JP5143531B2 - Cold mold steel and molds - Google Patents
Cold mold steel and molds Download PDFInfo
- Publication number
- JP5143531B2 JP5143531B2 JP2007294326A JP2007294326A JP5143531B2 JP 5143531 B2 JP5143531 B2 JP 5143531B2 JP 2007294326 A JP2007294326 A JP 2007294326A JP 2007294326 A JP2007294326 A JP 2007294326A JP 5143531 B2 JP5143531 B2 JP 5143531B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- steel
- less
- mold
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 62
- 239000010959 steel Substances 0.000 title claims description 62
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 36
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 20
- 150000001247 metal acetylides Chemical class 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000010791 quenching Methods 0.000 description 12
- 230000000171 quenching effect Effects 0.000 description 12
- 238000001816 cooling Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000005496 tempering Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 230000032683 aging Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910001315 Tool steel Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 208000037998 chronic venous disease Diseases 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 229910018507 Al—Ni Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、冷間金型用鋼および金型に関し、詳細には、自動車用鋼板や家電用鋼板などを冷間・温間でプレス成形(打ち抜き、曲げ、絞り、トリミングなど)するのに用いられる金型の素材として有用な金型鋼に関するものである。 The present invention relates to steel for cold molds and dies, and more specifically, used to cold-warm and hot-press steel plates for automobiles and home appliances (punching, bending, drawing, trimming, etc.). The present invention relates to a mold steel useful as a material for a mold to be manufactured.
自動車用鋼板や家電用鋼板などの成形に用いられる金型は、鋼板の高強度化に伴い、寿命の改善が求められている。特に、自動車用鋼板では、環境問題を考慮し、自動車の燃費向上のために、引張強度が約590MPa以上のハイテン鋼板の需要が急速に高まっているが、それに伴い、金型の表面皮膜が早期に損傷するなどして「カジリ」(プレス成形時に焼きつく現象)が発生し、金型寿命が極端に低下するといった問題が生じている。 Metal molds used for forming automobile steel plates, home appliance steel plates, and the like are required to have an improved life as the strength of the steel plates increases. In particular, for steel sheets for automobiles, the demand for high-tensile steel sheets having a tensile strength of about 590 MPa or more is rapidly increasing in consideration of environmental issues and improving the fuel efficiency of automobiles. As a result, there is a problem in that “galling” (a phenomenon of burning during press molding) occurs and the life of the mold is extremely reduced.
金型は、一般に、金型母材(金型用鋼)の表面に、硬質皮膜処理を施して製造される。母材の金型用鋼は、一般に、焼鈍→切削加工→焼入焼戻処理によって製造される。本願明細書では、特に、焼入処理を溶体化処理、焼戻処理を時効処理と呼ぶ場合がある。 The mold is generally manufactured by applying a hard film treatment to the surface of a mold base material (steel for mold). The base metal mold steel is generally manufactured by annealing → cutting → quenching and tempering. In the present specification, in particular, the quenching process may be referred to as a solution treatment and the tempering process may be referred to as an aging process.
金型用鋼(冷間ダイス鋼)としては、これまで、JIS SKD11に代表される高C高Crの合金工具鋼や、耐摩耗性が更に改善されたJIS SKH51に代表される高速度工具鋼などが汎用されてきた。これらの工具鋼では、主に、Cr系炭化物やMo、W、V系炭化物の析出硬化によって硬度の向上を図っている。また、耐摩耗性と靱性の両方を向上させることを目的として、JIS SKH51のC、Mo、W、Vなどの合金元素量を低減した低合金高速度工具鋼(通常、マトリックスハイスと呼ばれる。)も使用されている。 As mold steels (cold die steels), high C high Cr alloy tool steel represented by JIS SKD11 and high speed tool steel represented by JIS SKH51 with further improved wear resistance. Etc. have been widely used. In these tool steels, the hardness is mainly improved by precipitation hardening of Cr-based carbides, Mo, W, and V-based carbides. Further, for the purpose of improving both wear resistance and toughness, a low alloy high speed tool steel (usually called matrix high speed) in which the amount of alloy elements such as C, Mo, W, V, etc. of JIS SKH51 is reduced. Has also been used.
金型用鋼の更なる特性改善を目指して、様々な方法が提案されている(例えば特許文献1および2)。 Various methods have been proposed with the aim of further improving the properties of mold steel (for example, Patent Documents 1 and 2).
特許文献1には、焼入焼戻処理による寸法変化量(変寸)、特に焼戻時の膨張変寸の抑制、および硬度の上昇を目的として、適正量のNiやAlを添加し、それに応じた適正量のCuを添加した冷間ダイス鋼が開示されている。またCおよびCrの含有量を調整し、組織中の炭化物分布を微細に分散させると、耐カジリ性も向上することが記載されている。 In Patent Document 1, an appropriate amount of Ni or Al is added for the purpose of suppressing dimensional change (size change) due to quenching and tempering treatment, particularly suppressing expansion change during tempering and increasing hardness, A cold die steel to which an appropriate amount of Cu is added is disclosed. Further, it is described that when the C and Cr contents are adjusted and the carbide distribution in the structure is finely dispersed, galling resistance is also improved.
特許文献2には、従来のマトリックスハイスよりも低い温度で焼入れしても、従来のものと同程度の特性(硬さや靱性)を確保することを目的として、焼戻し状態(熱処理前の状態)でCrを主としたM23C6系炭化物が2〜5vol%生成する組成を有し、焼入れ焼戻し後にVを主としたMC炭化物、およびMo、Wを主としたM6C系炭化物のいずれかが分散析出した組織を有する合金工具鋼が開示されている。
上述のように金型は、一般に、金型用鋼の表面に硬質皮膜処理を施して製造される。この硬質皮膜処理としては、現在、熱拡散によってVC皮膜を形成するTD処理、主にTiCを形成するCVD処理、および主にTiNを形成するPVD処理が一般的である。ここで、TD処理とは、Vなどの溶融塩浴中に鋼材を浸漬して鋼材中のCとVを反応させ、約900〜1030℃の高温環境下にて約5〜15μmのVC皮膜を基材表面に拡散浸透させる処理である。これらの硬質皮膜処理は、金型ユーザーやプレスメーカーの事情に応じて、適宜採用されている。そのためいずれの硬質皮膜処理にも良好に対応できる(即ち寿命の長い硬質皮膜が形成される)金型用鋼が求められている。また金型用鋼には、当然、良好な基本特性(例えば硬さや靱性など)が求められる。 As described above, the mold is generally manufactured by applying a hard film treatment to the surface of the mold steel. As this hard film treatment, at present, a TD process for forming a VC film by thermal diffusion, a CVD process for mainly forming TiC, and a PVD process for mainly forming TiN are generally used. Here, the TD treatment means that a steel material is immersed in a molten salt bath such as V to react C and V in the steel material, and a VC film of about 5 to 15 μm is formed in a high temperature environment of about 900 to 1030 ° C. This is a treatment for diffusing and penetrating the substrate surface. These hard coating treatments are appropriately employed depending on the circumstances of the mold user and the press manufacturer. Therefore, there is a demand for mold steel that can cope with any hard coating treatment (that is, a hard coating having a long life is formed). Moreover, of course, good basic properties (for example, hardness, toughness, etc.) are required for mold steel.
本発明は、上記事情に鑑みてなされたものであり、その目的は、優れた基本特性(硬さや靱性など)を示し、且つ多様な硬質皮膜処理に良好に対応できる冷間金型用鋼、および金型を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide excellent basic characteristics (hardness, toughness, etc.) and cold mold steel that can cope with various hard coating treatments, And to provide molds.
