[go: up one dir, main page]

JP5125480B2 - Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device - Google Patents

Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device Download PDF

Info

Publication number
JP5125480B2
JP5125480B2 JP2007328892A JP2007328892A JP5125480B2 JP 5125480 B2 JP5125480 B2 JP 5125480B2 JP 2007328892 A JP2007328892 A JP 2007328892A JP 2007328892 A JP2007328892 A JP 2007328892A JP 5125480 B2 JP5125480 B2 JP 5125480B2
Authority
JP
Japan
Prior art keywords
group
ring
hole transport
layer
transport material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007328892A
Other languages
Japanese (ja)
Other versions
JP2008198989A (en
Inventor
昌義 矢部
宏一朗 飯田
朋行 緒方
一毅 岡部
英貴 五郎丸
昌子 竹内
恭子 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007328892A priority Critical patent/JP5125480B2/en
Publication of JP2008198989A publication Critical patent/JP2008198989A/en
Application granted granted Critical
Publication of JP5125480B2 publication Critical patent/JP5125480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1644End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、湿式成膜法による成膜が可能な、架橋基を有する有機化合物からなる正孔輸送材料と、該正孔輸送材料を重合させてなる高分子化合物と、該正孔輸送材料を含有する有機電界発光素子用組成物と、該高分子化合物を含有する層を有する、発光効率が高く、駆動安定性に優れた有機電界発光素子に関するものである。   The present invention relates to a hole transport material composed of an organic compound having a crosslinking group, which can be formed by a wet film formation method, a polymer compound obtained by polymerizing the hole transport material, and the hole transport material. The present invention relates to an organic electroluminescent device having a composition containing an organic electroluminescent device and a layer containing the polymer compound, having high luminous efficiency and excellent driving stability.

近年、有機薄膜を用いた電界発光素子(有機電界発光素子)の開発が行われている。有機電界発光素子における有機薄膜の形成方法としては、真空蒸着法と湿式成膜法が挙げられる。
真空蒸着法は積層化が可能であるため、陽極および/または陰極からの電荷注入の改善、励起子の発光層封じ込めが容易であるという利点を有する。湿式成膜法は真空プロセスが要らず、大面積化が容易で、1つの層(塗布液)に様々な機能をもった複数の材料を混合して入れることが容易である等の利点がある。
In recent years, an electroluminescent element (organic electroluminescent element) using an organic thin film has been developed. Examples of the method for forming the organic thin film in the organic electroluminescence device include a vacuum deposition method and a wet film formation method.
Since the vacuum deposition method can be laminated, it has an advantage that the charge injection from the anode and / or the cathode is improved and the exciton light-emitting layer can be easily contained. The wet film formation method does not require a vacuum process, is easy to increase in area, and has an advantage that it is easy to mix a plurality of materials having various functions into one layer (coating liquid). .

しかしながら、湿式成膜法は積層化が困難であるため、真空蒸着法による素子に比べて駆動安定性に劣り、一部を除いて実用レベルに至っていないのが現状である。特に、湿式成膜法での積層化は、有機溶媒と水系溶媒を使用するなどして二層の積層は可能であるが、三層以上の積層化は困難であった。   However, since the wet film forming method is difficult to stack, the driving stability is inferior to that of the element by the vacuum vapor deposition method, and the present state is that it has not reached a practical level except for a part. In particular, the layering by the wet film forming method can be performed by stacking two layers by using an organic solvent and an aqueous solvent, but it is difficult to stack three or more layers.

このような積層化における問題点を解決するために、例えば特許文献1では、エポキシ基を有するジアミン化合物を使用して成膜を行っている。   In order to solve such problems in lamination, for example, in Patent Document 1, a film is formed using a diamine compound having an epoxy group.

また、特許文献2には、下記の様な架橋基を有する芳香族アミン化合物が提案されている。

Figure 0005125480
Patent Document 2 proposes an aromatic amine compound having the following crosslinking group.
Figure 0005125480

上記の化合物は、アミンのp−位全てが電子供与性の強い置換基であるため、非常に酸化されやすく保存安定性に問題があった。
特開平7−85973号公報 特開平7−114987号公報
In the above compound, all the p-positions of the amine are substituents having a strong electron donating property, so that they are very easily oxidized and have a problem in storage stability.
JP-A-7-85973 Japanese Unexamined Patent Publication No. 7-114987

本発明は、湿式成膜法に適した正孔輸送材料、特に電子および励起子を発光層側に封じ込める効果が高く、保存安定性に優れる正孔輸送材料を提供することを課題とする。
本発明はまた、発光効率が高く、駆動安定性が高い有機電界発光素子を提供することを課題とする。
An object of the present invention is to provide a hole transport material suitable for a wet film-forming method, in particular, a hole transport material having a high effect of confining electrons and excitons on the light emitting layer side and excellent in storage stability.
Another object of the present invention is to provide an organic electroluminescent device having high luminous efficiency and high driving stability.

本発明者らは、上記課題を解決するために鋭意検討した結果、下記の特定構造を有する架橋基を有する有機化合物が、高い正孔輸送能、高い電子および励起子阻止能を有し、保存安定性にも優れる、湿式成膜法に適した化合物であることを見出し、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have found that an organic compound having a crosslinking group having the following specific structure has high hole transport ability, high electron and exciton blocking ability, and is preserved. It has been found that the compound is excellent in stability and suitable for a wet film-forming method, and has reached the present invention.

[1] 下記一般式(I)で表され、分子量が300〜5000であることを特徴とする正孔輸送材料。

Figure 0005125480
[式中、R〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を表す。
nは、〜4の整数を表す。
連結基Z、直接結合、エーテル基または2価の芳香族基を表す。
は、水素原子または架橋基を表す。
但し、一分子中において、少なくとも1つのAは架橋基である。
一分子内の複数のA同士あるいはR〜R同士は、それぞれ同一であっても異なっていてもよい。] [1] A hole transport material represented by the following general formula (I) and having a molecular weight of 300 to 5,000.
Figure 0005125480
[Wherein, R 1 to R 7 each independently represents a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.
n represents an integer of 2 to 4.
Linking groups Z 1 represents a direct bond, an ether group or a divalent aromatic group.
A 1 represents a hydrogen atom or a bridging group.
However, in one molecule, at least one A 1 is a crosslinking group.
A plurality of A 1 or R 1 to R 7 in one molecule may be the same or different. ]

] nが2であることを特徴とする[1]に記載の正孔輸送材料。 [ 2 ] The hole transport material according to [1 ], wherein n is 2 .

] 一分子内における架橋基の数が、1、2または3であることを特徴とする[1]または2]に記載の正孔輸送材料。 [ 3 ] The hole transport material according to [1] or [ 2], wherein the number of crosslinking groups in one molecule is 1, 2 or 3.

] 上記式(I)が下記一般式(II)で表されることを特徴とする[1]ないし[]のいずれかに記載の正孔輸送材料。

Figure 0005125480
[式中、R、R〜R、Z、nおよびAは、それぞれ式(I)におけるものと同義である。また、R〜R11は、各々独立に、R〜Rと同義である。] [ 4 ] The hole transport material according to any one of [1] to [ 3 ], wherein the formula (I) is represented by the following general formula (II).
Figure 0005125480
[Wherein, R 1 , R 5 to R 7 , Z 1 , n and A 1 have the same meanings as in formula (I), respectively. Moreover, R < 9 > -R < 11 > is synonymous with R < 1 > -R < 7 > each independently. ]

] 架橋基が、下記式(Ia)で表されることを特徴とする[1]ないし[]のいずれかに記載の正孔輸送材料。
−G−J (Ia)
[式中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を表し、Jは、下記架橋基群Tの中から選ばれる基を表す。
<架橋基群T>

Figure 0005125480
(式中、R15〜R18は、各々独立に、水素原子またはアルキル基を表す。Arは置換基を有してもよい芳香族炭化水素基または置換基を有してもよい芳香族複素環基を表す。)] [ 5 ] The hole transport material according to any one of [1] to [ 4 ], wherein the crosslinking group is represented by the following formula (Ia).
-GJ (Ia)
[In the formula, G is formed by linking 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. Represents a valent group, and J represents a group selected from the following cross-linking group group T.
<Crosslinking group T>
Figure 0005125480
(Wherein R 15 to R 18 each independently represents a hydrogen atom or an alkyl group. Ar 1 is an aromatic hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. Represents a heterocyclic group.]]

] [1]ないし[]のいずれかに記載の正孔輸送材料と溶剤とを含有することを特徴とする有機電界発光素子用組成物。 [ 6 ] A composition for an organic electroluminescence device comprising the hole transport material according to any one of [1] to [ 5 ] and a solvent.

] 正孔輸送材料を2種以上含有することを特徴とする[]に記載の有機電界発光素子用組成物。 [ 7 ] The composition for organic electroluminescent elements according to [ 6 ], wherein the composition contains two or more hole transport materials.

] [1]ないし[]のいずれかに記載の正孔輸送材料を重合させて得られる高分子化合物。 [ 8 ] A polymer compound obtained by polymerizing the hole transport material according to any one of [1] to [ 5 ].

] 基板上に、陽極、陰極、およびこれら両極間に設けられた有機発光層を有する有機電界発光素子において、[]に記載の高分子化合物を含有する層を有することを特徴とする有機電界発光素子。 [ 9 ] An organic electroluminescent element having an anode, a cathode, and an organic light emitting layer provided between both electrodes on a substrate, characterized in that it has a layer containing the polymer compound described in [ 8 ]. Organic electroluminescent device.

10] 有機発光層が、湿式成膜法で形成されることを特徴とする[]に記載の有機電界発光素子。 [ 10 ] The organic electroluminescent element as described in [ 9 ], wherein the organic light emitting layer is formed by a wet film forming method.

11] 高分子化合物を含有する層が、正孔輸送層であることを特徴とする[]または[10]に記載の有機電界発光素子。 [ 11 ] The organic electroluminescent element as described in [ 9 ] or [ 10 ], wherein the layer containing a polymer compound is a hole transport layer.

本発明の正孔輸送材料は、高い正孔輸送能、高い電子および励起子阻止能を有し、保存安定性にも優れる。また、この正孔輸送材料は湿式成膜法に適しており、この正孔輸送材料を用いて有機電界発光素子の有機層を湿式成膜法で積層して形成することが可能となる。   The hole transport material of the present invention has high hole transport ability, high electron and exciton blocking ability, and is excellent in storage stability. Moreover, this hole transport material is suitable for a wet film-forming method, and an organic layer of an organic electroluminescent element can be laminated by the wet film-forming method using this hole transport material.

また、この正孔輸送材料を含む有機電界発光素子用組成物を用いて、湿式成膜法により形成される有機電界発光素子は、大面積化が可能である。
また、この正孔輸送材料を含む有機電界発光素子用組成物を用いて、有機溶剤に不溶な有機薄膜を形成することも可能であり、有機電界発光素子の湿式成膜法による積層化が容易となる。
さらに、本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層を有する有機電界発光素子によれば、高い効率で発光させることが可能となり、かつ素子の安定性、特に駆動安定性が向上する。
また、本発明の正孔輸送材料は、優れた製膜性、電荷輸送性、発光特性、耐熱性から、素子の層構成に合わせて、正孔注入材料、正孔輸送材料、発光材料、ホスト材料、電子注入材料、電子輸送材料などとしても適用可能である。
Moreover, the organic electroluminescent element formed by the wet film-forming method using the composition for organic electroluminescent elements containing this hole transport material can be enlarged in area.
It is also possible to form an organic thin film insoluble in an organic solvent using the composition for organic electroluminescence device containing the hole transport material, and it is easy to stack the organic electroluminescence device by a wet film forming method. It becomes.
Furthermore, according to the organic electroluminescent device having a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention, it is possible to emit light with high efficiency, and the stability of the device, particularly driving. Stability is improved.
In addition, the hole transport material of the present invention has excellent film-forming properties, charge transport properties, light emission characteristics, and heat resistance, so that a hole injection material, a hole transport material, a light emitting material, and a host are used according to the layer structure of the device. It can also be applied as a material, an electron injection material, an electron transport material, and the like.

本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層を有する有機電界発光素子は、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。
なお、本発明の正孔輸送材料は、本質的に優れた耐酸化還元安定性を有することから、有機電界発光素子に限らず、電子写真感光体にも有用である。
An organic electroluminescent device having a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention is a flat panel display (for example, for OA computers or wall-mounted televisions), an in-vehicle display device, a mobile phone display, It can be applied to light sources (for example, light sources for copying machines, backlight sources for liquid crystal displays and instruments), display panels, and marker lamps that make use of the characteristics of surface emitters, and their technical value is great. .
In addition, since the hole transport material of the present invention has excellent redox stability, it is useful not only for organic electroluminescence devices but also for electrophotographic photoreceptors.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。   Embodiments of the present invention will be described in detail below, but the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention does not exceed the gist thereof. It is not specified in the contents.

[正孔輸送材料]
本発明の正孔輸送材料は、下記一般式(I)で表され、分子量が300〜5000のものである。

Figure 0005125480
[式中、R〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を表す。
nは、1〜4の整数を表す。
連結基Zは、n=1であるときは、存在せず、nが2以上であるときは、直接結合またはn価の連結基を表す。
は、水素原子または架橋基を表す。
但し、一分子中において、少なくとも1つのAは架橋基である。
一分子内の複数のA同士あるいはR〜R同士は、それぞれ同一であっても異なっていてもよい。] [Hole transport material]
The hole transport material of the present invention is represented by the following general formula (I) and has a molecular weight of 300 to 5,000.
Figure 0005125480
[Wherein, R 1 to R 7 each independently represents a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.
n represents an integer of 1 to 4.
The linking group Z 1 does not exist when n = 1, and when n is 2 or more, it represents a direct bond or an n-valent linking group.
A 1 represents a hydrogen atom or a bridging group.
However, in one molecule, at least one A 1 is a crosslinking group.
A plurality of A 1 or R 1 to R 7 in one molecule may be the same or different. ]

[1]構造上の特徴
本発明の正孔輸送材料は、ビフェニル骨格の平面性を阻害しうる位置に置換基を持たないN−(4−ビフェニル)骨格を、部分構造として有しているため、電気的酸化耐性に優れ、かつ、架橋基あるいは他の置換基が該骨格の4’−位にないため、電気的還元耐性にも優れる。また、該部分構造の非対称性ゆえに、非晶質性に優れ、かつ、未重合時の融点やガラス転移点が低いことから、高温下での重合によって、優れて高い重合度が得られる。その結果、未反応残基の低減も可能となるため、湿式成膜法により形成した膜を穏和な条件で有機溶剤に不溶とすることが可能であり、これにより得られる不溶性の膜は、電気的耐性に優れたものとなる。
[1] Structural features The hole transport material of the present invention has an N- (4-biphenyl) skeleton having no substituent at a position where the planarity of the biphenyl skeleton can be hindered as a partial structure. In addition, it has excellent electrical oxidation resistance, and since it has no bridging group or other substituent at the 4′-position of the skeleton, it also has excellent electrical reduction resistance. Further, because of the asymmetry of the partial structure, the amorphous structure is excellent and the melting point and the glass transition point when unpolymerized are low, so that a high degree of polymerization can be obtained by polymerization at a high temperature. As a result, it is possible to reduce unreacted residues, so that a film formed by a wet film formation method can be made insoluble in an organic solvent under mild conditions. Excellent resistance to mechanical damage.

[2]分子量範囲
本発明の正孔輸送材料の分子量は、通常5000以下、好ましくは2500以下であり、また通常300以上、好ましくは500以上である。分子量がこの上限値を超えると、溶解性が低下して、湿式成膜が困難になるため、付加的に溶解性向上手段を講ずる必要性が生じる恐れがある。また、不純物の高分子量化によって精製が困難となる場合がある。また、分子量がこの下限値を下回ると、架橋基に対する電荷輸送性基の割合が低下するため、電荷輸送性が低下し、あるいは未反応残基の割合が増加して、電気的耐性を損ねる恐れがある。またガラス転移温度および、融点、気化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。
[2] Molecular Weight Range The molecular weight of the hole transport material of the present invention is usually 5000 or less, preferably 2500 or less, and usually 300 or more, preferably 500 or more. If the molecular weight exceeds this upper limit, the solubility is lowered, and wet film formation becomes difficult, so that it may be necessary to additionally take a solubility improving means. Further, purification may become difficult due to the high molecular weight of impurities. Also, if the molecular weight is below this lower limit value, the ratio of charge transporting groups to the cross-linking group decreases, so the charge transportability may decrease, or the ratio of unreacted residues may increase, impairing electrical resistance. There is. Further, since the glass transition temperature, the melting point, the vaporization temperature and the like are lowered, the heat resistance may be significantly impaired.

[3]R〜R
〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を表す。1価の基は、連結基Zへ結合したものであってもよい。R〜Rの1価の基としては次のようなものが挙げられる。
[3] R 1 to R 7
R 1 to R 7 each independently represents a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group. Monovalent group may be those bound to the linking group Z 1. Examples of the monovalent group of R 1 to R 7 include the following.

<1価の基の具体例>
置換基を有していてもよいアルキル基(好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。)
置換基を有していてもよいアルケニル基(好ましくは炭素数2から9のアルケニル基であり、例えばビニル、アリル、1−ブテニル基などが挙げられる。)
置換基を有していてもよいアルキニル基(好ましくは炭素数2から9のアルキニル基で
あり、例えばエチニル、プロパルギル基などが挙げられる。)
置換基を有していてもよいアラルキル基(好ましくは炭素数7から15のアラルキル基であり、例えばベンジル基などが挙げられる。)
置換基を有していてもよいアルコキシ基(好ましくは置換基を有していてもよい炭素数1〜8のアルコキシ基であり、たとえばメトキシ、エトキシ、ブトキシ基などが挙げられる。)
置換基を有していてもよいアリールオキシ基(好ましくは炭素数6〜12の芳香族炭化水素基を有するものであり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ基などが挙げられる。)
置換基を有していてもよいヘテロアリールオキシ基(好ましくは5または6員環の芳香族複素環基を有するものであり、例えばピリジルオキシ、チエニルオキシ基などが挙げられる。)
置換基を有していてもよいアシル基(好ましくは置換基を有していてもよい炭素数2〜10のアシル基であり、例えばホルミル、アセチル、ベンゾイル基などが挙げられる。)
置換基を有していてもよいアルコキシカルボニル基(好ましくは置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニル基などが挙げられる。)
置換基を有していてもよいアリールオキシカルボニル基(好ましくは置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基であり、例えばフェノキシカルボニル基などが挙げられる。)
置換基を有していてもよいアルキルカルボニルオキシ基(好ましくは置換基を有していてもよい炭素数2〜10のアルキルカルボニルオキシ基であり、例えばアセトキシ基などが挙げられる。)
ハロゲン原子(特に、フッ素原子または塩素原子)、
カルボキシ基
シアノ基
水酸基
メルカプト基
置換基を有していてもよいアルキルチオ基(好ましくは炭素数1〜8のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる。)
置換基を有していてもよいアリールチオ基(好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基、1−ナフチルチオ基などが挙げられる。)
置換基を有していてもよいスルホニル基(例えばメシル基、トシル基などが挙げられる。)
置換基を有していてもよいシリル基(例えばトリメチルシリル基、トリフェニルシリル基などが挙げられる。)
置換基を有していてもよいボリル基(例えばジメシチルボリル基などが挙げられる。)
置換基を有していてもよいホスフィノ基(例えばジフェニルホスフィノ基などが挙げられる。)
置換基を有していてもよい芳香族炭化水素基(例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が挙げられる。)
置換基を有していてもよい芳香族複素環基(例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、
ペリミジン環、キナゾリン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が挙げられる。)
<Specific examples of monovalent groups>
An alkyl group which may have a substituent (preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, tert, -A butyl group etc. are mentioned.)
An alkenyl group which may have a substituent (preferably an alkenyl group having 2 to 9 carbon atoms, such as vinyl, allyl, 1-butenyl group, etc.).
An alkynyl group which may have a substituent (preferably an alkynyl group having 2 to 9 carbon atoms, such as ethynyl and propargyl groups).
An aralkyl group which may have a substituent (preferably an aralkyl group having 7 to 15 carbon atoms, such as a benzyl group).
An alkoxy group which may have a substituent (preferably an alkoxy group having 1 to 8 carbon atoms which may have a substituent, such as methoxy, ethoxy and butoxy groups).
An aryloxy group which may have a substituent (preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy group and the like. .)
A heteroaryloxy group which may have a substituent (preferably has a 5- or 6-membered aromatic heterocyclic group, and examples thereof include a pyridyloxy and thienyloxy group).
An acyl group which may have a substituent (preferably an acyl group having 2 to 10 carbon atoms which may have a substituent, such as formyl, acetyl and benzoyl groups).
An alkoxycarbonyl group which may have a substituent (preferably an alkoxycarbonyl group having 2 to 10 carbon atoms which may have a substituent, such as methoxycarbonyl and ethoxycarbonyl groups).
An aryloxycarbonyl group which may have a substituent (preferably an aryloxycarbonyl group having 7 to 13 carbon atoms which may have a substituent, such as a phenoxycarbonyl group).
An alkylcarbonyloxy group which may have a substituent (preferably an alkylcarbonyloxy group having 2 to 10 carbon atoms which may have a substituent, such as an acetoxy group).
Halogen atoms (especially fluorine or chlorine atoms),
Carboxy group Cyano group Hydroxyl group Mercapto group Alkylthio group which may have a substituent (preferably an alkylthio group having 1 to 8 carbon atoms, such as methylthio group and ethylthio group).
An arylthio group which may have a substituent (preferably an arylthio group having 6 to 12 carbon atoms, such as a phenylthio group and a 1-naphthylthio group).
A sulfonyl group which may have a substituent (for example, a mesyl group, a tosyl group, etc.).
A silyl group which may have a substituent (for example, a trimethylsilyl group, a triphenylsilyl group, etc.).
An optionally substituted boryl group (eg, a dimesitylboryl group).
A phosphino group which may have a substituent (for example, a diphenylphosphino group).
An aromatic hydrocarbon group which may have a substituent (for example, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, etc. And monovalent groups derived from 5- or 6-membered monocyclic rings or 2 to 5 condensed rings.)
An aromatic heterocyclic group which may have a substituent (for example, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrolo) Imidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, Pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxaline ring, benzimidazole ring,
And monovalent groups derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring, such as a perimidine ring and a quinazoline ring. )

中でも、R〜Rとして好ましくは、水素原子、アルコキシ基、アリールオキシ基、芳香族炭化水素基、芳香族複素環基である。最も好ましくは芳香族炭化水素基である。
〜Rは、置換基を有していてもよく、その具体例は、R〜Rの1価の基として例示したものと同様である。また、1価の基としては、下記に例示する架橋基であってもよい。
Among these, R 1 to R 7 are preferably a hydrogen atom, an alkoxy group, an aryloxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group. Most preferred is an aromatic hydrocarbon group.
R 1 to R 7 may have a substituent, and specific examples thereof are the same as those exemplified as the monovalent group of R 1 to R 7 . Moreover, as a monovalent group, the crosslinking group illustrated below may be sufficient.

