙げられる。これらのうち2種以上を併用することも可能である。
また、非晶質成分が含まれる場合には、次に示すX線回折リートベルト法によってガラス化率の測定を行う。粉砕した試料に酸化アルミニウムや酸化マグネシウム等の内部標準物質を所定量添加し、めのう乳鉢で充分混合したのち、粉末X線回折測定を実施する。測定結果を定量ソフトで解析し、ガラス化率を求める。定量ソフトには、Sietronics社の「SIROQUANT」などを用いることができる。
The vitrification rate of the CA compound is not particularly limited, and it can be used in a crystalline or amorphous state. The CA compounds crystalline, 3CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, 3CaO · 5Al 2 O 3, CaO · 2Al 2 O 3, CaO · 6Al 2 O 3 or the like Is mentioned. Two or more of these can be used in combination.
When an amorphous component is contained, the vitrification rate is measured by the following X-ray diffraction Rietveld method. A predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to the pulverized sample, and after sufficient mixing in an agate mortar, powder X-ray diffraction measurement is performed. Analyze the measurement results with quantitative software to determine the vitrification rate. As the quantitative software, “SIROQUANT” manufactured by Sitronics can be used.

CA化合物は、不純物を含む場合がある。不純物としては、SiO、Fe、MgO、TiO、ZrO、MnO、P、NaO、KO、LiO、硫黄、フッ素、塩素等が挙げられる。例えば、SiOに関しては15%まで含まれても問題にならない。それ以外の不純物の合計は、例えば、5%以下の範囲だと問題とはならない。 The CA compound may contain impurities. Examples of impurities include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, and chlorine. For example, regarding SiO 2 , even if it is contained up to 15%, there is no problem. If the total of other impurities is within a range of 5% or less, for example, there is no problem.

本発明で使用するCA化合物のCaO/Alモル比は、0.4〜1.5であることが好ましい。この範囲外では弾性組成物の弾力性が不十分な場合がある。 The CaO / Al 2 O 3 molar ratio of the CA compound used in the present invention is preferably 0.4 to 1.5. Outside this range, the elasticity of the elastic composition may be insufficient.

CA化合物の粉末度は、ブレーン比表面積で1500〜8000cm/gが好ましく、3000〜6000cm/gがより好ましい。1500cm/g未満では充分な強度が得られない場合があり、8000cm/gを超えると反応性が高くなり、チタンラクテートナトリウム塩とPVAを含有する水溶液に添加した時に、充分な流動性や可使時間を確保できない場合がある。 The fineness of the CA compound is preferably 1500 to 8000 cm 2 / g, more preferably 3000 to 6000 cm 2 / g in terms of the specific surface area of Blaine. If it is less than 1500 cm 2 / g, sufficient strength may not be obtained, and if it exceeds 8000 cm 2 / g, the reactivity becomes high, and when added to an aqueous solution containing titanium lactate sodium salt and PVA, sufficient fluidity and The pot life may not be secured.

本発明で使用する潜在水硬性物質とは、単に水と混ぜただけでは反応しないが、カルシウムイオンなどの刺激剤が少量存在すると反応する性質を持つ物質を指す。潜在水硬性物質としてはCaOとAlとSiOを主成分とする高炉水砕スラグなどが挙げられる。高炉水砕スラグは、鉄鋼製造の過程で高炉から排出される溶融状態のスラグを水等で急冷してガラス質にし、粉砕して微粉末化したものをいう。 The latent hydraulic substance used in the present invention refers to a substance that does not react when it is simply mixed with water, but reacts in the presence of a small amount of a stimulant such as calcium ion. Examples of the latent hydraulic material include blast furnace granulated slag mainly composed of CaO, Al 2 O 3 and SiO 2 . Blast furnace granulated slag refers to the molten slag discharged from the blast furnace during the steel production process, quenched with water or the like to become vitreous and pulverized into fine powder.