上記目的を達成することができた本発明の冷間金型用鋼は、
C :0.5〜0.7%(質量%の意味、以下同じ)、
Si:0.5〜2.0%、
Mn:0.1〜2.0%、
Cr:5〜7%、
Al:0.01〜1.0%、
N :0.003〜0.025%、
Cu:0.25〜1%、
Ni:0.25〜1%、
Mo:0.5〜3%およびW:2%以下(0%を含む)、並びに
S :0.1%以下(0%を含まない)
を含有し、残部が鉄および不可避不純物であり、
下記(1)〜(3){[ ]は、各元素の含有量(%)を意味する。}
(1)[Cr]×[C]≦4、
(2)[Al]/[N]:1〜30、
(3)[Mo]+0.5×[W]:0.5〜3.00%
の要件を満足するところに要旨が存在する。
The cold mold steel of the present invention that has achieved the above-mentioned object,
C: 0.5 to 0.7% (meaning mass%, the same shall apply hereinafter),
Si: 0.5 to 2.0%,
Mn: 0.1 to 2.0%,
Cr: 5-7%,
Al: 0.01 to 1.0%,
N: 0.003-0.025%,
Cu: 0.25 to 1%
Ni: 0.25 to 1%,
Mo: 0.5 to 3% and W: 2% or less (including 0%), and S: 0.1% or less (not including 0%)
The balance is iron and inevitable impurities,
The following (1) to (3) {[] means the content (%) of each element. }
(1) [Cr] × [C] ≦ 4,
(2) [Al] / [N]: 1 to 30,
(3) [Mo] + 0.5 × [W]: 0.5 to 3.00%
A summary exists where the above requirements are satisfied.
好ましい実施形態において、上記冷間金型用鋼は、更に、V:0.5%以下(0%を含まない)を含有する。 In a preferred embodiment, the cold mold steel further contains V: 0.5% or less (excluding 0%).
好ましい実施形態において、上記冷間金型用鋼は、更に、Ti、Zr、Hf、TaおよびNbよりなる群から選択される少なくとも一種の元素を合計で0.5%以下(0%を含まない)含有する。 In a preferred embodiment, the cold mold steel further includes at least one element selected from the group consisting of Ti, Zr, Hf, Ta and Nb in total of 0.5% or less (excluding 0%) )contains.
好ましい実施形態において、上記冷間金型用鋼は、更に、Co:10%以下(0%を含まない)を含有する。 In a preferred embodiment, the cold mold steel further contains Co: 10% or less (excluding 0%).
本発明の金型は、上記のいずれかの冷間金型用鋼を用いて得られる。 The mold of the present invention is obtained using any one of the above cold mold steels.
本発明の冷間金型用鋼は、上記のように合金成分および所定の元素間のバランスが適切に制御されているため、硬度および靱性に優れることに加えて、多様な硬質皮膜処理でも、その表面に寿命の長い硬質皮膜が形成される。上記の冷間金型用鋼を用いて得られる金型は、特に、引張強度が約590MPa以上のハイテン鋼板の成形用金型として好適に用いられる。 As described above, the steel for cold mold according to the present invention is appropriately controlled in the balance between the alloy components and the predetermined elements. Therefore, in addition to being excellent in hardness and toughness, in various hard coating treatments, A hard film having a long life is formed on the surface. A mold obtained by using the above steel for cold mold is particularly suitably used as a mold for forming a high-tensile steel sheet having a tensile strength of about 590 MPa or more.
本発明者らは、硬さや靱性などの基本特性を良好に発揮し得、しかも、多様な硬質皮膜処理に充分対応可能な冷間金型用鋼を提供するため、検討を重ねてきた。その結果、種々の合金元素の含有量を所定範囲に制御するだけでなく、上記(1)〜(3)に示すように、所定の元素間のバランスも適切に制御すると、TiN皮膜の剥離防止、並びに硬さおよび靱性の向上を図ることができること、その結果、TD処理、CVD処理、PVD処理などの硬質皮膜処理を行なっても、その表面に長寿命の硬質皮膜を形成することが可能になること、を見出し、本発明を完成した。 The inventors of the present invention have made extensive studies in order to provide steel for cold molds that can satisfactorily exhibit basic characteristics such as hardness and toughness and that can sufficiently cope with various hard coating treatments. As a result, not only the content of various alloy elements is controlled within a predetermined range, but also the balance between the predetermined elements is appropriately controlled as shown in the above (1) to (3), thereby preventing peeling of the TiN film. In addition, it is possible to improve the hardness and toughness, and as a result, it is possible to form a hard film having a long life on the surface even if a hard film process such as a TD process, a CVD process, or a PVD process is performed. The present invention has been completed.
以下、本発明に到達した経緯を説明する。 Hereinafter, the background to the present invention will be described.
本発明者らは、まず、従来のJIS SKD11やマトリックスハイスを用いた金型において、PVD処理によって形成されるTiN皮膜が損傷して、カジリが発生する原因を探求した。 The present inventors first sought the cause of galling caused by damage to the TiN film formed by PVD treatment in a conventional mold using JIS SKD11 or matrix high speed.
図1(a)は、金型用鋼としてJIS SKD11を用い、その上にPVD処理によってTiN皮膜を形成した金型の表面にカジリが発生した状態を示す光学顕微鏡写真である。図1(b)に、TiN皮膜を施す前の金型母材の光学顕微鏡写真も示す。図1(b)中、白く見える部分はCr系炭化物である。図1(c)および(d)は、図1(a)の一部を拡大した光学顕微鏡写真である。図1(c)および(d)より明らかなように、TiN皮膜が剥離した領域には、硬質の粗大なCr系炭化物(CrやFeを主に含有する、約1〜50μm程度の炭化物)が表面に析出し、当該炭化物を起点としてクラックが発生していることが分かる。 FIG. 1 (a) is an optical micrograph showing a state in which galling is generated on the surface of a mold in which JIS SKD11 is used as a mold steel and a TiN film is formed thereon by PVD treatment. FIG. 1B also shows an optical micrograph of the mold base material before the TiN film is applied. In FIG.1 (b), the part which looks white is Cr type carbide. 1 (c) and 1 (d) are optical micrographs showing an enlarged part of FIG. 1 (a). As is clear from FIGS. 1C and 1D, hard coarse Cr-based carbides (carbides mainly containing about 1 to 50 μm, mainly containing Cr and Fe) are present in the area where the TiN film is peeled off. It can be seen that cracks are generated on the surface, starting from the carbide.
上記の観察結果から、本発明者らは、TiN皮膜のカジリ発生の起点は上記の粗大なCr系炭化物であり、当該炭化物の生成を出来るだけ抑制すれば、TiN皮膜の剥離を防止でき、金型寿命を改善し得ることを見出した。 From the above observation results, the present inventors have found that the origin of galling of the TiN film is the coarse Cr-based carbide, and if the generation of the carbide is suppressed as much as possible, the TiN film can be prevented from peeling, It has been found that the mold life can be improved.