[4]n
nは、1〜4の整数を表す。nは、好ましくは、1または2である。
[4] n
n represents an integer of 1 to 4. n is preferably 1 or 2.

[5]Z
は、n=1であるときは、存在せず、nが2以上であるときは、直接結合またはn価の連結基を表す。
n価の連結基としては、上記<1価の基の具体例>に対応する2価基やエーテル基が挙げられる。
nが2〜4の整数であるとき、Zは、直接結合、エーテル基または2価の芳香族基(芳香族炭化水素基または芳香族複素環基)であることが好ましい。
[5] Z 1
Z 1 is not present when n = 1, and represents a direct bond or an n-valent linking group when n is 2 or more.
Examples of the n-valent linking group include a divalent group and an ether group corresponding to the above <specific example of monovalent group>.
When n is an integer of 2 to 4, Z 1 is preferably a direct bond, an ether group or a divalent aromatic group (aromatic hydrocarbon group or aromatic heterocyclic group).

[6]A
は、水素原子または架橋基を表す。但し、一分子内における架橋基の数は、1以上12以下であり、好ましくは1〜3の整数である。
[6] A 1
A 1 represents a hydrogen atom or a bridging group. However, the number of crosslinking groups in one molecule is 1 or more and 12 or less, preferably an integer of 1 to 3.

の架橋基は、熱や光などのエネルギー印加により、互いに結合を形成し得る基であれば特に制限されないが、不飽和二重結合、環状エーテル、ベンゾシクロブタンなどを含む基が好ましい。 The cross-linking group for A 1 is not particularly limited as long as it can form a bond with each other by application of energy such as heat and light, but a group containing an unsaturated double bond, cyclic ether, benzocyclobutane, or the like is preferable.

は、特に、下記式(Ia)で表されることが好ましい。
−G−J (Ia)
[式中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を表し、Jは、下記架橋基群Tの中から選ばれる基を表す。
<架橋基群T>

Figure 0005125480
(式中、R15〜R18は、各々独立に、水素原子またはアルキル基を表す。Arは置換基を有してもよい芳香族炭化水素基または置換基を有してもよい芳香族複素環基を表す。)] A 1 is particularly preferably represented by the following formula (Ia).
-GJ (Ia)
[In the formula, G is formed by linking 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. Represents a valent group, and J represents a group selected from the following cross-linking group group T.
<Crosslinking group T>
Figure 0005125480
(Wherein R 15 to R 18 each independently represents a hydrogen atom or an alkyl group. Ar 1 is an aromatic hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. Represents a heterocyclic group.]]

なお、R15〜R18のアルキル基としては、好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。該アルキル基は置換基を有していてもよく、該置換基としては、上記R〜Rの1価の基として例示した基が挙げられる。 The alkyl group of R 15 to R 18 is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, Examples thereof include a tert-butyl group. The alkyl group may have a substituent, and examples of the substituent include the groups exemplified as the monovalent groups of R 1 to R 7 .

Arの置換基を有していてもよい芳香族炭化水素基としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が挙げられる。また、置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が挙げられる。
上記各基が有していてもよい置換基としては、上記R〜Rの1価の基として例示した基が挙げられる。
Examples of the aromatic hydrocarbon group which may have a substituent of Ar 1 include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, and a triphenylene ring. , Monovalent groups derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring, such as a fluoranthene ring. Examples of the aromatic heterocyclic group that may have a substituent include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, Carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring , Pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxaline ring, benzimidazole ring, perimidine ring, quinazoline ring, etc. Examples of monovalent groups That.
Examples of the substituent that each of the groups may have include the groups exemplified as the monovalent group of R 1 to R 7 .

は、とりわけ、上記式(Ia)におけるJが下記架橋基群T'から選ばれる基であることが、電気化学的耐久性に優れるため、好ましい。 A 1 is particularly preferably a group in which J in the formula (Ia) is a group selected from the following cross-linking group group T ′ because of excellent electrochemical durability.

<架橋基群T'>

Figure 0005125480
<Crosslinking group T '>
Figure 0005125480

[7]好適構造
前記一般式(I)で表される本発明の正孔輸送材料は、特に下記一般式(II)で表されることが好ましい。
[7] Preferred Structure The hole transport material of the present invention represented by the general formula (I) is particularly preferably represented by the following general formula (II).

Figure 0005125480
[式中、R、R〜R、Z、nおよびAは、それぞれ式(I)におけるものと同義である。また、R〜R11は、各々独立に、R〜Rと同義である。]
Figure 0005125480
[Wherein, R 1 , R 5 to R 7 , Z 1 , n and A 1 have the same meanings as in formula (I), respectively. Moreover, R < 9 > -R < 11 > is synonymous with R < 1 > -R < 7 > each independently. ]

[8]例示
以下に、本発明の正孔輸送材料として好ましい具体的な例を示すが、本発明はこれらに限定されるものではない。
まず、一般式(I)で表される化合物の具体例を示す。以下の具体例において、A11〜A13はそれぞれ、一般式(I)におけるAと同義である。
[8] Illustrative Examples Preferred specific examples of the hole transport material of the present invention are shown below, but the present invention is not limited thereto.
First, specific examples of the compound represented by the general formula (I) are shown. In the following specific examples, A 11 to A 13 are respectively synonymous with A 1 in the general formula (I).

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

これらのうち、好ましいものとしては、以下のものが挙げられる。   Among these, the following are preferable.

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

次に、架橋基A(上記例示化合物におけるA11〜A13)の具体例を示すが、本発明はこれらに限定されるものではない。 Next, specific examples of the crosslinking group A (A 11 to A 13 in the above exemplary compounds) will be shown, but the present invention is not limited thereto.

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

架橋基Aとして好ましいものとしては、以下のものが挙げられる。   Preferred examples of the crosslinking group A include the following.

Figure 0005125480
Figure 0005125480

一般式(I)で表される本発明の正孔輸送材料として、骨格と架橋基A(前記例示化合物におけるA11〜A13)との好ましい組み合わせの具体例を以下に示す。 Specific examples of preferable combinations of the skeleton and the crosslinking group A (A 11 to A 13 in the above exemplary compounds) are shown below as the hole transport material of the present invention represented by the general formula (I).

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

なお、本発明の正孔輸送材料の分子量と架橋基の数の比率(分子量/架橋基数)は、通常200〜4000、好ましくは300〜3500、最も好ましくは500〜3000である。
分子量/架橋基数の比率が、200未満であると、重合反応時に未反応の架橋基が残存して、形成された膜の電気的耐久性が低下したり、架橋度が上がりすぎて、膜のクラッキングが起きたり、電荷輸送性が低下したり、励起準位が低下したりするため、好ましくない。
また、分子量/架橋基数の比率が、4000を超えると、形成された膜が不溶化しにくくなったり、耐熱性が低下したりするため、好ましくない。
The ratio of the molecular weight of the hole transport material of the present invention to the number of crosslinking groups (molecular weight / number of crosslinking groups) is usually 200 to 4000, preferably 300 to 3500, and most preferably 500 to 3000.
If the ratio of molecular weight / number of crosslinkable groups is less than 200, unreacted crosslinkable groups remain during the polymerization reaction, and the electrical durability of the formed film is lowered or the degree of crosslinking is excessively increased. This is not preferable because cracking occurs, charge transportability is lowered, and excitation levels are lowered.
On the other hand, if the ratio of molecular weight / number of cross-linking groups exceeds 4000, the formed film is hardly insolubilized or heat resistance is lowered, which is not preferable.

[9]合成法
本発明の正孔輸送材料は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
代表的な合成スキームを以下に示す。
[9] Synthesis Method The hole transport material of the present invention can be synthesized using a known method by selecting raw materials according to the structure of the target compound.
A typical synthesis scheme is shown below.

Figure 0005125480
Figure 0005125480

ここで、X〜X10は、脱離基(例えば、Br、I、−B(OH)など)を表す。
〜Yは、A21の前駆体(例えば、ビニル基の前駆体は−CHO基であり、−O−(CH−O−CH−メチルオキセタン基の前駆体は、−OH基である)、または、脱離基(例えば、Br、I、−B(OH)など)を表す。
21〜R26は、R〜Rと同義の基を表す。
21は、Aと同義の架橋基を表す。
Here, X 1 to X 10 represent a leaving group (for example, Br, I, —B (OH) 2, etc.).
Y 1 to Y 2 are A 21 precursors (for example, a vinyl group precursor is a —CHO group, and a —O— (CH 2 ) 4 —O—CH 2 -methyloxetane group precursor is — Represents an OH group) or a leaving group (for example, Br, I, -B (OH) 2 and the like).
R 21 to R 26 represent a group having the same meaning as R 2 to R 7 .
A 21 represents a cross-linking group having the same meaning as A 1 .

各原料化合物は、適宜、試薬として入手可能であり、反応は、公知のカップリング手法を用いて、容易に実現可能である。
尚、ArNH系化合物(例えば、化合物a,e)からArNH系化合物(例えば、化合物b,c,h)を合成する反応においては、一旦、アシル化し、ArNHAc体にしてから、ArNAc体を得、その後、脱アセチル化してArNH体を得ることも選択可能である。ここで、Arは、それぞれ独立に、任意の1価の芳香族炭化水素基を表し、Acは、アセチル基を表す。
Each raw material compound can be appropriately obtained as a reagent, and the reaction can be easily realized using a known coupling method.
In the reaction of synthesizing an Ar 2 NH-based compound (eg, compound b, c, h) from an ArNH 2 -based compound (eg, compound a, e), it is once acylated to form an ArNHAc form, and then Ar 2 It is also possible to select to obtain an NAc form and then deacetylate to obtain an Ar 2 NH form. Here, Ar independently represents an arbitrary monovalent aromatic hydrocarbon group, and Ac represents an acetyl group.

化合物の精製方法としては、「分離精製技術ハンドブック」(1993年、(財)日本化学会編)、「化学変換法による微量成分および難精製物質の高度分離」(1988年、(株)アイ ピー シー発行)、あるいは「実験化学講座(第4版)1」(1990年、(財)日本化学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を利用可能である。具体的には、抽出(懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含む)、吸着、吸蔵、融解、晶析(溶媒からの再結晶、再沈殿を含む)、蒸留(常圧蒸留、減圧蒸留)、蒸発、昇華(常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾過、逆浸透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気分離、各種クロマトグラフィー(形状分類:カラム、ペーパー、薄層、キャピラリー、移動相分類:ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子ふるい、キレート、ゲル濾過、排除、アフィニティー)などが挙げられる。   Methods for purifying compounds include “Separation and Purification Technology Handbook” (1993, edited by The Chemical Society of Japan), “Advanced separation of trace components and difficult-to-purify substances by chemical conversion method” (1988, IP Corporation). Issued by C.), or the methods described in the section “Separation and purification” of “Experimental Chemistry Course (4th edition) 1” (1990, edited by The Chemical Society of Japan) can be used. It is. Specifically, extraction (including suspension washing, boiling washing, ultrasonic washing, acid-base washing), adsorption, occlusion, melting, crystallization (including recrystallization from solvent, reprecipitation), distillation (atmospheric pressure) Distillation, vacuum distillation), evaporation, sublimation (atmospheric pressure sublimation, vacuum sublimation), ion exchange, dialysis, filtration, ultrafiltration, reverse osmosis, pressure osmosis, zone lysis, electrophoresis, centrifugation, flotation separation, sedimentation separation, Magnetic separation, various chromatography (shape classification: column, paper, thin layer, capillary, mobile phase classification: gas, liquid, micelle, supercritical fluid. Separation mechanism: adsorption, distribution, ion exchange, molecular sieve, chelate, gel filtration , Exclusion, affinity) and the like.

生成物の確認や純度の分析方法としては、ガスクロマトグラフ(GC)、高速液体クロマトグラフ(HPLC)、高速アミノ酸分析計(有機化合物)、キャピラリー電気泳動測定(CE)、サイズ排除クロマトグラフ(SEC)、ゲル浸透クロマトグラフ(GPC)、交差分別クロマトグラフ(CFC)、質量分析(MS、LC/MS,GC/MS,MS/MS)、核磁気共鳴装置(NMR(1HNMR,13CNMR))、フーリエ変換赤外分光高度計(FT−IR)、紫外可視近赤外分光高度計(UV.VIS,NIR)、電子スピン共鳴装置(ESR)、透過型電子顕微鏡(TEM−EDX)電子線マイクロアナライザー(EPMA)、金属元素分析(イオンクロマトグラフ、誘導結合プラズマ−発光分光(ICP−AES)原子吸光分析(AAS)、蛍光X線分析装置(XRF))、非金属元素分析、微量成分分析(ICP−MS,GF−AAS,GD−MS)等を必要に応じ、適用可能である。   Product confirmation and purity analysis methods include gas chromatograph (GC), high performance liquid chromatograph (HPLC), high speed amino acid analyzer (organic compound), capillary electrophoresis measurement (CE), size exclusion chromatograph (SEC). , Gel permeation chromatography (GPC), cross-fractionation chromatography (CFC), mass spectrometry (MS, LC / MS, GC / MS, MS / MS), nuclear magnetic resonance apparatus (NMR (1HNMR, 13CNMR)), Fourier transform Infrared spectrophotometer (FT-IR), UV-visible near-infrared spectrophotometer (UV.VIS, NIR), electron spin resonance apparatus (ESR), transmission electron microscope (TEM-EDX), electron beam microanalyzer (EPMA), Metal element analysis (ion chromatography, inductively coupled plasma-emission spectroscopy (ICP-AES) atomic absorption) Analysis (AAS), fluorescent X-ray analyzer (XRF)), nonmetal element analysis, trace analysis (ICP-MS, GF-AAS, optionally a GD-MS), etc., it is applicable.

[高分子化合物]
本発明の高分子化合物は、本発明の正孔輸送材料を重合させて得られるものであり、例えば、後述の本発明の有機電界発光素子の製造において、本発明の有機電界発光素子用組成物を用いて形成される有機層中に含まれる。
[Polymer compound]
The polymer compound of the present invention is obtained by polymerizing the hole transport material of the present invention. For example, in the production of the organic electroluminescent element of the present invention described later, the composition for an organic electroluminescent element of the present invention is used. It is contained in the organic layer formed using.

本発明の高分子化合物は、熱硬化性である場合、架橋度がゲル分率10%以上であることが好ましく、50%以上であることが更に好ましく、80%以上であることが最も好ましい。ここで、ゲル分率とは、特定の溶剤(本発明の正孔輸送材料が、未架橋時に、0.5重量%以上溶解可能な溶剤を指す)に浸せきしたときに、溶かされずに残存した部分をゲル(架橋部分はゲルとして残る)とし、このゲル部分の重量と溶剤で溶かす前の重量との比(百分率)を指す。   When the polymer compound of the present invention is thermosetting, the degree of crosslinking is preferably 10% or more, more preferably 50% or more, and most preferably 80% or more. Here, the gel fraction means that it remained undissolved when immersed in a specific solvent (the hole transport material of the present invention indicates a solvent that can be dissolved by 0.5% by weight or more when uncrosslinked). The portion is a gel (the cross-linked portion remains as a gel), and refers to the ratio (percentage) between the weight of the gel portion and the weight before dissolving with a solvent.

一方、本発明の高分子化合物が、熱可塑性である場合、GPC等の公知の手段を用いた測定手法から得られた重量平均分子量が、架橋前の正孔輸送材料の分子量の3倍以上であることが好ましく、5倍以上がさらに好ましく、10倍以上であることが最も好ましい。   On the other hand, when the polymer compound of the present invention is thermoplastic, the weight average molecular weight obtained from a measurement method using a known means such as GPC is at least three times the molecular weight of the hole transport material before crosslinking. It is preferably 5 times or more, more preferably 10 times or more.

[有機電界発光素子用組成物]
本発明の有機電界発光素子用組成物は、陽極と陰極とに挟持された有機層を有する有機電界発光素子において、通常、該有機層を湿式成膜法により形成する際の塗布液として用いられる。本発明の有機電界発光素子用組成物は、該有機層のうち、正孔輸送層を形成するために用いられることが好ましい。
[Composition for organic electroluminescence device]
The composition for organic electroluminescent elements of the present invention is usually used as a coating solution for forming an organic layer by a wet film-forming method in an organic electroluminescent element having an organic layer sandwiched between an anode and a cathode. . It is preferable that the composition for organic electroluminescent elements of the present invention is used for forming a hole transport layer in the organic layer.

なお、ここでは、有機電界発光素子における陽極−発光層間の層が1つの場合には、これを「正孔輸送層」と称し、2つ以上の場合は、陽極に接している層を「正孔注入層」、それ以外の層を総称して「正孔輸送層」と称す。また、陽極−発光層間に設けられた層を総称して「正孔注入・輸送層」と称する場合がある。   Here, when there is one layer between the anode and the light emitting layer in the organic electroluminescent element, this is referred to as a “hole transport layer”, and when there are two or more layers, the layer in contact with the anode is The “hole injection layer” and the other layers are collectively referred to as “hole transport layer”. In addition, layers provided between the anode and the light emitting layer may be collectively referred to as a “hole injection / transport layer”.

本発明の有機電界発光素子用組成物は、前記本発明の正孔輸送材料と溶剤とを含有することを特徴とする。
該溶剤は、本発明の正孔輸送材料を溶解するものが好ましく、通常、有機化合物を0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する溶剤である。
なお、本発明の有機電界発光素子用組成物は、本発明の正孔輸送材料の1種のみを含むものであってもよく、2種以上を含むものであってもよいが、架橋基が未反応残基として、膜中に残存する割合を低減することが容易であり、また、非晶質性の向上が期待されることから、正孔輸送材料を2種以上、例えば、2〜4種含むことが好ましい。
The composition for organic electroluminescent elements of the present invention comprises the hole transport material of the present invention and a solvent.
The solvent is preferably a solvent that dissolves the hole transport material of the present invention, and is usually a solvent that dissolves 0.05% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more of an organic compound. is there.
In addition, the composition for organic electroluminescent elements of the present invention may contain only one kind of the hole transport material of the present invention or may contain two or more kinds, but the crosslinking group As the unreacted residue, it is easy to reduce the ratio of remaining in the film, and since improvement in amorphousness is expected, two or more hole transport materials, for example, 2 to 4 are used. It is preferable to include seeds.

本発明の有機電界発光素子用組成物は、本発明の正孔輸送材料を0.01重量%以上含有することが好ましく、0.05重量%以上含有することがより好ましく、0.1重量%以上含有することが特に好ましく、90重量%以下含有することが好ましく、70重量%以下含有することがより好ましく、50重量%以下含有することが特に好ましい。   The composition for organic electroluminescent elements of the present invention preferably contains 0.01% by weight or more of the hole transport material of the present invention, more preferably 0.05% by weight or more, and more preferably 0.1% by weight. The content is particularly preferably 90% by weight or less, more preferably 70% by weight or less, and particularly preferably 50% by weight or less.

また、本発明の有機電界発光素子用組成物は、必要に応じ、電子受容性化合物や、後述の正孔輸送層の溶解性を低下させ、正孔輸送層上へ他の層を塗布することを可能とする架橋反応を促進するための添加物等の添加剤を含んでいてもよい。この場合は、溶剤としては、本発明の正孔輸送材料と添加剤の双方を0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する溶剤を使用することが好ましい。   In addition, the composition for an organic electroluminescent device of the present invention may reduce the solubility of an electron-accepting compound and a hole transport layer described later, if necessary, and apply another layer on the hole transport layer. An additive such as an additive for accelerating the cross-linking reaction that enables the reaction may be included. In this case, a solvent that dissolves both the hole transport material and the additive of the present invention by 0.05% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more is used as the solvent. It is preferable.