潜在水硬性物質は、合成して使用しても良い。例えば、CaO原料とAl原料とSiO原料を所定の割合で配合し、熱処理し、粉砕して得る方法が挙げられる。
CaO原料としては、例えば、石灰石や貝殻等の炭酸カルシウム、消石灰等の水酸化カルシウム、生石灰等の酸化カルシウム等が挙げられる。Al原料としては、ボーキサイト、アルミ残灰、アルミ粉等が挙げられる。SiO原料としては、ケイ石、粘土質、各種産業から副生するシリカ質物質等が挙げられる。
熱処理するための焼成設備としては、ロータリーキルンや電気炉等が使用可能である。
潜在水硬性物質は、不純物を含む場合がある。不純物としては、SiO、Fe、MgO、TiO、ZrO、MnO、P、NaO、KO、LiO、硫黄、フッ素、塩素等が挙げられる。これらの不純物の合計は10%以下の範囲だと特に問題にはならない。
The latent hydraulic substance may be synthesized and used. For example, there is a method in which a CaO raw material, an Al 2 O 3 raw material, and an SiO 2 raw material are blended at a predetermined ratio, heat treated, and pulverized.
Examples of the CaO raw material include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, calcium oxide such as quick lime, and the like. Examples of the Al 2 O 3 raw material include bauxite, aluminum residue ash, and aluminum powder. Examples of the SiO 2 raw material include silica, clay, and siliceous substances by-produced from various industries.
A rotary kiln, an electric furnace, or the like can be used as a firing facility for heat treatment.
The latent hydraulic material may contain impurities. Examples of impurities include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, and chlorine. If the total of these impurities is in the range of 10% or less, there is no particular problem.

潜在水硬性物質の粉末度は、ブレーン比表面積で3000〜9000cm/gが好ましく、4000〜8000cm/gがより好ましい。3000cm/g未満では長期に渡る弾力性が得られない場合があり、9000cm/gを超えると流動性を確保できない場合がある。 The fineness of the latent hydraulic material is preferably 3000 to 9000 cm 2 / g, more preferably 4000 to 8000 cm 2 / g in terms of the specific surface area of Blaine. If it is less than 3000 cm 2 / g, elasticity over a long period may not be obtained, and if it exceeds 9000 cm 2 / g, fluidity may not be ensured.

CA化合物と潜在水硬性物質の配合比率は、CA化合物と潜在水硬性物質の合計100部中、CA化合物は20〜80部であることが好ましい。20部未満では、弾性組成物の弾力性が不十分になる場合があり、80部を超えると長期に渡る弾力性の確保が難しい場合がある。   The compounding ratio of the CA compound and the latent hydraulic substance is preferably 20 to 80 parts of the CA compound in 100 parts in total of the CA compound and the latent hydraulic substance. If it is less than 20 parts, the elasticity of the elastic composition may be insufficient, and if it exceeds 80 parts, it may be difficult to ensure elasticity over a long period of time.

チタンラクテートナトリウム塩とPVAを含有する水溶液に対する、CA化合物と潜在水硬性物質の配合割合は弾力性の面から重要であり、弾性組成物に占めるPVA固形分の体積を1.0とした時、CA化合物および潜在水硬性物質の体積は0.2〜1.0であることが望ましい。0.2未満では弾性組成物へ変化するのに時間がかかりすぎる場合があり、1.0を超えると長期に渡る弾力性が得られない場合がある。   The blending ratio of the CA compound and the latent hydraulic material with respect to the aqueous solution containing titanium lactate sodium salt and PVA is important from the aspect of elasticity, and when the volume of PVA solids in the elastic composition is 1.0, The volume of the CA compound and the latent hydraulic material is desirably 0.2 to 1.0. If it is less than 0.2, it may take too much time to change to an elastic composition, and if it exceeds 1.0, elasticity for a long time may not be obtained.

本発明では、弾性組成物にフィラーを配合することができる。
フィラーとしては無機系や有機系のものが使用可能である。無機系としては、珪石、石灰石等の骨材、ベントナイト等の粘土鉱物、ゼオライト等のイオン交換体、シリカ質微粉末、炭酸カルシウム、水酸化カルシウム、ケイ酸カルシウム等が挙げられ、有機系材料としては、ビニロン繊維、アクリル繊維、炭素繊維等の繊維状物質、イオン交換樹脂等が挙げられる。これらフィラーを配合すると、弾性組成物の引張変形に対する変形追従性が向上する。
フィラーの配合割合は、PVA水溶液100部に対し、10〜400部が好ましい。10部未満では引張変形に対する変形追従性の向上が認められない場合があり、400部を超えると弾力性が不十分になる場合がある。
In the present invention, a filler can be blended in the elastic composition.
An inorganic or organic filler can be used. Examples of inorganic materials include aggregates such as silica and limestone, clay minerals such as bentonite, ion exchangers such as zeolite, siliceous fine powder, calcium carbonate, calcium hydroxide, calcium silicate, etc. Examples thereof include fibrous materials such as vinylon fibers, acrylic fibers, and carbon fibers, ion exchange resins, and the like. When these fillers are blended, the deformation followability to the tensile deformation of the elastic composition is improved.
The blending ratio of the filler is preferably 10 to 400 parts with respect to 100 parts of the PVA aqueous solution. If it is less than 10 parts, the improvement of the deformation followability with respect to tensile deformation may not be recognized, and if it exceeds 400 parts, the elasticity may be insufficient.