粗大なCr系炭化物の生成を抑制して、PVD処理によるTiN皮膜の寿命を向上させるためには、鋼中のC量およびCr量を低減させれば良い。しかしC量を低減させすぎると、金型用鋼(母材)の表面に、TD処理またはCVD処理で充分な厚みのVC皮膜またはTiC皮膜を形成することが難しくなる。そこで本発明は、金型用鋼のC量、Cr量およびこれらの積(上記(1))を適切に制御することによって、粗大なCr系炭化物を析出させず、且つ一方で、充分な厚みのVC皮膜およびTiC皮膜を確保することを特徴の1つとする。 In order to suppress the generation of coarse Cr-based carbides and improve the life of the TiN film by PVD treatment, the amount of C and the amount of Cr in the steel may be reduced. However, if the amount of C is reduced too much, it becomes difficult to form a VC or TiC film having a sufficient thickness on the surface of the mold steel (base material) by TD treatment or CVD treatment. Therefore, the present invention appropriately controls the amount of C, the amount of Cr, and the product thereof ((1) above) to prevent coarse Cr-based carbides from being precipitated and, on the other hand, sufficient thickness. One of the characteristics is to secure a VC film and a TiC film.
本発明の金型用鋼では、PVD処理によるTiN皮膜の寿命を向上させるために、粗大なCr系炭化物の生成を抑制している。しかしCr系炭化物が生成しないと、焼入れ時の結晶粒粗大化を防止できず、焼入れ後に優れた靱性を確保できない。そこで本発明は、Al量、N量およびこれらのバランス(上記(2))を精緻に制御することによって、微細なAlNを形成させて、焼入れ後に優れた靱性を確保することを特徴の1つとする。なお本明細書において「靱性に優れる」とは、後述の実施例の欄に記載した方法で測定したときのシャルピー衝撃値が、20J以上であることを意味する。また、微細なAlNとは、平均粒径で5μm以下程度のものを意味する。 In the steel for molds of the present invention, the production of coarse Cr-based carbides is suppressed in order to improve the life of the TiN film by PVD treatment. However, if Cr-based carbides are not generated, crystal grain coarsening during quenching cannot be prevented, and excellent toughness cannot be ensured after quenching. Therefore, the present invention is characterized in that fine AlN is formed by precisely controlling the amount of Al, the amount of N and the balance thereof (above (2)) to ensure excellent toughness after quenching. To do. In the present specification, “excellent toughness” means that the Charpy impact value is 20 J or more when measured by the method described in the column of Examples described later. The fine AlN means that having an average particle diameter of about 5 μm or less.
また本発明の金型用鋼は、微細なAlNを含むため、PVD処理による窒化物系皮膜(例えばCrNやTiN)との密着性が向上すると考えられる。 Moreover, since the steel for molds of this invention contains fine AlN, it is thought that adhesiveness with the nitride-type membrane | film | coat (for example, CrN and TiN) by PVD process improves.
上述のように本発明の金型用鋼では、粗大なCr系炭化物の生成を抑制するために、従来鋼であるJIS SKD11に比べて、C量およびCr量を低減させている。そのため本発明では、C量およびCr量の低減による硬さ減少を、合金成分(特にAl、Cu、Ni、Mo、W)を積極的に添加することによって補っていることを特徴の1つとする。詳しくは本発明の金型用鋼は、特に、上記(2)を制御してAl−Ni系金属間化合物による析出硬化や、上記(3)を制御してMoやWとCとの炭化物形成による二次硬化を利用して、高い硬度を達成している。なお本明細書において「高い硬度」とは、後述の実施例の欄に記載した方法で測定したときの最大硬さが、650HV以上であることを意味する。 As described above, in the mold steel of the present invention, in order to suppress the formation of coarse Cr-based carbides, the amount of C and the amount of Cr are reduced as compared with JIS SKD11, which is a conventional steel. Therefore, in the present invention, one of the characteristics is that the hardness reduction due to the reduction of the C content and the Cr content is compensated by positively adding alloy components (especially Al, Cu, Ni, Mo, W). . Specifically, the steel for molds of the present invention is particularly formed by precipitation hardening by an Al—Ni intermetallic compound by controlling the above (2), and carbide formation of Mo, W and C by controlling the above (3). High hardness is achieved by utilizing the secondary curing. In the present specification, “high hardness” means that the maximum hardness when measured by the method described in the column of Examples described later is 650 HV or more.
以下、本発明の鋼中成分について、1つずつ詳細に説明する。 Hereinafter, the components in the steel of the present invention will be described in detail one by one.
C:0.5〜0.7%
Cは、硬さおよび耐摩耗性を確保し、HAZ軟化の抑制にも寄与する元素である。また、金型母材の表面にTD法やCVD法でVCやTiCなどの炭化物皮膜を形成する場合、C量が低いと皮膜の厚さが薄くなるなどの問題もある。これらを勘案し、上記作用を有効に発揮させるためにC量の下限を0.5%とした。C量は0.55%以上であることが好ましい。但しその量が過剰であると、粗大なCr系炭化物が生成して、PVD処理で形成されるTiN皮膜が剥離し易くなる。またC量が過剰であると、残留オーステナイトが増加し、高温の時効処理を行わないと所望の硬さが得られないほか、時効処理後に膨張するなどして変寸が大きくなる。さらにC量が過剰であると靱性に悪影響を及ぼす。よってC量の上限を0.7%とした。C量は0.65%以下であることが好ましい。
C: 0.5 to 0.7%
C is an element that ensures hardness and wear resistance and contributes to the suppression of HAZ softening. Further, when a carbide film such as VC or TiC is formed on the surface of the mold base material by the TD method or the CVD method, there is a problem that if the amount of C is low, the thickness of the film becomes thin. Considering these, the lower limit of the C amount is set to 0.5% in order to effectively exhibit the above-described action. The amount of C is preferably 0.55% or more. However, when the amount is excessive, coarse Cr-based carbides are generated, and the TiN film formed by the PVD process is easily peeled off. If the amount of C is excessive, retained austenite increases, and the desired hardness cannot be obtained unless high-temperature aging treatment is performed, and the size increases due to expansion after aging treatment. Further, if the amount of C is excessive, the toughness is adversely affected. Therefore, the upper limit of the C amount is set to 0.7%. The C content is preferably 0.65% or less.
Si:0.5〜2.0%
Siは、製鋼時の脱酸元素として有用であり、硬さの向上と被削性確保に寄与する元素である。またSiは、マトリックスのマルテンサイトの焼戻し軟化を抑え、HAZ軟化の抑制に有用である。このような作用を有効に発揮させるため、Si量の下限を0.5%とした。但しその量が過剰であると靱性が低下する。また、偏析が大きくなり、熱処理後の変寸が大きくなる。よってSi量の上限を2.0%とした。Si量は、好ましくは1.0%以上、より好ましくは1.2%以上であり、好ましくは1.85%以下である。
Si: 0.5 to 2.0%
Si is useful as a deoxidizing element at the time of steelmaking, and is an element that contributes to improving hardness and securing machinability. Moreover, Si suppresses temper softening of the martensite of the matrix and is useful for suppressing HAZ softening. In order to effectively exhibit such an action, the lower limit of the Si amount is set to 0.5%. However, if the amount is excessive, the toughness decreases. Moreover, segregation increases and the size after heat treatment increases. Therefore, the upper limit of Si content was set to 2.0%. The amount of Si is preferably 1.0% or more, more preferably 1.2% or more, and preferably 1.85% or less.
Mn:0.1〜2.0%
Mnは、焼入性確保に有用な元素である。しかしその量が過剰であると、残留オーステナイトが増加するため、高温の時効処理を行わないと所望の硬さが得られなくなるほか、靱性も低下する。これらを勘案して、Mn量を上記範囲に定めた。Mn量は、好ましくは0.15%以上であり、好ましくは1%以下、より好ましくは0.5%以下、更に好ましくは0.35%以下である。
Mn: 0.1 to 2.0%
Mn is an element useful for ensuring hardenability. However, if the amount is excessive, retained austenite increases, so that the desired hardness cannot be obtained unless high temperature aging treatment is performed, and the toughness is also lowered. Taking these into consideration, the amount of Mn was set within the above range. The amount of Mn is preferably 0.15% or more, preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.35% or less.