本発明の有機電界発光素子用組成物に含まれる、本発明の正孔輸送材料の架橋反応を促進する添加物としては、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、メタロセン化合物、オキシムエステル化合物、アゾ化合物、オニウム塩などの重合開始剤や重合促進剤、縮合多環炭化水素、ポルフィリン化合物、ジアリールケトン化合物などの光増感剤等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   Additives that promote the crosslinking reaction of the hole transport material of the present invention contained in the composition for organic electroluminescent elements of the present invention include alkylphenone compounds, acylphosphine oxide compounds, metallocene compounds, oxime ester compounds, and azo compounds. And photoinitiators such as polymerization initiators and polymerization accelerators such as onium salts, condensed polycyclic hydrocarbons, porphyrin compounds, and diaryl ketone compounds. These may be used alone or in combination of two or more.

ただし、本発明の有機電界発光素子用組成物は、通常、十分に優れた重合性を有しており、電気的耐性を損なわない観点からは、重合開始剤を含まないことが好ましい。尚、該組成物を製膜する際の下地層に、重合開始剤を保持させておき、下地層との界面近傍から重合を促進せしめるなどの手法に関しては、好ましい重合促進手法の一例である。   However, the composition for organic electroluminescent elements of the present invention usually has sufficiently excellent polymerizability, and it is preferable not to contain a polymerization initiator from the viewpoint of not impairing electrical resistance. In addition, regarding the technique of holding a polymerization initiator in the underlayer when forming the composition and promoting the polymerization from the vicinity of the interface with the underlayer, it is an example of a preferable polymerization acceleration technique.

また、本発明の有機電界発光素子用組成物に含まれる電子受容性化合物としては、本発明の有機電界発光素子の正孔注入層に含有される電子受容性化合物として後述したものの1種または2種以上を使用することができる。   Moreover, as an electron-accepting compound contained in the composition for organic electroluminescent elements of this invention, it is 1 type or 2 of what was mentioned later as an electron-accepting compound contained in the positive hole injection layer of the organic electroluminescent element of this invention. More than seeds can be used.

本発明の有機電界発光素子用組成物に含有される溶剤としては、特に制限されるものではないが、本発明の正孔輸送材料を溶解させる必要があることから、好ましくは、トルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族化合物;1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の含ハロゲン溶剤;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等のエーテル系溶剤;酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n−ブチル等のエステル系溶剤等の有機溶剤が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   The solvent contained in the composition for organic electroluminescent elements of the present invention is not particularly limited, but preferably, since it is necessary to dissolve the hole transport material of the present invention, toluene, xylene, Aromatic compounds such as methicylene and cyclohexylbenzene; halogen-containing solvents such as 1,2-dichloroethane, chlorobenzene and o-dichlorobenzene; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), etc. Aliphatic ether, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethyl Anisole Ether solvents such as aromatic ethers; aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, isopropyl benzoate, Examples thereof include organic solvents such as ester solvents such as propyl benzoate and n-butyl benzoate. These may be used alone or in combination of two or more.

本発明の有機電界発光素子用組成物に含有される溶剤の組成物中の濃度は、通常10重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上である。   The concentration of the solvent contained in the composition for organic electroluminescent elements of the present invention is usually 10% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more.

なお、水分は有機電界発光素子の性能劣化、中でも特に連続駆動時の輝度低下を促進する可能性があることが広く知られており、塗膜中に残留する水分をできる限り低減するために、これらの溶剤の中でも、25℃における水の溶解度が1重量%以下であるものが好ましく、0.1重量%以下である溶剤がより好ましい。   In addition, it is widely known that moisture may promote deterioration of the performance of the organic electroluminescent element, particularly brightness reduction during continuous driving, in order to reduce moisture remaining in the coating film as much as possible. Among these solvents, those having a water solubility at 25 ° C. of 1% by weight or less are preferred, and solvents having a solubility of 0.1% by weight or less are more preferred.

本発明の有機電界発光素子用組成物に含有される溶剤として、20℃における表面張力が40dyn/cm未満、好ましくは36dyn/cm以下、より好ましくは33dyn/cm以下である溶剤が挙げられる。   Examples of the solvent contained in the composition for organic electroluminescent elements of the present invention include a solvent having a surface tension at 20 ° C. of less than 40 dyn / cm, preferably 36 dyn / cm or less, more preferably 33 dyn / cm or less.

即ち、本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層を湿式成膜法により形成する場合、下地との親和性が重要である。膜質の均一性は有機電界発光素子の発光の均一性、安定性に大きく影響するため、湿式成膜法に用いる塗布液には、よりレベリング性が高く均一な塗膜を形成しうるように表面張力が低いことが求められる。このような溶剤を使用することにより、本発明の正孔輸送材料を重合させて得られる高分子化合物を含む均一な層を形成することができる。   That is, when a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention is formed by a wet film forming method, the affinity with the base is important. The uniformity of the film quality greatly affects the uniformity and stability of the light emission of the organic electroluminescence device. Therefore, the coating solution used in the wet film-forming method has a surface that can form a uniform coating film with higher leveling properties. Low tension is required. By using such a solvent, a uniform layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention can be formed.

このような低表面張力の溶剤の具体例としては、前述したトルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族系溶剤、安息香酸エチル等のエステル系溶剤、アニソール等のエーテル系溶剤、トリフルオロメトキシアニソール、ペンタフルオロメトキシベンゼン、3−(トリフルオロメチル)アニソール、エチル(ペンタフルオロベンゾエート)等が挙げられる。   Specific examples of such a low surface tension solvent include the aforementioned aromatic solvents such as toluene, xylene, methicylene and cyclohexylbenzene, ester solvents such as ethyl benzoate, ether solvents such as anisole, trifluoromethoxy, and the like. Anisole, pentafluoromethoxybenzene, 3- (trifluoromethyl) anisole, ethyl (pentafluorobenzoate) and the like can be mentioned.

これらの溶剤の組成物中の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。   The concentration of these solvents in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.

本発明の有機電界発光素子用組成物に含有される溶剤としてはまた、25℃における蒸気圧が10mmHg以下、好ましくは5mmHg以下で、通常0.1mmHg以上の溶剤が挙げられる。このような溶剤を使用することにより、有機電界発光素子を湿式成膜法により製造するプロセスに好適な、また、本発明の正孔輸送材料の性質に適した組成物を調製することができる。このような溶剤の具体例としては、前述したトルエン、キシレン、メチシレン等の芳香族系溶剤、エーテル系溶剤およびエステル系溶剤が挙げられる。これらの溶剤の組成物中の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。   Examples of the solvent contained in the composition for organic electroluminescence device of the present invention include a solvent having a vapor pressure at 25 ° C. of 10 mmHg or less, preferably 5 mmHg or less and usually 0.1 mmHg or more. By using such a solvent, it is possible to prepare a composition suitable for a process for producing an organic electroluminescent device by a wet film-forming method and suitable for the properties of the hole transport material of the present invention. Specific examples of such a solvent include the above-mentioned aromatic solvents such as toluene, xylene and methicylene, ether solvents and ester solvents. The concentration of these solvents in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.

本発明の有機電界発光素子用組成物に含有される溶剤として、25℃における蒸気圧が2mmHg以上、好ましくは3mmHg以上、より好ましくは4mmHg以上(但し、上限は好ましくは10mmHg以下である。)である溶剤と、25℃における蒸気圧が2mmHg未満、好ましくは1mmHg以下、より好ましくは0.5mmHg以下である溶剤との混合溶剤が挙げられる。このような混合溶剤を使用することにより、湿式製膜法により本発明の正孔輸送材料、更には電子受容性化合物を含む均質な層を形成することができる。このような混合溶剤の組成物中の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。   As a solvent contained in the composition for organic electroluminescent elements of the present invention, the vapor pressure at 25 ° C. is 2 mmHg or more, preferably 3 mmHg or more, more preferably 4 mmHg or more (however, the upper limit is preferably 10 mmHg or less). A mixed solvent of a certain solvent and a solvent having a vapor pressure at 25 ° C. of less than 2 mmHg, preferably 1 mmHg or less, more preferably 0.5 mmHg or less. By using such a mixed solvent, a homogeneous layer containing the hole transport material of the present invention and further an electron accepting compound can be formed by a wet film forming method. The concentration of the mixed solvent in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.

有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、膜質が均一であることが非常に重要である。湿式成膜法で層形成する場合、その材料や、下地の性質によって、スピンコート法、スプレー法などの塗布法や、インクジェット法、スクリーン法などの印刷法等、公知の成膜方法が採用できる。例えばスプレー法は、凹凸のある面への均一な膜形成に有効であるため、パターニングされた電極や画素間の隔壁による凹凸が残る面に、有機化合物からなる層を設ける場合に、好ましい。スプレー法による塗布の場合、ノズルから塗布面へ噴射された塗布液の液滴はできる限り小さい方が 、均一な膜質が得られるため好ましい。そのためには、塗布液に蒸気圧の高い溶剤を混合し、塗布雰囲気中において噴射後の塗布液滴から溶剤の一部が揮発することにより、基板に付着する直前に細かい液滴が生成する状態が好ましい。また、より均一な膜質を得るためには、塗布直後に基板上に生成した液膜がレベリングする時間を確保することが必要で、この目的を達成するためにはより乾燥の遅い溶剤、すなわち蒸気圧の低い溶剤をある程度含有させる手法が用いられる。   Since the organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, it is very important that the film quality is uniform. When a layer is formed by a wet film formation method, a known film formation method such as a coating method such as a spin coating method or a spray method, or a printing method such as an ink jet method or a screen method can be adopted depending on the material and properties of the base. . For example, since the spray method is effective for forming a uniform film on a surface with unevenness, it is preferable when a layer made of an organic compound is provided on a surface where unevenness due to a patterned electrode or a partition between pixels remains. In the case of coating by the spray method, it is preferable that the coating liquid droplets sprayed from the nozzle to the coating surface be as small as possible because uniform film quality can be obtained. For that purpose, a solvent with high vapor pressure is mixed with the coating liquid, and a part of the solvent is volatilized from the sprayed coating droplet in the coating atmosphere, so that fine droplets are generated immediately before adhering to the substrate. Is preferred. Also, in order to obtain a more uniform film quality, it is necessary to secure time for the liquid film generated on the substrate to be leveled immediately after coating. In order to achieve this purpose, a slower drying solvent, that is, a vapor A technique in which a solvent having a low pressure is contained to some extent is used.

具体例としては、25℃における蒸気圧が2mmHg以上10mmHg以下である溶剤としては、例えば、キシレン、アニソール、シクロヘキサノン、トルエン等が挙げられる。25℃における蒸気圧が2mmHg未満である溶剤としては、安息香酸エチル、安息香酸メチル、テトラリン、フェネトール等が挙げられる。   Specific examples of the solvent whose vapor pressure at 25 ° C. is 2 mmHg or more and 10 mmHg or less include xylene, anisole, cyclohexanone, toluene and the like. Examples of the solvent having a vapor pressure of less than 2 mmHg at 25 ° C. include ethyl benzoate, methyl benzoate, tetralin, and phenetole.

混合溶剤の比率は、25℃における蒸気圧が2mmHg以上である溶剤が、混合溶剤総量中、5重量%以上、好ましくは25重量%以上、但し50重量%未満であり、25℃における蒸気圧が2mmHg未満である溶剤が、混合溶剤総量中、30重量%以上、好ましくは50重量%以上、特に好ましくは75重量%以上、但し、95重量%未満である。   The ratio of the mixed solvent is such that the solvent whose vapor pressure at 25 ° C. is 2 mmHg or more is 5% by weight or more, preferably 25% by weight or more, but less than 50% by weight, and the vapor pressure at 25 ° C. is 25% by weight. The solvent which is less than 2 mmHg is 30% by weight or more, preferably 50% by weight or more, particularly preferably 75% by weight or more, but less than 95% by weight in the total mixed solvent.

なお、有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、各層がいずれも均一な層であることが要求される。湿式成膜法で層形成する場合、層形成用の溶液(組成物)に水分が混入することにより、塗膜に水分が混入して膜の均一性が損なわれるおそれがあるため、溶液中の水分含有量はできるだけ少ない方が好ましい。具体的には、有機電界発光素子組成物中に含まれる水分量は、好ましくは1重量%以下、より好ましくは0.1重量%以下、さらに好ましくは0.05重量%以下である。   In addition, since an organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, each layer is required to be a uniform layer. In the case of forming a layer by a wet film forming method, moisture may be mixed into the coating solution (composition) for forming the layer, so that moisture may be mixed into the coating film and the uniformity of the film may be impaired. It is preferable that the water content is as low as possible. Specifically, the amount of water contained in the organic electroluminescent element composition is preferably 1% by weight or less, more preferably 0.1% by weight or less, and still more preferably 0.05% by weight or less.

また、一般に、有機電界発光素子は、陰極等の水分により著しく劣化する材料が多く使用されているため、素子の劣化の観点からも、水分の存在は好ましくない。溶液中の水分量を低減する方法としては、例えば、窒素ガスシール、乾燥剤の使用、溶剤を予め脱水する、水の溶解度が低い溶剤を使用する等が挙げられる。なかでも、水の溶解度が低い溶剤を使用する場合は、塗布工程中に、溶液塗膜が大気中の水分を吸収して白化する現象を防ぐことができるため好ましい。
この様な観点からは、本発明の有機電界発光素子用組成物は、例えば25℃における水の溶解度が1重量%以下(好ましくは0.1重量%以下)である溶剤を、該組成物中10重量%以上含有することが好ましい。なお、上記溶解度条件を満たす溶剤が30重量%以上であればより好ましく、50重量%以上であれば特に好ましい。
In general, since organic electroluminescent elements use many materials such as cathodes that deteriorate significantly due to moisture, the presence of moisture is not preferable from the viewpoint of element degradation. Examples of the method for reducing the amount of water in the solution include nitrogen gas sealing, use of a desiccant, dehydration of the solvent in advance, use of a solvent with low water solubility, and the like. Among these, the use of a solvent having low water solubility is preferable because the solution coating film can prevent whitening by absorbing moisture in the atmosphere during the coating process.
From such a viewpoint, the composition for organic electroluminescent elements of the present invention contains, for example, a solvent having a water solubility at 25 ° C. of 1% by weight or less (preferably 0.1% by weight or less) in the composition. It is preferable to contain 10% by weight or more. The solvent satisfying the above solubility condition is more preferably 30% by weight or more, and particularly preferably 50% by weight or more.

なお、本実施の形態が適用される有機電界発光素子用組成物に含有される溶剤として、前述した溶剤以外にも、必要に応じて、各種の他の溶剤を含んでいてもよい。このような他の溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等がある。
また、本発明の有機電界発光素子用組成物は、レベリング剤や消泡剤等の塗布性改良剤などの各種添加剤を含んでいてもよい。
In addition, as a solvent contained in the composition for organic electroluminescent elements to which this embodiment is applied, various other solvents may be included as necessary in addition to the solvents described above. Examples of such other solvents include amides such as N, N-dimethylformamide and N, N-dimethylacetamide; dimethyl sulfoxide and the like.
Moreover, the composition for organic electroluminescent elements of this invention may contain various additives, such as coating property improving agents, such as a leveling agent and an antifoamer.

[成膜方法]
前述の如く、有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、膜質が均一であることが非常に重要である。湿式成膜法で層形成する場合、その材料や、下地の性質によって、スピンコート法、スプレー法などの塗布法や、インクジェット法、スクリーン法などの印刷法等、公知の成膜方法が採用できる。
[Film formation method]
As described above, since the organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, it is very important that the film quality is uniform. When a layer is formed by a wet film formation method, a known film formation method such as a coating method such as a spin coating method or a spray method, or a printing method such as an ink jet method or a screen method can be adopted depending on the material and properties of the base. .

湿式成膜法を用いる場合、本発明の正孔輸送材料および必要に応じて用いられるその他の成分(電子受容性化合物、架橋反応を促進する添加物や塗布性改良剤等)を、適切な溶剤に溶解させ、上記有機電界発光素子用組成物を調製する。この組成物を、スピンコート法やディップコート法等の手法により、形成する層の下層に該当する層上に塗布し、乾燥することにより、本発明の正孔輸送材料を含有する層を形成する。
通常、本発明の有機電界発光素子用組成物を用いて形成される層は、正孔輸送層として用いられる。そのため、通常は、この層は正孔注入層上に形成されるか、陽極上に形成される。
When using a wet film-forming method, the hole transport material of the present invention and other components used as necessary (electron-accepting compounds, additives that promote crosslinking reaction, coatability improvers, etc.) are used in an appropriate solvent. The organic electroluminescent element composition is prepared by dissolving in an organic electroluminescent element. The composition containing the hole transport material of the present invention is formed by applying this composition onto a layer corresponding to the lower layer of the layer to be formed by a method such as spin coating or dip coating, and drying. .
Usually, the layer formed using the composition for organic electroluminescent elements of the present invention is used as a hole transport layer. Therefore, this layer is usually formed on the hole injection layer or on the anode.

また、本発明の有機電界発光素子用組成物を用いて形成された層に引き続き発光層を形成するためには、発光層成膜用の塗布組成物に、形成された正孔輸送層が溶解しないことが好ましい。このため、本発明の有機電界発光素子用組成物を成膜後、加熱および/または光などの電磁エネルギー照射により、本発明の正孔輸送材料が架橋反応を起こし、反応後の膜の溶解性を低下させることが好ましい。   In addition, in order to form a light emitting layer subsequent to the layer formed using the composition for organic electroluminescent elements of the present invention, the formed hole transport layer is dissolved in the coating composition for forming the light emitting layer. Preferably not. For this reason, after film-forming the composition for organic electroluminescent elements of the present invention, the hole transport material of the present invention undergoes a crosslinking reaction by heating and / or irradiation with electromagnetic energy such as light, and the solubility of the film after the reaction Is preferably reduced.

加熱の手法は特に限定されないが、例としては加熱乾燥、減圧乾燥等が挙げられる。加熱乾燥の場合の条件としては、通常120℃以上、好ましくは400℃以下に本発明の有機電界発光素子用組成物を用いて形成された層を加熱する。加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、形成された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。   The heating method is not particularly limited, and examples thereof include heat drying and reduced pressure drying. As a condition in the case of heat drying, the layer formed using the composition for organic electroluminescent elements of the present invention is usually heated to 120 ° C. or higher, preferably 400 ° C. or lower. The heating time is usually 1 minute or longer, preferably 24 hours or shorter. Although it does not specifically limit as a heating means, Means, such as mounting the laminated body which has the formed layer on a hotplate, or heating in oven, is used. For example, conditions such as heating on a hot plate at 120 ° C. or more for 1 minute or more can be used.

光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。光以外の電磁エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。   In the case of irradiation with electromagnetic energy such as light, a method of irradiating directly using an ultraviolet / visible / infrared light source such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a halogen lamp or an infrared lamp, or the above-mentioned light source is incorporated. Examples include a mask aligner and a method of irradiation using a conveyor type light irradiation device. In electromagnetic energy irradiation other than light, for example, there is a method of irradiation using a device that irradiates a microwave generated by a magnetron, a so-called microwave oven.

照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。   As the irradiation time, it is preferable to set conditions necessary for reducing the solubility of the film, but irradiation is usually performed for 0.1 seconds or longer, preferably 10 hours or shorter.

加熱および光などの電磁エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。   Heating and irradiation of electromagnetic energy such as light may be performed individually or in combination. When combined, the order of implementation is not particularly limited.

加熱および光を含む電磁エネルギー照射は、実施後に層に含有する水分および/または表面に吸着する水分の量を低減するために、窒素ガス雰囲気等の水分を含まない雰囲気で行うことが好ましい。同様の目的で、加熱および/または光などの電磁エネルギー照射を組み合わせて行う場合には、少なくとも有機発光層の形成直前の工程を窒素ガス雰囲気等の水分を含まない雰囲気で行うことが特に好ましい。   In order to reduce the amount of moisture contained in the layer and / or moisture adsorbed on the surface after implementation, the electromagnetic energy irradiation including heating and light is preferably performed in an atmosphere containing no moisture such as a nitrogen gas atmosphere. For the same purpose, when combined with heating and / or irradiation with electromagnetic energy such as light, it is particularly preferable to perform at least the step immediately before the formation of the organic light emitting layer in an atmosphere containing no moisture such as a nitrogen gas atmosphere.

[有機電界発光素子]
本発明の有機電界発光素子は、基板上に陽極および陰極を有するとともに、陽極と陰極との間に複数の有機層が積層されてなる、積層型の構造を有する。そして、複数の有機層のうちの何れかの有機層、好ましくは正孔輸送層が、上述の本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層であり、この層は、例えば、前述の本発明の正孔輸送材料を含有する有機電界発光素子用組成物を用いて形成される。
[Organic electroluminescence device]
The organic electroluminescent element of the present invention has a laminated structure in which an anode and a cathode are provided on a substrate, and a plurality of organic layers are laminated between the anode and the cathode. Any one of the plurality of organic layers, preferably the hole transport layer, is a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention, and this layer Is formed using, for example, the composition for organic electroluminescent elements containing the above-described hole transport material of the present invention.