CA化合物、潜在水硬性物質やフィラーの添加方法であるが、弾性組成物形成材料に直接添加して混合しても良いし、予め水やPVA水溶液で練り混ぜスラリー状にしてから配合しても良い。
CA化合物、潜在水硬性物質、フィラーを予め水と混ぜてスラリーにしてから弾性組成物形成材料に添加する場合、使用する水の量は特に限定されるものではないが、CA化合物、潜在水硬性物質、フィラーの合計100部に対して、30〜60部が好ましい。30部未満では練り混ぜが困難になる場合があり、60部を超えると弾性組成物中の水分量が多くなりすぎて弾力性が低下する場合がある。なお、減水剤を用いて水の割合を30部未満にすることも可能であり、水の割合を減らした方が、弾性組成物の弾力性が向上するため好ましい。
It is a method of adding a CA compound, a latent hydraulic substance, and a filler, but it may be added directly to the elastic composition forming material and mixed, or it may be mixed in water or a PVA aqueous solution in advance to form a slurry. good.
When the CA compound, latent hydraulic substance, and filler are mixed with water in advance to form a slurry and then added to the elastic composition forming material, the amount of water to be used is not particularly limited, but the CA compound, latent hydraulic property 30-60 parts is preferable with respect to a total of 100 parts of the substance and filler. If the amount is less than 30 parts, kneading may be difficult. If the amount exceeds 60 parts, the amount of water in the elastic composition may increase so that the elasticity may decrease. In addition, it is also possible to make the ratio of water less than 30 parts using a water reducing agent, and it is preferable to reduce the ratio of water because the elasticity of the elastic composition is improved.

本発明ではゲル化時間を調製する場合、遅延剤を使用することができる。遅延剤としては、特に限定はされないが、クエン酸、酒石酸などを用いることができるが、長期的な弾力性や弾性組成物形成材料の安定性の面からクエン酸を用いることが好ましい。遅延剤は、チタンラクテートナトリウム塩とPVAを含有する水溶液に添加しても良いし、CA化合物と潜在水硬性物質の混合物に配合しても良い。   In the present invention, when preparing the gelation time, a retarder can be used. The retarder is not particularly limited, and citric acid, tartaric acid and the like can be used, but citric acid is preferably used from the viewpoint of long-term elasticity and stability of the elastic composition-forming material. The retarder may be added to an aqueous solution containing titanium lactate sodium salt and PVA, or may be blended in a mixture of a CA compound and a latent hydraulic substance.

本発明における弾性組成物形成材料や弾性組成物の混合装置としては、既存のいかなる装置も使用可能であり、例えば、ハンドミキサ、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、ナウタミキサ等が挙げられる。   Any existing apparatus can be used as the elastic composition forming material and the elastic composition mixing apparatus in the present invention, such as a hand mixer, a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer. It is done.

本発明の弾性組成物を用いた地盤補修方法としては、例えば、トンネル及び下水管等の地下構造物周囲の空洞や土壌中に注入する方法が挙げられるが、特に限定されるものではない。例えば、空洞や漏水が見られるコンクリート壁やコンクリート床版にドリルで穴を開け、注入プラグをセットした後、本発明の弾性組成物を等量圧送ポンプで注入し、空洞部を充填し、コンクリート背部や下部に止水や免震に優れた弾性体を形成する方法が挙げられる。   Examples of the ground repair method using the elastic composition of the present invention include, but are not particularly limited to, a method of pouring into a cavity or soil around an underground structure such as a tunnel and a sewer pipe. For example, after drilling a hole in a concrete wall or concrete floor slab where cavities or water leakage is seen and setting an injection plug, the elastic composition of the present invention is injected with an equal volume pump to fill the cavity, A method of forming an elastic body excellent in water stoppage and seismic isolation on the back and the lower part is mentioned.