Cr:5〜7%
Crは、所定の硬さを確保するために有用な元素である。詳しくはCr量が少なすぎると、焼入性が不足してベイナイトが一部生成するため、硬さが低下し、耐摩耗性を確保することができない。さらにCrは、金型の耐食性を確保するためにも有用な元素である。そこでCr量の下限を5%とした。Cr量は、好ましくは5.5%以上である。但しその量が過剰であると、粗大なCr系炭化物が多量に生成し、PVD処理によって形成されるTiN皮膜が剥離しやすくなる。またCr量が過剰であると、熱処理後の収縮によって硬質皮膜の耐久性が低下する。さらにCr量が過剰であると靱性に悪影響を及ぼす。そこでCr量の上限を7%とした。Cr量は、好ましくは6.5%以下である。
Cr: 5-7%
Cr is an element useful for ensuring a predetermined hardness. Specifically, if the amount of Cr is too small, hardenability is insufficient and a part of bainite is generated, so that the hardness is lowered and the wear resistance cannot be ensured. Further, Cr is an element useful for ensuring the corrosion resistance of the mold. Therefore, the lower limit of the Cr amount is set to 5%. The amount of Cr is preferably 5.5% or more. However, if the amount is excessive, a large amount of coarse Cr-based carbide is generated, and the TiN film formed by the PVD process is easily peeled off. On the other hand, if the amount of Cr is excessive, the durability of the hard coating decreases due to shrinkage after heat treatment. Further, if the amount of Cr is excessive, the toughness is adversely affected. Therefore, the upper limit of Cr content is set to 7%. The amount of Cr is preferably 6.5% or less.
Al:0.01〜1.0%
Alは、脱酸剤としても有用であることに加えて、Ni3AlなどのAl−Ni系金属間化合物の析出強化による硬さ向上、およびHAZ軟化の抑制にも寄与する元素である。さらにAlは、Nと共にAlN析出物を形成して、焼入れ時の結晶粒粗大化を防止して、優れた靱性を達成するために重要な元素である。これらを勘案して、Alの下限を0.01%とした。Al量は、好ましくは0.02%以上、更に好ましくは0.03%以上である。
Al: 0.01 to 1.0%
In addition to being useful as a deoxidizer, Al is an element that contributes to the improvement of hardness by precipitation strengthening of Al—Ni-based intermetallic compounds such as Ni 3 Al and the suppression of softening of HAZ. Furthermore, Al is an important element for forming an AlN precipitate together with N to prevent crystal grain coarsening during quenching and achieving excellent toughness. Considering these, the lower limit of Al was set to 0.01%. The amount of Al is preferably 0.02% or more, more preferably 0.03% or more.
なお工具鋼の分野では、介在物の品質を向上させるため、Al量はなるべく低減するのが一般的である。それにもかかわらず金型用鋼の硬さ向上、好ましくはHAZ軟化の抑制および結晶粒粗大化の防止のために、本発明では積極的にAlを添加している。本発明におけるAlの積極添加は、従来技術と比べて大きな違いの1つである。 In the field of tool steel, the amount of Al is generally reduced as much as possible in order to improve the quality of inclusions. Nevertheless, Al is actively added in the present invention in order to improve the hardness of the mold steel, preferably to suppress the HAZ softening and to prevent the coarsening of the crystal grains. The positive addition of Al in the present invention is one of the major differences compared to the prior art.
一方、Al量が過剰であると、かえって靱性の低下を招くほか、偏析が大きくなり、熱処理後の変寸が大きくなる。そこでAl量の上限を1.0%とした。Al量は、好ましくは0.8%以下である。 On the other hand, if the amount of Al is excessive, the toughness is reduced, segregation increases, and the size after heat treatment increases. Therefore, the upper limit of Al content was set to 1.0%. The amount of Al is preferably 0.8% or less.
N:0.003〜0.025%
Nは、Alと共にAlN析出物を形成して、焼入れ時の結晶粒粗大化を防止して、優れた靱性を達成するために重要な元素である。優れた靱性を達成するためにN量の下限を0.003%とした。しかしその量が過剰であると、かえって靱性が低下する。そこでN量の上限を0.025%とした。N量は、0.004%以上、0.020%以下であることが好ましい。
N: 0.003 to 0.025%
N is an important element for forming an AlN precipitate together with Al to prevent crystal grain coarsening during quenching and achieving excellent toughness. In order to achieve excellent toughness, the lower limit of the N content is set to 0.003%. However, if the amount is excessive, the toughness is rather reduced. Therefore, the upper limit of the N amount is set to 0.025%. The N amount is preferably 0.004% or more and 0.020% or less.
Cu:0.25〜1%
Cuは、ε−Cuの析出強化による硬さ向上を図るために必要な元素であり、HAZ軟化の抑制にも寄与する。但しその量が過剰であると、靱性が低下し、また鍛造割れが発生しやすくなる。そこでCu量の上限を1%とした。Cu量は、0.30%以上、0.8%以下であることが好ましい。
Cu: 0.25 to 1%
Cu is an element necessary for improving hardness by precipitation strengthening of ε-Cu, and contributes to suppression of HAZ softening. However, if the amount is excessive, the toughness is lowered and forging cracks are likely to occur. Therefore, the upper limit of the amount of Cu is set to 1%. The amount of Cu is preferably 0.30% or more and 0.8% or less.
Ni:0.25〜1%
Niは、Ni3AlなどのAl−Ni系金属間化合物の析出強化による硬さ向上を図るために必要な元素であり、HAZ軟化の抑制にも寄与する。またNiは、Cuと併用することにより、Cuの過剰添加による熱間脆性を抑制し、鍛造時の割れを防止することもできる。但しその量が過剰であると、残留オーステナイトが増加して高温で時効しないと所定の硬さを確保できないほか、熱処理後に膨張してしまう。またNi量が過剰であると、靱性も低下する。これらを勘案して、Ni量を上記範囲に定めた。Ni量は、0.30%以上、0.8%以下であることが好ましい。
Ni: 0.25 to 1%
Ni is an element necessary for improving the hardness by precipitation strengthening of Al—Ni-based intermetallic compounds such as Ni 3 Al, and contributes to the suppression of HAZ softening. Ni can also be used in combination with Cu to suppress hot brittleness due to excessive addition of Cu and to prevent cracking during forging. However, if the amount is excessive, the retained austenite increases, and unless it is aged at a high temperature, a predetermined hardness cannot be secured, and it expands after heat treatment. Further, if the amount of Ni is excessive, the toughness also decreases. Taking these into account, the amount of Ni was set to the above range. The amount of Ni is preferably 0.30% or more and 0.8% or less.
Mo:0.5〜3%およびW:2%以下(0%を含む)
MoおよびWは、いずれも、M6C型炭化物を形成するほか、Ni3Mo系金属間化合物などを形成し、析出強化に寄与する元素である。但しこれらの量が過剰であると、上記の炭化物などが過剰に生成し、靱性の低下を招くほか、熱処理後の変寸が大きくなる。そこでMo量およびW量として上記範囲を設定した。本発明では、Moを必須成分とし、Wは選択元素とするが、両方を併用しても構わない。W量の好ましい下限は0.02%である。Mo量は、0.7%以上、2.5%以下であることが好ましい。W量は、0.05%以上、1.5%以下であることがより好ましい。
Mo: 0.5 to 3% and W: 2% or less (including 0%)
Mo and W are elements that contribute to precipitation strengthening by forming M 6 C-type carbides and forming Ni 3 Mo-based intermetallic compounds. However, if these amounts are excessive, the above carbides and the like are excessively generated, leading to a decrease in toughness, and the size change after heat treatment becomes large. Therefore, the above ranges were set as the Mo amount and the W amount. In the present invention, Mo is an essential component and W is a selective element, but both may be used in combination. A preferable lower limit of the amount of W is 0.02%. The amount of Mo is preferably 0.7% or more and 2.5% or less. The amount of W is more preferably 0.05% or more and 1.5% or less.