図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。図1に示す有機電界発光素子は、基板1の上に、陽極2、正孔注入層3、正孔輸送層4、有機発光層5、正孔阻止層6、電子輸送層7、電子注入層8および陰極9を、この順に積層して構成される。この構成の場合、通常は正孔輸送層4が上述の正孔輸送材料を重合させて得られる高分子化合物よりなる層に該当することになる。   FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent element of the present invention. The organic electroluminescent device shown in FIG. 1 includes an anode 2, a hole injection layer 3, a hole transport layer 4, an organic light emitting layer 5, a hole blocking layer 6, an electron transport layer 7, and an electron injection layer on a substrate 1. 8 and the cathode 9 are laminated in this order. In the case of this configuration, the hole transport layer 4 usually corresponds to a layer made of a polymer compound obtained by polymerizing the above hole transport material.

[1]基板
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
[1] Substrate The substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates, metal foils, plastic films, sheets, and the like are used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.

[2]陽極
陽極2は、後述する有機発光層側の層(正孔注入層3または有機発光層5など)への正孔注入の役割を果たすものである。この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウムおよび/またはスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板1上に塗布することにより陽極2を形成することもできる。更に、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Applied Physics Letters,1992年,Vol.60,pp.2711参照)。陽極2は異なる物質で積層して形成することも可能である。
[2] Anode The anode 2 plays the role of hole injection into a layer (hole injection layer 3 or organic light emitting layer 5) on the organic light emitting layer side described later. This anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or A conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline is used. In general, the anode 2 is often formed by sputtering, vacuum deposition, or the like. Further, in the case of metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, and conductive polymer fine powders, they are dispersed in an appropriate binder resin solution and placed on the substrate 1. It is also possible to form the anode 2 by applying to. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Applied Physics Letters, 1992). Year, Vol.60, pp.2711). The anode 2 can also be formed by stacking different materials.

陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。不透明で良い場合、陽極2は基板1と同一でもよい。また、更には上記の陽極2の上に異なる導電材料を積層することも可能である。   The thickness of the anode 2 varies depending on the required transparency. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 nm or more, preferably 10 nm or more, Usually, it is 1000 nm or less, preferably 500 nm or less. If opaque, the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.

なお、陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的として、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理することが好ましい。また、正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させる目的で、正孔注入層3と陽極2との間に公知の陽極バッファ層を挿入してもよい。   In addition, the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve the hole injection property. Is preferred. In addition, a known anode buffer layer is inserted between the hole injection layer 3 and the anode 2 for the purpose of further improving the efficiency of hole injection and improving the adhesion of the entire organic layer to the anode. Also good.

[3]正孔注入層
正孔注入層3は、陽極2から有機発光層5へ正孔を輸送する層である。通常はこの正孔注入層3が、陽極2上に形成される。よって、正孔注入層3は、好ましくは正孔注入性化合物および電子受容性化合物を含有して構成されることになる。更に、正孔注入層3は、本発明の趣旨を逸脱しない範囲で、その他の成分を含有していてもよい。
[3] Hole Injection Layer The hole injection layer 3 is a layer that transports holes from the anode 2 to the organic light emitting layer 5. Usually, this hole injection layer 3 is formed on the anode 2. Therefore, the hole injection layer 3 is preferably configured to contain a hole injection compound and an electron accepting compound. Furthermore, the hole injection layer 3 may contain other components without departing from the spirit of the present invention.

正孔注入層3を陽極2上に形成する手法としては、湿式成膜法、真空蒸着法が挙げられるが、上述したように、均質で欠陥がない薄膜を容易に得られる点や、形成のための時間が短くて済む点から、湿式成膜法が好ましい。また、陽極2として一般的に用いられるITO(インジウム・スズ酸化物)は、その表面が10nm程度の表面粗さ(Ra)を有するのに加えて、局所的に突起を有することが多く、短絡欠陥を生じ易いという課題があった。陽極2の上の正孔注入層3を湿式成膜法により形成することは、真空蒸着法で形成する場合と比較して、陽極2表面の凹凸に起因する素子の欠陥の発生を低減するという利点をも有する。   Examples of the method for forming the hole injection layer 3 on the anode 2 include a wet film formation method and a vacuum deposition method. As described above, a uniform and defect-free thin film can be easily obtained. The wet film-forming method is preferable from the viewpoint that the time required for the preparation is short. In addition, ITO (indium tin oxide), which is generally used as the anode 2, has a surface roughness (Ra) of about 10 nm in addition to its surface, and often has local protrusions. There was a problem that defects were easily generated. Forming the hole injection layer 3 on the anode 2 by the wet film formation method reduces the occurrence of device defects due to the unevenness of the surface of the anode 2 as compared with the case of forming by the vacuum deposition method. It also has advantages.

正孔注入性化合物としての芳香族アミン化合物としては、トリアリールアミン構造を含む化合物が好ましく、従来有機電界発光素子における正孔注入層の形成材料として利用されてきた化合物の中から適宜選択してもよい。芳香族アミン化合物として、例えば、下記一般式(1)で表されるビナフチル系化合物が挙げられる。   As the aromatic amine compound as the hole-injecting compound, a compound having a triarylamine structure is preferable, and a compound selected from compounds conventionally used as a material for forming a hole-injecting layer in an organic electroluminescent device is appropriately selected. Also good. As an aromatic amine compound, the binaphthyl type compound represented by following General formula (1) is mentioned, for example.

Figure 0005125480
Figure 0005125480

一般式(1)中、Ar〜Arは各々独立に、置換基を有していてもよい5または6員環の芳香族炭化水素環または芳香族複素環の単環基または縮合環基であり、ArとAr、ArとArは、各々結合して環を形成していてもよい。W1およびW2は各々0〜4の整数を表し、W1+W2≧1である。X11およびX12は各々独立に、直接結合または2価の連結基を表す。また、一般式(1)中のナフタレン環は、−(X11NArAr)および−(X12NArAr)に加えて、任意の置換基を有していてもよい。 In the general formula (1), Ar a to Ar d are each independently a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic monocyclic group or condensed ring group which may have a substituent. Ar a and Ar b , Ar c and Ar d may be bonded to each other to form a ring. W1 and W2 each represent an integer of 0 to 4, and W1 + W2 ≧ 1. X 11 and X 12 each independently represent a direct bond or a divalent linking group. Further, a naphthalene ring in the general formula (1), - (X 11 NAr a Ar b) and - in addition to the (X 12 NAr c Ar d) , may have an arbitrary substituent.

一般式(1)中、Ar〜Arの置換基を有していてもよい5または6員環の芳香族炭化水素環または芳香族複素環の単環基または縮合環基としては、各々独立に、例えば5または6員環の単環または2〜3縮合環であり、具体的には、フェニル基、ナフチル基、アントリル基等の芳香族炭化水素環由来の基;ピリジル基、チエニル基等の芳香族複素環由来の基が挙げられる。これらはいずれも置換基を有していてもよい。 In the general formula (1), as the monocyclic group or condensed ring group of a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring which may have a substituent of Ar a to Ar d , respectively. Independently, for example, a 5- or 6-membered monocyclic ring or a 2-3 condensed ring, specifically, a group derived from an aromatic hydrocarbon ring such as a phenyl group, a naphthyl group, an anthryl group; a pyridyl group, a thienyl group A group derived from an aromatic heterocycle such as Any of these may have a substituent.

Ar〜Arの有することがある置換基としては、Ar〜Arが有することがある置換基として後述するもの、および、アリールアミノ基(即ち、後述の−(NArAr),−(NArAr)に相当する)が挙げられる。 As the substituent that Ar a to Ar d may have, those described later as the substituent that Ar e to Ar l may have, and an arylamino group (that is,-(NAr e Ar f ) described later, -(Corresponding to NAr g Ar h )).

また、ArとAr、および/または、ArとArは、各々結合して環を形成していてもよい。この場合、形成する環の具体例としては、それぞれ、置換基を有することがあるカルバゾール環、フェノキサジン環、イミノスチルベン環、フェノチアジン環、アクリドン環、アクリジン環、イミノジベンジル環等が挙げられる。中でもカルバゾール環が好ましい。 Ar a and Ar b and / or Ar c and Ar d may be bonded to each other to form a ring. In this case, specific examples of the ring to be formed include a carbazole ring, a phenoxazine ring, an iminostilbene ring, a phenothiazine ring, an acridone ring, an acridine ring, an iminodibenzyl ring and the like that may have a substituent. Of these, a carbazole ring is preferred.

一般式(1)において、W1およびW2は各々0〜4の整数を表し、W1+W2≧1である。特に好ましいものは、W1=1かつW2=1である。なお、W1および/またはW2が2以上の場合のアリールアミノ基は、各々同一であっても異なっていても良い。   In the general formula (1), W1 and W2 each represent an integer of 0 to 4, and W1 + W2 ≧ 1. Particularly preferred are W1 = 1 and W2 = 1. The arylamino groups in the case where W1 and / or W2 is 2 or more may be the same or different.

11およびX12は各々独立に直接結合または2価の連結基を表す。2価の連結基としては特に制限はないが、例えば、下記に示すもの等が挙げられる。X11およびX12として、直接結合が特に好ましい。 X 11 and X 12 each independently represent a direct bond or a divalent linking group. Although there is no restriction | limiting in particular as a bivalent coupling group, For example, what is shown below etc. are mentioned. As X 11 and X 12 , a direct bond is particularly preferable.

Figure 0005125480
Figure 0005125480

一般式(1)におけるナフタレン環は、−(X11NArAr)および−(X12NArAr)に加えて、任意の位置に任意の置換基を1個または2個以上有していてもよい。このような置換基として好ましいものは、ハロゲン原子、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシカルボニル基よりなる群から選ばれる1種または2種以上の置換基である。これらのうち、アルキル基が特に好ましい。 In addition to — (X 11 NAr a Ar b ) and — (X 12 NAr c Ar d ), the naphthalene ring in the general formula (1) has one or more arbitrary substituents at an arbitrary position. It may be. Preferred examples of such a substituent include a halogen atom, a hydroxyl group, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and an alkenyl group which may have a substituent. , One or more substituents selected from the group consisting of optionally substituted alkoxycarbonyl groups. Of these, an alkyl group is particularly preferred.

また、正孔注入性化合物として使用する、分子中に正孔輸送部位を有する高分子化合物としては、例えば芳香族三級アミノ基を構成単位として主骨格に含む高分子化合物が挙げられる。具体例として、以下の一般式(2)で表される構造を繰り返し単位として有する正孔注入性化合物が挙げられる。   Moreover, as a high molecular compound which has a positive hole transport site | part in a molecule | numerator used as a hole injectable compound, the high molecular compound which contains an aromatic tertiary amino group in a main skeleton as a structural unit is mentioned, for example. Specific examples thereof include a hole injecting compound having a structure represented by the following general formula (2) as a repeating unit.

Figure 0005125480
(式(2)中、Ar44〜Ar48は、各々独立して置換基を有していてもよい2価の芳香族環基を示し、R31〜R32は、各々独立して置換基を有していてもよい1価の芳香族環基を示し、Qは直接結合、または下記の連結基から選ばれる。なお、「芳香族環基」とは、「芳香族炭化水素環由来の基」および「芳香族複素環由来の基」の両方を含む。)
Figure 0005125480
(式(3)中、Ar49は置換基を有していてもよい2価の芳香族環基を示し、Ar50は置換基を有していてもよい1価の芳香族環基を示す。)
Figure 0005125480
(In the formula (2), Ar 44 to Ar 48 each independently represents a divalent aromatic ring group which may have a substituent, and R 31 to R 32 each independently represents a substituent. And Q is selected from a direct bond or the following linking group, wherein “aromatic ring group” means “derived from an aromatic hydrocarbon ring” Including "group" and "group derived from an aromatic heterocycle")
Figure 0005125480
(In formula (3), Ar 49 represents a divalent aromatic ring group which may have a substituent, and Ar 50 represents a monovalent aromatic ring group which may have a substituent. .)

一般式(2)において、Ar44〜Ar48は、好ましくは、各々独立して置換基を有していてもよい2価のベンゼン環、ナフタレン環、アントラセン環由来の基またはビフェニル基であり、好ましくはベンゼン環由来の基である。前記置換基としてはハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;ビニル基等のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜7の直鎖または分岐のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェノキシ基、ベンジルオキシ基などの炭素数6〜12のアリールオキシ基;ジエチルアミノ基、ジイソプロピルアミノ基等の、炭素数1〜6のアルキル鎖を有するジアルキルアミノ基、などが挙げられる。これらのうち、好ましくは炭素数1〜3のアルキル基が挙げられ、特に好ましくはメチル基が挙げられる。Ar44〜Ar48がいずれも無置換の芳香族環基である場合が、最も好ましい。 In the general formula (2), Ar 44 to Ar 48 are each preferably a group derived from a divalent benzene ring, naphthalene ring, anthracene ring or biphenyl group which may each independently have a substituent, A group derived from a benzene ring is preferred. Examples of the substituent include a halogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; and a C 2-7 such as a methoxycarbonyl group and an ethoxycarbonyl group. A linear or branched alkoxycarbonyl group of 1 to 6 carbon atoms such as a methoxy group or an ethoxy group; an aryloxy group of 6 to 12 carbon atoms such as a phenoxy group or a benzyloxy group; And a dialkylamino group having an alkyl chain having 1 to 6 carbon atoms such as a diisopropylamino group. Of these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable. Most preferably, Ar 44 to Ar 48 are each an unsubstituted aromatic ring group.

31およびR32として好ましくは、各々独立して、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、またはビフェニル基であり、好ましくはフェニル基、ナフチル基またはビフェニル基であり、より好ましくはフェニル基である。該置換基としては、Ar44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。 R 31 and R 32 are preferably each independently a phenyl group, naphthyl group, anthryl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, thienyl group, or biphenyl group, which may have a substituent. Preferably a phenyl group, a naphthyl group or a biphenyl group, more preferably a phenyl group. Examples of the substituent include a group in which an aromatic ring in Ar 44 to Ar 48 may have include the same groups as previously described.

一般式(3)において、Ar49は、置換基を有していてもよい2価の芳香族環基、好ましくは正孔輸送性の面からは芳香族炭化水素環基であり、具体的には置換基を有していてもよい2価のベンゼン環、ナフタレン環、アントラセン環由来の基、ビフェニレン基、およびターフェニレン基等が挙げられる。また、該置換基としては、Ar44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。これらのうち、好ましくは炭素数1〜3のアルキル基が挙げられ、特に好ましくはメチル基が挙げられる。 In the general formula (3), Ar 49 is a divalent aromatic ring group which may have a substituent, preferably an aromatic hydrocarbon ring group from the viewpoint of hole transportability. Includes an optionally substituted divalent benzene ring, naphthalene ring, anthracene ring-derived group, biphenylene group, and terphenylene group. Further, examples of the substituent include a group in which an aromatic ring may have at Ar 44 to Ar 48, include the same groups as previously described. Of these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.

Ar50は、置換基を有していてもよい芳香族環基、好ましくは正孔輸送性の面からは芳香族炭化水素環基であり、具体的には、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、およびビフェニル基等が挙げられる。該置換基としては、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。 Ar 50 is an aromatic ring group which may have a substituent, preferably an aromatic hydrocarbon ring group from the viewpoint of hole transportability, and specifically, phenyl which may have a substituent. Group, naphthyl group, anthryl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, thienyl group, biphenyl group and the like. As this substituent, the group similar to the group mentioned above is mentioned as a group which the aromatic ring in Ar < 44 > -Ar < 48 > of General formula (2) may have.

一般式(3)において、Ar49およびAr50がいずれも無置換の芳香族環基である場合が、最も好ましい。 In the general formula (3), it is most preferable that Ar 49 and Ar 50 are both unsubstituted aromatic ring groups.

芳香族三級アミノ基を側鎖として含む正孔注入性化合物としては、例えば、以下の一般式(4)および(5)で表される構造を有する繰り返し単位として有する化合物が挙げられる。   Examples of the hole-injecting compound containing an aromatic tertiary amino group as a side chain include compounds having a repeating unit having a structure represented by the following general formulas (4) and (5).

Figure 0005125480
(式(4)中、Ar51は置換基を有していてもよい2価の芳香族環基を示し、Ar52〜Ar53は、各々独立して置換基を有していてもよい1価の芳香族環基を示し、R33〜R35は、各々独立して水素原子、ハロゲン原子、アルキル基、アルコキシ基、置換基を有していてもよい1価の芳香族環基を示す。)
Figure 0005125480
(In formula (4), Ar 51 represents a divalent aromatic ring group which may have a substituent, and Ar 52 to Ar 53 may each independently have a substituent 1. R 33 to R 35 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a monovalent aromatic ring group which may have a substituent. .)

Figure 0005125480
(式(5)中、Ar54〜Ar58は、各々独立して置換基を有していてもよい2価の芳香族環基を示し、R36およびR37は、各々独立して置換基を有していてもよい芳香族環基を示し、Yは直接結合、または下記の連結基から選ばれる。)
Figure 0005125480
Figure 0005125480
(In the formula (5), Ar 54 to Ar 58 each independently represent a divalent aromatic ring group which may have a substituent, and R 36 and R 37 each independently represent a substituent. And Y is selected from a direct bond or the following linking group.)
Figure 0005125480

一般式(4)において、Ar51は、好ましくは、各々置換基を有していてもよい2価のベンゼン環、ナフタレン環、アントラセン環由来の基、ビフェニレン基であり、また、置換基としては、例えば、前述した一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 In the general formula (4), Ar 51 is preferably a divalent benzene ring, a naphthalene ring, a group derived from an anthracene ring, or a biphenylene group each optionally having a substituent. For example, examples of the group that the aromatic ring in Ar 44 to Ar 48 in the general formula (2) described above may have include the same groups as those described above, and preferred groups are also the same.

Ar52およびAr53として、好ましくは、各々独立してフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、およびビフェニル基が挙げられ、これらは置換基を有することがある。該置換基としては例えば、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 Ar 52 and Ar 53 are preferably each independently a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, and a biphenyl group, and these include a substituent group. May have. Examples of the substituent include the same groups as those described above as the group that the aromatic ring in Ar 44 to Ar 48 of the general formula (2) may have, and preferred groups are also the same.

33〜R35は、好ましくは、各々独立して、水素原子;ハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェニル基;またはトリル基である。 R 33 to R 35 are preferably each independently a hydrogen atom; a halogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; a carbon such as a methoxy group or an ethoxy group. A linear or branched alkoxy group of 1 to 6; a phenyl group; or a tolyl group.

一般式(5)において、Ar54〜Ar58は、好ましくは、各々独立して置換基を有することがある2価のベンゼン環、ナフタレン環、アントラセン環由来の基、ビフェニレン基であり、好ましくはベンゼン環由来の基である。該置換基としては、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 In the general formula (5), Ar 54 to Ar 58 are preferably a divalent benzene ring, a naphthalene ring, a group derived from an anthracene ring, or a biphenylene group, each of which may have a substituent. A group derived from a benzene ring. Examples of the substituent include the same groups as those described above as the groups that the aromatic ring in Ar 44 to Ar 48 of formula (2) may have, and preferred groups are also the same.

36およびR37は、好ましくは、各々独立して置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、またはビフェニル基である。該置換基としては、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 R 36 and R 37 are each preferably a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, or a biphenyl group, each of which may have a substituent. . Examples of the substituent include the same groups as those described above as the groups that the aromatic ring in Ar 44 to Ar 48 of formula (2) may have, and preferred groups are also the same.

一般式(2)〜(5)で示される構造のうち好ましい例を以下に示すが、何らこれらに限定されない。   Preferred examples of the structures represented by the general formulas (2) to (5) are shown below, but are not limited thereto.

Figure 0005125480
Figure 0005125480

分子中に正孔輸送部位を有する高分子化合物である正孔注入性化合物は、一般式(2)〜(5)のいずれかで表される構造のホモポリマーであることが最も好ましいが、他の任意のモノマーとの共重合体(コポリマー)であってもよい。共重合体である場合、一般式(2)〜(5)で表される構成単位を50モル%以上、特に70モル%以上含有することが好ましい。なお、高分子化合物である正孔注入性材料は、一化合物中に、一般式(2)〜(5)で表される構造を複数種含有していてもよい。また、一般式(2)〜(5)で表される構造を含む化合物を、複数種併用して用いてもよい。一般式(2)〜(5)のうち、特に好ましくは、一般式(2)で表される繰り返し単位からなるホモポリマーである。   The hole injecting compound which is a polymer compound having a hole transporting site in the molecule is most preferably a homopolymer having a structure represented by any one of the general formulas (2) to (5). It may be a copolymer (copolymer) with any monomer. When it is a copolymer, it is preferable to contain 50 mol% or more, especially 70 mol% or more of the structural units represented by the general formulas (2) to (5). In addition, the hole injectable material which is a high molecular compound may contain multiple types of structures represented by the general formulas (2) to (5) in one compound. Moreover, you may use in combination of multiple types of the compound containing the structure represented by General formula (2)-(5). Of the general formulas (2) to (5), a homopolymer composed of a repeating unit represented by the general formula (2) is particularly preferable.

高分子化合物を含有する正孔注入性材料としては、さらに、共役系高分子が挙げられる。この目的のために、ポリフルオレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラフェニレンビニレンが好適である。   Examples of the hole injecting material containing the polymer compound further include conjugated polymers. For this purpose, polyfluorene, polypyrrole, polyaniline, polythiophene, polyparaphenylene vinylene are preferred.