以下、実施例で詳細に説明する。   Examples will be described in detail below.

「実験例1」
PVA水溶液とチタン水溶液を表1に示す割合で混合した。また一部の配合では表1に示す割合で無水クエン酸を配合した。混合直後と20℃室内で1ヶ月保管した溶液の粘度を測定し、溶液の貯蔵安定性を評価した。結果を表1に示す。
"Experiment 1"
A PVA aqueous solution and a titanium aqueous solution were mixed at a ratio shown in Table 1. In some blends, anhydrous citric acid was blended at the ratio shown in Table 1. The viscosity of the solution stored for one month immediately after mixing and in a room at 20 ° C. was measured to evaluate the storage stability of the solution. The results are shown in Table 1.

(使用材料)
PVA水溶液ア:電気化学工業社製、商品名「B17」(重合度1700、鹸化度80.0mol%)を水道水に加えて80℃に加温し、固形分濃度10%のPVA水溶液としたもの。
PVA水溶液イ:電気化学工業社製、商品名「B17」(重合度1700、鹸化度80.0mol%)を水道水に加えて80℃に加温し、固形分濃度6%のPVA水溶液としたもの。
チタン水溶液a:チタンラクテートナトリウム塩、チタン濃度6.4%、Na/Tiモル比=1.2
チタン水溶液a´:チタンラクテートナトリウム塩、チタン濃度6.4%、Na/Tiモル比=0.5
チタン水溶液a”:チタンラクテートナトリウム塩、チタン濃度6.4%、Na/Tiモル比=1.5
チタン水溶液b:チタンラクテート、チタン濃度8.2%、Na/Tiモル比=0
チタン水溶液c:チタンペルオキソクエン酸ナトリウム、チタン濃度4.8%、Na/Tiモル比=3.0
水:水道水
クエン酸:無水クエン酸、試薬1級
(Materials used)
PVA aqueous solution: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “B17” (polymerization degree 1700, saponification degree 80.0 mol%) was added to tap water and heated to 80 ° C. to obtain a PVA aqueous solution having a solid content concentration of 10%. thing.
PVA aqueous solution a: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “B17” (polymerization degree 1700, saponification degree 80.0 mol%) was added to tap water and heated to 80 ° C. to obtain a PVA aqueous solution having a solid content concentration of 6%. thing.
Titanium aqueous solution a: titanium lactate sodium salt, titanium concentration 6.4%, Na / Ti molar ratio = 1.2
Titanium aqueous solution a ′: titanium lactate sodium salt, titanium concentration 6.4%, Na / Ti molar ratio = 0.5
Titanium aqueous solution a ″: titanium lactate sodium salt, titanium concentration 6.4%, Na / Ti molar ratio = 1.5
Titanium aqueous solution b: titanium lactate, titanium concentration 8.2%, Na / Ti molar ratio = 0
Titanium aqueous solution c: titanium peroxocitrate sodium, titanium concentration 4.8%, Na / Ti molar ratio = 3.0
Water: tap water Citric acid: anhydrous citric acid, reagent grade 1

(試験方法)
PVA濃度:ヨウ素を用いて弾性組成物形成材料を発色させた後、分光光度計(日本分光社製)を用いて紫外可視吸収スペクトル法によって測定した。
チタン濃度:ICP発光分光分析装置(エスアイアイナノテクノロジーズ社製)を用いて測定した。
ナトリウム濃度:原子吸光光度計(島津製作所社製)を用いて測定した。
溶液粘度:東機産業株式会社製、TV−10型粘度計を用いた。20℃環境で測定を行い、ローターの回転速度は20rpmとした。
(Test method)
PVA concentration: The elastic composition-forming material was colored using iodine, and then measured by a UV-visible absorption spectrum method using a spectrophotometer (manufactured by JASCO Corporation).
Titanium concentration: It was measured using an ICP emission spectroscopic analyzer (manufactured by SII Nano Technologies).
Sodium concentration: measured using an atomic absorption photometer (manufactured by Shimadzu Corporation).
Solution viscosity: A TV-10 viscometer manufactured by Toki Sangyo Co., Ltd. was used. The measurement was performed in a 20 ° C. environment, and the rotational speed of the rotor was 20 rpm.