S:0.1%以下(0%を含まない)
Sは、被削性確保に有用な元素である。被削性確保の観点からはSを、好ましくは0.002%以上、より好ましくは0.004%以上の量で含有させることが推奨される。しかしその量が過剰であると溶接割れが生じる。そこでS量の上限を0.1%とした。S量は、好ましくは0.07%以下、より好ましくは0.05%以下、更に好ましくは0.025%以下である。
S: 0.1% or less (excluding 0%)
S is an element useful for ensuring machinability. From the viewpoint of ensuring machinability, it is recommended to contain S in an amount of preferably 0.002% or more, more preferably 0.004% or more. However, if the amount is excessive, weld cracks occur. Therefore, the upper limit of the amount of S is set to 0.1%. The amount of S is preferably 0.07% or less, more preferably 0.05% or less, and still more preferably 0.025% or less.
更に本発明では、下記(1)〜(3)の要件を満足していることが必要である{[ ]は、各元素の含有量(%)を意味する。}。 Furthermore, in the present invention, it is necessary to satisfy the following requirements (1) to (3) {[] means the content (%) of each element. }.
(1)[Cr]×[C]≦4
上記(1)は、粗大なCr系炭化物の生成抑制を目的として設定されたものである。[Cr]×[C]が4を超えると、粗大なCr系炭化物が生成してTiN皮膜が剥離し易くなる。またこの積が4を超えると、硬質皮膜の耐久性が低下するほか、熱処理後の変寸が大きくなる。[Cr]×[C]は、3.8以下であることが好ましく、3.7以下であることがより好ましい。なお、この下限は、粗大なCr系炭化物の生成抑制や、更には熱処理後の変寸抑制などの観点からは小さい方が良いが、CrやCの添加による上記作用を有効に発揮させることなども勘案すると、おおむね、0.8であることが好ましい。
(1) [Cr] × [C] ≦ 4
The above (1) is set for the purpose of suppressing the formation of coarse Cr-based carbides. When [Cr] × [C] exceeds 4, coarse Cr-based carbides are generated and the TiN film is easily peeled off. On the other hand, when this product exceeds 4, not only the durability of the hard coating is lowered, but also the size after heat treatment is increased. [Cr] × [C] is preferably 3.8 or less, and more preferably 3.7 or less. The lower limit is better from the standpoint of suppressing the formation of coarse Cr-based carbides and further suppressing the change in size after heat treatment, but effectively exerting the above-described action by the addition of Cr and C. Taking this into consideration, it is generally preferable that the ratio is 0.8.
(2)[Al]/[N]:1〜30
上記(2)は、微細なAlNを形成させて、焼入れ後の靱性を確保するために設定されたものである。[Al]/[N]が小さすぎても、大きすぎても、微細なAlN析出物が得られにくくなり、優れた靱性が確保できない。よって、これらのバランスを精緻に制御することが重要である。[Al]/[N]は、2以上、20以下であることが好ましい。
(2) [Al] / [N]: 1-30
The above (2) is set to form fine AlN and ensure toughness after quenching. If [Al] / [N] is too small or too large, it becomes difficult to obtain fine AlN precipitates, and excellent toughness cannot be ensured. Therefore, it is important to precisely control these balances. [Al] / [N] is preferably 2 or more and 20 or less.
(3)[Mo]+0.5×[W]:0.5〜3.00%
MoやWは、前述したように、析出強化に寄与する元素であり、上記(3)は、主に、これらの析出強化による硬さ向上を確保するためのパラメータとして設定されたものである。またこのパラメータを制御することによって、HAZ軟化を良好に抑制できる。これらの作用を有効に発揮させるため、上記(3)の下限を0.5%とした。但しMo量やW量が過剰であると、炭化物が過剰に添加し、靱性の低下を招くほか、熱処理後の変寸が大きくなる。そこで上記(3)の上限を3.00%とした。上記(3)の下限は、好ましくは1.0%、より好ましくは1.2%であり、その上限は好ましくは2.8%である。なお上記(3)中、[W]の係数(0.5)は、Moの原子量はWの約1/2であることを考慮して定めた。
(3) [Mo] + 0.5 × [W]: 0.5 to 3.00%
As described above, Mo and W are elements that contribute to precipitation strengthening, and the above (3) is mainly set as a parameter for ensuring hardness improvement by these precipitation strengthening. Moreover, by controlling this parameter, the HAZ softening can be satisfactorily suppressed. In order to effectively exhibit these actions, the lower limit of the above (3) is set to 0.5%. However, if the amount of Mo or the amount of W is excessive, carbides are added excessively, leading to a decrease in toughness, and the size after heat treatment becomes large. Therefore, the upper limit of (3) is set to 3.00%. The lower limit of the above (3) is preferably 1.0%, more preferably 1.2%, and the upper limit is preferably 2.8%. In the above (3), the coefficient (0.5) of [W] was determined considering that the atomic weight of Mo is about 1/2 of W.
本発明の鋼中の基本成分は上記のとおりであり、残部は鉄および不可避不純物である。不可避不純物としては、例えば、製造過程で不可避的に混入する元素などが挙げられ、具体的にはP、Oなどが例示される。P量は、おおむね、好ましくは0.05%以下、より好ましくは0.03%以下である。O量は、おおむね、好ましくは0.005%以下、より好ましくは0.003%以下、更に好ましくは0.002%以下である。本発明では、更に、他の特性改善を目的として、以下の選択成分を含有させても良い。 The basic components in the steel of the present invention are as described above, and the balance is iron and inevitable impurities. Examples of inevitable impurities include elements that are inevitably mixed in the manufacturing process, and specific examples include P and O. The amount of P is approximately 0.05% or less, more preferably 0.03% or less. The amount of O is generally preferably 0.005% or less, more preferably 0.003% or less, and still more preferably 0.002% or less. In the present invention, for the purpose of improving other characteristics, the following selective components may be contained.
V:0.5%以下(0%を含まない)
Vは、VCなどの炭化物を形成して硬さ向上に寄与するほか、HAZ軟化の抑制に有効な元素である。また母材表面に、ガス窒化、塩浴窒化、プラズマ窒化などの窒化処理を施して拡散硬化層を形成する場合に、表面硬さの向上や硬化層深さの上昇に有効な元素である。このような作用を有効に発揮させるためには、V量は、おおむね、0.05%以上添加することが好ましい。但しその量が過剰であると、固溶C量が低下し、母相であるマルテンサイト組織の硬さ低下を招くほか、靱性が低下する。そこでVを含有させる場合、その量の上限を0.5%とした。V量は、より好ましくは0.4%以下、更に好ましくは0.3%以下である。
V: 0.5% or less (excluding 0%)
V is an element effective for suppressing HAZ softening, in addition to forming carbides such as VC and contributing to improvement in hardness. Further, when the diffusion hardened layer is formed by performing nitriding treatment such as gas nitriding, salt bath nitriding, plasma nitriding on the surface of the base material, it is an element effective for improving the surface hardness and increasing the depth of the hardened layer. In order to exhibit such an action effectively, it is preferable that the amount of V is approximately 0.05% or more. However, if the amount is excessive, the amount of solute C is reduced, the hardness of the martensite structure that is the parent phase is reduced, and the toughness is reduced. Therefore, when V is contained, the upper limit of the amount is set to 0.5%. The amount of V is more preferably 0.4% or less, and still more preferably 0.3% or less.