次に、電子受容性化合物について説明する。
正孔注入層に含有される電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。これらの電子受容性化合物は、正孔注入性材料と混合して用いられ、正孔注入性材料を酸化することにより正孔注入層の導電率を向上させることができる。
Next, the electron accepting compound will be described.
Examples of the electron accepting compound contained in the hole injection layer include triaryl boron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, arylamines and Lewis acids. And one or more compounds selected from the group consisting of salts with These electron-accepting compounds are used by mixing with a hole-injecting material, and the conductivity of the hole-injecting layer can be improved by oxidizing the hole-injecting material.

電子受容性化合物として、トリアリールホウ素化合物としては、下記一般式(6)に示したホウ素化合物が挙げられる。一般式(6)で表されるホウ素化合物は、ルイス酸であることが好ましい。また、このホウ素化合物の電子親和力は、通常4eV以上、好ましく、5eV以上である。   Examples of the triarylboron compound as the electron-accepting compound include boron compounds represented by the following general formula (6). The boron compound represented by the general formula (6) is preferably a Lewis acid. The electron affinity of the boron compound is usually 4 eV or more, preferably 5 eV or more.

Figure 0005125480
Figure 0005125480

一般式(6)において、好ましくは、Ar101〜Ar103は、各々独立に、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ビフェニル基等の5または6員環の単環、またはこれらが2〜3個縮合および/または直接結合してなる芳香族炭化水素環基;或いは置換基を有することがあるチエニル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基等の5または6員環の単環、またはこれらが2〜3個縮合および/または直接結合してなる芳香族複素環基を表す。 In the general formula (6), preferably, Ar 101 to Ar 103 are each independently a monocyclic 5- or 6-membered ring such as a phenyl group, a naphthyl group, an anthryl group, or a biphenyl group that may have a substituent, Or an aromatic hydrocarbon ring group formed by condensing and / or directly bonding 2 to 3 of these; or 5 or 6 such as a thienyl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, etc., which may have a substituent. It represents a single-membered ring or an aromatic heterocyclic group formed by condensing 2 or 3 of these and / or directly bonding them.

Ar101〜Ar103が有することがある置換基としては、例えば、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;アシル基;ハロアルキル基;シアノ基等が挙げられる。 Examples of the substituent that Ar 101 to Ar 103 may have include a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; an acyl group; a haloalkyl group;

特に、Ar101〜Ar103の少なくとも1つが、ハメット定数(σおよび/またはσ)が正の値を示す置換基であることが好ましく、Ar101〜Ar103が、いずれもハメット定数(σおよび/またはσ)が正の値を示す置換基であることが特に好ましい。このような、電子吸引性の置換基を有することにより、これらの化合物の電子受容性が向上する。また、Ar101〜Ar103がいずれも、ハロゲン原子で置換された芳香族炭化水素基または芳香族複素環基であることがさらに好ましい。 In particular, at least one of Ar 101 to Ar 103 is preferably a substituent having a positive Hammett constant (σ m and / or σ p ), and Ar 101 to Ar 103 are all Hammet constants (σ It is particularly preferred that m and / or σ p ) is a substituent showing a positive value. By having such an electron-withdrawing substituent, the electron acceptability of these compounds is improved. Ar 101 to Ar 103 are more preferably an aromatic hydrocarbon group or an aromatic heterocyclic group substituted with a halogen atom.

一般式(6)で表されるホウ素化合物の好ましい具体例を以下の6−1〜6−17に示すが、これらに限定するものではない。   Although the preferable specific example of the boron compound represented by General formula (6) is shown to the following 6-1 to 6-17, it is not limited to these.

Figure 0005125480
Figure 0005125480

Figure 0005125480
Figure 0005125480

これらの中、以下に示す化合物が特に好ましい。   Of these, the following compounds are particularly preferred.

Figure 0005125480
Figure 0005125480

電子受容性化合物として、オニウム塩としては、WO2005/089024号公報に記載のものが挙げられ、その好適例も同様であるが、特に好ましくは以下の化合物である。   Examples of the electron-accepting compound include onium salts described in WO2005 / 089024, and preferred examples thereof are the same, but the following compounds are particularly preferred.

Figure 0005125480
Figure 0005125480

正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。   The thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.

なお、正孔注入層3における電子受容性化合物の正孔注入性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。   The content of the electron-accepting compound in the hole-injecting layer 3 with respect to the hole-injecting compound is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.

[4]正孔輸送層
正孔輸送層4は、陽極2、正孔注入層3の順に注入された正孔を有機発光層5に注入する機能を有すると共に、発光層5から電子が陽極2側に注入されることによる発光効率の低下を抑制する機能を有する。
[4] Hole transport layer The hole transport layer 4 has a function of injecting holes injected in the order of the anode 2 and the hole injection layer 3 into the organic light emitting layer 5, and electrons from the light emitting layer 5 are anode 2. It has a function of suppressing a decrease in luminous efficiency caused by being injected into the side.

この機能を発現するため、正孔輸送層4は、本発明の正孔輸送材料を重合させて得られる高分子化合物を含む層であることが好ましい。   In order to exhibit this function, the hole transport layer 4 is preferably a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention.

この正孔輸送層4は、好ましくは、本発明の有機電界発光素子用組成物を用いて、前記[成膜方法]に記載の方法で形成される。
その膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
The hole transport layer 4 is preferably formed by the method described in [Film Forming Method] using the composition for organic electroluminescent elements of the present invention.
The film thickness is usually in the range of 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.

[5]有機発光層
正孔輸送層4の上には、通常有機発光層5が設けられる。有機発光層5は、電界を与えられた電極間において、陽極2から正孔注入層3および正孔輸送層4を通じて注入された正孔と、陰極9から電子注入層8,正孔阻止層6を通じて注入された電子との再結合により励起されて、主たる発光源となる層である。
[5] Organic Light-Emitting Layer The organic light-emitting layer 5 is usually provided on the hole transport layer 4. The organic light-emitting layer 5 includes holes injected from the anode 2 through the hole injection layer 3 and the hole transport layer 4 between the electrodes to which an electric field is applied, and from the cathode 9 to the electron injection layer 8 and the hole blocking layer 6. It is a layer that is excited by recombination with electrons injected through and becomes a main light emitting source.

有機発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する材料(正孔輸送性化合物)、或いは、電子輸送の性質を有する材料(電子輸送性化合物)とを含有する。更に、有機発光層5は、本発明の趣旨を逸脱しない範囲で、その他の成分を含有していてもよい。これらの材料としては、後述のように湿式成膜法で有機発光層5を形成する観点から、何れも低分子系の材料を使用することが好ましい。   The organic light emitting layer 5 contains at least a material having a light emitting property (light emitting material), and preferably has a material having a hole transporting property (hole transporting compound) or an electron transporting property. Material (electron transporting compound). Furthermore, the organic light emitting layer 5 may contain other components without departing from the spirit of the present invention. As these materials, from the viewpoint of forming the organic light emitting layer 5 by a wet film formation method as described later, it is preferable to use any low molecular weight materials.

発光材料としては、任意の公知の材料を適用可能である。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。   Any known material can be applied as the light emitting material. For example, a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferable from the viewpoint of internal quantum efficiency.

なお、溶剤への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることも、重要である。   In order to improve the solubility in a solvent, it is also important to reduce the symmetry and rigidity of the molecules of the luminescent material, or to introduce a lipophilic substituent such as an alkyl group.

青色発光を与える蛍光色素としては、ペリレン、ピレン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼンおよびそれらの誘導体等が挙げられる。緑色蛍光色素としては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素としては、ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。   Examples of fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof. Examples of the green fluorescent dye include quinacridone derivatives and coumarin derivatives. Examples of yellow fluorescent dyes include rubrene and perimidone derivatives. Red fluorescent dyes include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, azabenzothioxanthene, etc. Can be mentioned.

燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を含む有機金属錯体が挙げられる。   As the phosphorescent material, for example, a long-period type periodic table (hereinafter referred to as a long-period type periodic table when referred to as “periodic table” unless otherwise specified) is selected from the seventh to eleventh groups. And an organometallic complex containing a metal.

燐光性有機金属錯体に含まれる、周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。これらの有機金属錯体として、好ましくは下記式(III)または式(IV)で表される化合物が挙げられる。   Preferred examples of the metal selected from Groups 7 to 11 of the periodic table contained in the phosphorescent organometallic complex include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. Preferred examples of these organometallic complexes include compounds represented by the following formula (III) or formula (IV).

ML(q−j)L′ (III)
(式(III)中、Mは金属を表し、qは上記金属の価数を表す。また、LおよびL′は二座配位子を表す。jは0、1または2の数を表す。)
ML (q−j) L ′ j (III)
(In formula (III), M represents a metal, q represents the valence of the metal, L and L ′ represent a bidentate ligand, and j represents a number of 0, 1 or 2. )

Figure 0005125480
(式(IV)中、Mは金属を表し、Tは炭素原子または窒素原子を表す。R92〜R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94およびR95は無い。)
Figure 0005125480
(In the formula (IV), M 7 represents a metal, T represents a carbon atom or a nitrogen atom. R 92 to R 95 each independently represents a substituent. However, when T is a nitrogen atom, R 7 94 and R 95 are not.)

以下、まず、式(III)で表される化合物について説明する。
式(III)中、Mは任意の金属を表し、好ましいものの具体例としては、周期表第7〜11族から選ばれる金属として前述した金属が挙げられる。
Hereinafter, the compound represented by the formula (III) will be described first.
In formula (III), M represents an arbitrary metal, and specific examples of preferable ones include the metals described above as metals selected from Groups 7 to 11 of the periodic table.

また、式(III)中、二座配位子Lは、以下の部分構造を有する配位子を示す。

Figure 0005125480
(上記Lの部分構造において、環A1は、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。) Moreover, in formula (III), the bidentate ligand L shows the ligand which has the following partial structures.
Figure 0005125480
(In the partial structure of L, ring A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.)

該芳香族炭化水素基としては、5または6員環の単環または2〜5縮合環が挙げられる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環由来の1価の基などが挙げられる。   Examples of the aromatic hydrocarbon group include a 5- or 6-membered monocyclic ring or a 2-5 condensed ring. Specific examples include monovalent groups derived from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, etc. Is mentioned.

該芳香族複素環基としては、5または6員環の単環または2〜4縮合環が挙げられる。具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環由来の1価の基などが挙げられる。   Examples of the aromatic heterocyclic group include a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, Thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring , Sinoline ring, quinoxaline ring, phenanthridine ring, benzimidazole ring, perimidine ring, quinazoline ring, quinazolinone ring, monovalent group derived from an azulene ring, and the like.

また、上記Lの部分構造において、環A2は、置換基を有していてもよい、含窒素芳香族複素環基を表す。   In the partial structure of L, ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.

該含窒素芳香族複素環基としては、5または6員環の単環または2〜4縮合環由来の基が挙げられる。具体例としては、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、フロピロール環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環由来の1価の基などが挙げられる。   Examples of the nitrogen-containing aromatic heterocyclic group include groups derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, furopyrrole ring, thienofuran ring, benzoisoxazole ring. , Benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthridine ring, benzimidazole ring, perimidine ring, quinazoline ring, quinazolinone Examples thereof include a monovalent group derived from a ring.

環A1または環A2がそれぞれ有していてもよい置換基の例としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基;芳香族炭化水素基等が挙げられる。   Examples of the substituent that each of ring A1 and ring A2 may have include a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; a dialkylamino group; Acyl group; haloalkyl group; cyano group; aromatic hydrocarbon group and the like.

また、式(III)中、二座配位子L′は、以下の部分構造を有する配位子を示す。但し、以下の式において、「Ph」はフェニル基を表す。   In the formula (III), the bidentate ligand L ′ represents a ligand having the following partial structure. However, in the following formulae, “Ph” represents a phenyl group.

Figure 0005125480
Figure 0005125480

中でも、L′としては、錯体の安定性の観点から、以下に挙げる配位子が好ましい。   Among these, as L ′, the following ligands are preferable from the viewpoint of the stability of the complex.

Figure 0005125480
Figure 0005125480

式(III)で表される化合物として、更に好ましくは、下記式(IIIa),(IIIb),(IIIc)で表される化合物が挙げられる。   More preferable examples of the compound represented by the formula (III) include compounds represented by the following formulas (IIIa), (IIIb), and (IIIc).

Figure 0005125480
(式(IIIa)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure 0005125480
(In formula (IIIa), M 4 represents the same metal as M, w represents the valence of the metal, and ring A1 represents an aromatic hydrocarbon group which may have a substituent. Ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.

Figure 0005125480
(式(IIIb)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure 0005125480
(In formula (IIIb), M 5 represents the same metal as M, w represents the valence of the metal, and ring A1 represents an aromatic hydrocarbon group or aromatic group which may have a substituent. Represents a heterocyclic group, and ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.)

Figure 0005125480
(式(IIIc)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、jは、0、1または2を表し、環A1および環A1′は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2および環A2′は、それぞれ独立に、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure 0005125480
(In formula (IIIc), M 6 represents the same metal as M, w represents the valence of the metal, j represents 0, 1 or 2, and ring A1 and ring A1 ′ each represent Independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group, and ring A2 and ring A2 ′ are each independently a nitrogen-containing aromatic optionally having a substituent. Represents a heterocyclic group.)

上記式(IIIa),(IIIb),(IIIc)において、環A1および環A1′の好ましい
例としては、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、フリル基、ベンゾチエニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、カルバゾリル基等が挙げられる。
In the above formulas (IIIa), (IIIb) and (IIIc), preferred examples of ring A1 and ring A1 ′ include phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, furyl group, benzothienyl group, benzofuryl group. Group, pyridyl group, quinolyl group, isoquinolyl group, carbazolyl group and the like.

上記式(IIIa)〜(IIIc)において、環A2および環A2′の好ましい例としては、ピリジル基、ピリミジル基、ピラジル基、トリアジル基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリル基、フェナントリジル基等が挙げられる。   In the above formulas (IIIa) to (IIIc), preferred examples of ring A2 and ring A2 ′ include pyridyl group, pyrimidyl group, pyrazyl group, triazyl group, benzothiazole group, benzoxazole group, benzimidazole group, quinolyl group, An isoquinolyl group, a quinoxalyl group, a phenanthridyl group, and the like can be given.

上記式(IIIa)〜(IIIc)で表される化合物が有していてもよい置換基としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基等が挙げられる。   Examples of the substituent that the compounds represented by the formulas (IIIa) to (IIIc) may have include a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; A diarylamino group; a carbazolyl group; an acyl group; a haloalkyl group; a cyano group, and the like.

なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環A1が有する置換基と環A2が有する置換基とが結合するか、または、環A1′が有する置換基と環A2′が有する置換基とが結合するかして、一つの縮合環を形成してもよい。このような縮合環としては、7,8−ベンゾキノリン基等が挙げられる。   These substituents may be connected to each other to form a ring. As a specific example, a substituent of the ring A1 and a substituent of the ring A2 are bonded, or a substituent of the ring A1 ′ and a substituent of the ring A2 ′ are bonded. Two fused rings may be formed. Examples of such a condensed ring include a 7,8-benzoquinoline group.

中でも、環A1、環A1′、環A2および環A2′の置換基として、より好ましくは、アルキル基、アルコキシ基、芳香族炭化水素基、シアノ基、ハロゲン原子、ハロアルキル基、ジアリールアミノ基、カルバゾリル基が挙げられる。   Among these, as a substituent for ring A1, ring A1 ′, ring A2 and ring A2 ′, an alkyl group, alkoxy group, aromatic hydrocarbon group, cyano group, halogen atom, haloalkyl group, diarylamino group, carbazolyl are more preferable. Groups.

また、式(IIIa)〜(IIIc)におけるM〜Mの好ましい例としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられる。 In addition, preferable examples of M 4 to M 6 in the formulas (IIIa) to (IIIc) include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, or gold.

上記式(III)および(IIIa)〜(IIIc)で示される有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるものではない。   Specific examples of the organometallic complexes represented by the above formulas (III) and (IIIa) to (IIIc) are shown below, but are not limited to the following compounds.

Figure 0005125480
Figure 0005125480
Figure 0005125480
Figure 0005125480
Figure 0005125480
Figure 0005125480

上記式(III)で表される有機金属錯体の中でも、特に、配位子Lおよび/またはL′として2−アリールピリジン系配位子、即ち、2−アリールピリジン、これに任意の置換基が結合したもの、および、これに任意の基が縮合してなるものを有する化合物が好ましい。   Among the organometallic complexes represented by the above formula (III), in particular, as the ligand L and / or L ′, a 2-arylpyridine-based ligand, that is, 2-arylpyridine, there is an optional substituent. The compound which has what was couple | bonded and the thing formed by arbitrary groups condensing to this is preferable.

また、国際特許公開第2005/019373号明細書に記載の化合物も、発光材料として使用することが可能である。   The compounds described in International Patent Publication No. 2005/019373 can also be used as the light emitting material.

次に、式(IV)で表される化合物について説明する。
式(IV)中、Mは金属を表す。具体例としては、周期表第7〜11族から選ばれる金属として前述した金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
Next, the compound represented by formula (IV) will be described.
In formula (IV), M 7 represents a metal. Specific examples include the metals described above as the metal selected from Groups 7 to 11 of the periodic table. Among these, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold is preferable, and divalent metals such as platinum and palladium are particularly preferable.

また、式(IV)において、R92およびR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基または芳香族複素環基を表す。 In the formula (IV), R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, Represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;

更に、Tが炭素原子の場合、R94およびR95は、それぞれ独立に、R92およびR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は、R94およびR95は無い。 Further, when T is carbon atom, R 94 and R 95 each independently represents a substituent represented by the same exemplary compounds and R 92 and R 93. Also, if T is a nitrogen atom, R 94 and R 95 is not.

また、R92〜R95は、更に置換基を有していてもよい。置換基を有する場合、その種類に特に制限はなく、任意の基を置換基とすることができる。
更に、R92〜R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
R 92 to R 95 may further have a substituent. When it has a substituent, there is no restriction | limiting in particular in the kind, Arbitrary groups can be made into a substituent.
Further, any two or more groups of R 92 to R 95 may be connected to each other to form a ring.

式(IV)で表される有機金属錯体の具体例(T−1、T−10〜T−15)を以下に示すが、下記の例示物に限定されるものではない。また、以下の化学式において、Meはメチル基を表し、Etはエチル基を表す。   Specific examples (T-1, T-10 to T-15) of the organometallic complex represented by the formula (IV) are shown below, but are not limited to the following examples. In the following chemical formulae, Me represents a methyl group, and Et represents an ethyl group.

Figure 0005125480
Figure 0005125480

本発明において、発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。分子量が100未満であると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりするため、好ましくない。分子量が10000を超えると、有機化合物の精製が困難となったり、溶媒に溶解させる際に時間を要する可能性が高いため、好ましくない。   In the present invention, the molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more. More preferably, the range is 400 or more. If the molecular weight is less than 100, the heat resistance is remarkably reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic electroluminescent element is changed due to migration or the like. This is not preferable. If the molecular weight exceeds 10,000, it is not preferable because it is difficult to purify the organic compound or it takes time to dissolve the organic compound in a solvent.

なお、発光層は、上に説明した各種の発光材料のうち、何れか一種を単独で含有していてもよく、二種以上を任意の組み合わせおよび比率で併有していてもよい。   The light emitting layer may contain any one of the various light emitting materials described above alone, or may contain two or more kinds in any combination and ratio.

低分子系の正孔輸送性化合物の例としては、前述の正孔輸送層の正孔輸送性化合物として例示した各種の化合物の他、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence,1997年,Vol.72-74,pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications,1996年,pp.2175)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synthetic Metals,1997年,Vol.91,pp.209)等が挙げられる。   Examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound of the hole transporting layer, and 4,4′-bis [N- (1-naphthyl)- N-phenylamino] biphenyl, an aromatic diamine containing two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234811), 4,4 An aromatic amine compound having a starburst structure such as', 4 "-tris (1-naphthylphenylamino) triphenylamine (Journal of Luminescence, 1997, Vol.72-74, pp.985), Spiro compounds such as aromatic amine compounds comprising tetramers (Chemical Communications, 1996, pp. 2175), 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene (Synthetic Metals, 1 997, Vol.91, pp.209).

低分子系の電子輸送性化合物の例としては、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)や、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)や、4,4’−ビス(9−カルバゾール)−ビフェニル(CBP)等がある。   Examples of low molecular weight electron transport compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND) and 2,5-bis (6 ′-(2 ′). , 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( BCP, bathocuproine), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4,4′-bis (9-carbazole) ) -Biphenyl (CBP) and the like.

これら正孔輸送性化合物や電子輸送性化合物は発光層においてホスト材料として使用されることが好ましいが、ホスト材料として具体的には以下のような化合物を使用することができる。   These hole transporting compounds and electron transporting compounds are preferably used as host materials in the light-emitting layer, but specifically, the following compounds can be used as host materials.