Figure 0005143782
Figure 0005143782

「実験例2」
実験例1と同様にPVA水溶液とチタン水溶液を混合し、表2に示すPVA濃度、チタン濃度、ナトリウム濃度の弾性組成物形成材料を調製した。また、表2に示す割合でCA化合物、潜在水硬性物質、水を混合してスラリーとし、先に調製した弾性組成物形成材料に添加し、充分攪拌して弾性組成物とした。なお、ゲル化時間を調整するため、CA化合物と潜在水硬性物質の合計量に対して1.5%となるクエン酸を弾性組成物形成材料にあらかじめ添加した。
"Experimental example 2"
In the same manner as in Experimental Example 1, an aqueous PVA solution and an aqueous titanium solution were mixed to prepare elastic composition-forming materials having the PVA concentration, titanium concentration, and sodium concentration shown in Table 2. Further, the CA compound, the latent hydraulic substance, and water were mixed at a ratio shown in Table 2 to form a slurry, which was added to the previously prepared elastic composition-forming material, and was sufficiently stirred to obtain an elastic composition. In order to adjust the gelation time, citric acid that is 1.5% of the total amount of the CA compound and the latent hydraulic substance was added in advance to the elastic composition-forming material.

(使用材料)
CA化合物:CaO29%、Al65%、SiO3%、TiO3%、CaO/Alモル比0.8、ガラス化率30%、比表面積5000cm/g、密度3.05g/cm
潜在水硬性物質:高炉水砕スラグ、市販品、CaO40.6%、Al14.8%、SiO33.2%、MgO6.7%,比表面積6000cm/g、密度2.90g/cm
(Materials used)
CA compound: CaO 29%, Al 2 O 3 65%, SiO 2 3%, TiO 2 3%, CaO / Al 2 O 3 molar ratio 0.8, vitrification rate 30%, specific surface area 5000 cm 2 / g, density 3 .05g / cm 3
Latent hydraulic material: granulated blast furnace slag, commercial product, CaO 40.6%, Al 2 O 3 14.8%, SiO 2 33.2%, MgO 6.7%, specific surface area 6000 cm 2 / g, density 2.90 g / Cm 3

(試験方法)
弾力性(復元率):弾性組成物を2×2×2cmの型枠に流し込み、材齢1日で脱型し、市販の耐圧試験機を用いて上部から0.5cm裁荷した後除荷した。除荷後の供試体の高さ(xcm)を測定して復元率を測定した。復元率は[1−(2−x)/0.5]×100(%)で算出し、弾力性の指標とした。また打設から1ヶ月後、2ヶ月後にも測定を行った。
(Test method)
Elasticity (restoration rate): Pour the elastic composition into a 2 x 2 x 2 cm mold, demold it at the age of 1 day, and unload it after 0.5 cm from the top using a commercially available pressure tester did. The restoration rate was measured by measuring the height (xcm) of the specimen after unloading. The restoration rate was calculated by [1- (2-x) /0.5] × 100 (%) and used as an index of elasticity. Measurements were also made 1 month and 2 months after placing.

Figure 0005143782
Figure 0005143782

「実験例3」
PVAの種類を表3に示すように変化させたこと以外は実験例2と同様に行った。PVA水溶液の固形分濃度はいずれも10%とした。結果を表3に示す。
"Experiment 3"
The same procedure as in Experimental Example 2 was performed except that the type of PVA was changed as shown in Table 3. The solid content concentration of the PVA aqueous solution was 10%. The results are shown in Table 3.

Figure 0005143782
Figure 0005143782

「実験例4」
実験例1と同様に、表4に示す割合のPVA、チタン、ナトリウム、クエン酸を含む弾性組成物形成材料を調製した。また、表4に示す割合のCA化合物、潜在水硬性物質、フィラー、水を混合してスラリーとし、先に調製した弾性組成物形成材料に添加し攪拌して弾性組成物とし、実験例2と同様に弾力性、さらに引張変形に対する変形追従性を評価した。なお、材料は実験例1、実験例2で使用したものを用いた。結果を表4に示す。
"Experimental example 4"
As in Experimental Example 1, an elastic composition-forming material containing PVA, titanium, sodium, and citric acid in the proportions shown in Table 4 was prepared. Moreover, the CA compound, the latent hydraulic substance, the filler, and water in the ratios shown in Table 4 were mixed to form a slurry, which was added to the previously prepared elastic composition forming material and stirred to obtain an elastic composition. Similarly, the elasticity and the deformation follow-up property against tensile deformation were evaluated. In addition, the material used in Experimental Example 1 and Experimental Example 2 was used. The results are shown in Table 4.