Ti、Zr、Hf、TaおよびNbよりなる群から選択される少なくとも一種の元素を合計で0.5%以下(0%を含まない)
これらの元素は、いずれも窒化物形成元素であり、当該窒化物およびAlNの微細分散化に寄与し、その結果、結晶粒粗大化を防止して靱性向上に寄与する元素である。このような作用を有効に発揮させるため、おおむね、Tiを0.01%以上、Zrを0.02%以上、Hfを0.04%以上、Taを0.04%以上、Nbを0.02%以上の量で含有させることが好ましい。但しこれらの量が過剰であると、固溶C量が低下してマルテンサイトの硬さ低下を招く。そこで上記元素の合計量を0.5%とすることが好ましい。上記元素の合計量は、より好ましくは0.4%以下、更に好ましくは0.3%以下である。上記の元素は、単独で含有させても良く、2種以上を併用しても良い。
At least one element selected from the group consisting of Ti, Zr, Hf, Ta and Nb is 0.5% or less in total (not including 0%)
All of these elements are nitride-forming elements and contribute to fine dispersion of the nitride and AlN. As a result, the elements prevent the coarsening of crystal grains and contribute to the improvement of toughness. In order to effectively exert such actions, generally, Ti is 0.01% or more, Zr is 0.02% or more, Hf is 0.04% or more, Ta is 0.04% or more, and Nb is 0.02%. It is preferable to make it contain in the quantity of% or more. However, if these amounts are excessive, the amount of dissolved C will decrease and the hardness of martensite will decrease. Therefore, the total amount of the above elements is preferably 0.5%. The total amount of the above elements is more preferably 0.4% or less, still more preferably 0.3% or less. Said element may be contained independently and may use 2 or more types together.
Co:10%以下(0%を含まない)
Coは、Ms点を高め、残留オーステナイトの低減化に有効な元素であり、これにより、硬さが向上する。上記作用を有効に発揮させるため、Co量は、おおむね、1%以上であることが好ましい。但しその量が過剰であると、コストなどの上昇を招くため、上限を10%とすることが好ましい。Co量は、より好ましくは5.5%以下である。
Co: 10% or less (excluding 0%)
Co is an element that increases the Ms point and is effective in reducing retained austenite, and thereby improves the hardness. In order to effectively exhibit the above action, the amount of Co is preferably approximately 1% or more. However, if the amount is excessive, the cost is increased, so the upper limit is preferably 10%. The amount of Co is more preferably 5.5% or less.
本発明は、上記の金型用鋼を用いて得られる金型も包含する。金型の製造方法は、特に限定されないが、例えば、上記鋼を溶製後、熱間鍛造してから、焼鈍(例えば、約700℃で7時間保持した後、約17℃/hrの平均冷却速度で約400℃までを炉冷した後、放冷)を行なって軟化した後、切削加工などによって所定の形状に粗加工を行ってから、約950〜1150℃の温度で溶体化処理、次いで約400〜530℃で時効処理を行なって所望の硬さを付与する方法が挙げられる。 This invention also includes the metal mold | die obtained using said steel for metal mold | dies. The method for producing the mold is not particularly limited. For example, after the above steel is melted, hot forged, and then annealed (for example, held at about 700 ° C. for 7 hours, and then an average cooling of about 17 ° C./hr). After the furnace is cooled to about 400 ° C. at a speed, and then left to cool), it is softened and then roughly processed into a predetermined shape by cutting or the like, and then subjected to a solution treatment at a temperature of about 950 to 1150 ° C. A method of imparting desired hardness by performing an aging treatment at about 400 to 530 ° C can be mentioned.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
表1に記載の種々の鋼種を用い、真空誘導溶解炉で150kgのインゴットを溶製した後、約900〜1150℃に加熱し、40mmT×75mmW×約2000mmLの板2枚に鍛造し、その後、約60℃/hrの平均冷却速度で徐冷を行なった。100℃以下の温度まで冷却した後、再び、約850℃の温度まで加熱し、約50℃/hrの平均冷却速度で徐冷を行なった(焼鈍)。上記のようにして得られた各焼鈍材を用い、下記(1)〜(3)の試験を行った。 Using various steel types listed in Table 1, 150 kg ingot was melted in a vacuum induction melting furnace, then heated to about 900-1150 ° C., forged into two 40 mm T × 75 mm W × about 2000 mm L plates, Slow cooling was performed at an average cooling rate of about 60 ° C./hr. After cooling to a temperature of 100 ° C. or lower, the mixture was again heated to a temperature of about 850 ° C. and gradually cooled at an average cooling rate of about 50 ° C./hr (annealing). Using the annealed materials obtained as described above, the following tests (1) to (3) were performed.
(1)硬さ試験(最大硬さの測定)
上記の焼鈍材から、おおむね、20mmT×20mmW×15mmLサイズの試験片を切出して硬さ測定用試験片とし、これに、以下の熱処理を施した。
(1) Hardness test (measurement of maximum hardness)
From the above-mentioned annealed material, a test piece having a size of 20 mmT × 20 mmW × 15 mmL was generally cut out to obtain a hardness measurement test piece, which was subjected to the following heat treatment.
溶体化処理(焼入処理):約1020〜1030℃で120分間加熱→空冷→時効処理(焼戻処理):約400〜560℃で約3時間保持→放冷
上記のように、焼戻温度を約400〜560℃の範囲内で変化させたときの硬さをビッカース硬度計(AKASHI社製の規格AVK、荷重5kg)で測定し、最大硬さ(HV)を調べた。本実施例では、最大硬さが650HV以上のものを合格とした。結果を表2に示す。
Solution treatment (quenching treatment): heating at about 1020-1030 ° C. for 120 minutes → air cooling → aging treatment (tempering treatment): holding at about 400-560 ° C. for about 3 hours → cooling as described above, tempering temperature Was measured with a Vickers hardness meter (standard AVK manufactured by AKASHI, load 5 kg), and the maximum hardness (HV) was examined. In this example, a sample having a maximum hardness of 650 HV or higher was accepted. The results are shown in Table 2.
(2)靱性試験(シャルピー衝撃値の測定)
上記の焼鈍材に対し、以下の熱処理を施した。
(2) Toughness test (measurement of Charpy impact value)
The annealed material was subjected to the following heat treatment.
溶体化処理(焼入処理):約1020〜1030℃で120分間加熱→空冷→時効処理(焼戻処理):約400〜560℃で約3時間保持→空冷または放冷
次に、図2に示すように、10mmRのVノッチ部を有する試験片を切出して靱性測定用試験片(シャルピー衝撃試験片)とした。この試験片を用いてシャルピー衝撃試験を実施し、室温での吸収エネルギー(シャルピー衝撃値)を測定した。シャルピー衝撃試験片は3本ずつ採取し、これらの平均値をシャルピー衝撃値とした。本実施例では、シャルピー衝撃値が20J以上のものを「靱性に優れる」と評価した。結果を表2に示す。
Solution treatment (quenching treatment): heating at about 1020 to 1030 ° C. for 120 minutes → air cooling → aging treatment (tempering treatment): holding at about 400 to 560 ° C. for about 3 hours → air cooling or standing cooling Next, FIG. As shown, a test piece having a V notch portion of 10 mmR was cut out to obtain a test piece for toughness measurement (Charpy impact test piece). A Charpy impact test was performed using this test piece, and the absorbed energy (Charpy impact value) at room temperature was measured. Three Charpy impact test specimens were collected, and the average value of these was taken as the Charpy impact value. In this example, a Charpy impact value of 20 J or more was evaluated as “excellent toughness”. The results are shown in Table 2.