Figure 0005125480
Figure 0005125480

有機発光層5の形成法としては、湿式成膜法、真空蒸着法が挙げられるが、上述したように、均質で欠陥がない薄膜を容易に得られる点や、形成のための時間が短くて済む点、更には、本発明の有機化合物による正孔輸送層4の不溶化の効果を享受できる点から、湿式成膜法が好ましい。湿式成膜法により有機発光層5を形成する場合、上述の材料を適切な溶剤に溶解させて塗布溶液を調製し、それを上述の形成後の正孔輸送層4の上に塗布・成膜し、乾燥して溶剤を除去することにより形成する。その形成方法としては、前記正孔輸送層の形成方法と同様である。   Examples of the method for forming the organic light emitting layer 5 include a wet film forming method and a vacuum evaporation method. As described above, a homogeneous and defect-free thin film can be easily obtained, and the time for formation is short. The wet film-forming method is preferable from the viewpoint that the effect of insolubilization of the hole transport layer 4 by the organic compound of the present invention can be enjoyed. When the organic light emitting layer 5 is formed by a wet film formation method, the above-described material is dissolved in an appropriate solvent to prepare a coating solution, which is applied and formed on the hole transport layer 4 after the above formation. And drying to remove the solvent. The formation method is the same as the formation method of the hole transport layer.

有機発光層5の膜厚は、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。   The film thickness of the organic light emitting layer 5 is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less.

[6]正孔阻止層
図1では、有機発光層5と電子輸送層7の間に、正孔阻止層6が設けられているが、正孔阻止層6はこれを省略してもよい。
正孔阻止層6は、有機発光層5の上に、有機発光層5の陰極9側の界面に接するように積層されるが、陽極2から移動してくる正孔が陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく有機発光層5の方向に輸送することができる化合物より形成される。
[6] Hole blocking layer In FIG. 1, the hole blocking layer 6 is provided between the organic light emitting layer 5 and the electron transport layer 7, but the hole blocking layer 6 may be omitted.
The hole blocking layer 6 is laminated on the organic light emitting layer 5 so as to be in contact with the interface of the organic light emitting layer 5 on the cathode 9 side, but the holes moving from the anode 2 reach the cathode 9. And a compound capable of efficiently transporting electrons injected from the cathode 9 toward the organic light emitting layer 5.

正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。   The physical properties required for the material constituting the hole blocking layer 6 include high electron mobility, low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). Is high.

このような条件を満たす正孔阻止材料としては、ビス(2−メチル−8−キノリノラト),(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト),(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)が挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止材料として好ましい。   As hole blocking materials satisfying such conditions, mixed materials such as bis (2-methyl-8-quinolinolato), (phenolato) aluminum, bis (2-methyl-8-quinolinolato), (triphenylsilanolato) aluminum, etc. Ligand complexes, metal complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, and styryl compounds such as distyrylbiphenyl derivatives (JP-A-11-242996), triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (JP-A-7-41759) And phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-position described in International Publication No. 2005-022962 are also preferable as the hole blocking material.

具体的には以下に記載の化合物が挙げられる。

Figure 0005125480
Specific examples include the compounds described below.
Figure 0005125480

正孔阻止層6も、正孔注入層3や有機発光層5と同様、湿式成膜法を用いて形成することもできるが、通常は真空蒸着法により形成される。真空蒸着法の手順の詳細は、後述の電子注入層8の場合と同様である。   Similarly to the hole injection layer 3 and the organic light emitting layer 5, the hole blocking layer 6 can also be formed by a wet film formation method, but is usually formed by a vacuum deposition method. The details of the procedure of the vacuum deposition method are the same as those of the electron injection layer 8 described later.

正孔阻止層6の膜厚は、通常0.5nm以上、好ましくは1nm以上、また、通常100nm以下、好ましくは50nm以下である。   The film thickness of the hole blocking layer 6 is usually 0.5 nm or more, preferably 1 nm or more, and usually 100 nm or less, preferably 50 nm or less.

[7]電子輸送層
電子輸送層7は素子の発光効率をさらに向上させることを目的として、正孔阻止層6と電子注入層8との間に設けられる。
[7] Electron Transport Layer The electron transport layer 7 is provided between the hole blocking layer 6 and the electron injection layer 8 for the purpose of further improving the light emission efficiency of the device.

電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
このような条件を満たす材料としては、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−または5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5,645,948号)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
The electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 between electrodes to which an electric field is applied in the direction of the light emitting layer 5. The electron transporting compound used for the electron transport layer 7 is a compound that has high electron injection efficiency from the electron injection layer 8 and has high electron mobility and can efficiently transport injected electrons. It is necessary.
Materials satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, Styryl biphenyl derivative, silole derivative, 3- or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compound No. 207169), phenanthroline derivatives (Japanese Patent Laid-Open No. 5-331459), 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous silicon carbide, n-type sulfide Examples include zinc and n-type zinc selenide.

電子輸送層7の膜厚は、通常下限は1nm、好ましくは5nm程度であり、上限は通常300nm、好ましくは100nm程度である。   The lower limit of the thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 100 nm.

電子輸送層7は、正孔注入層3と同様にして湿式製膜法、或いは真空蒸着法により発光層4上に積層することにより形成される。通常は、真空蒸着法が用いられる。   The electron transport layer 7 is formed by laminating on the light emitting layer 4 by a wet film forming method or a vacuum deposition method in the same manner as the hole injection layer 3. Usually, a vacuum deposition method is used.

[8]電子注入層
電子注入層8は、陰極9から注入された電子を効率良く有機発光層5へ注入する役割を果たす。
電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。
[8] Electron Injection Layer The electron injection layer 8 serves to efficiently inject electrons injected from the cathode 9 into the organic light emitting layer 5.
In order to perform electron injection efficiently, the material for forming the electron injection layer 8 is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium. The film thickness is usually preferably from 0.1 nm to 5 nm.

更に、後述するバソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常、5nm以上、好ましくは10nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。   Further, organic electron transport materials represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and aluminum complexes of 8-hydroxyquinoline described later are doped with alkali metals such as sodium, potassium, cesium, lithium and rubidium. (Described in JP-A-10-270171, JP-A 2002-1000047, JP-A 2002-1000048, and the like) makes it possible to improve electron injection / transport properties and achieve excellent film quality. Therefore, it is preferable. The film thickness in this case is usually in the range of 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.

電子注入層8は、湿式成膜法或いは真空蒸着法により、有機発光層5またはその上の正孔阻止層6上に積層することにより形成される。   The electron injection layer 8 is formed by laminating on the organic light emitting layer 5 or the hole blocking layer 6 thereon by a wet film formation method or a vacuum deposition method.

湿式成膜法の場合の詳細は、正孔注入層3および有機発光層5の場合と同様である。
一方、真空蒸着法の場合には、真空容器内に設置されたるつぼまたは金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで10−4Pa程度にまで排気した後、るつぼまたは金属ボートを加熱して蒸発させ、るつぼまたは金属ボートと向き合って置かれた基板上の有機発光層5または正孔阻止層6または電子輸送層7上に電子注入層8を形成する。
Details of the wet film forming method are the same as those of the hole injection layer 3 and the organic light emitting layer 5.
On the other hand, in the case of the vacuum vapor deposition method, the vapor deposition source is put into a crucible or a metal boat installed in the vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 −4 Pa with an appropriate vacuum pump, and then the crucible or metal The boat is heated and evaporated to form an electron injection layer 8 on the organic light-emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 on the substrate placed facing the crucible or the metal boat.

電子注入層としてのアルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアルカリ金属ディスペンサーを用いて行う。このディスペンサーを真空容器内で加熱することにより、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発される。有機電子輸送材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置されたるつぼに入れ、真空容器内を適当な真空ポンプで10−4Pa程度にまで排気した後、各々のるつぼおよびディスペンサーを同時に加熱して蒸発させ、るつぼおよびディスペンサーと向き合って置かれた基板上に電子注入層8を形成する。
このとき、電子注入層8の膜厚方向において均一に共蒸着されるが、膜厚方向において濃度分布があっても構わない。
The alkali metal as the electron injection layer is deposited by using an alkali metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. By heating the dispenser in a vacuum container, the alkali metal chromate is reduced and the alkali metal is evaporated. In the case of co-evaporating the organic electron transport material and the alkali metal, the organic electron transport material is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 −4 Pa with a suitable vacuum pump. Each crucible and dispenser are simultaneously heated and evaporated to form the electron injection layer 8 on the substrate placed facing the crucible and dispenser.
At this time, co-evaporation is uniformly performed in the film thickness direction of the electron injection layer 8, but there may be a concentration distribution in the film thickness direction.

[8]陰極
陰極9は、有機発光層5側の層(電子注入層8または有機発光層5など)に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
[8] Cathode The cathode 9 plays a role of injecting electrons into a layer (such as the electron injection layer 8 or the organic light emitting layer 5) on the organic light emitting layer 5 side. As the material of the cathode 9, the material used for the anode 2 can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable, and tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.

陰極9の膜厚は通常、陽極2と同様である。   The film thickness of the cathode 9 is usually the same as that of the anode 2.

低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。   For the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.

[9]その他
以上、図1に示す層構成の有機電界発光素子を中心に説明してきたが、本発明の有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。
[9] Others Although the organic electroluminescent element having the layer configuration shown in FIG. 1 has been described above, the organic electroluminescent element of the present invention has another configuration without departing from the gist thereof. Also good. For example, as long as the performance is not impaired, an arbitrary layer may be provided between the anode 2 and the cathode 9 in addition to the layers described above, and an arbitrary layer may be omitted. .

なお、本発明においては、正孔輸送層4に本発明の有機化合物を使用することにより、正孔注入層3、正孔輸送層4および有機発光層5を全て湿式成膜法により積層形成することができる。これにより、大面積のディスプレイを製造することが可能となる。   In the present invention, by using the organic compound of the present invention for the hole transport layer 4, the hole injection layer 3, the hole transport layer 4 and the organic light emitting layer 5 are all laminated by a wet film formation method. be able to. This makes it possible to manufacture a large area display.

次に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to description of a following example, unless the summary is exceeded.

[合成例]
以下に本発明の正孔輸送材料の合成例を示す。
なお、以下の合成例において、ガラス転移温度はDSC測定により、重量減少開始温度はTG−DTA測定により、融点はDSC測定またはTG−DTA測定によりそれぞれ求めた。
[Synthesis example]
The synthesis example of the hole transport material of the present invention is shown below.
In the following synthesis examples, the glass transition temperature was determined by DSC measurement, the weight loss starting temperature was determined by TG-DTA measurement, and the melting point was determined by DSC measurement or TG-DTA measurement.

(合成例1)
<目的物1の合成>

Figure 0005125480
(Synthesis Example 1)
<Synthesis of Target 1>
Figure 0005125480

窒素気流中、3−エチル−3−オキセタンメタノール(10.1g)、水(80ml)、および水酸化ナトリウム(20.88g)を室温で30分撹拌し、そこへp−トシルクロライド(21.56g)のテトラヒドロフラン(80ml)溶液を滴下し、室温で3時間反応させた。反応混合物に水を加え、酢酸エチルで抽出し、有機層を硫酸マグネシウムで乾燥した後、濃縮し、透明油状の目的物1(23.11g)を得た。   In a nitrogen stream, 3-ethyl-3-oxetanemethanol (10.1 g), water (80 ml), and sodium hydroxide (20.88 g) were stirred at room temperature for 30 minutes, to which p-tosyl chloride (21.56 g) was added. ) In tetrahydrofuran (80 ml) was added dropwise and reacted at room temperature for 3 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and concentrated to give the desired product 1 (23.11 g) as a transparent oil.

H NMR(CDCl、400MHz)
δ7.81(d,2H)、7.37(d,2H)、4.36(d,2H)、4.30(d,2H)、4.15(s,2H)、1.74(m,2H)、2.51(s,3H)、0.83(t,3H)
1 H NMR (CDCl 3 , 400 MHz)
δ 7.81 (d, 2H), 7.37 (d, 2H), 4.36 (d, 2H), 4.30 (d, 2H), 4.15 (s, 2H), 1.74 (m , 2H), 2.51 (s, 3H), 0.83 (t, 3H)

<目的物2の合成>

Figure 0005125480
<Synthesis of Target 2>
Figure 0005125480

フッ化カリウム(20.68g)を真空下ドライヤで温め、水分を飛ばした後、窒素気流下、3−ヒドロキシフェニルボロン酸(21.15g)、トリス(4−ブロモフェニル)アミン(17.35g)、およびトリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.559g)を加え、テトラヒドロフラン(70ml)、およびトリ−t−ブチルホスフィン(0.262g)を加えて、室温で7時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出し、有機層を1N塩酸で洗浄し、無水硫酸マグネシウムで乾燥した後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/2)および再沈殿(酢酸エチル/トルエン)で精製することにより、目的物2(10.3g)を得た。   Potassium fluoride (20.68 g) was warmed with a dryer under vacuum to remove moisture, and then under a nitrogen stream, 3-hydroxyphenylboronic acid (21.15 g), tris (4-bromophenyl) amine (17.35 g) And tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.559 g) were added, tetrahydrofuran (70 ml) and tri-t-butylphosphine (0.262 g) were added, and the mixture was stirred at room temperature for 7 hours. . Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid, dried over anhydrous magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 3/2) and reprecipitation (ethyl acetate / toluene) to give the intended product 2 (10.3 g).

<目的物3の合成>

Figure 0005125480
<Synthesis of Target 3>
Figure 0005125480

窒素気流中、ジメチルスルホキシド(40ml)と粉砕した水酸化カリウム(2.16g)を室温で撹拌し、ここに目的物2(4.02g)を加え、完全に溶解させた。ここへ目的物1(6.46g)を滴下し、室温で3時間反応させた。ここにメタノール(7ml)を加え、50℃で1時間加温して過剰の目的物3を分解し、さらに、水を加えて酢酸エチルで抽出し、有機層を硫酸マグネシウムで乾燥した後、濃縮した。得られた油状成分をシリカゲルカラムクロマトグラフィー(塩化メチレン:酢酸エチル)で精製し、塩化メチレン/ヘキサンで再沈殿することにより、白色結晶の目的物3(2.71g)を得た。   In a nitrogen stream, dimethyl sulfoxide (40 ml) and pulverized potassium hydroxide (2.16 g) were stirred at room temperature, and the target product 2 (4.02 g) was added thereto and dissolved completely. The target product 1 (6.46 g) was added dropwise thereto and reacted at room temperature for 3 hours. Methanol (7 ml) was added thereto, and the mixture was heated at 50 ° C. for 1 hour to decompose excess target product 3. Further, water was added and the mixture was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and concentrated. did. The obtained oily component was purified by silica gel column chromatography (methylene chloride: ethyl acetate) and reprecipitated with methylene chloride / hexane to obtain the desired product 3 (2.71 g) as white crystals.

このもののガラス転移温度は53℃、融点は観測されず、窒素気流下での重量減少開始温度は419℃であった。
H NMR(CDCl、400MHz)
δ7.52(d,6H)、7.35(t,6H)、7.23〜7.17(m,9H)、6.91(m,3H)、4.60(d,6H)、4.50(d,6H)、4.15(d,6H)、1.90(m,6H)、0.96(t,9H)
The glass transition temperature of this product was 53 ° C., no melting point was observed, and the weight loss starting temperature under a nitrogen stream was 419 ° C.
1 H NMR (CDCl 3 , 400 MHz)
δ 7.52 (d, 6H), 7.35 (t, 6H), 7.23 to 7.17 (m, 9H), 6.91 (m, 3H), 4.60 (d, 6H), 4 .50 (d, 6H), 4.15 (d, 6H), 1.90 (m, 6H), 0.96 (t, 9H)

(合成例2)
<目的物4の合成>

Figure 0005125480
(Synthesis Example 2)
<Synthesis of Target 4>
Figure 0005125480

窒素雰囲気下、目的物2(4.0g)をテトラヒドロフラン(50ml)に溶解し、0℃まで氷冷した後、トリエチルアミン(4.66g)を添加し、シンナモイルクロライド(7.66g)をテトラヒドロフラン(20ml)に溶解した溶液を系内に滴下した。20分後、氷バスをはずし、室温で2時間攪拌した。不溶物を濾過で除去し、濃縮後、メタノールに滴下した。析出した結晶を濾取した後、酢酸エチル(20ml)に溶解し、メタノール300mlに再沈殿した。この再沈殿操作を2回繰り返した後、塩化メチレン/メタノールで再沈殿することにより、目的物4の薄黄色結晶(5.87g)を得た。   In a nitrogen atmosphere, the target compound 2 (4.0 g) was dissolved in tetrahydrofuran (50 ml), cooled to 0 ° C. with ice, triethylamine (4.66 g) was added, and cinnamoyl chloride (7.66 g) was added to tetrahydrofuran (7.66 g). A solution dissolved in 20 ml) was dropped into the system. After 20 minutes, the ice bath was removed and the mixture was stirred at room temperature for 2 hours. The insoluble material was removed by filtration, concentrated, and then added dropwise to methanol. The precipitated crystals were collected by filtration, dissolved in ethyl acetate (20 ml), and reprecipitated in 300 ml of methanol. This reprecipitation operation was repeated twice, followed by reprecipitation with methylene chloride / methanol to obtain pale yellow crystals (5.87 g) of the target product 4.

このもののガラス転移温度は79℃であった。
DEI−MS(m/z=911(M))により目的物4であることを確認した。
The glass transition temperature of this product was 79 ° C.
It was confirmed to be the target product 4 by DEI-MS (m / z = 911 (M + )).

(合成例3)
<目的物5の合成>

Figure 0005125480
窒素気流中、目的物2(5.0g)、p−フルオロベンズアルデヒド(3.69g)、炭酸カリウム(3.98g)、およびN,N−ジメチルホルムアミド(50ml)を、3.5時間加熱還流し、室温まで放冷した。反応混合物に20重量%メタノール水溶液を加え、不溶物を濾別した。得られた粗結晶を80重量%メタノール水溶液で懸洗し、目的物5(7.53g)を得た。 (Synthesis Example 3)
<Synthesis of Target 5>
Figure 0005125480
In a nitrogen stream, target product 2 (5.0 g), p-fluorobenzaldehyde (3.69 g), potassium carbonate (3.98 g), and N, N-dimethylformamide (50 ml) were heated to reflux for 3.5 hours. And allowed to cool to room temperature. 20% by weight aqueous methanol solution was added to the reaction mixture, and insoluble matters were filtered off. The obtained crude crystals were washed with an 80 wt% aqueous methanol solution to obtain the desired product 5 (7.53 g).

<目的物6の合成>

Figure 0005125480
<Synthesis of Target 6>
Figure 0005125480

窒素気流中、目的物5(8.45g)、メチルトリフェニルホスフィンヨーダイド(12.7g)、および脱水テトラヒドロフラン(170ml)に、氷冷下、t−ブトキシカリウム(3.53g)を少しずつ加えた。その温度で2.5時間攪拌した後、反応混合物に水を加え、酢酸エチルで抽出した。有機層を水洗し、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、2回目はトルエン)にて精製し、メタノールで洗浄することにより、目的物6(3.09g)を得た。   To a target 5 (8.45 g), methyltriphenylphosphine iodide (12.7 g) and dehydrated tetrahydrofuran (170 ml) in a nitrogen stream, t-butoxypotassium (3.53 g) was added little by little under ice cooling. It was. After stirring at that temperature for 2.5 hours, water was added to the reaction mixture and extracted with ethyl acetate. The organic layer was washed with water, concentrated, purified by silica gel column chromatography (hexane / ethyl acetate, second time toluene), and washed with methanol to obtain the desired product 6 (3.09 g).

DEI−MS(m/z=828(M))により目的物6であることを確認した。
このもののガラス転移温度は明瞭には観測されず、融点は187℃、重量減少開始温度は516℃であった。
It was confirmed to be the target product 6 by DEI-MS (m / z = 828 (M + )).
The glass transition temperature of this product was not clearly observed, the melting point was 187 ° C., and the weight loss starting temperature was 516 ° C.

(合成例4)
<目的物7の合成>

Figure 0005125480
(Synthesis Example 4)
<Synthesis of Target 7>
Figure 0005125480

中間体1の合成はPolymer、41、5125−5136(2000)に記載されている。
窒素気流下、30℃でマグネシウム(1.15g,47.4mmol)の無水エーテル溶液(100mL)に1,2−ジブロモエタンを数滴加え、エーテルが緩やかに還流するように中間体1(10g)の無水エーテル溶液(100mL)を滴下した。滴下終了後、30℃で1時間攪拌し、溶液を−78℃まで冷却した。激しく攪拌しながら、トリメトキシボラン(22.2g,118mmol)の無水エーテル溶液(50mL)をゆっくりと滴下した後、−78℃で1時間攪拌し、室温で1時間攪拌した。反応混合物を水にあけ、1N塩酸でpH=1にして、30分攪拌し、有機層を分離した。水層を塩化メチレン(50mL×2回)で抽出し、先の有機層と併せて飽和塩化ナトリウム水溶液(100mL)で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下に留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、目的物7を2.4g得た。
The synthesis of intermediate 1 is described in Polymer, 41, 5125-5136 (2000).
A few drops of 1,2-dibromoethane were added to an anhydrous ether solution (100 mL) of magnesium (1.15 g, 47.4 mmol) at 30 ° C. under a nitrogen stream, and intermediate 1 (10 g) was added so that the ether was gently refluxed. An anhydrous ether solution (100 mL) was added dropwise. After completion of dropping, the mixture was stirred at 30 ° C. for 1 hour, and the solution was cooled to −78 ° C. While stirring vigorously, an anhydrous ether solution (50 mL) of trimethoxyborane (22.2 g, 118 mmol) was slowly added dropwise, followed by stirring at −78 ° C. for 1 hour and stirring at room temperature for 1 hour. The reaction mixture was poured into water, adjusted to pH = 1 with 1N hydrochloric acid, stirred for 30 minutes, and the organic layer was separated. The aqueous layer was extracted with methylene chloride (50 mL × twice), combined with the previous organic layer, washed with a saturated aqueous sodium chloride solution (100 mL), dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography to obtain 2.4 g of the target product 7.