(使用材料)
炭酸カルシウム粉末:市販品、100メッシュ
(Materials used)
Calcium carbonate powder: Commercial product, 100 mesh

(試験方法)
引張変形に対する追従性:直径5cm、高さ4.5cmの円柱モルタル試験体を2つ調製し、横にした直径5cm、高さ10cmの円柱型枠に1cmの隙間を開けてセットした。この隙間に増粘する前の弾性組成物を流し込み、20℃で7日間養生した。7日後に脱型し、オートグラフでモルタル試験体を上下に引っ張り、弾性組成物の変形追従性を評価した。なお、モルタル試験体を引っ張った時に生じる引張応力が最大値に達したところを降伏点とし、その時の引張変位を測定した。変位が大きいほど変形に追従できることを示す。
(Test method)
Followability to tensile deformation: Two cylindrical mortar specimens having a diameter of 5 cm and a height of 4.5 cm were prepared, and set with a 1 cm gap in a horizontal cylindrical mold having a diameter of 5 cm and a height of 10 cm. The elastic composition before thickening was poured into this gap and cured at 20 ° C. for 7 days. After 7 days, the mold was removed, and the mortar specimen was pulled up and down by an autograph to evaluate the deformation followability of the elastic composition. In addition, the place where the tensile stress generated when the mortar specimen was pulled reached the maximum value was taken as the yield point, and the tensile displacement at that time was measured. The larger the displacement, the more the deformation can be followed.

Figure 0005143782
Figure 0005143782

本発明の弾性組成物形成材料は、安定性に優れるためあらかじめ混合することができ、施工現場での計量の手間や計量ミスを軽減できる。また、本発明の弾性組成物形成材料にCA化合物および潜在水硬性物質を配合することによって、長期間に渡って弾力性に優れる弾性組成物を提供することができるので、例えば、土木・建築業界において、地盤安定化分野などの用途に適する。   Since the elastic composition-forming material of the present invention is excellent in stability, it can be mixed in advance, which can reduce the time and error of measurement at the construction site. In addition, by blending the CA compound and the latent hydraulic substance with the elastic composition-forming material of the present invention, an elastic composition having excellent elasticity over a long period of time can be provided. Is suitable for applications such as ground stabilization.

Claims (6)

チタンラクテートナトリウム塩とポリビニルアルコールを含有する水溶液であることを特徴とする弾性組成物形成材料。 An elastic composition-forming material, which is an aqueous solution containing titanium lactate sodium salt and polyvinyl alcohol. チタン1モルに対するナトリウムのモル比が0.5〜1.5のチタンラクテートナトリウム塩を用いることを特徴とする請求項1記載の弾性組成物形成材料。 The elastic composition-forming material according to claim 1, wherein a titanium lactate sodium salt having a molar ratio of sodium to 1 mol of titanium of 0.5 to 1.5 is used. ポリビニルアルコールの固形分濃度が4〜10質量%、チタン濃度が0.5〜3.2質量%である請求項1または2記載の弾性組成物形成材料。 The elastic composition-forming material according to claim 1 or 2, wherein the polyvinyl alcohol has a solid content concentration of 4 to 10 mass% and a titanium concentration of 0.5 to 3.2 mass% . 請求項1〜3のいずれか1項記載の弾性組成物形成材料にカルシウムアルミネート化合物および潜在水硬性物質を含有してなる弾性組成物。 The elastic composition formed by containing a calcium aluminate compound and a latent hydraulic substance in the elastic composition formation material of any one of Claims 1-3. ポリビニルアルコール固形分の体積がカルシウムアルミネート化合物および潜在水硬性物質の体積よりも大きいことを特徴とする請求項4記載の弾性組成物。 The elastic composition according to claim 4, wherein the volume of the solid content of polyvinyl alcohol is larger than the volume of the calcium aluminate compound and the latent hydraulic substance. さらに、フィラーを含有することを特徴とする請求項4または5記載の弾性組成物。 Furthermore, the elastic composition of Claim 4 or 5 containing a filler.
JP2009113253A 2009-05-08 2009-05-08 Elastic composition-forming material and elastic composition Active JP5143782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113253A JP5143782B2 (en) 2009-05-08 2009-05-08 Elastic composition-forming material and elastic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113253A JP5143782B2 (en) 2009-05-08 2009-05-08 Elastic composition-forming material and elastic composition