(3)硬質皮膜の特性評価
(3−1)硬質皮膜の形成
上記の焼鈍材から、おおむね、4mmt×φ50mmサイズの試験片を切出し、靱性試験と同様の熱処理を行って、硬質皮膜の特性評価用の試験片とした。この試験片に対して、一般的な条件でTD処理、CVD処理およびPVD処理を行って、表面に別々に、VC皮膜、TiC皮膜およびTiN皮膜を形成させた。
(3) Characteristic evaluation of hard coating (3-1) Formation of hard coating From the above-mentioned annealed material, a test piece of about 4 mmt × φ50 mm size is cut out and subjected to the same heat treatment as the toughness test to evaluate the characteristics of the hard coating. The test piece was used. The test piece was subjected to TD treatment, CVD treatment and PVD treatment under general conditions, and a VC coating, a TiC coating and a TiN coating were separately formed on the surface.
(3−2)硬質皮膜の膜厚測定
上記のようにして形成した各硬質皮膜(VC、TiCおよびTiN皮膜)の2000倍の写真を、走査型電子顕微鏡(SEM)で撮影し、任意の5箇所で膜厚を測定した。5箇所の測定値の平均値を、各硬質皮膜の膜厚(μm)とした。本実施例では、VC皮膜およびTiC皮膜の膜厚が7.0μm以上のものを合格とした。結果を表2に示す。
(3-2) Measurement of Hard Film Thickness A 2000 times photograph of each hard film (VC, TiC and TiN film) formed as described above was taken with a scanning electron microscope (SEM). The film thickness was measured at the points. The average value of the measured values at the five locations was taken as the film thickness (μm) of each hard coating. In this example, a film having a film thickness of 7.0 μm or more as a VC film and a TiC film was regarded as acceptable. The results are shown in Table 2.
(3−3)硬質皮膜の剥離限界荷重の測定
各硬質皮膜(VC、TiCおよびTiN)の剥離限界荷重を、ピンオンディスク試験にて測定した。詳しくは、先端のR半径200μmのダイヤモンド圧子を、荷重増加速度:100N/minおよび圧子移動速度:10mm/minの条件で、硬質皮膜に押込み−移動させ、最初に皮膜剥離が生じた箇所の荷重(N)を剥離限界荷重として求めた。本実施例では、各硬質皮膜の剥離限界荷重が20N以上のものを合格とした。結果を表2に示す。
(3-3) Measurement of peeling limit load of hard film The peeling limit load of each hard film (VC, TiC and TiN) was measured by a pin-on-disk test. Specifically, a diamond indenter with an R radius of 200 μm at the tip is pushed and moved into a hard film under the conditions of a load increase rate: 100 N / min and an indenter moving speed: 10 mm / min, and the load at the point where film peeling occurs first. (N) was determined as the peel limit load. In this example, each hard coating having a peeling limit load of 20 N or more was regarded as acceptable. The results are shown in Table 2.
表1および2の結果から明らかなように、本発明の要件を満たす鋼No.6〜12および14〜23は、(最大)硬さ、靱性(シャルピー衝撃値)、VCまたはTiC皮膜の膜厚、並びに硬質皮膜(VC皮膜、TiC皮膜またはTiN皮膜)の剥離限界荷重が全て良好である。これらに対して、本発明のいずれかの要件を満たさない鋼No.1〜5、13および24〜31は、以下の不具合を有している。 As is apparent from the results of Tables 1 and 2, the steel No. 1 satisfying the requirements of the present invention was obtained. 6-12 and 14-23 all have good (maximum) hardness, toughness (Charpy impact value), film thickness of VC or TiC film, and peeling limit load of hard film (VC film, TiC film or TiN film) It is. On the other hand, steel No. which does not satisfy any requirement of the present invention. 1 to 5, 13 and 24 to 31 have the following problems.
鋼No.1および2は、C量およびCr量、[Cr]×[C]のいずれもが過剰であり、粗大なCr系炭化物のためにTiN皮膜の剥離限界荷重が不充分である。またこれらは、CおよびCr量が過剰であるため、靱性も低下している。 Steel No. In Nos. 1 and 2, the amount of C, the amount of Cr, and [Cr] × [C] are excessive, and the peeling limit load of the TiN film is insufficient due to coarse Cr-based carbides. Moreover, since the amount of C and Cr is excessive, the toughness is also lowered.
鋼No.3および4は、C量が少ないため、VCおよびTiC皮膜の膜厚が不充分であり、その結果、これら皮膜の剥離限界荷重が低下している。 Steel No. Since 3 and 4 have a small amount of C, the film thicknesses of the VC and TiC films are insufficient, and as a result, the peeling limit load of these films is lowered.
鋼No.5は、Al量が少なく、且つ[Al]/[N]の値が小さいため、靱性が不充分である。 Steel No. No. 5 is insufficient in toughness because the amount of Al is small and the value of [Al] / [N] is small.
鋼No.13は、Al量が多く、且つ[Al]/[N]の値が大きいため、靱性が不充分である。 Steel No. Since No. 13 has a large amount of Al and a large value of [Al] / [N], the toughness is insufficient.
鋼No.24はSi量が過剰であるため、鋼No.25はMn量が過剰であるため、鋼No.26はCuおよびNi量が過剰であるため、いずれも、靱性が不充分である。 Steel No. No. 24 has an excessive amount of Si. No. 25 has an excessive amount of Mn. Since No. 26 has an excessive amount of Cu and Ni, both have insufficient toughness.
鋼No.27は、Mo量が少なく、且つ[Mo]+0.5×[W]の値が小さいため、硬さが不充分である。 Steel No. In No. 27, since the amount of Mo is small and the value of [Mo] + 0.5 × [W] is small, the hardness is insufficient.
鋼No.28は、[Mo]+0.5×[W]の値が大きいため、靱性が不充分である。 Steel No. Since No. 28 has a large value of [Mo] + 0.5 × [W], its toughness is insufficient.
鋼No.29は、選択元素であるV量が過剰であるため、靱性が不充分である。 Steel No. No. 29 has insufficient toughness due to an excessive amount of V as a selective element.
鋼No.30は、選択元素であるTiおよびNbの合計量が0.5%を超えているため、固溶C量が低下し、その結果、硬さが不充分である。 Steel No. In No. 30, since the total amount of Ti and Nb, which are selective elements, exceeds 0.5%, the amount of dissolved C decreases, and as a result, the hardness is insufficient.
鋼No.31は、N量が過剰であるため、靱性が不充分である。 Steel No. No. 31 has insufficient toughness because the N amount is excessive.