<目的物8の合成>

Figure 0005125480
<Synthesis of Target 8>
Figure 0005125480

窒素雰囲気下、目的物7(1.5g,6.88mmol)、トリス(p−ヨードフェニル)アミン(1.3g,2.08mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(18mg,31.2μmol)、およびフッ化カリウム(1.2g,20.59mmol)のテトラヒドロフラン(10mL)溶液にトリ−t−ブチルホスフィン(15mg、74.9μmol)を滴下した。反応混合物を室温で72時間攪拌し、水にあけ、塩化メチレン(50mL×2回)で抽出した。有機層を飽和塩化ナトリウム水溶液(20mL×3回)で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下に留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、目的物8(0.121g、収率8%)を得た。   Under a nitrogen atmosphere, the target compound 7 (1.5 g, 6.88 mmol), tris (p-iodophenyl) amine (1.3 g, 2.08 mmol), tris (dibenzylideneacetone) dipalladium (18 mg, 31.2 μmol) And tri-t-butylphosphine (15 mg, 74.9 μmol) was added dropwise to a solution of potassium fluoride (1.2 g, 20.59 mmol) in tetrahydrofuran (10 mL). The reaction mixture was stirred at room temperature for 72 hours, poured into water and extracted with methylene chloride (2 × 50 mL). The organic layer was washed with a saturated aqueous sodium chloride solution (20 mL × 3 times) and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain the intended product 8 (0.121 g, yield: 8%).

DEI−MS(m/z=761M))より、目的物8であることを確認した。 From DEI-MS (m / z = 761M + )), it was confirmed to be the target product 8.

(合成例5)
<目的物9の合成>

Figure 0005125480
(Synthesis Example 5)
<Synthesis of Target 9>
Figure 0005125480

粉末に砕いた水酸化カリウム(4.304g)にジメチルスルホキシド(150ml)を加え、室温で30分間撹拌後、目的物2(8g)を加えた。さらに30分間撹拌後にt−ブチル(4−ヨードブトキシ)ジメチルシラン(15.91g)を加え、室温で6時間半撹拌した。反応混合物を氷水に入れ、濾過をした。濾取物を塩化メチレンに溶かして抽出し、有機層を飽和食塩水で洗浄して、硫酸マグネシウムで乾燥した後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレンの混合液)で精製し、目的物9(7.46g)を得た。   Dimethyl sulfoxide (150 ml) was added to pulverized potassium hydroxide (4.304 g), and the mixture was stirred at room temperature for 30 minutes, and then target product 2 (8 g) was added. Further, after stirring for 30 minutes, t-butyl (4-iodobutoxy) dimethylsilane (15.91 g) was added, and the mixture was stirred at room temperature for 6 and a half hours. The reaction mixture was placed in ice water and filtered. The filtered product was extracted by dissolving in methylene chloride, and the organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (hexane / methylene chloride mixed solution) to obtain the desired product 9 (7.46 g).

DEI−MS(m/z=1079(M))により目的物9であることを確認した。 It was confirmed to be the target product 9 by DEI-MS (m / z = 1079 (M + )).

<目的物10の合成>

Figure 0005125480
<Synthesis of Target Product 10>
Figure 0005125480

窒素気流中、目的物9(7.35g)、テトラブチルアンモニウムフルオライド水和物(10.67g)、およびテトラヒドロフラン(35ml)を加え、室温で6時間半撹拌した。反応混合物に水を加え、酢酸エチルで抽出し、有機層を水洗して、硫酸マグネシウムで乾燥した後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/塩化メチレン=10/1)にて精製し、目的物10(4.73g)を得た。   In a nitrogen stream, target product 9 (7.35 g), tetrabutylammonium fluoride hydrate (10.67 g), and tetrahydrofuran (35 ml) were added, and the mixture was stirred at room temperature for 6 and a half hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (ethyl acetate / methylene chloride = 10/1) to obtain the desired product 10 (4.73 g).

<目的物11の合成>

Figure 0005125480
<Synthesis of Target 11>
Figure 0005125480

目的物10(4.6g)、臭化テトラ−n−ブチルアンモニウム(0.603g)、および塩化メチレン(98ml)を加え、氷冷下DCスターラーで撹拌後、30重量%水酸化カリウム水溶液(130ml)を加えた。さらに激しく撹拌しながらシンナモイルクロライド(4.36g)の塩化メチレン溶液(32ml)を滴下し、氷冷下で3時間撹拌した。反応混合物を塩化メチレンで抽出し、有機層を水で3回洗浄、硫酸マグネシウムで乾燥した後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/塩化メチレン=1/30)にて精製し、目的物11(6.68g)を得た。   The target product 10 (4.6 g), tetra-n-butylammonium bromide (0.603 g), and methylene chloride (98 ml) were added, and the mixture was stirred with a DC stirrer under ice-cooling, and then 30% by weight aqueous potassium hydroxide solution (130 ml). ) Was added. While further stirring vigorously, a solution of cinnamoyl chloride (4.36 g) in methylene chloride (32 ml) was added dropwise and stirred for 3 hours under ice cooling. The reaction mixture was extracted with methylene chloride, and the organic layer was washed three times with water, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (ethyl acetate / methylene chloride = 1/30) to obtain the desired product 11 (6.68 g).

このもののガラス転移温度は19℃、融点は観測されず、窒素気流下での重量減少開始温度は388℃であった。
DEI−MS(m/z=1127(M))により目的物11であることを確認した。
The glass transition temperature of this product was 19 ° C., no melting point was observed, and the weight loss starting temperature under a nitrogen stream was 388 ° C.
It was confirmed to be the target product 11 by DEI-MS (m / z = 1127 (M + )).

(合成例6)
<目的物12の合成>

Figure 0005125480
(Synthesis Example 6)
<Synthesis of Target 12>
Figure 0005125480

窒素気流中、化合物2(6.26g)に、テトラヒドロフラン(60ml)を加えて氷浴で0℃に冷却しながら撹拌し、トリエチルアミン(5.46g)を加えた後、メタクリル酸クロライド(5.64g)を滴下し、室温にて3時間反応させた。不溶物を濾別し、濾液を濃縮して、メタノールにより再沈殿を行った後、シリカゲルカラムクロマトグラフィー(ヘキサン:塩化メチレン=1:3)および塩化メチレンとメタノールからの再沈殿で精製することにより、化合物12(4.00g)を得た。   In a nitrogen stream, tetrahydrofuran (60 ml) was added to compound 2 (6.26 g) and stirred while cooling to 0 ° C. in an ice bath. Triethylamine (5.46 g) was added, and then methacrylic acid chloride (5.64 g). ) Was added dropwise and reacted at room temperature for 3 hours. Insoluble matter was filtered off, the filtrate was concentrated, reprecipitated with methanol, and purified by silica gel column chromatography (hexane: methylene chloride = 1: 3) and reprecipitation from methylene chloride and methanol. Compound 12 (4.00 g) was obtained.

このもののガラス転移温度は58℃、融点は155℃、窒素気流下での重量減少開始温度は438℃であった。
DEI−MS(m/z=725(M))により化合物12であることを確認した。
The glass transition temperature of this product was 58 ° C., the melting point was 155 ° C., and the weight reduction starting temperature under a nitrogen stream was 438 ° C.
The compound 12 was confirmed by DEI-MS (m / z = 725 (M + )).

(合成例7)
<目的物13の合成>

Figure 0005125480
(Synthesis Example 7)
<Synthesis of Target Product 13>
Figure 0005125480

窒素雰囲気下、1,4−ペンタジエン−3−オール(4.21g)、および脱水ピリジン(20ml)を撹拌しているところに、氷冷下、6−ブロモヘキサン酸クロリド(7.5ml)を加えた後、室温下、3.3時間撹拌した。得られた溶液に酢酸エチル(150ml)を加えてから、炭酸水素ナトリウム水溶液(100ml)、次いで食塩水(100ml)で洗浄し、有機層を濃縮した。得られた抽出物を、シリカゲルカラムクロマトグラフィー(酢酸エチル溶媒)およびシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=3/7溶媒)で精製し、目的物13(9.9g)を得た。   While stirring 1,4-pentadien-3-ol (4.21 g) and dehydrated pyridine (20 ml) under a nitrogen atmosphere, 6-bromohexanoic acid chloride (7.5 ml) was added under ice cooling. Then, the mixture was stirred at room temperature for 3.3 hours. Ethyl acetate (150 ml) was added to the resulting solution, followed by washing with an aqueous sodium hydrogen carbonate solution (100 ml) and then brine (100 ml), and the organic layer was concentrated. The obtained extract was purified by silica gel column chromatography (ethyl acetate solvent) and silica gel column chromatography (ethyl acetate / n-hexane = 3/7 solvent) to obtain the desired product 13 (9.9 g).

CI−MS(m/z=278(M+NH)より、目的物13であることを確認した。 From CI-MS (m / z = 278 (M + NH 4 ) + ), it was confirmed to be the target product 13.

<目的物14の合成>   <Synthesis of Target Product 14>

Figure 0005125480
Figure 0005125480

窒素気流中、目的物2(2.07g)、炭酸カリウム(2.20g)、および脱水N,N−ジメチルホルムアミド(100ml)の混合溶液に、目的物13(6.22g)を添加し、60℃の油浴中、9.5時間撹拌した。次いで、目的物13(1g)を追加投入後、60℃の油浴中、3時間撹拌し、更に目的物13(1g)を追加投入後、80℃の油浴中、7.5時間撹拌した。得られた溶液に蒸留水を添加後、酢酸エチルにて抽出、食塩水で洗浄後、無水硫酸マグネシウムで乾燥した後、濾過し、濾液を濃縮して、目的物14の粗精製物を得た。
DEI−MS(m/z=1061(M))より、目的物14であることを確認した。
In a nitrogen stream, target product 13 (6.22 g) was added to a mixed solution of target product 2 (2.07 g), potassium carbonate (2.20 g), and dehydrated N, N-dimethylformamide (100 ml). The mixture was stirred in an oil bath at 9.5 hours for 9.5 hours. Subsequently, the target product 13 (1 g) was further added and then stirred in an oil bath at 60 ° C. for 3 hours. Further, the target product 13 (1 g) was further added and then stirred in an oil bath at 80 ° C. for 7.5 hours. . Distilled water was added to the resulting solution, and the mixture was extracted with ethyl acetate, washed with brine, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to obtain a crude product of target product 14. .
From DEI-MS (m / z = 1061 (M + )), it was confirmed to be the target product 14.

[有機電界発光素子の作製]
(実施例1)
図1に示す構造を有する有機電界発光素子を以下の方法で作製した。
[Production of organic electroluminescence device]
Example 1
An organic electroluminescent element having the structure shown in FIG. 1 was produced by the following method.

ガラス基板1の上にインジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(スパッター成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。   An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate 1 having a thickness of 150 nm (sputtered film; sheet resistance 15 Ω) is patterned into a 2 mm wide stripe using normal photolithography and hydrochloric acid etching. Thus, an anode 2 was formed. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

次に、正孔注入層3を以下のように湿式塗布法によって形成した。
正孔注入層3の材料として、下記に示す構造式の芳香族アミノ基を有する高分子化合物(P−1(重量平均分子量:29400,数平均分子量:12600))と下記に示す構造式の電子受容性化合物(A−1)とを用い、下記の条件でスピンコートした。
Next, the hole injection layer 3 was formed by a wet coating method as follows.
As a material for the hole injection layer 3, a polymer compound having an aromatic amino group represented by the structural formula shown below (P-1 (weight average molecular weight: 29400, number average molecular weight: 12600)) and an electron having the structural formula shown below. Using the accepting compound (A-1), spin coating was performed under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 大気中
溶媒 安息香酸エチル
塗布液濃度 P−1 2.0重量%
A−1 0.8重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 230℃×3時間
上記のスピンコートにより膜厚30nmの均一な薄膜が形成された。
Spin coating conditions Application environment Air Solvent Ethyl benzoate Coating solution concentration P-1 2.0% by weight
A-1 0.8% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions 230 ° C. × 3 hours A uniform thin film having a thickness of 30 nm was formed by the above spin coating.

続いて、正孔輸送層4を以下のように湿式塗布法によって形成した。
正孔輸送層4の材料として、下記に示す本発明の正孔輸送材料(H−1)(合成例1で合成した目的物3)と上記電子受容性化合物(A−1)を混合した溶液を下記の条件でスピンコートした。

Figure 0005125480
Subsequently, the hole transport layer 4 was formed by a wet coating method as follows.
As a material for the hole transport layer 4, a solution obtained by mixing the following hole transport material (H-1) of the present invention (target product 3 synthesized in Synthesis Example 1) and the electron accepting compound (A-1). Was spin-coated under the following conditions.
Figure 0005125480

スピンコート条件
塗布環境 大気中
溶媒 キシレン
塗布液濃度 H−1 2重量%
A−1 0.1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
上記のスピンコート膜を大気中、120℃で1時間加熱することにより、膜厚35nmの均一な薄膜を得た。
Spin coating conditions Application environment Air Solvent Xylene Coating solution concentration H-1 2% by weight
A-1 0.1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds The above-described spin coat film was heated in air at 120 ° C. for 1 hour to obtain a uniform thin film having a thickness of 35 nm.

続いて、発光層5を以下のように湿式塗布法によって形成した。
発光層5の材料として、下記の化合物(E−1)と(E−2)を、下記に示す構造式のイリジウム錯体(D−1)と共に用い、下記の条件でスピンコートした。
Subsequently, the light emitting layer 5 was formed by a wet coating method as follows.
As the material for the light emitting layer 5, the following compounds (E-1) and (E-2) were used together with an iridium complex (D-1) having the structural formula shown below and spin-coated under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 E−1 1.0重量%
E−2 1.0重量%
D−1 0.1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 130℃×60分(減圧下)
Spin coating conditions Application environment Nitrogen glove box Solvent Xylene Coating solution concentration E-1 1.0% by weight
E-2 1.0% by weight
D-1 0.1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions 130 ° C x 60 minutes (under reduced pressure)

上記のスピンコートにより膜厚40nmの均一な薄膜が形成された。   A uniform thin film having a thickness of 40 nm was formed by the above spin coating.

発光層5までを成膜した基板を窒素グローブボックスに連結されたマルチチャンバー型真空蒸着装置に大気に曝すことなく搬入し、装置内を真空度3.8×10−5Paまで排気した後、正孔阻止層6および電子輸送層7を真空蒸着法によって成膜した。 The substrate on which the light emitting layer 5 was formed was carried into a multi-chamber vacuum deposition apparatus connected to a nitrogen glove box without exposure to the atmosphere, and the inside of the apparatus was evacuated to a vacuum degree of 3.8 × 10 −5 Pa. The hole blocking layer 6 and the electron transport layer 7 were formed by a vacuum deposition method.

正孔阻止層6として、下記に示すピリジン誘導体(HB−1)を蒸着速度0.07〜0.1nm/秒で5nmの膜厚で積層した。蒸着時の真空度は3.5×10−5Paであった。 As the hole blocking layer 6, a pyridine derivative (HB-1) shown below was laminated with a film thickness of 5 nm at a deposition rate of 0.07 to 0.1 nm / second. The degree of vacuum at the time of vapor deposition was 3.5 × 10 −5 Pa.

Figure 0005125480
Figure 0005125480

続いて、正孔阻止層6の上に、電子輸送層7として下記に示すアルミニウムの8−ヒドロキシキノリン錯体(ET−1)を同様にして蒸着した。蒸着時の真空度は3.1〜3.2×10−5Pa、蒸着速度は0.09〜0.11nm/秒で膜厚は30nmとした。 Subsequently, an aluminum 8-hydroxyquinoline complex (ET-1) shown below was deposited as an electron transport layer 7 on the hole blocking layer 6 in the same manner. The degree of vacuum during deposition was 3.1 to 3.2 × 10 −5 Pa, the deposition rate was 0.09 to 0.11 nm / sec, and the film thickness was 30 nm.

Figure 0005125480
Figure 0005125480

上記の正孔阻止層6および電子輸送層7を真空蒸着する時の基板温度は室温に保持した。   The substrate temperature during vacuum deposition of the hole blocking layer 6 and the electron transport layer 7 was kept at room temperature.

ここで、電子輸送層7までの蒸着を行った素子を電子輸送層までを蒸着した有機層蒸着チャンバーから金属蒸着チャンバーへと真空中で搬送し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて、装置内の真空度が4.0×10−5Pa以下になるまで排気した後、電子注入層8と陰極9からなる2層型陰極を真空蒸着法によって形成した。電子注入層8として、先ず、フッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.015〜0.014nm/秒、真空度4.9〜5.2×10−5Paで、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.1〜1.3nm/秒、真空度7.5〜9.1×10−5Paで膜厚85nmのアルミニウム層を形成して陰極9を完成させた。以上の電子注入層8と陰極9の蒸着時の基板温度は室温に保持した。 Here, the element on which the electron transport layer 7 has been deposited is transported in vacuum from the organic layer deposition chamber on which the electron transport layer has been deposited to the metal deposition chamber, and a 2 mm wide striped shadow is used as a mask for cathode deposition. After the mask was brought into close contact with the element so as to be orthogonal to the ITO stripe of the anode 2 and evacuated until the degree of vacuum in the apparatus was 4.0 × 10 −5 Pa or less, the electron injection layer 8 and the cathode 9 A two-layer cathode was formed by vacuum evaporation. As the electron injection layer 8, first, lithium fluoride (LiF) is deposited at a deposition rate of 0.015 to 0.014 nm / second and a degree of vacuum of 4.9 to 5.2 × 10 −5 Pa using a molybdenum boat. A film having a thickness of 0.5 nm was formed on the electron transport layer 7. Next, aluminum is similarly heated by a molybdenum boat to form an aluminum layer having a film thickness of 85 nm at a deposition rate of 0.1 to 1.3 nm / second and a degree of vacuum of 7.5 to 9.1 × 10 −5 Pa. Thus, the cathode 9 was completed. The substrate temperature during the deposition of the electron injection layer 8 and the cathode 9 was kept at room temperature.

陰極までの蒸着を行った素子を、窒素雰囲気中で、外周部に紫外線硬化性樹脂(スリーボンド社製FPD用シール剤3124)を幅約1mmで塗布し、中心に吸湿剤(ダイニック社製有機EL用水分ゲッター剤HD−S050914W−40)を貼付したガラス板と、吸湿剤貼付面および素子蒸着面がそれぞれ内側になるように貼り合わせた。その後、紫外線硬化性樹脂塗布部周辺にのみ紫外光を照射して樹脂を硬化させた。   The element on which the vapor deposition was performed up to the cathode was applied in a nitrogen atmosphere with an ultraviolet curable resin (sealing agent 3124 for FPD manufactured by ThreeBond Co., Ltd.) with a width of about 1 mm on the outer periphery, and a hygroscopic agent (Organic EL manufactured by Dynic Co., Ltd.) at the center. The glass plate on which the moisture getter agent HD-S050914W-40) was affixed together with the hygroscopic agent affixing surface and the element deposition surface being inward. Thereafter, the resin was cured by irradiating ultraviolet light only around the ultraviolet curable resin application part.

以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性は以下の通りである。   As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained. The light emission characteristics of this element are as follows.

輝度/電流:25.1[cd/A]@100cd/m
電圧:7.6[V]@100cd/m
発光効率:10.4[1m/W]@100cd/m
素子の発光スペクトルの極大波長は513nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.31,0.63)であった。
Luminance / current: 25.1 [cd / A] @ 100 cd / m 2
Voltage: 7.6 [V] @ 100 cd / m 2
Luminous efficiency: 10.4 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 513 nm, which was identified as from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.31, 0.63).

(実施例2)
正孔輸送層4を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として本発明の正孔輸送材料(H−1)と電子受容性化合物(A−1)を含む溶液を下記の条件でスピンコートした。
(Example 2)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, the hole transport material (H-1) of the present invention and the electron accepting compound (A- The solution containing 1) was spin-coated under the following conditions.

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−1 2重量%
A−1 0.1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Xylene Coating solution concentration H-1 2% by weight
A-1 0.1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を窒素グローブボックス中120℃で1時間加熱乾燥することにより、膜厚30nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated and dried at 120 ° C. for 1 hour in a nitrogen glove box to obtain a uniform thin film having a thickness of 30 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。   The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.

輝度/電流:31.7[cd/A]@100cd/m
電圧:7.5[V]@100cd/m
発光効率:25.9[1m/W]@100cd/m
素子の発光スペクトルの極大波長は515nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.31,0.63)であった。
Luminance / current: 31.7 [cd / A] @ 100 cd / m 2
Voltage: 7.5 [V] @ 100 cd / m 2
Luminous efficiency: 25.9 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 515 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.31, 0.63).

(実施例3)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す本発明の正孔輸送材料(H−1)の溶液を下記の条件でスピンコートした。
(Example 3)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
A solution of the hole transport material (H-1) of the present invention shown below as a material for the hole transport layer 4 on the ITO substrate on which the hole injection layer 3 was formed by the same method as in Example 1 was used as follows. Spin coat under conditions.

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−1 2重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Xylene Coating solution concentration H-1 2% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を窒素グローブボックス中230℃で1時間加熱することにより30nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated in a nitrogen glove box at 230 ° C. for 1 hour to obtain a uniform thin film of 30 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。   The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.

輝度/電流:32.3[cd/A]@100cd/m
電圧:9.2[V]@100cd/m
発光効率:11.1[1m/W]@100cd/m
素子の発光スペクトルの極大波長は515nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.31,0.63)であった。
Luminance / current: 32.3 [cd / A] @ 100 cd / m 2
Voltage: 9.2 [V] @ 100 cd / m 2
Luminous efficiency: 11.1 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 515 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.31, 0.63).

(実施例4)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す本発明の正孔輸送材料(H−2)(合成例2で合成した目的物4)の溶液を下記の条件でスピンコートした。
Example 4
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, the hole transport material (H-2) of the present invention shown below as the material of the hole transport layer 4 (in Synthesis Example 2) The synthesized solution of the object 4) was spin-coated under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 大気中
溶媒 キシレン
塗布液濃度 H−2 1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment Air Solvent Xylene Coating concentration H-2 1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に、大気中、高圧水銀ランプを用いてUV光を積算光量で5J/cm(365nm光のエネルギー値)照射した。その後窒素グローブボックス中、230℃で1時間加熱することにより膜厚16nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was irradiated with UV light with an integrated light amount of 5 J / cm 2 (energy value of 365 nm light) using a high-pressure mercury lamp in the atmosphere. Then, a uniform thin film having a film thickness of 16 nm was obtained by heating at 230 ° C. for 1 hour in a nitrogen glove box.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。   The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.

輝度/電流:19.0[cd/A]@100cd/m
電圧:9.0[V]@100cd/m
発光効率:6.6[1m/W]@100cd/m
素子の発光スペクトルの極大波長は513nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.31,0.62)であった。
Luminance / current: 19.0 [cd / A] @ 100 cd / m 2
Voltage: 9.0 [V] @ 100 cd / m 2
Luminous efficiency: 6.6 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 513 nm, which was identified as from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.31, 0.62).

(実施例5)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す本発明の正孔輸送材料(H−3)(合成例3で合成した目的物6)の溶液を下記の条件でスピンコートした。

Figure 0005125480
(Example 5)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed by the same method as in Example 1, the hole transport material (H-3) of the present invention shown below as the material of the hole transport layer 4 (in Synthesis Example 3) The synthesized solution of the target product 6) was spin-coated under the following conditions.
Figure 0005125480

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 トルエン
塗布液濃度 H−3 1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Toluene Coating solution concentration H-3 1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を窒素グローブボックス中180℃で30分間加熱することにより膜厚30nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated in a nitrogen glove box at 180 ° C. for 30 minutes to obtain a uniform thin film having a thickness of 30 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。   The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.

輝度/電流:30.7[cd/A]@100cd/m
電圧:8.0[V]@100cd/m
発光効率:12.1[1m/W]@100cd/m
素子の発光スペクトルの極大波長は514nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.32,0.62)であった。
Luminance / current: 30.7 [cd / A] @ 100 cd / m 2
Voltage: 8.0 [V] @ 100 cd / m 2
Luminous efficiency: 12.1 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 514 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.32, 0.62).

(実施例6)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す本発明の正孔輸送材料(H−4)(合成例4で合成した目的物8)の溶液を下記の条件でスピンコートした。
(Example 6)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, the hole transport material (H-4) of the present invention shown below as the material of the hole transport layer 4 (in Synthesis Example 4) The synthesized solution of the target product 8) was spin-coated under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 大気中
溶媒 キシレン
塗布液濃度 H−4 2重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment Air Solvent Xylene Coating concentration H-4 2% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を大気中200℃で1時間加熱することにより膜厚30nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated in the atmosphere at 200 ° C. for 1 hour to obtain a uniform thin film having a thickness of 30 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。   The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.

輝度/電流:17.2[cd/A]@100cd/m
電圧:8.0[V]@100cd/m
発光効率:6.7[1m/W]@100cd/m
素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.30,0.63)であった。
Luminance / current: 17.2 [cd / A] @ 100 cd / m 2
Voltage: 8.0 [V] @ 100 cd / m 2
Luminous efficiency: 6.7 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.30, 0.63).

(実施例7)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す本発明の正孔輸送材料(H−5)(合成例6で合成した目的物12)の溶液を下記の条件でスピンコートした。
(Example 7)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, the hole transport material (H-5) of the present invention shown below as the material of the hole transport layer 4 (in Synthesis Example 6) The synthesized solution of the target product 12) was spin-coated under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−5 0.7重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment Nitrogen glove box Solvent Xylene Coating solution concentration H-5 0.7% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に、窒素グローブボックス中高圧水銀ランプを用いてUV光を積算光量で5J/cm(365nm光のエネルギー値)照射した。その後窒素グローブボックス中150℃で1時間加熱することにより膜厚17nmの均一な薄膜を得た。その後、実施例1と同様の手順で有機電界発光素子を作製した。 The spin coat film was irradiated with UV light at an integrated light amount of 5 J / cm 2 (energy value of 365 nm light) using a high-pressure mercury lamp in a nitrogen glove box. Then, a uniform thin film having a thickness of 17 nm was obtained by heating at 150 ° C. for 1 hour in a nitrogen glove box. Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。   The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.

輝度/電流:23.3[cd/A]@100cd/m
電圧:7.0[V]@100cd/m
発光効率:10.4[1m/W]@100cd/m
素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.30,0.62)であった。
Luminance / current: 23.3 [cd / A] @ 100 cd / m 2
Voltage: 7.0 [V] @ 100 cd / m 2
Luminous efficiency: 10.4 [1 m / W] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.30, 0.62).

(比較例1)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す化合物(H−6)と電子受容性化合物(A−1)を混合した溶液を下記の条件でスピンコートした。
(Comparative Example 1)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
The following compound (H-6) and electron-accepting compound (A-1) as materials for the hole transport layer 4 are formed on the ITO substrate on which the hole injection layer 3 is formed in the same manner as in Example 1. The mixed solution was spin-coated under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 大気中
溶媒 トルエン:ジグライム 重量比1:2混合溶媒
塗布液濃度 H−6 1重量%
A−1 0.05重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In the atmosphere Solvent Toluene: Diglyme Weight ratio 1: 2 Mixed solvent Coating solution concentration H-6 1% by weight
A-1 0.05% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を大気中120℃で1時間加熱することにより膜厚18nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性を表1に示す。
The spin coat film was heated in the atmosphere at 120 ° C. for 1 hour to obtain a uniform thin film having a thickness of 18 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.
Table 1 shows the light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this manner.

素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.32,0.62)であった。   The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.32, 0.62).

(比較例2)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す化合物(H−7)の溶液を下記の条件でスピンコートした。
(Comparative Example 2)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
A solution of the following compound (H-7) as a material for the hole transport layer 4 was spin-coated on the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1 under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 大気中
溶媒 キシレン
塗布液濃度 H−7 0.7重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment Air Solvent Xylene Coating concentration H-7 0.7% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を大気中120℃で1時間加熱することにより膜厚18nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated in the atmosphere at 120 ° C. for 1 hour to obtain a uniform thin film having a thickness of 18 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性を表1に示す。
素子の発光スペクトルの極大波長は513nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.30,0.63)であった。
Table 1 shows the light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this manner.
The maximum wavelength of the emission spectrum of the device was 513 nm, which was identified as from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.30, 0.63).

(比較例3)
正孔輸送層4を以下に示す方法で製膜した他は実施例1と同様にして有機電界発光素子を作製した。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として下記に示す化合物(H−8)の溶液を下記の条件でスピンコートした。
(Comparative Example 3)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
A solution of the following compound (H-8) as a material for the hole transport layer 4 was spin-coated on the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1 under the following conditions.

Figure 0005125480
Figure 0005125480

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−8 1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Xylene Coating solution concentration H-8 1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を窒素グローブボックス中150℃で1時間加熱することにより膜厚26nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated in a nitrogen glove box at 150 ° C. for 1 hour to obtain a uniform thin film having a thickness of 26 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性を表1に示す。
素子の発光スペクトルの極大波長は513nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.30,0.62)であった。
Table 1 shows the light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this manner.
The maximum wavelength of the emission spectrum of the device was 513 nm, which was identified as from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.30, 0.62).

以上のようにして作製した有機電界発光素子の特性を表1にまとめる。   Table 1 summarizes the characteristics of the organic electroluminescent device produced as described above.

Figure 0005125480
Figure 0005125480

(駆動寿命試験)
実施例2,実施例4〜実施例7、および比較例2〜比較例3で作製した素子を、通電電流密度10mA/cmとなる直流電流を通電して連続点灯させ、10時間後の輝度を観測し、試験開始時の輝度に対する割合を調べた。結果を表2に示す。
(Driving life test)
The elements produced in Example 2, Example 4 to Example 7 and Comparative Example 2 to Comparative Example 3 were continuously lit by applying a direct current having an electric current density of 10 mA / cm 2, and the luminance after 10 hours. And the ratio to the luminance at the start of the test was examined. The results are shown in Table 2.

Figure 0005125480
Figure 0005125480

表1および表2から明らかなように、本発明の正孔輸送材料を用いて作製された有機電界発光素子は、高い発光効率と長寿命の両者を達成できることがわかる。   As can be seen from Tables 1 and 2, the organic electroluminescent device produced using the hole transport material of the present invention can achieve both high luminous efficiency and long life.

本発明は、有機電界発光素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯等の分野において、好適に使用することが出来る。   The present invention relates to various fields in which organic electroluminescent elements are used, for example, light sources (for example, light sources of copiers, flat panel displays (for example, for OA computers and wall-mounted televisions) and surface light emitters). It can be suitably used in the fields of liquid crystal displays and backlights of instruments), display panels, indicator lamps and the like.

本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the organic electroluminescent element of this invention.

符号の説明Explanation of symbols

1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode

Claims (11)

下記一般式(I)で表され、分子量が300〜5000であることを特徴とする正孔輸送材料。
Figure 0005125480
[式中、R〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を表す。
nは、〜4の整数を表す。
連結基Z、直接結合、エーテル基または2価の芳香族基を表す。
は、水素原子または架橋基を表す。
但し、一分子中において、少なくとも1つのAは架橋基である。
一分子内の複数のA同士あるいはR〜R同士は、それぞれ同一であっても異なっていてもよい。]
A hole transport material represented by the following general formula (I) and having a molecular weight of 300 to 5,000.
Figure 0005125480
[Wherein, R 1 to R 7 each independently represents a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.
n represents an integer of 2 to 4.
Linking groups Z 1 represents a direct bond, an ether group or a divalent aromatic group.
A 1 represents a hydrogen atom or a bridging group.
However, in one molecule, at least one A 1 is a crosslinking group.
A plurality of A 1 or R 1 to R 7 in one molecule may be the same or different. ]
が2であることを特徴とする請求項1に記載の正孔輸送材料。 2. The hole transport material according to claim 1, wherein n is 2 . 一分子内における架橋基の数が、1、2または3であることを特徴とする請求項1または2に記載の正孔輸送材料。 The hole transport material according to claim 1 or 2 , wherein the number of crosslinking groups in one molecule is 1, 2 or 3. 上記式(I)が下記一般式(II)で表されることを特徴とする請求項1ないしのいずれか1項に記載の正孔輸送材料。
Figure 0005125480
[式中、R、R〜R、Z、nおよびAは、それぞれ式(I)におけるものと同義である。また、R〜R11は、各々独立に、R〜Rと同義である。]
The hole transport material according to any one of claims 1 to 3 , wherein the formula (I) is represented by the following general formula (II).
Figure 0005125480
[Wherein, R 1 , R 5 to R 7 , Z 1 , n and A 1 have the same meanings as in formula (I), respectively. Moreover, R < 9 > -R < 11 > is synonymous with R < 1 > -R < 7 > each independently. ]
架橋基が、下記式(Ia)で表されることを特徴とする請求項1ないしのいずれか1項に記載の正孔輸送材料。
−G−J (Ia)
[式中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を表し、Jは、下記架橋基群Tの中から選ばれる基を表す。
<架橋基群T>
Figure 0005125480
(式中、R15〜R18は、各々独立に、水素原子またはアルキル基を表す。Arは置換基を有してもよい芳香族炭化水素基または置換基を有してもよい芳香族複素環基を表す。)]
The hole transport material according to any one of claims 1 to 4 , wherein the crosslinking group is represented by the following formula (Ia).
-GJ (Ia)
[In the formula, G is formed by linking 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. Represents a valent group, and J represents a group selected from the following cross-linking group group T.
<Crosslinking group T>
Figure 0005125480
(Wherein R 15 to R 18 each independently represents a hydrogen atom or an alkyl group. Ar 1 is an aromatic hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. Represents a heterocyclic group.]]
請求項1ないしのいずれか1項に記載の正孔輸送材料と溶剤とを含有することを特徴とする有機電界発光素子用組成物。 An organic electroluminescent element composition comprising the hole transport material according to any one of claims 1 to 5 and a solvent. 正孔輸送材料を2種以上含有することを特徴とする請求項に記載の有機電界発光素子用組成物。 The composition for organic electroluminescent elements according to claim 6 , comprising two or more hole transport materials. 請求項1ないしのいずれか1項に記載の正孔輸送材料を重合させて得られる高分子化合物。 Hole transport material is polymerized polymer obtained according to any one of claims 1 to 5. 基板上に、陽極、陰極、およびこれら両極間に設けられた有機発光層を有する有機電界発光素子において、請求項に記載の高分子化合物を含有する層を有することを特徴とする有機電界発光素子。 9. An organic electroluminescent device comprising an organic electroluminescent device having an anode, a cathode, and an organic light emitting layer provided between both electrodes on a substrate, wherein the organic electroluminescent device comprises the layer containing the polymer compound according to claim 8. element. 有機発光層が、湿式成膜法で形成されることを特徴とする請求項に記載の有機電界発光素子。 The organic electroluminescent device according to claim 9 , wherein the organic light emitting layer is formed by a wet film forming method. 高分子化合物を含有する層が、正孔輸送層であることを特徴とする請求項または10に記載の有機電界発光素子。 The organic electroluminescent element according to claim 9 or 10 , wherein the layer containing a polymer compound is a hole transport layer.
JP2007328892A 2007-01-15 2007-12-20 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device Active JP5125480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328892A JP5125480B2 (en) 2007-01-15 2007-12-20 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007005935 2007-01-15
JP2007005935 2007-01-15
JP2007328892A JP5125480B2 (en) 2007-01-15 2007-12-20 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2008198989A JP2008198989A (en) 2008-08-28
JP5125480B2 true JP5125480B2 (en) 2013-01-23

Family

ID=39757628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328892A Active JP5125480B2 (en) 2007-01-15 2007-12-20 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5125480B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059646A2 (en) * 2008-11-18 2010-05-27 Plextronics, Inc. Aminobenzene compositions and related devices and methods
CN105061371B (en) 2008-11-25 2019-02-15 出光兴产株式会社 Aromatic amine derivatives and organic electroluminescent devices
JP2010185047A (en) * 2009-02-13 2010-08-26 Mitsubishi Chemicals Corp Composition for organic electroluminescent element, organic thin film, organic electroluminescent element, organic el display device, and organic el illumination
JPWO2010103765A1 (en) 2009-03-11 2012-09-13 出光興産株式会社 Material for organic device, hole injection transport material, material for organic electroluminescence element and organic electroluminescence element using novel polymerizable monomer and polymer thereof (polymer compound)
JP2010239127A (en) * 2009-03-13 2010-10-21 Mitsubishi Chemicals Corp Organic electroluminescence device, organic EL display and organic EL lighting.
US20120074360A1 (en) 2009-06-01 2012-03-29 Hitachi Chemical Company Organic Electronic Material, Ink Composition Containing Same, and Organic Thin Film, Organic Electronic Element, Organic Electroluminescent Element, Lighting Device, and Display Device Formed Therewith
WO2011125919A1 (en) * 2010-04-09 2011-10-13 バンドー化学株式会社 Novel triarylamines and use thereof
JP2013023491A (en) 2011-07-26 2013-02-04 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescent element including the same
JP6221230B2 (en) * 2012-12-26 2017-11-01 日立化成株式会社 Organic electronic device and method for manufacturing the same
EP3138858B1 (en) 2015-09-01 2019-10-30 Samsung Electronics Co., Ltd. Amino fluorene polymer and organic light-emitting device including the same
JP6652351B2 (en) * 2015-09-01 2020-02-19 三星電子株式会社Samsung Electronics Co.,Ltd. Aminofluorene polymer, material for organic electroluminescence device, and organic electroluminescence device
US10050205B2 (en) 2015-12-28 2018-08-14 Samsung Electronics Co., Ltd. Polymer, organic light-emitting device material including the same, and organic light-emitting device including the organic light-emitting device material
US10040887B2 (en) 2015-12-28 2018-08-07 Samsung Electronics Co., Ltd. Copolymer, organic light-emitting device material including the same, and organic light-emitting device including the organic light-emitting device material
JP6775731B2 (en) * 2016-04-28 2020-10-28 昭和電工マテリアルズ株式会社 Charge transport material and its use
CN109287136B (en) * 2016-04-28 2021-02-12 昭和电工材料株式会社 Charge-transporting material and use thereof
JP6972589B2 (en) * 2017-03-15 2021-11-24 昭和電工マテリアルズ株式会社 Organic electronics materials, and organic layers, organic electronics elements, organic electroluminescence elements, display elements, lighting devices, and display devices using the materials.
WO2018083801A1 (en) 2016-11-07 2018-05-11 日立化成株式会社 Organic electronic material, organic layer, organic electronic element, organic electroluminescent element, display element, illumination device, and display device
CN110352508B (en) 2017-03-02 2022-11-15 昭和电工材料株式会社 Organic Electronic Materials and Their Utilization
US11515476B2 (en) * 2018-03-16 2022-11-29 Lg Chem, Ltd. Ink composition and method for manufacturing organic light emitting device
JP6545879B1 (en) * 2018-10-10 2019-07-17 住友化学株式会社 Film for light emitting element and light emitting element using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848207B2 (en) * 1993-09-17 1999-01-20 凸版印刷株式会社 Organic thin film EL device
JP4325185B2 (en) * 2002-12-17 2009-09-02 富士ゼロックス株式会社 Organic electroluminescence device
JP4194973B2 (en) * 2003-08-29 2008-12-10 株式会社リコー Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
EP1892578B1 (en) * 2005-06-02 2013-08-14 Canon Kabushiki Kaisha Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP4977998B2 (en) * 2005-11-16 2012-07-18 富士ゼロックス株式会社 Charge transporting compound, charge transporting film and electroluminescent device using the same
JP2007302886A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Organic electronic material and organic electronic device and organic electroluminescent device using the material
EP2024419A2 (en) * 2006-05-09 2009-02-18 University of Washington Crosslinkable hole-transporting materials for organic light-emitting devices

Also Published As

Publication number Publication date
JP2008198989A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5125480B2 (en) Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5470706B2 (en) Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5707672B2 (en) Polymer compound, network polymer compound obtained by crosslinking polymer compound, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP4947219B2 (en) Organic electroluminescence device
JP5434088B2 (en) Crosslinkable organic compound, composition for organic electroluminescence device, organic electroluminescence device and organic EL display
JP5262014B2 (en) Organic compound having a crosslinking group, composition for organic electroluminescence device, and organic electroluminescence device
JP5040216B2 (en) Organic compound, charge transport material, material for organic electroluminescence device, charge transport material composition, and organic electroluminescence device
JP5206907B2 (en) Organic compound, charge transport material, composition containing the compound, organic electroluminescent element, display device and lighting device
JP4935952B2 (en) Charge transporting polymer, composition for organic electroluminescent device, organic electroluminescent device, organic EL display and organic EL lighting
JP5298524B2 (en) Organic compound having a crosslinking group, organic electroluminescent element material, composition for organic electroluminescent element, and organic electroluminescent element
JP5168840B2 (en) Charge transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5742092B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
WO2011024922A1 (en) Monoamine compound, charge-transporting material, composition for charge-transporting film, organic electroluminescent element, organic el display device and organic el lighting
JP4985441B2 (en) Polymer compound, organic electroluminescent device material, composition for organic electroluminescent device, and organic electroluminescent device
JP5028934B2 (en) Hydrocarbon compound, charge transport material, charge transport material composition, and organic electroluminescent device
JP5343818B2 (en) Arylamine polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, and organic EL lighting
JP5617202B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP5151812B2 (en) Organic compound, polymer compound, cross-linked polymer compound, composition for organic electroluminescence device, and organic electroluminescence device
JP2008115131A (en) Organic compound, charge transport material, composition for charge transport material, and organic electroluminescent device
JP5685882B2 (en) Charge transport material, composition for charge transport film, organic electroluminescence device, organic electroluminescence device display device, and organic electroluminescence device illumination device
JP5549051B2 (en) Anthracene compound, charge transport material for wet film formation, charge transport material composition for wet film formation, and organic electroluminescence device
JP2008024698A (en) Organic compound, charge transport material, charge transport material composition, and organic electroluminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350