Publications (2)

Publication Number Publication Date
JP2010260968A JP2010260968A (en) 2010-11-18
JP5143782B2 true JP5143782B2 (en) 2013-02-13

Family

ID=43359332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113253A Active JP5143782B2 (en) 2009-05-08 2009-05-08 Elastic composition-forming material and elastic composition

Country Status (1)

Country Link
JP (1) JP5143782B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990445B2 (en) * 2012-11-02 2016-09-14 デンカ株式会社 Elastic composition
JP6366985B2 (en) * 2014-04-10 2018-08-01 デンカ株式会社 Elastic composition and repair method using the same
JP6437269B2 (en) * 2014-10-17 2018-12-12 デンカ株式会社 Elastic body composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141897B2 (en) * 1972-11-30 1976-11-12
JP2001139751A (en) * 1999-08-30 2001-05-22 Kuraray Co Ltd Composition
JP4566363B2 (en) * 1999-08-30 2010-10-20 株式会社クラレ Water resistant composition
JP4381578B2 (en) * 1999-08-31 2009-12-09 株式会社クラレ Thermal recording material
JP4614764B2 (en) * 2004-12-16 2011-01-19 マツモトファインケミカル株式会社 Water-soluble resin crosslinking agent
JP4554462B2 (en) * 2005-07-29 2010-09-29 電気化学工業株式会社 Elastic composition and repair method using the same
JP5068958B2 (en) * 2006-03-17 2012-11-07 電気化学工業株式会社 Hydrogel composition and ground improvement method using the same
JP4828279B2 (en) * 2006-03-30 2011-11-30 株式会社クラレ Water resistant composition
JP4739081B2 (en) * 2006-03-30 2011-08-03 株式会社クラレ adhesive
JP4913462B2 (en) * 2006-03-31 2012-04-11 株式会社クラレ Aqueous emulsion

Also Published As

Publication number Publication date
JP2010260968A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
EP2616610B1 (en) Use of compounds containing aluminium oxide and silicon oxide for producing a hydrophilic building product
KR100869467B1 (en) Composition for ground-improving material, grouting material comprising the same, and method of using the same
KR102597908B1 (en) Long workability calcium aluminate cements with setting properties promoted by elevated temperature and related applications
CN107257778A (en) The binding agent of the solid inorganic compound rich in alkaline earth oxide with phosphoric acid salt activator
JP5545698B2 (en) Composition and injection method
JP7674120B2 (en) Cement composition, mortar and hardened body
JP2020090622A (en) Hardening material, hardening material liquid, soil stabilization agent, manufacturing method of the agent, and foundation stabilization method
JP5143782B2 (en) Elastic composition-forming material and elastic composition
JP5068958B2 (en) Hydrogel composition and ground improvement method using the same
JP5052861B2 (en) Elastic composition and repair method using the same
JP4554462B2 (en) Elastic composition and repair method using the same
TW202502692A (en) Hardening accelerator for hydraulic material, cement composition, and hardening body
JP4505065B2 (en) Ground consolidation improver
JP5468209B2 (en) Composition and injection method
JP5783633B2 (en) Injection method
JP5990445B2 (en) Elastic composition
JP7374926B2 (en) Ground injection material, its cured product, ground improvement method, and powder material for ground injection
JP6437269B2 (en) Elastic body composition
JP5972079B2 (en) Capsule for fixing an element containing a rapid hardening component
JP5121491B2 (en) Composition, underwater non-separable hydrogel composition, and ground strengthening method using the same
JP5143434B2 (en) Hydrogel-forming material, hydrogel composition, and ground reinforcement method
CN116323863A (en) Ground improvement material slurry, ground improvement material cured product and ground improvement method
JP4317736B2 (en) Injection material
JP3124578B2 (en) Cement admixture and cement composition
JPH0891894A (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5143782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250