Claims (5)
Si:0.5〜2.0%、
Mn:0.1〜2.0%、
Cr:5〜7%、
Al:0.01〜1.0%、
N :0.003〜0.025%、
Cu:0.25〜1%、
Ni:0.25〜1%、
Mo:0.5〜3%およびW:2%以下(0%を含む)、並びに
S :0.1%以下(0%を含まない)
を含有し、残部が鉄および不可避不純物であり、
下記(1)〜(3){[ ]は、各元素の含有量(%)を意味する。}
(1)[Cr]×[C]≦4、
(2)[Al]/[N]:1〜30、
(3)[Mo]+0.5×[W]:0.5〜3.00%
の要件を満足することを特徴とする冷間金型用鋼。 C: 0.5 to 0.7% (meaning mass%, the same applies hereinafter),
Si: 0.5 to 2.0%,
Mn: 0.1 to 2.0%,
Cr: 5-7%,
Al: 0.01 to 1.0%,
N: 0.003-0.025%,
Cu: 0.25 to 1%
Ni: 0.25 to 1%,
Mo: 0.5 to 3% and W: 2% or less (including 0%), and S: 0.1% or less (not including 0%)
The balance is iron and inevitable impurities,
The following (1) to (3) {[] means the content (%) of each element. }
(1) [Cr] × [C] ≦ 4,
(2) [Al] / [N]: 1 to 30,
(3) [Mo] + 0.5 × [W]: 0.5 to 3.00%
A steel for cold mold, which satisfies the requirements of
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007294326A JP5143531B2 (en) | 2007-11-13 | 2007-11-13 | Cold mold steel and molds |
US12/598,328 US20100135844A1 (en) | 2007-11-13 | 2008-09-18 | Cold-work die steel and die |
CN2008800140508A CN101668874B (en) | 2007-11-13 | 2008-09-18 | Cold-work die steel and die |
PCT/JP2008/066870 WO2009063690A1 (en) | 2007-11-13 | 2008-09-18 | Cold-work die steel and die |
TW097140302A TW200936785A (en) | 2007-11-13 | 2008-10-21 | Cold-work die steel and die |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007294326A JP5143531B2 (en) | 2007-11-13 | 2007-11-13 | Cold mold steel and molds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009120886A JP2009120886A (en) | 2009-06-04 |
JP5143531B2 true JP5143531B2 (en) | 2013-02-13 |
Family
ID=40638544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007294326A Active JP5143531B2 (en) | 2007-11-13 | 2007-11-13 | Cold mold steel and molds |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100135844A1 (en) |
JP (1) | JP5143531B2 (en) |
CN (1) | CN101668874B (en) |
TW (1) | TW200936785A (en) |
WO (1) | WO2009063690A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5351528B2 (en) * | 2009-01-14 | 2013-11-27 | 株式会社神戸製鋼所 | Cold mold steel and molds |
JP5672466B2 (en) * | 2011-02-21 | 2015-02-18 | 日立金属株式会社 | Cold work tool steel with excellent machinability |
TWI440726B (en) * | 2011-02-21 | 2014-06-11 | Hitachi Metals Ltd | Method for producing cold-work die |
TWI468238B (en) * | 2012-08-22 | 2015-01-11 | China Steel Corp | Casting mold and heat-treating method of the same |
CN102877071A (en) * | 2012-09-25 | 2013-01-16 | 黄遥泉 | Novel heat chemical treatment process for TD punch |
CN103233184B (en) * | 2013-04-18 | 2015-05-27 | 毛建其 | Non-quenched-tempered naturally pre-hardened easy-cutting forging die steel |
CN104805362A (en) * | 2015-03-31 | 2015-07-29 | 吉林大学 | Aluminium-containing medium alloy casting cold-working mould steel |
CN105648315A (en) * | 2016-01-27 | 2016-06-08 | 太仓旺美模具有限公司 | High-strength mold steel for cold-punched mold |
CN107442720A (en) * | 2017-06-13 | 2017-12-08 | 江苏森威精锻有限公司 | A kind of material fabrication process of cold-working mould |
CN107475606A (en) * | 2017-06-30 | 2017-12-15 | 太仓旺美模具有限公司 | A kind of corrosion-resistant cold work die steel |
JP2020111766A (en) * | 2019-01-08 | 2020-07-27 | 山陽特殊製鋼株式会社 | Cold tool steel |
JP7532824B2 (en) | 2020-03-16 | 2024-08-14 | 株式会社プロテリアル | Steel for hot working dies, hot working dies and manufacturing method thereof |
JP2022144437A (en) * | 2021-03-19 | 2022-10-03 | 大同特殊鋼株式会社 | Fe-based alloy and metal powder |
CN113355597A (en) * | 2021-05-24 | 2021-09-07 | 如皋市宏茂重型锻压有限公司 | High-toughness high-wear-resistance cold-work die steel and manufacturing process thereof |
CN116043106B (en) * | 2022-11-08 | 2023-12-15 | 湖北楠田工模具科技有限公司 | High-purity high-toughness long-service-period cold work die steel and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285444A (en) * | 2003-03-24 | 2004-10-14 | Daido Steel Co Ltd | Low-alloy high-speed tool steel showing stable toughness |
JP4403875B2 (en) * | 2004-05-14 | 2010-01-27 | 大同特殊鋼株式会社 | Cold work tool steel |
JP2006193790A (en) * | 2005-01-14 | 2006-07-27 | Daido Steel Co Ltd | Cold working tool steel |
JP2006328521A (en) * | 2005-05-30 | 2006-12-07 | Daido Steel Co Ltd | Tool for precision working and tool steel |
JP2007197746A (en) * | 2006-01-25 | 2007-08-09 | Daido Steel Co Ltd | Tool steel |
-
2007
- 2007-11-13 JP JP2007294326A patent/JP5143531B2/en active Active
-
2008
- 2008-09-18 CN CN2008800140508A patent/CN101668874B/en active Active
- 2008-09-18 WO PCT/JP2008/066870 patent/WO2009063690A1/en active Application Filing
- 2008-09-18 US US12/598,328 patent/US20100135844A1/en not_active Abandoned
- 2008-10-21 TW TW097140302A patent/TW200936785A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW200936785A (en) | 2009-09-01 |
WO2009063690A1 (en) | 2009-05-22 |
CN101668874A (en) | 2010-03-10 |
JP2009120886A (en) | 2009-06-04 |
CN101668874B (en) | 2011-11-23 |
US20100135844A1 (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5143531B2 (en) | Cold mold steel and molds | |
JP5276330B2 (en) | Cold mold steel and cold press mold | |
TWI440726B (en) | Method for producing cold-work die | |
CN101528962A (en) | Cold work die steel, die, and method for production of cold work die steel | |
JP2014177710A (en) | Hardening method for steel | |
JP5181517B2 (en) | Steel sheet for hot pressing | |
JP4266383B2 (en) | Cold mold steel and molds | |
JP7172275B2 (en) | Hot stamping die steel, hot stamping die and manufacturing method thereof | |
JP5351528B2 (en) | Cold mold steel and molds | |
CN115279932B (en) | Steel for hot working die, and method for producing same | |
JP5316425B2 (en) | Alloy for surface coating treatment and sliding member | |
JP2001294974A (en) | Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method | |
TW200831682A (en) | Cold work die steel, die, and method for production of cold work die steel | |
JP5345415B2 (en) | Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics | |
JP2010024551A (en) | Steel sheet to be hot-pressed | |
JP2007162138A (en) | Steel sheet for nitriding treatment and method for producing the same | |
JP3508943B2 (en) | Aluminum forging die steel | |
JP4266384B2 (en) | Manufacturing method of steel for cold mold | |
WO2014030619A1 (en) | Method for cutting cold work tool steel, and method for producing cold-working die material | |
JP2005298848A (en) | Hot pressing method for steel sheet | |
JP7608772B2 (en) | Die steel and dies | |
WO2020246099A1 (en) | Steel for hot stamp die, hot stamp die and manufacturing method thereof | |
JP2000234149A (en) | Casting mold with excellent erosion resistance | |
JP2021011619A (en) | Alloy for cold-working die for trd treatment and method for producing cold-working die | |
JP2006265652A (en) | Die steel for die-casting and die for die-casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5143531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |